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Minimal structure explanations, scientific understanding and explanatory depth 

 

Abstract 

 

In this paper, I outline a heuristic for thinking about the relation between explanation and 

understanding that can be used to capture various levels of “intimacy”, between them. I argue 

that the level of complexity in the structure of explanation is inversely proportional to the level 

of intimacy between explanation and understanding, i.e. the more complexity the less intimacy. 

I further argue that the level of complexity in the structure of explanation also affects the 

explanatory depth in a similar way to intimacy between explanation and understanding, i.e. the 

less complexity the greater explanatory depth and vice versa.  

 

1. Introduction 

Many philosophers maintain that explanation is intimately tied to understanding, 

specifically many hold that the goal of scientific explanation is to provide understanding of 

physical phenomena or in general of nature (de Regt 2009; Hempel 1948; Strevens 2008, 2013). 

The views about the relation between explanation and understanding range from largely 

dismissive (Hempel 1948; Trout 2002) which see the scientific understanding as a pragmatic 

or psychological by-product of explanation which is not a proper subject of philosophical 

inquiry, and which should rather belong to psychology; to proposals to treat the understanding 

independently from the explanation i.e. that there could be understanding without explanation 

(Lipton 2009; Schurz and Lambert 1994; Newman 2013, 2015), or on the other hand, that there 

could not be understanding without explanation (Strevens 2008, 2013; Khalifa 2012, 2017).  

In this paper, I outline a heuristic for thinking about the relation between explanation and 

understanding that can be used to capture various levels of “intimacy”, so to speak, between 
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them, i.e. by using this heuristic we will be able to explain away some of the seemingly 

paradoxical cases in which it is claimed we could have the understand ding without 

explanation, as well as cases where there can’t be understanding without explanation. The idea 

is that the level of complexity in the structure of explanation is inversely proportional to the 

level of intimacy between explanation and understanding, i.e. the more complexity the less 

intimacy, and vice versa. The structure of explanation is understood in this paper as a 

description of the relation between the explanans and explanandum, and the complexity in this 

context should be understood as the number of components that are required to describe this 

relation. In this sense, the complexity could possibly be measured, probably by using something 

like the minimum description length principle (Baron and Cover 1991; Baron et al 1998; 

Grünwald 2007), but developing such measure is out of the scope of this paper, because the 

primary goal of this paper is to point out the dependencies between the structure of explanation, 

scientific understanding and explanatory depth. I further argue that the level of complexity in 

the structure of explanation also affects the explanatory depth in a similar way to intimacy 

between explanation and understanding, i.e. the less complexity the greater explanatory depth 

and vice versa. A more precise way to specify what is meant by the “structure” of explanation 

is to say that the structure of explanation is a description D of the relation R between the 

explanans p and explanandum q, for example in the general account of scientific explanation 

such as the D-N model the R represents logical entailment, and p has some subparts such as 

antecedent conditions and general laws, and q represents a description of the explanandum 

phenomenon. The D in this case has a form of a logical argument. Whereas in the minimal 

structure explanations such as the topological explanation, in describing the graph-theoretical 

dependency relations between topological variables we are simultaneously describing the 

relation between the explanans and explanandum.  
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All explanations, regardless of their kind or type, have some structure. I understand the 

structure in terms of a description of the relation between explanans and explanandum. 

Sometimes, as in Hempel’s general theory of explanation, the structure will have the form of a 

deductive argument, that describes how the description of an explanandum is logically derived 

from a set of premises or why it should be expected given the premises (Hempel and 

Oppenheim 1948). Sometimes, as in a particular type of explanation such as the interventionist 

account, the explanation has a structure of “explanatory generalization” that describes invariant 

counterfactual dependency relations between the values of variables (Woodward and Hitchcock 

2003). It seems at least intuitively plausible to think that different structures of explanations 

engage with counterfactual knowledge in different ways. For example, in the argument 

structure the connection between the counterfactual knowledge and explanation will depend on 

the truth of the premises and the counterfactual knowledge will be obtained in terms of 

derivation of the explanadum from a variety of premises. The amount of counterfactual 

knowledge in that case will be commensurate with the range of possible true premises. In the 

Woodwardian case, the connection between the structure of explanation and counterfactual 

knowledge is cast in terms of the amount or range of W-questions (what-if-thing-had-been-

different) one could ask about the dependency of the value of the explanandum variable from 

the value of the explanans variable. In this sense, it would seem plausible to assume that 

different structures of explanation connect in different ways to counterfactual knowledge and 

can affect the scope of counterfactual knowledge that it connects to. I show that in the case of 

topological explanation this connection is more direct in virtue of which it covers much wider 

range of counterfactual knowledge than the explanations in which the connection between 

explanans and explanandum is less direct (such as for example interventionist type of 

explanation). 
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However, it is very important to distinguish what is minimal and what is complex in this 

context. I argue that it is the structure of explanation that can be very complex or minimally 

complex, not the explanation itself. Also, there is an important difference between simple and 

minimal here, in the sense that an explanation can be simple, but have a very complex structure, 

e.g. any explanation that has a deductive-nomological (D-N) structure. On the other hand, an 

explanation can be very complicated, but have a minimal structure, e.g. a topological 

explanation.  

 On this view, there are degrees of complexity in the structure of explanation, and so there 

could be very complex explanations which require a great deal of mediating knowledge to grasp 

the exact relation between the explanans and explanandum. Explanations with more complex 

structure would be Hempel’s general account of explanation or the D-N model1 (Hempel and 

Oppenheim 1948), Woodward’s interventionist account (Woodward and Hitchcock 2003), 

mechanistic explanation (Craver 2007; Kaplan and Craver 2011; Machamer et al 2000), 

semantic explanation (Chalmers and Jackson 2001). But there could be also explanations that 

require very little or none of mediation to grasp the exact relation between the explanans and 

explanandum. The latter ones I will call the minimal structure explanations. The best example 

of minimal structure explanation is topological explanation (Darasson 2018; Huneman 2010, 

2015; Kostic 2018a,b; Rathkopf 2015), but perhaps there could be other too, e.g. minimal model 

explanations (Batterman and Rice 2014), some accounts of mathematical explanations in 

science (Batterman 2010; Lange 2012), structural explanations (Huneman 2017).   

Even though, there are many different ways to think of understanding and its relation to the 

explanation and knowledge, none of them have explicitly treated the relation between the 

structure of explanation and understanding specifically. To avoid circularity when using the 

                                                
1 I do think that the topological explanations and in general minimal structure explanations do not 
conform to the Hempel’s general theory of explanation, just like mechanistic ones don’t fit it either. I 
also think that topological explanations are different from mechanistic ones in a number of significant 
ways as it will become more evident later in the paper. 
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terms “grasping” and “understanding” in referring to the structure of explanation, following 

Strevens (2008, 2013) and Khalifa (2017) I distinguish between “understanding-that” and 

“understanding-why”. Understanding-that refers to some basic cognitive abilities such as being 

a competent speaker of a language, knowing what certain mathematical relations mean, 

grasping the mathematical axioms and knowing what it means to say that they are logically 

primitive, or knowing that something is a fact. The understanding-why is really what we are 

after here, and it refers to knowledge of why something is the case, which is based on the 

knowledge of counterfactuals. For example, an explanation that has an argument structure, the 

explanandum is the conclusion in the logical argument that is derived from the set of premises 

that constitute the explanans. Famously, Hempel and Oppenheim (1948) represented it thusly:  

 

 

(Hempel and Oppenheim 1948: 138). 

 

In this case, we are talking about understanding-that of each of these premises. Furthermore, 

there is also the understanding-that of the rules of inference, order of derivation, validity and 

soundness. Of course, soundness or validity alone are not guarantees of a successful scientific 

explanation, i.e. one could have a correct understanding from the false explanation, if one was 

only following the explanatory relations in the D-N model for example. But in minimal 

structure explanations, topological being of them, such situation is not possible because 

explanatory relations in the topological explanation do not depend on the contingent causal 
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facts that are particular to any of the physical systems in question. That is why the minimality 

and the abstractness and generality that they entail are so important to emphasize.  

 But the understanding-why comes from knowledge of all these relations and it is also 

supported by counterfactual thinking, i.e. had something in the argument been different in 

certain ways, the conclusion and thus the explanandum would have been affected in certain 

ways. The purpose of the above example is to illustrate the point about the relation between the 

structure of explanation and counterfactual information. In this sense, the understanding is 

facilitated by the knowledge requirements for grasping the exact relation between the explanans 

and explanandum. This further means that the explanation requires only the knowledge 

facilitated by the understanding-that, whereas proper understanding requires the knowledge 

facilitated by the understanding-why. Another way to put it is that the understanding-why 

comes from the structure of explanation, and it has a form of counterfactual information about 

the dependency relations between the explanans and explanandum. 

What makes some structure of explanation more complex, is not the amount of background 

assumptions, but the number of components that are required to describe the relation between 

explanans and explanandum.2 In this sense, it means the more components the more complex 

the structure of explanation, and vice versa. For example, in the D-N model of explanation 

(Hempel and Oppenheim 1948) besides the statements about antecedent conditions and general 

laws, there are several other components that play an important role in the derivation of the 

explanandum, these are: the rules of inference (modus ponens, modus tollens), order of 

derivation (what is derived from what), soundness and validity of the argument. This kind of 

                                                
2 In terms of measuring the complexity in the structure of explanation, one can also distinguish between 

different levels and kinds of components. For example, in the D-n model, the components such as 

antecedent conditions and general laws seem to be different both in kind and in level from components 

such as rules of inference, soundness and validity.  
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description of explanatory relations allows that there could be false explanation that provides 

correct understanding of explanatory relations. For example, if we substitute the Phlogiston 

theory as a general law in the D-N model, we will still be able to understand various 

counterfactual dependencies that the model postulates, and thus to have a correct 

understanding-why despite having a false explanation. 

The complex structure of explanation can be represented schematically in the following way: 

(CSE): Understandingthat (X,Y,Z,W)	→ 𝑈𝑛𝑑𝑒𝑟𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔-./ 

Where X,Y,Z and W in D-N model may represent antecedent conditions, general laws, 

validity, soundness, order of derivation, and some additional explanatory component 

respectively. In the mechanistic explanation, these components would be: elements, activities, 

organizational principles, constitution relations, manipulability relations, variables. And in the 

semantic explanation these components could be: concepts, primary and secondary intensions, 

possible worlds, various possible world semantics that determine how intensions behave in 

various possible worlds. Based on all these explanatory components we are able to derive the 

explanandum from the explanans and to grasp various counterfactual dependency relations, i.e. 

to understand-why.  

Whereas in minimal structure explanation just by understanding-that of the 

mathematical dependencies that describe a topology (in the case of topological explanation), 

we are able to understand various counterfactual dependencies in the very same noetic act of 

grasping the description of topology, and thus to have almost unmediated understanding-why.   

The schematic representation of the minimal structure explanations would then look like this: 

Minimal structure explanation  

(MSE): 𝑈𝑛𝑑𝑒𝑟𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔0120	(𝑇) → 𝑈𝑛𝑑𝑒𝑟𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔-./ 

Where T is a description of mathematical dependencies in a certain topology.  
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To better understand the point about the relation between the structure of explanation and 

understanding, consider an example of two different questions about the dependency of wiring 

costs and evolution of the brain dynamics on the network topology. In neuroscience, this issue 

often comes up in terms of questions how the wiring costs drive the evolution of brain networks, 

and about how the network topology in the brain constrains the wiring costs and dynamics. The 

former question would require a mechanistic explanation, that takes into account very specific 

details of the system and describes various causal dependencies across various time-scales, 

between the network modules, cognitive functions and how these dynamical and functional 

features constrain the evolution of brain networks. For example, the relevant question in this 

context will be about how the actual network connections that facilitate low wiring costs will 

be preferred in the evolution of brain’s network structures. This explanation, by its very focus 

on the particular system and on its causal history will be less abstract and general. On the other 

hand, in the latter case, when explaining the topological constraints on the wiring costs, the 

explanation will have to take into account only the dependency relations between connectivity 

patterns in the network and the particular connections. By the very nature of this question, the 

explanation will be more abstract and general, because such dependency relations hold 

independently from any particular system, simply because they are mathematical dependencies 

that are actually describing the network model. Such explanation will have far fewer 

components and the relation between the explanans and explanandum in it will be much less 

mediated, because the very same dependency relations that are doing the explanatory work are 

the ones that are also used to describe the system in question.  

These are two very different ways to answer two seemingly similar questions. However, it 

seems very difficult to resist the intuition that mechanistic and topological explanations, are of 

different levels of abstractness, generality and complexity (remember in topological 

explanation, the structure is rather minimal, because the relation between the explanans and 
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explanandum is less mediated), and because of that they provide two different scopes of 

understanding. In this sense of level of complexity in the structure of explanation, the 

mechanistic explanation would conform to the CSE scheme of the structure of explanation, 

whereas the topological one would conform to the MSE scheme. 

The minimal structure explanations also support an account of explanatory depth, that can 

be applied to both causal and non-causal explanations. The explanatory depth in this context is 

thought of in terms of richness of counterfactual explanatory relations that the explanation 

provides, so in this sense, the explanations which provide fewer counterfactual explanatory 

relations are less deep than the ones that provide more counterfactual relations.  

Depending on the complexity of the structure of explanation, the relation between 

explanation and understanding can be more intimate or less intimate, the more complex the 

structure of explanation the less intimate the relation between the explanation and understating, 

and vice versa. Because of the minimal structure and more direct relation between explanation 

and understanding, these explanations will be deeper, and more universal, because they will 

provide more counterfactual dependency relations for our (armchair) grasping.   

Having set all the important distinctions in this section, in the next section I discuss the 

topological explanation, which has a minimal structure in exactly this sense.  

 

2. Minimal structure of topological explanation and scientific understanding 

 

In order to make my case, I discuss an example of scientific explanation that is pervasively 

used in biology (Levy and Bechtel 2013; Green et al 2016; Huneman 2010, 2015), medicine 

(Darasson 2018), complexity theory (Rathkopf 2018) and neuroscience (Craver 20163; Kostic 

                                                
3 It should be noted that Craver (2016) doesn’t accept the account of topological explanation as other 

authors that are cited here do. He argues that since topological explanations don’t provide a norm for 
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2018 a,b), i.e. the topological explanation. The knowledge requirements to grasp the 

relationship between the explanans and explanandum in this context are so minimal that it 

seems that there is a sense of immediacy between mentally grasping or apprehending the 

descriptions of mathematical properties and relations that characterise the topology of a system 

in question (or the understanding-that) and the property or behaviour in the system that we 

want to explain.  

Based on these considerations I argue that topological explanation has a minimal structure, 

which can be formulated in the following way: 

If a physical system or some of its aspects can be described as a network (by using graph 

theory, network analysis, network control theory and similar approaches), then just grasping 

the mathematical dependencies between topological properties and the network description 

suffices for the explanation of the behaviour or some properties of that physical system. 

 For example, to explain the efficiency of the signal processing in the brain, one will 

only have to understand the mathematical dependency between the clustering coefficient and 

average path length and the network. Similarly, in explaining the dynamics of the epidemics 

such as the speed of the spread of infection and what portion of the population will be 

affected, one will also have to understand the same dependencies between the clustering 

coefficient and the path lengths. The explanation itself does not depend on the details of these 

two very different systems. That’s why understanding the topology suffices for understanding 

the behaviour or properties of that physical system, without having to appeal to particular 

details of any of these systems.   

This definition allows to make a further claim, that in topological explanation the relation 

between the explanation and understanding is more direct, i.e. in topological explanation 

                                                
distinguishing good from bad explanations, they can’t be considered explanations at all. At best, they 

constitute a new way to describe mechanisms.  
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describing the topological properties of networks at the same time, unmediated by the 

propositional structure, provides understanding of a physical fact we want to explain. More 

precisely, in topological explanation, an understanding of a mathematical characterization of 

topology allows us to grasp various counterfactual dependency relations between the 

explanandum and the description of topology (the explanans).  

To lay out this account properly, I’ll first explain what the topological explanation is, by 

using a simple example of Watts and Strogatz (1998) small-world model, and then show that 

the same explanatory relations hold in even more complex cases, such as for example use of 

topological hierarchical modularity in explaining various properties of the brain.  

The topological explanation has a structure of a counterfactual that describes a 

mathematical dependency between a set of topological properties and a network representation 

of a real-world system (Kostic 2017). Topology in this sense, refers to a specific global pattern 

of connectivity in a network or a graph. A network is a collection of nodes and edges, that are 

connected in certain ways, and a graph is a mathematical description of such a network (van 

den Heuvel and Sporns 2013, p. 683). The description of network topology and topological 

properties are obtained by quantifying networks.  

There are many ways to quantify networks and analyse their topologies. The best known 

are the node and network degrees. A node degree is a measure of number of connections a node 

maintains, whereas a network degree is the average number of connections that nodes in a 

network maintain. Another example would include the measures of path lengths (average 

number of edges that have to be traversed to reach one node from the other) and clustering 

coefficient (measure of tendency of nodes that are connected among themselves to form 

connected triangles of nodes that are connected among themselves and therefore create very 

densely interconnected groups of nodes, that are called cliques). The path length is therefore a 

global property of the network and the clustering coefficient is the local network property. 
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These measures are used to characterise network topology of various systems, regardless of 

what nodes and edges represent in those systems. For example, a network that has a low value 

for path lengths (i.e. short path length) and high clustering coefficient, is the way to characterise 

a small-world topology. Mathematically speaking, the small-world topology enables nodes that 

are in distant cliques, to be reachable from any other node in the network through significantly 

fewer steps than in any other kind of topology, and in that way, shorten the distance between 

the neighbourhood of nodes and neighbourhoods of neighbourhoods. This mathematical feature 

of small-world topology affects (mathematically) the network communication, because 

whatever process or activity or a mechanism we want to drive through such network the small-

world topology will determine or in general constrain its dynamics (Kaiser and Hilgetag 2004, 

p. 312; van den Heuvel and Sporns 2013, p. 683).  

Famously, the Watts and Strogatz (1998) small-world model was used to show the 

functional significance of small-world topology for dynamical systems (Watts and Strogatz 

1998, p. 441). They used the example of the small-world model in the spread of infectious 

disease. They looked into a simple rewiring procedure of a family of graphs, so that starting 

from a ring lattice which has n nodes and k edges per node, they rewired each edge randomly 

with a probability p. The procedure allowed them to probe the graph properties between 

completely regular (p=0) to completely random (p=1), as is shown in picture 3.  
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Picture 3. 

As mentioned above, they quantified the structural properties of the graphs by using the 

measures of average path length (Lp) and clustering coefficient (Cp). In doing so they have 

found that the properties of a regular graph at (p=0) are that of a large-world where L grows 

linearly with n (the number of nodes). On the other hand, in random networks at (p=1) which 

are poorly clustered, the L grows only logarithmically with n. The topology of a graph in the 

region between the regular and random graphs (where the wiring probability distribution is 

0<p<1) has surprisingly low L and high C. These properties obtain due to introduction of few 

long-range connections or edges which then shorten the distance not only between the pairs of 

nodes that they connect, but also between the neighbourhood of nodes that are connected to that 

pair of nodes, and thus further shortens the distance between the neighbourhoods and also 

neighbourhoods or neighbourhoods. A very important point to keep in mind is that at the local 

level of a clustered neighbourhood of nodes, the change from a regular to small-world topology 

is not detectable because replacing a short-range edge from such a highly-clustered 

neighbourhood with a long-range one, leaves the value of C (clustering coefficient) practically 

unchanged, but the L(p) drops dramatically.  

To test the functional significance of small-world topology for dynamical systems they used 

a simplified model for the spread of infectious disease. They started with the same structure of 

family of graphs, where an infected individual is introduced into a healthy population and after 

a period of sickness which lasts a unit of dimensionless time, the infective individual is removed 

either by immunity or by death. During sickness, each of these individuals can infect their 

neighbours with some probability r. On each time step, the disease spreads through the graph 

(through the edges) until it either infects the whole population or it dies out and, in the process, 

infects only a portion of the population. The results these tests have shown are that:  
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1) Critical infectiousness r-half rapidly decreases for small p; and 

2) The time T(p) that is required to infect the entire population, regardless of its structure, 

has the same functional form as a characteristic path length L(p).  

To Watts and Strogatz this clearly shows that:  

“All the models indicate that network structure influences the speed and extent of disease 

transmission, but our model illuminates the dynamics as an explicit function of structure, rather 

than for a few particular topologies, such as random graphs, stars and chains.” (Watts and 

Strogatz 1998, p. 442).  

In this example, the knowledge that is required to understand the description of small-world 

topology, or in Watts and Strogatz’s vocabulary, to understand the “structure” is the very same 

knowledge that is required to understand the dynamics. Spreading of the infection along the 

edges of the graph is described by the very descriptions of its topological properties, i.e. the 

critical infectiousness decreases with topological randomness and the time T(p) to infect the 

entire population has the same functional form as the path length L(p). This feature of 

topological explanation allows us to understand the dynamics without any additional 

propositional apparatus or mediation. The structure of explanation in this case is minimal, in a 

sense that to grasp or to understand-that of the topological description of the dynamics is to 

grasp the explanatory relevant counterfactual dependencies or to understand-why.   

The reason why understanding the topology of the network suffices for the explanation of 

the feature in question of that system is that the topological explanation describes the 

(counterfactual) dependency relations between the topological properties and the network 

representation of the system. Once the system is described as a network, the network is 

quantified to obtain the topological properties. The counterfactual relations between topological 

properties and the network representation is what provides the immediacy between explanans 
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and explanandum. The “bridge” between mathematics and the physical system is the fact that 

topological properties and the dependency relations between them are the properties and the 

dependencies that mathematically define that network model in the first place. 

In this case, one might object that in connecting the mathematical explanans to a physical 

fact requires some kind of an empirical premise, and adding the empirical premise gives some 

kind of propositional structure, which further shows that the understanding is mediated and that 

the topological explanation is not minimal in a sense I presented here. On this view, grasping 

the explanatory relations that are posited in the explanation is what constitutes the 

understanding. Strevens calls this view a simple account of understanding (Strevens 2008, 

2013). According to this view, there cannot be understanding without explanation, because it 

is the very structure of explanation (the structure here should be understood as a structure of 

propositions that describe causal relations) that provides the correct explanatory relations 

between the propositions and mentally grasping those relations is what constitutes a scientific 

understanding. For example, one can know that the Newton’s second law of motion is true, but 

without grasping its content, i.e. grasping the exact explanatory relations that the structure of 

explanation provides, they will not be able to understand a phenomenon that is explained by 

that law. Simply put, the structure of explanation merely supplies the explanatory relations for 

our (mental) grasping. The grasping in his sense is a tacit form of knowledge, more like a direct 

apprehension. For a lack of better definition Strevens claims that the understanding or direct 

apprehension is:  

“the fundamental relation between mind and world, in virtue of which the mind has 

whatever familiarity it does with the way world is.” (Strevens 2013, p. 511). 

A possible objection at this point could be that one could always “translate” an explanation 

from minimal structure to more complex one and have the same result. For example, Craver 

(2016) puts the topological explanation in argument structure. He puts it this way:  
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“Empirical Premise. Königsberg’s bridges form a connected network with four nodes. 

Three nodes have three edges; one has five.  

Mathematical Premise. Among connected networks composed of four nodes, only 

networks containing zero or two nodes with odd degree contain Eulerian paths.  

Conclusion. There is no Eulerian path around the bridges of Königsberg.” (Craver 2016: 

700).  

Indeed, one can always do this kind of translation, but such translated explanation would 

not only be superfluous, because there is already a simpler one (the topological one that 

conforms to the MSE scheme), but it would also compromise explanatory depth. As we will 

see, greater complexity compromises depth, but deeper explanations provide more 

understanding. More precisely, in cases where both topological and mechanistic explanations 

can be given, the particular explananda will dictate which kind of explanation to use, and when 

the explanandum requires appealing to some general or abstract features, the topological 

explanation will be the one to go with. Topological explanations exemplify how minimal 

structure explanations provide greater depth, by having more intimate relation between 

explanation and understanding.  

The same can be done with the Watts and Strogatz example, but as we have seen, in their 

case, the dynamics of epidemics is precisely described by the measure of critical infectiousness 

which increases or decreases with topological randomness, and the time to infect the entire 

population has the same functional form as the topological measure of path length, which makes 

the explanation conform to the MSE scheme. In other words, the dynamics of an epidemics is 

described topologically, and grasping the description of topology suffices for the understanding 

of the dynamics. 
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The minimal structure of topological explanation and its relation to understanding provide 

an interesting insight into the more general issue of explanatory depth, which I discuss in the 

next section.  

 

3. Minimal structure and explanatory depth  

 

As it was shown in the previous section, topological explanation has a minimal and noetic 

structure, i.e. the relation between the explanans and explanandum is less mediated or more 

direct. The more direct relation here means that just mentally grasping a mathematical 

dependency between topological properties and a mathematical representation of a system 

provides the understanding-why of properties or behaviours of that system that we want to 

explain. 

Some topologies are very complex, so that in explanations based on them would seem to 

require that grasping the relation between the explanans and explanandum would be more 

mediated than Watts and Strogatz cases. 

One way to answer this objection is that regardless of how complex the topology is, 

understanding-that of such topology would still belong to the explanans, and it’s not an 

additional knowledge that is required to properly grasp the relation between the explanans and 

explanandum. This answer is based on the distinction between the simple and minimal from 

the beginning of the paper. According to this distinction, an explanation could be simple and 

still have a very complex structure, but explanation could be very complicated (in terms of 

grasping or understanding-that of highly abstract mathematical relations to describe certain 

topologies) but still have a minimal structure, i.e. to understand-that of the topology is to 

understand-why of a range of counterfactual dependencies between topological properties and 

a network representation of a system.  
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The other way could be that this account maybe doesn’t apply to all cases of topological 

explanations, indicating a pluralist view about topological explanation, according to which 

there could be different kinds of topological explanations. This could very likely be the case, 

given the richness and complexity of connectivity patterns in real world systems.  

 However, minimal structure explanations provide greater explanatory depth in virtue of 

being more abstract and general, and in that way, they provide more counterfactual dependency 

relations for our grasping. This seems plausible, because an explanation that is less abstract and 

general would seem to provide fewer counterfactual dependency relations than the explanation 

that is more abstract and general, in virtue of being applicable to fewer classes of phenomena 

and in virtue of being able to cover fewer W-questions (what-if-things-have-been-different-

questions). Something that is more abstract and more general by its very definition is 

encompassing something else that is more concrete, specific, localized and particular, and in 

virtue of that it can provide more counterfactual dependency relations than something that is 

more concrete, particular and specific. 

This should be an uncontroversial claim because it is compatible with three influential 

accounts of explanatory depth in terms of generality and abstractness. Given that the minimal 

structure explanations hold independently from any actual system, the explanatory depth that 

they provide is compatible with the Deductive-Nomological account of explanatory depth 

(Hempel and Oppenheim 1948) in terms of applicability to a range of possible systems. This 

account is also compatible with the interventionist account of explanatory depth (Hitchcock 

and Woodward 2003) in terms of a range of counterfactual answers to what-if things-had-been-

different questions. I consider Strevens’ (2008, 2013) simple account of understanding as a 

variety of interventionist account, and that it offers a similar conception of explanatory depth. 

Finally, minimal structure explanation account of explanatory depth is also compatible with 
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Weslake’s (2010) abstractive account in terms of providing various levels of abstraction in the 

explanation itself (micro-macroscopic levels). 

An interesting consequence of this view would be that the more complex the structure of 

explanation the more it is susceptible to cases where we get understanding from completely 

false explanations (Ptolemaic explanation of planetary orbits, Caloric theory explanation of 

heat, astrological explanation of personality traits or events, and many other). Because in those 

cases the understanding-that of various elements and explanatory relations in the explanans has 

a lot to do with understanding the rules of inference, validity, soundness, or in mechanistic 

explanation, it has to do with mapping a model onto a mechanism, that could all stand in correct 

explanatory relations, but some ontic detail might be false, and the false explanation would still 

produce correct understanding. Recall the example from the beginning in which just by 

replacing a law of nature in the D-N model with a Phlogiston theory, we can get a correct 

understanding from false explanation.  

But in explanations with minimal structure, it is difficult to see how one would get a correct 

understanding from false explanation, because for example, in topological explanation, 

understanding the mathematical relations that describe the topological properties 

(understanding-that) is to understand their counterfactual mathematical dependency relations 

and thus to understand-why. In other words, in topological explanation the correct explanatory 

relations do not hinge on contingent causal or ontic facts, but instead hold in virtue of inherently 

mathematical dependencies, and so having a proper grasp of various counterfactual dependency 

relations between the topological properties and the network representation (understanding-

why) is actually a part of having a proper grasp (understanding-that) of a mathematical 

description of a topology.  

This explanatory pattern and the relation between the explanans and explanandum in 

topological explanation will be the case even in very complex systems such as the brain. The 
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brain has a small world topology, and the small-worldliness perfectly describes its topology at 

the global level as well at the local level of connected triangles of nodes. The intermediate level 

of brain’s network organisation is best described through the network measures of community 

structure or network modularity (Meunier et al 2010, p. 2). The modules in a network that are 

also called communities, are subsets of nodes that are densely interconnected among themselves 

in the same module, but sparsely connected to the nodes in other modules (ibid). Since the 

nodes in the same module are very densely connected, the existence of connections between 

the nodes in different modules plays a role in shortening the path lengths in the network 

architecture, thus providing another way to characterize small world topology, i.e. the high 

clustering within a module and existence of links between nodes in different modules is what 

significantly shortens the path lengths in the whole network, and thus constitute the small-world 

topology. It should be noted that even though the modular networks are small-world topologies, 

not all small-world networks are also modular, e.g. the Watts and Strogatz (1998) model is 

small-world but not modular (Meunier et al 2010, p. 2). In many natural systems, the brain 

being one of them, each module can be partitioned even further into sub-modules, so the brain 

has a hierarchical modularity which is approximately invariant over a number of levels in the 

hierarchy (ibid). Hierarchical modularity has a tremendous explanatory potential, especially 

when it comes to explaining dynamics, information processing at multiple scales, system’s 

evolvability and stability. For example, small-worldliness that is rooted in hierarchically 

modular topology in the brain will be advantageous for the locally segregated processing in 

highly specialized functions (e.g. in visual motion detection) because the high clustering within 

the module will enable low wiring costs, and at the same time in such topology the short path 

lengths will more easily facilitate globally integrated processing of some of the more generic 

functions (e.g. working memory). Furthermore, hierarchical modular topology will be 

conducive for high dynamical complexity because it allows that both segregated and integrated 
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activities co-exist in the system, or because such topology allows that both synchronisation and 

de-synchronisation coexist across the network. Topological modularity will also allow that 

marginally stable networks of submodules be combined or divided while at the same time 

preserve network stability at the global level.  

In all of these cases, the explanatory pattern is the same. By grasping the mathematical 

dependency between a global pattern of hierarchical topological modularity and a network 

representation of the brain, we are immediately able to know (without any kind of mediation 

through propositional structure) that small-world topology that stems from network modularity 

at the same time enables low wiring cost (through high clustering within a module) and thus it 

is favourable for the locally segregated functions, while also supporting integrated processing 

through short path lengths when it comes to more generic functions such as working memory. 

In Strevens’ terminology, a description of topology immediately provides explanatory relations 

for our grasping.  

The hierarchical modular topology is a way to describe the small-world topology in greater 

detail than the original Watts and Strogatz model (1998), and the dependencies and constraints 

between topological properties and the dynamical features in the brain, provide incomparably 

richer patterns of counterfactual dependencies than the description of small-world topology 

based only on the path lengths and clustering coefficient. However, despite this, the relation 

between the topology and dynamics remains equally unmediated as in the Watts and Strogatz 

case, i.e. understanding-that of the hierarchical modular topology suffices for understanding-

why of the dynamics. As we recall, the modules enable greater signal processing efficiency 

locally, and the connections between different modules in the whole network as well as within 

the hierarchy of submodules enables global integration of functions across the network, but also 

synchronisation and desynchronization activities across the whole network. An explanation of 

the various dynamical features of the brain in this context will only appeal to various 
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mathematical dependencies between topological variables (such as node and network degree, 

path length, betweeness centrality) in order to provide a very rich set of counterfactual 

dependencies and thus to provide the greater understanding.         

After having discussed the account of explanatory depth that the minimal structure 

explanations provide, in the last section I will summarise my argument.  

4. Conclusion  

As we have seen, in topological explanation the understanding-that of certain mathematical 

relations that describe topology in a system requires minimal mediation or no mediation through 

any kind of propositional structure at all, in order to obtain the understanding-why, e.g. mentally 

grasping various mathematical relations that describe network modularity allows to grasp the 

function integration across different scales in the very same noetic act. To that effect, 

topological explanation has a minimal structure. It is based on understanding mathematical 

descriptions of topologies. 

 This account of explanation covers various levels of intimacy between the explanation and 

understanding, from the ones in which explanation and understanding are the most distinct 

(meaning delivering understanding requires a great deal more of mediating knowledge), e.g. 

Strevens (2008, 2013) and Khalifa (2013, 2017); to cases where the explanation has a minimal 

structure and the delivery of understanding is less mediated.  

This is a gradual view of explanation, according to which the less of the structure it has the 

more of the understanding it provides, and vice versa. This has to do with the explanatory depth, 

because the explanations with minimal structure provide greater explanatory depth in virtue of 

being more general, more abstract, and both of these features stem from the abstractness and 

generality of various topologies. The explanatory depth in this sense is based on the fact that 

minimal structure of topological explanation provides more possible explanatory relations, it 

casts the counterfactual net much wider so to speak, which also increases applicability of 
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explanation across very diverse domains of cases. It provides answers to more counterfactual 

questions, and finally, it provides answers about counterfactual dependencies across multiple 

scales and levels of abstraction and organisation.  
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