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Abstract We propose developing the theory of consequences of morasses relevant in
mathematical applications in the language alternative to the usual one, replacing com-
monly used structures by families of sets originating with Velleman’s neat simplified
morasses called 2-cardinals. The theory of related trees, gaps, colorings of pairs and
forcing notions is reformulated and sketched from a unifying point of view with the
focus on the applicability to constructions of mathematical structures like Boolean
algebras, Banach spaces or compact spaces. The paper is dedicated to the memory of
Jim Baumgartner whose seminal joint paper (Baumgartner and Shelah in Ann Pure
Appl Logic 33(2):109–129, 1987) with Saharon Shelah provided a critical mass in the
theory in question. A new result which we obtain as a side product is the consistency
of the existence of a function f : [λ++]2 → [λ++]≤λ with the appropriate λ+-version
of property � for regular λ ≥ ω satisfying λ<λ = λ.
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1 Introduction

The notation used is fairly standard,1 for unexplained symbols and notions see [29]
or [18]. If μ ⊆ ℘κ(λ) and X ⊆ λ, then μ|X = {Y ∈ μ : Y ⊂ X}. If X and Y are
sets of ordinals of the same order type, then fY X denotes the unique order preserving
bijection from X onto Y . By

X1 ∗ X2

we mean X1 ∪ X2 if X1, X2 are two sets of ordinals of the same order type and
X1 ∩ X2 < X1\X2 < X2\X1. Otherwise X1 ∗ X2 is undefined.

Definition 1.1 ([52,53]) Let κ be a regular cardinal. A (κ, κ+)-cardinal2 is a family
μ ⊆ ℘κ(κ+) which satisfies the following conditions:

(1) μ is well-founded with respect to inclusion,
(2) μ is locally small i.e. |(μ|X)| < κ for all X ∈ μ,
(3) μ is homogenous i.e. if X,Y ∈ μ, rank(X) = rank(Y ), then X,Y have the

same order type and μ|Y = { fY X [Z ] : Z ∈ μ|X},
(4) μ is directed i.e., for every X,Y ∈ μ there exists Z ∈ μ such that X,Y ⊆ Z ,
(5) μ is locally almost directed, i.e., for every X ∈ μ either

(a) μ|X is directed or
(b) there are X1, X2 ∈ μ of the same rank such that

X = X1 ∗ X2 and μ|X = (μ|X1) ∪ (μ|X2) ∪ {X1, X2}

(6) μ covers κ+ i.e.,
⋃

μ = κ+.
(7) μ is neat, that is for every element X of μ of nonzero rank we have

X =
⋃

(μ|X).

The terminology proposed here is a suggested consequence of the main point of
the paper which is that the above representation of (κ, 1)-morass allows to shift the
language of the theory (proofs, lemmas, theorems) into a language compatible with
the part of set theory applicable in classical mathematical fields (forcing, partitions,
transfinite recursion rather than the spirit of the fine structure of L , inner models etc.).

1 In particular |A| stands for the cardinality of A, f [A] denotes the image of A under f , f � A denotes the
restriction of f to A. A ⊂ B means the strict inclusion i.e., A �= B in that case. If A, B are sets of ordinals,
then ordtp(A) denotes the order type of A and we write A < B if and only if α < β for all α ∈ A and
β ∈ B. ht and rank denotes height and rank in well founded families of sets with respect to the inclusion.
α<β denotes the family of all sequences of elements from α of length less then β. If κ and λ are cardinals,
then ℘κ(λ) = {X ⊆ λ : |X | < κ}.
2 Formally, in the original terminology of [53] and [52] a (κ, κ+)-cardinal is a neat simplified (κ, 1)-morass,
however in many following papers e.g., [16,21,32] a (κ, 1)-morass is what formally Velleman called an
expanded neat simplified morass. This shift towards the expanded version (already present in the above
papers of Velleman) is justified by the fact that the above authors do all the calculations with the expanded
versions i.e., use maps rather than sets.
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On constructions with 2-cardinals 851

The allusion in the terminology is that the above representation is as liberating, com-
pared to the usual morass language, as von Neumann’s ordinals compared to Cantor’s
theory of well-orders and embeddings among them. We propose here rewriting all the
standard calculations in the language of Definition 1.1 and claim that we obtain a quite
transparent and usable theory when it starts living its own life without the reference
to the old body of arguments.

At first sight one can doubt if it matters to talk about some sets in κ+ of cardinalities
less than κ , their intersections and unions, rather than mappings from ordinals less
than κ into κ+ and appropriate compositions. We feel that, however, the degree of
the challenge of building this complex theory in a language that carries unnecessary
information may be well expressed in the word “simplified morass” and that there is
a substantial progress if one moves to families of sets and tries to settle all milestones
and references in a new language which is more compatible with the language of
places where it is needed: forcing with models as side conditions, constructions of
classical mathematical structures or partitions. For example, these simplifications in
many cases provide explicit definitions of the required objects instead of recursive
ones, even in highly complex cases as the Hausdorff gaps or colorings of pairs similar
to the ρ-function.

In any case, we hope that this text could serve as a relatively painless introduction
to applications of morasses, as its diverse circulated unpublished versions functioned
this way in the last two decades under the name Etude in simplified morasses.

The notation (κ, κ+)-cardinal suggest the possibility of using different pairs of car-
dinals or longer sequences of them. Indeed one could consider a (κ, λ)-semimorasses
of [23] as a (κ, λ)-cardinals. In the case of λ > κ+, as in [23] one needs to change
the definition of X1 ∗ X2, replacing the condition X1 ∩ X2 < X2\X2 < X2\X1 by
fX2X1 � X1 ∩ X2 = I dX1∩X2 .
The structure of the paper is the following. In Sect. 2 we develop elementary prop-

erties of 2-cardinals as families of sets. In Sect. 3 we focus on recursive constructions
along 2-cardinals in the analogy to the usual transfinite recursion along ordinals. In
fact, the heart of the philosophy of (κ, κ+)-cardinals is to view κ+ as built from frag-
ments of sizes less than κ so that a recursive construction of a structure of size κ+ does
not have to deal with the case of an intermediate construction having size κ . As the
main example we propose a direct construction of a κ-thin tall Boolean algebra due
to Koepke and Martinez [21], instead of using the morass version of Martin’s axiom
developed by Velleman in [52] and [53]. In a sense the claim of this section is that we
can do very well without this version of Martin’s axiom, if we represent appropriately
the intermediate structures.

Certainly the proof of the equivalence of this version of Martin’s axiom and the
existence of simplified morasses played historically a very important role. However,
looking backwards, in practice it seems that either one can do a transfinite recursion
along a (κ, κ+)-cardinal with a nicely represented structures or there is a need of
additional ad hoc properties, which may be reduced to increasingly complex versions
of morasses with built-in diamond as in [52] and then the actual forcing approach
turns out to be more economic at least in applications (e.g. [13,20,26,28]), where
what matters most is the consistency and not necessarily holding in the constructible
universe.
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Thus, Velleman’s version of Martin’s axiom equivalent to a morass is not discussed
nor proposed as a convenient tool here. We refer the interested reader to [52] and
[53]. Perhaps the initial idea of formulating morasses like in the Definition 1.1 was
motivated by this version of Martin’s axiom. As it turned out not to be often used (the
same fate wasmet by another attempt in this direction [39]), the language shifted in the
direction of expanded simplified morasses. On the other hand, one should remember
that proving that a theorem follows from the existence of amorass or a 2-cardinalmeans
that an inaccessible cardinal is necessary to obtain the consistency of the negation of
the theorem. This cannot be said about consistency proofs which use the method of
forcing.

In Sect. 4 we give canonical definitions of several classical objects from a (κ, κ+)-
cardinal,we propose a couple of types ofKurepa trees and generalizations ofHausdorff
gaps. The simplicity of these definitions and the proofs of the properties, especially in
the context of the importance of theses structures, shows that the language of (κ, κ+)-
cardinal indeed clears the working environment. In this section we also prove that a
stationary (κ, κ+)-cardinal is a stationary subset of ℘κ(κ+) which does not reflect
to ℘κ(A) for any proper subset A ⊂ κ+. We also review some relevant literature
concerning the combinatorial phenomena displayed by the above objects, which often
is referred to as noncompactness, nonreflections or gaps.

In Sect. 5 we develop a theory of ρ-function type coloring which can be canonically
defined from a (κ, κ+)-cardinal. It wasMorganwho first saw such a possibility in [32].
Our approach allows to obtain a function with �-property for κ > ω1 generalizing
previous results.

In Sect. 6 we review possible applications of 2-cardinals for building forcing
notions.

Finally in Sect. 7 we mention attempts of transforming higher gap morasses into a
tool manageable in applications.

The morasses were introduced by Jensen (see [10]). It is beyond the scope of this
paper to give a historical reviewof their profound impact. Using the results ofVelleman
[52,53] we can conclude from Jensen’s theory that in L there exists a (κ, κ+)-cardinal
for every regular uncountable κ and if there is no (κ, κ+)-cardinal for such a κ , then
it is inaccessible in L . 2-cardinals can also be easily added by a nice forcing like in
[23]. In the case of κ = ω Velleman’s morasses exist in ZFC ([54]) and do not have
classical counterpart in Jensen’s theory. In Sect. 4 we give an explicit definition of a
Hausdorff gap from such a 2-cardinal. In the language of [44], a (κ, κ+)-cardinal can
be considered a stepping-up tool, it enables us to step-up properties of κ , obtained
by the usual induction, to κ+, since the initial fragments of the constructions are of
sizes less than κ . In the above sense every well-founded directed set of size κ+ with
initial fragments of sizes less than κ is a stepping-up tool. Additional strength and the
essence of a 2-cardinal as well as other nontrivial stepping-up frameworks is hidden
in coherence properties of the framework.

We will focus on the possibilities of using the language of Definition 1.1 and so we
have to omit most of the comments on the complicated network of results concerning
the consistency strengths of the combinatorial principles which appear in this paper
as well as the comments on the relations of the constructions to the fine structure of
L .
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On constructions with 2-cardinals 853

2 Elementary properties

Lemma 2.1 (The coherence lemma (2.4. [54])) Let κ be a regular cardinal and μ be
a (κ, κ+)-cardinal. Let X,Y ∈ μ be of the same rank and let α ∈ X ∩ Y , then

X ∩ α = Y ∩ α.

Proof By induction on rank(Z) such that X,Y ⊆ Z ∈ μ which exists by the direct-
edness 1.1 (4). If (5a) of 1.1 holds for μ|Z , then we are immediately done by the
inductive hypothesis.

If (5b) of 1.1 holds, we have Z = Z1∗Z2, and say X ⊆ Z1, Y ⊆ Z2, (otherwise we
are done by inductive hypothesis). By Z = Z1 ∗ Z2 we have that fZ2Z1 � (Z1 ∩ Z2) =
I dZ1∩Z2 and Z1∩α′ = Z2∩α′ for anyα′ ∈ Z1∩Z2 in particular forα ∈ Z1∩Z2, since
α ∈ X ∩Y . By the homogeneity 1.1 (3) rank( fZ2Z1 [X ]) = rank(X) = rank(Y ). We
know also that α ∈ fZ2Z1[X ], since fZ2Z1 � Z1 ∩ Z2 is the identity. Now, by inductive
hypothesis for Z2, we obtain that

fZ2Z1[X ] ∩ α = Y ∩ α,

but again since fZ2Z1 � Z1 ∩ Z2 = I dZ1∩Z2 , we have fZ2Z1 [X ] ∩ α = X ∩ α, so
Y ∩ α = X ∩ α as required. 
�

Using the coherence lemma we can conclude the lemma below even in the case
when X ∗ Y /∈ μ.

Lemma 2.2 Suppose that κ is a regular cardinal and μ is a (κ, κ+)-cardinal. Let X
and Y be elements of μ of the same rank, then fXY � (X ∩ Y ) = I dX∩Y .

Lemma 2.3 (The density lemma (2.7. [53])) Suppose that κ is a regular cardinal and
μ is a (κ, κ+)-cardinal. Then the following conditions are satisfied:

(1) If X ∈ μ

{rank(Z) : Z ∈ μ, X ⊆ Z} = [rank(X), ht (μ)).

(2) If X ⊆ Y are two elements of μ, then

{rank(Z) : Z ∈ μ, X ⊆ Z ⊆ Y } = [rank(X), rank(Y )].

Proof To prove (1) fix X ∈ μ take rank(X) ≤ α < ht (μ) and take Y ∈ μ of minimal
rank such that X ⊆ Y and rank(Y ) ≥ α. There is such a Y by the directedness of
μ 1.1 (4).

If rank(Y ) = α we are done. We will prove that rank(Y ) > α gives rise to a
contradiction.We apply the local almost directedness 1.1 (5) ofμ to Y . Theminimality
of the rank of Y implies that μ|Y cannot be directed, so there are Y1,Y2 such that
Y = Y1 ∗ Y2, then rank(Y ) = rank(Yi ) + 1 > α, so rank(Yi ) ≥ α and X ∈ μ � Y1
or X ∈ μ � Y2. This contradicts the minimality of the rank of Y and completes the
proof of part (1).
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For (2) fix X,Y ∈ μ and α < ht (μ) such that X ⊆ Y and rank(X) < α < rank(Y ).
Using the part (1), find Z1, Z2 ∈ μ such that X ⊆ Z1 ⊆ Z2 and rank(Z1) = α and
rank(Z2) = rank(Y ). Consider fY Z2 , we get fY Z2 [X ] ⊆ fY Z2 [Z1] and fY Z2 [Z1] ∈
μ and rank( fY Z2 [Z1]) = α. It is enough to prove that fY Z2 [X ] = X , i.e., fY Z2(α) = α

for all α’s in X . But as X ⊆ Z2,Y , if α ∈ X and α ∈ Z2∩Y , the coherence lemma 2.1
implies that ordtp(α ∩ Z2) = ordtp(α ∩Y ). As fY Z2 is order preserving, we get that
fY Z2(α) = α. 
�
Lemma 2.4 (The localization lemma) Suppose that κ is a regular cardinal and μ is
a (κ, κ+)-cardinal. Suppose that F ⊆ κ+ is a finite set such that there is X ∈ μ with
rank(X) = η and F ⊆ X. If Y ∈ μ contains F and is of rank(Y ) ≥ η, then there is
X ′ ∈ (μ|Y ) ∪ {Y } such that

F ⊆ X ′ and rank(X ′) = η.

In particular X ∩ max(F) = X ′ ∩ max(F) ⊆ Y .

Proof If rank(Y ) = η, then X ′ = Y works. So we may assume that rank(Y ) > η.

By the density lemma 2.3 there is Y ′ ∈ μ such that rank(Y ′) = rank(Y ) and X ⊂ Y ′.
Now use the homogeneity 1.1 (3) of μ to note that X ′ = fYY ′ [X ] ∈ μ|Y . By the
coherence lemma Y ∩ max(F) = Y ′ ∩ max(F), so fYY ′ as an order preserving
map is the identity on Y ∩ max(F) = Y ′ ∩ max(F), in particular F ⊆ X ′ and
X ∩ max(F) = X ′ ∩ max(F). 
�
Lemma 2.5 Let κ be a regular cardinal and μ be a (κ, κ+)-cardinal. Every element
α ∈ κ+ is in some X ∈ μ of rank zero.

Proof Let X be of minimal rank such that α ∈ X , which exists by (6) of 1.1. By the
neatness (7) of 1.1 the rank of X must be zero. 
�
Definition 2.6 Let κ be a regular cardinal and μ be a (κ, κ+)-cardinal. Let α ∈ κ+.
The sequence (μξ (α))ξ<ht (μ) is called the μ-sequence at α if and only if for all
ξ < ht (μ) we have

μξ (α) = Xξ ∩ α,

where Xξ ∈ μ is such that rank(Xξ ) = ξ, α ∈ Xξ , .

The fact that μ-sequences are well-defined follows from the coherence lemma 2.1,
the density lemma 2.3 and Lemma 2.5.

Lemma 2.7 Suppose that κ is a regular cardinal andμ is a (κ, κ+)-cardinal. Suppose
(μξ (α))ξ<ht (μ) is a μ-sequence at α and β ∈ μξ (α). Then

μξ (β) = μξ (α) ∩ β.

Proof This is just the coherence lemma 2.1. 
�
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In the following lemma we note, among others, that the height of μ is κ and so the
length of the μ-sequences is κ , thus they will be denoted (μξ (α))ξ<κ .

Lemma 2.8 Let κ be a regular cardinal and μ be a (κ, κ+)-cardinal and let α ∈ κ+.
Then the μ-sequence (μξ (α))ξ<ht (μ) at α is a continuous non-decreasing sequence
such that the union of its terms is equal to α. In particular it is a club subset of [α]<κ

and so the height ht (μ) of the well-founded set (μ,⊆) is κ .

Proof Let ξ < ξ ′ < ht (μ). By the density lemma 2.3 there is Z ∈ μ of rank ξ ′ such
that μξ (α)∪{α} ⊆ Z and then the coherence lemma 2.1 implies that Z ∩α = μξ ′(α),
soμξ (α) ⊆ μξ ′(α). The directedness and covering of κ+ imply that the union is equal
to α. The neatness and the directedness 1.1 imply the continuity.

To prove that (μξ (α))ξ<ht (μ) is unbounded in [α]<κ pick any X = {αη : η < θ} ∈
[α]<κ for some θ < κ . By the first part of the lemma for each η < θ there is ξη < κ

such that αη ∈ μξη(α). By the regularity of κ there is ξ < κ such that ξη < ξ for each
η < θ . Using the monotonicity of the μ-sequence from the first part of the proof we
conclude that X ⊆ μξ (α) as required.

To evaluate the height of μ note that since all elements of μ are of cardinalities less
than κ , κ is regular and the μ-sequence at κ covers κ , there must be at least κ ranks,
that is ht (μ) ≥ κ . Since μ is locally small (1.1 (2)) we have that ht (μ) ≤ κ . 
�

Thus for every α ∈ κ+ the μ-sequence at α provides a decomposition of α as
a nondecreasing continuous chain in type κ which covers α. Moreover by 2.7 these
chains for different αs cohere.

Lemma 2.9 Let κ be a regular cardinal and μ be a (κ, κ+)-cardinal. Let α ∈ κ+ and
δ be a limit ordinal. If X ∈ μ is of rank less than δ, then there is δ′ < δ such that

X ∩ μδ(α) ⊆ μδ′(α).

Proof Let Y ∈ μ be of rank δ such that α ∈ Y . Using the density lemma 2.3 find
Z ∈ μ of rank δ such that X ⊆ Z .

Consider X ′ = fY Z [X ] ∈ μ|Y . As X ∩ μδ(α) ⊆ X,Y, Z , by 2.2 we have that
X ∩ μδ(α) ⊆ X ′. By the almost directedness and by the neatness there is X ′′ ∈ μ|Y
of rank δ′ < δ such that X ′ ∪ {α} ⊆ X ′′. So

X ∩ μδ(α) ⊆ X ′′ ∩ α = μδ′(α),

as required. 
�
Proposition 2.10 Let κ be a regular cardinal and μ be a (κ, κ+)-cardinal. Then μ is
cofinal in ([κ+]<κ,⊆).

Proof Let X ∈ [κ+]<κ , choose α ∈ κ+ of cofinality κ such that sup(X) < α, consider
the μ-sequence at α. By Lemma 2.8 there is an element of it which includes X . 
�
In particular a (κ, κ+)-cardinal μ is a cofinal family in ℘κ(κ+) which is the union of
at most κ many subfamilies μα for α < κ (i.e, μα consists of elements of rank α)

123



856 P. Koszmider

such that for every two X, X ′ ∈ μα such that sup(X) ≤ sup(X ′) we have X ∩ X ′ <

X\X ′ < X ′\X by the coherence lemma 2.1.
Note that the families μα cannot be �-systems, i.e, have the property that there

is �α ∈ ℘κ(κ+) such that for each X, X ′ ∈ μα we have �α = X ∩ X ′. Note also
that there is no family μ ⊆ ℘κ(λ), satisfying definition 1.1 for λ > κ+. To see this,
suppose that λ > κ+ and consider the μ-sequence at κ+, as defined in definition
2.6, by Lemma 2.8 it covers κ+, but κ+ is regular, so it cannot be covered by this
sequence. Now let us make some elementary observation concerning the interaction
of 2-cardinals and elementary submodels.

Lemma 2.11 Let κ be a regular cardinal and μ be a (κ, κ+)-cardinal. Suppose that
M ≺ H(κ++) is an elementary submodel of cardinality less than κ which contains μ

and such that δ = M ∩ κ ∈ κ . Then

(1) For every α ∈ M ∩ κ+ we have

M ∩ α = μδ(α).

(2) If M ∩ κ+ ∈ μ, then rank(M ∩ κ+) = δ.

Proof (1) If β ∈ M ∩α, then by the covering and directedness 1.1 and by the elemen-
tarity there is ξ ∈ M ∩ κ = δ such that β ∈ μξ (α), so by the fact that (μξ (α))ξ<κ is
nondecreasing we get that β ∈ μδ(α).

As δ = M ∩ κ ∈ κ must be a limit ordinal, using the directedness and the neatness
of μ, if β ∈ μδ(α), then there is δ′ < δ such that β ∈ μδ′(α). So, as δ′, α, μ ∈ M , we
get that β ∈ M .

(2) If rank(M∩κ+)were less than δ, by the elementarity,wewould haveordtp(M∩
κ+) ∈ M which is impossible. If δ were less than rank(M ∩ κ+), there would exist
X ∈ μ|(M∩κ+) of rank bigger than δ, say of successor rank rank(M∩κ+) > δ′ > δ

of the form X1∗X2 and so therewould existα ∈ M such thatμδ(α) �= μδ′(α) ⊆ M∩α

contradicting (1). 
�
Lemma 2.12 Let κ be a regular cardinal and let μ be a (κ, κ+)-cardinal. Suppose
that M ≺ H(κ++) is an elementary submodel such that M ∩ κ+ has cardinality κ

and contains μ. Then M ∩ κ is unbounded in κ . In particular Chang’s Conjecture
fails at κ

Proof Let θ < κ . Using the fact that M ∩ κ+ has cardinality κ find α ∈ M ∩ κ+
such that the order type of M ∩ α is bigger than the order type of elements of μ of
rank θ . This means that there is ξ ∈ M ∩ α such that ξ /∈ μθ(α). Hence some ordinal
θ ′ < κ such that ξ ∈ μθ ′(α) is definable in M and bigger than θ implying that θ is
not a bound for M ∩ κ which completes the proof. 
�

If μ is stationary in ℘κ(κ+), then we have elementary submodels M such that
M ∩κ+ are inμ, in this case (2) of 2.11 is not vacuous. We may moreover require that
μ is a stationary coding set (see [56]). By definition this means that μ is stationary
subset of ℘κ(κ+) and that there is a one-to-one function c : μ → κ+ such that

∀X,Y ∈ μ X ⊂ Y ⇒ c(X) ∈ Y.
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The forcing proof of the existence of neat morasses which are stationary coding sets
which is based on a proof of Velleman from [53] can be obtained from the correspond-
ing proof for semimorasses in [23] (Theorem 3, Section 2). Let us note two simple
facts about stationary coding sets:

Proposition 2.13 Suppose that κ is a regular cardinal and that a (κ, κ+)-cardinal
μ ⊆ ℘κ(κ+) is a stationary coding set andμ ∈ M ≺ H(κ++), |M | < κ , M∩κ+ ∈ μ.
If X ∈ μ and X ⊂ M, then X ∈ M.

Proof Suppose X ∈ μ and X ⊂ M . As μ ∈ M ≺ H(κ++), we have that M thinks
that μ is a stationary coding set, so there is c : μ → κ+ witnessing this fact in M . In
particular α = c(X) ∈ M ∩ κ+, so X = c−1(α) is in M , as required. 
�

The fact below is crucial in our method of forcing with side conditions in morasses
which we introduced in [25] and which is outlined in the context of this paper in
Sect. 6.

Lemma 2.14 Suppose that κ is a regular cardinal, a (κ, κ+)-cardinal μ ⊆ ℘κ(κ+)

is a stationary coding set and μ ∈ M ≺ H(κ++), |M | < κ , M ∩ κ+ = X0 ∈ μ. Let
Y ∈ μ, rank(Y ) < M ∩ κ = δ. Then there is Z(Y ) ∈ M ∩ μ such that

(1) Y ∩ X0 ⊆ Z(Y ).
(2) rank(Z(Y )) = rank(Y ).

Proof Use the density lemma 2.3 to find X ∈ μ such that Y ⊆ X and rank(X) =
rank(X0). Now use the homogeneity 1.1 to construct Z(Y ) = fX0X [Y ] satisfying (2).
By the previous proposition Z(Y ) ∈ M . To prove (1) note that Y ∩ X0 ⊆ X ∩ X0 and
fX0X is the identity on X ∩ X0 by 2.2. 
�

Note that by the coherence lemma 2.1, it follows that in the above lemma Z(Y ) is
an end-extension of X0 ∩ Y .

3 Recursive constructions

In this section we give an example of a recursive construction where the recursion is
carried out along a 2-cardinal instead of the usual one-dimensional cardinal. Instead
the usual chain (Sα : α < κ) where Sα is a nice substructure of Sα′ for α < α′ < κ

we consider a well-founded directed system (SX : X ∈ μ) where μ is a (κ, κ+)-
cardinal and SX is a nice substructure of SY whenever X ⊆ Y and X,Y ∈ μ. The
well-foundedness allows us to do a recursive definition of the structures SX . In the
case of X of a limit rank, we use the directedness 1.1 and take an appropriate limit
of the directed system (SY : Y ∈ μ|X). In the case of X = X1 ∗ X2 we may take
advantage of the coherence properties of a 2-cardinal if our structures SY are nicely
related to the order of Y ∈ μ inherited from κ+. Namely, we may assume that X1 and
X2 are isomorphic (in a sense depending on the context) and that the isomorphism is
the identity on the substructure induced by X1 ∩ X2, if the structures SX for X ∈ μ
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involve also substructures SX∩α for α ∈ X which are completely determined by X∩α.
The coherence lemma 2.1 should then imply that

SX1∩α1 = SX2∩α2 ,

where αi = min Xi\X3−i for i = 1, 2. The inductive step may be successful if the
existence of such an isomorphism which is the identity on “the common part” allows
us to amalgamate the structures SX1 and SX2 into SX1∗X2 maintaining the fact that
S(X1∗X2)∩α for α ∈ X1 ∗ X2 is determined by X ∩ α. The final structure is obtained as
an appropriate limit of (SX : X ∈ μ).

Actually, the above determination of structures SX∩α in the construction hints to
an explicit and not recursive definition of the final structure. In many cases described
in this paper, we present such explicit definitions obtained by analyzing the recursive
process along a 2-cardinal (see the next section). On the other hand it is like with
the usual linear recursion along an ordinal, the recursion can be so complex that it is
more readable to find and present the right construction using the recursive definition
instead of an explicit one.

One should observe the analogy of the above described constructions with forcing
the entire structure with substructures SX for X ∈ μ or X ∈ ℘κ(κ+). The forcing
can be κ-closed, so we face the problem of proving that it is κ+-c.c. which reduces to
appropriate amalgamations. This analogy, of course, is behind Velleman’s or Shelah
and Stanley’s formulation of morasses in the language of a forcing axiom [39,53].

In this section we present a version of the result of Koepke and Martinez involving
superatomic Boolean algebras. Recall that a superatomic algebra is called κ-thin tall
if and only if it has height κ+ and width κ (see a survey paper of Roitman [37] for the
terminology concerning superatomic Boolean algebras).

Theorem 3.1 ([21]) Suppose that κ is a regular cardinal and there exists a (κ, κ+)-
cardinal. Then there is a κ-thin tall superatomic Boolean algebra.

When working with partial orders below, by compatibility of two elements t, s we
mean the forcing compatibility that is the existence of u ≤ t, s; if u ≤ t or t ≤ u then,
we say that u and t are comparable.

Definition 3.2 Let κ be a cardinal and A ⊆ κ × κ+. We say that a strict partial order
� on A is an A-order if and only if :

(1) if s = 〈ξ, α〉, t = 〈ξ ′, β〉 are distinct and s � t , then α < β,
(2) every pair s, t of compatible elements of A has the infimum, that is the set {u ∈

A : u � s, t} has the �-biggest element denoted by i A(s, t) = i(s, t).

If A ⊆ B ⊆ κ × κ+ and (A,�A) and (B,�B) are A and B-orders respectively, then
we say that (A,�A) is a good suborder of (B,�B) whenever it is a suborder and
i A(s, t) = iB(s, t) for s, t ∈ A.

Moreover we say that (A,�A) is admissible if whenever α < β < κ+ appear
among the second coordinates of elements of A and t = 〈ξ ′, β〉 ∈ A then
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{ξ : s = 〈ξ, α〉, s �A t}

is infinite.

The construction of a κ-thin tall superatomic Boolean algebra can be easily reduced
to an appropriate order by the following:

Proposition 3.3 ([21]) If there is a (κ, κ+)-order which is admissible, then there is a
κ-thin tall superatomic Boolean algebra.

So from this point on we focus on constructing a (κ, κ+)-order which is admissible.
To carry out our recursion we need a few lemmas.

Lemma 3.4 Let ν ⊆ ℘κ(κ+) be a directed family and for every X ∈ ν let ηX be an
ordinal and (ηX × X,�X ) be an ηX × X-order which is admissible. Suppose that
if X,Y are elements of ν with X ⊆ Y , then ηX ≤ ηY and (ηX × X,�X ) is a good
suborder of (ηY × Y,�Y ). Then putting Z = ⋃

X∈ν X and ηZ = supX∈ν ηX and
�Z= ⋃

X∈ν �X we have that (ηZ × Z ,�Z ) is an ηZ × Z-order which is admissible
such that each (ηX × X,�X ) is a good suborder of it.

Lemma 3.5 Letκ bea regular cardinal andμbea (κ, κ+)-cardinal. Suppose that X ∈
μ is of successor rank and X = X1∗X2. Suppose that η < κ and that (η×X1,�1) and
(η × X2,�2) are (η, X1)-order and (η, X2)-order respectively which are admissible
and such that f : η × X2 → η × X1 given by f (ξ, α) = (ξ, fX1X2(α)) is an
isomorphism between the orders, in particular

�1 ∩[η × (X1 ∩ X2)]2 =�2 ∩[η × (X1 ∩ X2)]2.

Then there is η < η′ < κ and an (η′ × X,�)-order which is admissible such that
(η × X1,�1), (η × X2,�2) are good suborders of (η′ × X,�).

Proof First define an η × X -order �∗ on X = X1 ∗ X2 which is not admissible but
such that (η× X1,�1), (η× X2,�2) are good suborders of (η× X,�∗). Put s �∗ t
if and only if s �1 t for s, t ∈ η × X1 or s �2 t for s, t ∈ η × X2 or s �1 f (t) for
s ∈ η × (X1\X2) t ∈ η × (X2\X1).

One proves that�∗ is a partial order indeed. For this we note that u �1 s �1 f (t)
implies u �1 f (t) and that s �1 f (t), t �2 u implies s �1 f (u) as f (t) �1 f (u)

since f is an isomorphism. �∗ clearly extends the orders �1, �2.
Thenwenote that the infima from�1 and�2 are preserved.One needs to check just

s, t ∈ X2. Takeu �∗ s, t , onemayassume thatu ∈ η×(X1\X2), sou �1, f (t), f (s),
so f −1(u) �2 s, t , this gives u �∗ f −1(u) �∗ iX2(s, t) �∗ s, t as required.

Finally let us prove the existence of the infimum for s ∈ η × (X1\X2) and t ∈
η × (X2\X1). Note that in that case {u : u �∗ s, t} = {u : u �1 s, f (t)} which has
the biggest element iX1(s, f (t)), thus (2) of Definition 3.2 is satisfied.

Now it is enough to find η < η′ < κ and an (η′ × X)-order � which is admissible
and such that (η × X,�∗) is a good suborder of (η′ × X,�). However, we will
consider one more intermediate step.

Let ((ηξ, η(ξ + 1)] × X1,�ξ
1) for 0 < ξ < η be copies of (η × X1,�1). Let

α1 = min(X2\X1). Define an (η2 × X1) ∪ [η × (X2\X1)]-order �∗∗ by

123



860 P. Koszmider

• declaring (θ, α) and (θ ′, β) incomparable if α, β ∈ X1 and θ ∈ (ηξ, η(ξ + 1)],
θ ′ ∈ (ηξ ′, η(ξ ′ + 1)] for distinct 0 ≤ ξ, ξ ′ < η,

• sticking (η(ξ + 1), η(ξ + 2)] × X1 below (ξ, α1) for each 0 ≤ ξ < ω.
• sticking (ηξ, η(ξ + 1)] × X1 below (ξ, α1) for each ω ≤ ξ < η.

Of course after “sticking” we make sure the new order is transitive by taking the
transitive closure. In fact, we just want to impose the admissibility condition which
will fail for (η × X,�∗) at elements (ξ, α) for ξ < η and α ∈ X2\X1, so below these
elements we stick some elements of the form (ζ, β) for η < ζ < η2 and β ∈ X1.
We used copies of (η × X1,�1) because they are at hand (and are admissible), but
most other choices would work if we do it in the incomparable manner as above. We
leave checking the details of the fact that �∗∗ is an (η2 × X1) ∪ [η × (X2\X1)]-
order such that �∗ is a good suborder of it to the reader: the only nontrivial case for
checking the preservation of the �∗-suprema i(s, t) is for s = (ξ, α), t = (ξ ′, β)

where ξ, ξ ′ < η and α, β ∈ X2\X1; but new elements u = (ξ ′′, γ ) below s and t must
be for γ ∈ X1 and there must be a unique w = (ξ ′′′, α1) satisfying u �∗∗ w �∗ s, t ,
so u �∗∗ w �∗∗ i(s, t) �∗∗ s, t as required for the preservation of the suprema.

�∗∗ is a good extension of �∗ and so of �1 and �2 but its domain is not of the
form η′×X for η′ < κ and X ∈ μ. The last modification of�∗∗ aims at correcting this
deficiency. Using the fact that η2ηω = η2+ω = η1+ω = ηηω = ηω (with the ordinal
exponentiation) we can construct disjoint, incomparable ηω-many consecutive copies
of ((η2×X1)∪[η×(X2\X1)],�∗∗)with domains (([η2ξ, η2ξ+η2)×X1)∪[ηξ, ηξ+
η) × (X2\X1)] for ξ < ηω and take their incomparable union � which will be a
(ηω × X)-order which is admissible and such that ((η2 × X1)∪ [η × (X2\X1)],�∗∗)
is a good suborder of it which completes the construction. 
�
Proof of Theorem 3.1 By recursion on X ∈ μ we construct an ordinal ηX and an
ηX × X -order (ηX × X,�X ) which is admissible, so that if X,Y are elements of μ

with X ⊆ Y , then ηX ≤ ηY and (ηX × X,�X ) is a good suborder of (ηY × Y,�X ).
The lemmas 3.4 and 3.5 allow us to make the recursive step in such a way (i.e., looking
backwards in κ+) that (ηX × X ∩ α,�X ) agrees with (ηY × Y ∩ α,�Y ) whenever
X,Y ∈ μ are of the same rank and α ∈ X ∩ Y , hence (ηX × X ∩ Y,�X ) agrees with
(ηY × X ∩ Y,�Y ) and so the hypothesis needed for Lemma 3.5 is always present.
The final κ × κ+-order is obtained by applying Lemma 3.4 to ν = μ. 
�

4 Gaps, nonreflection and incompactness

A natural phenomenon which accompanies constructions along 2-cardinals are gaps,
i.e., the fact that for given two cardinal invariants φ,ψ (i.e, some general way of
assigning cardinal numbers to structures of the type in question e.g. the width and the
number of branches of trees or the tightness and the character of points in compact
spaces) there is a cardinal κ such that φ(A) < κ < ψ(A), whereA is the constructed
object.

A natural “scenario” for constructions of objects exemplifying gaps goes as follows.
In the inductive step we preserve enough properties or auxiliary objects so that the
invariant φ stays below κ , by preservation argument. On the other hand the inductive
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step guarantees that properties or auxiliary objects involved in the definition of the
invariant ψ are not preserved. The number of constructions as above in combinatorial
set theory is very large. Applications beyond set theory include a construction of a large
L-space (see [15]), a construction of a large Lindelöf space with points Gδ see [13,52]
(originally in [38]), a Banach space of density ω2 without uncountable biorthogonal
systems ([7]), etc.

As an example of an object exhibiting a gap, let us construct a Kurepa tree using
a (κ, κ+)-cardinal. The constructed Kurepa tree has many additional properties, to
mention only, a nice well-ordering of branches. Note that Komjath has shown that a
Kurepa tree with many properties of the tree below may exist in a model where there
is no morass and where even �ω1 fails (under some large cardinal assumption, see
[22]).

Theorem 4.1 [10] Let κ be a regular cardinal. If there is a (κ, κ+)-cardinal then there
is a κ-Kurepa tree.

Proof Let μ be a (κ, κ+)-cardinal. Define F ⊂ κκ as follows: F = { fα : α < κ+}
where

fα(ξ) = ordtp(μξ (α)),

where (μξ (α))ξ<κ is the μ-sequence at α.
First note that all fα’s are different. Let α �= β, take X ∈ μ such that α, β ∈ X

(there exists such an X since μ is directed and covers κ+, see definition 1.1. (6)), then
ordtp(X ∩ α) �= ordtp(X ∩ β), this implies that fα(rank(X)) �= fβ(rank(X)).

Now prove that for every ξ < κ the cardinality of F � ξ = { fα � ξ : α < κ+} is
less than κ . Take X ∈ μ such that rank(X) = ξ . We will show that F � ξ ⊆ { fα �
ξ : α ∈ X}. This will suffice since |X | < κ .

Let us take arbitrary β ∈ κ+, we can find Y ∈ μ such that rank(Y ) = ξ and β ∈ Y .
Since μ � X and μ � Y are isomorphic by homogeneity of μ, there is α ∈ X such that
fXY (β) = α, then fα � ξ = fβ � ξ by the homogeneity 1.1.
Hence { fα � ξ : α < κ+, ξ < κ} with the end-extension of functions is a subtree

of κ<κ of height κ with levels of sizes < κ with at least κ+-many branches of length
κ , i.e., it is a κ-Kurepa tree. 
�
Theorem 4.2 Suppose that κ is a regular cardinal and that μ is a stationary (κ, κ+)-
cardinal, then there is a κ-Kurepa tree with exactly κ+-many branches of length κ

that does not contain a κ-Aronszajn subtree.

Proof Our κ-Kurepa tree T with the above properties is the same as in the proof of
Theorem 4.1, i.e., T = { fα � ξ : α < κ+, ξ < κ}, so we adopt the notation of this
proof and we will use the following observation made during the course of that proof

F � ξ = { fα � ξ : α ∈ X} (∗)

for any X ∈ μ such that rank(X) = ξ .

(a) Any branch of length κ of T is of the form fα for some α < κ+.
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Let b be a branch of length κ through T . Find an elementary submodel M ≺ H(κ++)

such that M ∩ κ+ ∈ μ and that T, μ, b ∈ M , |M | < κ . This is possible since μ is
stationary in ℘κ(κ+). Let ξ = rank(M ∩ κ). Let fα be such that α ∈ M ∩ κ+ and
{ fα � η : η < ξ} = b � ξ (by *)). Then since ξ /∈ M by 2.11 (2), M |� b = fα , so
H(κ++) |� b = fα so b = fα .

(b) T does not contain a κ-Aronszajn subtree.

Suppose A is a subtree of T of height κ . Let M ≺ H(κ++) be a model of cardinality
less than κ such that T, μ, A ∈ M, M ∩ κ+ ∈ μ. Let t ∈ A be such that ht (t) >

rank(M ∩ κ+) = ξ . By *) there is α ∈ M ∩ κ+ such that fα � ξ = t � ξ , so since
ξ /∈ M , M |� ({ fα|β : β < κ} ∩ A is of si ze κ) so { fα|β : β < κ} ∩ A is of size κ ,
hence A has a κ-branch, so A is not a κ-Aronszajn subtree. 
�

The fact that the statement of the theorem above holds in L was originally proved
in [9] and is due to Jensen. Note the inductive character of the above construction. At
the stage X ∈ μ, we are given an initial fragment of a Kurepa tree. The coherence
of a morass guarantees that, different interpretations of the set of branches of this
fragment of the tree are consistent. This is the case when a recursive construction as
in the previous section can be easily made explicit. We extend the tree at successor
stages, splitting a branch if it corresponds to an element from the tail and leaving a
branch non-split if it is in the head of the �-system given by amalgamation pair at
the considered rank. Also, the way the gap between the number of branches and the
size of the levels is obtained is evident: at the stage of successor rank, we preserve the
level but increase the set of branches.

Another natural phenomenon occurring while sophisticated stepping up principles
are allowed to work is the nonreflection, i.e., the nonexistence of a substructure to
which a given structure reflects its given properties, e.g., a nonmetrizable space all
of whose small subspaces are metrizable. The small size of initial fragments of the
construction is responsible for obtaining a given property in substructures of size less
than κ . The pressing down lemma applied to e.g. a stationary 2-cardinal proves that the
entire structure does not have a given property P . So, often the stationary nonreflection
is the underlying one, hence in this context it is natural to consider stationary stepping
up tools. (see [23,27,45] or in the �κ context e.g. [14]).

Proposition 4.3 ([23]) Letμ be a (κ, κ+)-cardinal, then for no proper subset A ⊂ κ+
of size at least κ the set {X ∈ μ : X ⊂ A} is stationary in ℘κ(A).

Proof We will build a regressive function f : {X ∈ μ : X ⊆ A} → A such that for
each α ∈ A there is a bound in κ for ranks of all elements of μ in the preimage of
f −1({α}). This will be sufficient, since for κ regular, no well-founded cofinal set in
℘κ(A) can have bounded ranks (consider the union of representatives of each rank).
Hence the function as above will have nonstationary preimages of singletons, thus by
the pressing down lemma (see [4]) its domain is nonstationary.

First choose β ∈ κ+ such that β /∈ A, then f (X) ∈ X is such that

ordtp(X ∩ f (X)) = ordtp(Y ∩ β)
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where Y ∈ μ is such that β ∈ Y, rank(Y ) = rank(X). Note that f is well-defined.
This follows from the density lemma 2.3 and the coherence lemma2.1 andLemma2.5.

Suppose that α ∈ A. Then there is Z ∈ μ such that α, β ∈ Z , we will prove that
rank(Z) bounds ranks of elements in f −1({α}). Let f (X) = α, rank(X) > rank(Z),
so by the density lemma 2.3 there is Y ∈ μ of the same rank as the rank of X such
that α, β ∈ Y , then obviously ordtp(α ∩ Y ) �= ordtp(β ∩ Y ) and X ∩ α = Y ∩ α by
the coherence lemma 2.1, so ordtp(α ∩ X) �= ordtp(β ∩ Y ), but this contradicts the
fact that f (X) = α. 
�
Corollary 4.4 Let μ be a (κ, κ+)-cardinal, then μ is not a club subset of ℘κ(κ+).

The last example in this section concerns the Hausdorff gap and its generalizations
to higher cardinals whose consistency is originally proved in [8]. Hausdorff gaps can
be considered as objects exhibiting nonreflection. The entire two chains of regular
length κ cannot be separated, but this property does not reflect to chains of smaller
sizes (included in initial chains) which can be separated. Below in the case of κ = ω

we obtain an explicit definition of the classical Hausdorff gap in ZFC because (ω, ω1)-
cardinals exist in ZFC as proved in [54].

Theorem 4.5 ([54]) Suppose that κ is a regular cardinal and that there exists a
(κ, κ+)-cardinal μ ⊆ ℘κ(κ+). Then there are (Aα)α<κ+ , (Bα)α<κ+ ⊆ ℘(κ) such
that

(1) Aα ∩ Bα = ∅ for each α < κ+,
(2) |Aα\Aβ |, |Bα\Bβ | < κ for each α < β < κ+,
(3) There is no C ⊆ κ such that |Aα\C |, |Bα ∩ C | < κ for each α < κ+.

Proof Define

Aα = {ξ ∈ κ : ∃X1, X2 ∈ μ rank(X1) = rank(X2) = ξ, X1 ∗ X2 ∈ μ and α ∈ X1\X2}
Bα = {ξ ∈ κ : ∃X1, X2 ∈ μ rank(X1) = rank(X2) = ξ, X1 ∗ X2 ∈ μ and α ∈ X2\X1}

To prove (1), suppose that ξ ∈ X1, X ′
2 and there are X2 and X ′

1 such that X1 ∗
X2, X ′

1 ∗ X ′
2 ∈ μ are of rank ξ + 1. This contradicts the coherence lemma 2.1 and the

homogeneity 1.1 (3). To prove (2) suppose that α < β < κ+ and that η ∈ κ is above
the rank of some Y ∈ μ satysfying α, β ∈ Y . We will note that whenever X ∈ μ

and rank(X) = ξ + 1 ≥ η, X = X1 ∗ X2 and α ∈ Xi\X3−i , then β ∈ Xi\X3−i as
well. This follows from the fact that there is Y ′ ∈ μ|Xi for some i = 1, 2 such that
α, β ∈ Y ′ which is a consequence of the local almost directedness 1.1 (5b) and the
localization lemma 2.4.

Finally let us see why (3) holds. For α < κ+ let fα : α → κ be a function defined
for β < α by

fα(β) = min{ξ : (Aα ∩ Bβ), (Bα ∩ Aβ) ⊆ ξ}.

(1) and (2) imply that f is well-defined. As in the case of the classical Hausdorff gap
construction it will be enough to prove that the preimages of singletons under fα’s
have cardinalities less than κ . We will denote this statement as (*). Indeed, under this
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hypothesis, if there were C ⊆ κ as in (3), then for κ+-many β ∈ κ+ there would exist
ξ < κ such that

Aβ\C, Bβ ∩ C ⊆ ξ

Take an α0 among these {β : Aβ\C, Bβ ∩ C ⊆ ξ} = Dξ such that below α0 there
are κ many elements of Dξ . Then fα0 � Dξ assumes all its values below ξ < κ and
so one value is assumed on κ many elements by the regularity of κ , contradicting the
statement (*) about the fαs.

To prove (*) fix ξ < κ and α ∈ κ+. Let X ∈ μ be of rank ξ such that α ∈ X .Wewill
show that for each β ∈ α\X we have fα(β) > ξ which is enough for (*). Take Y ∈ μ

of minimal rank such that β, α ∈ Y . By the coherence Lemma 2.1 rank(Y ) > ξ .
By the density lemma 2.3 and the coherence lemma 2.1 we may assume that X ⊆

Y . It follows from the local almost directedness 1.1 (5) that Y = Y1 ∗ Y2. By the
minimality of the rank of Y we have that β ∈ Y1\Y2 and α ∈ Y2\Y1 and hence
rank(Y ) − 1 ∈ Aβ ∩ Bα and so fα(β) > rank(Y ) − 1 ≥ ξ as required. 
�

5 Coherent partitions of pairs

In this section we show a way of working with 2-cardinals parallel to the methods
of walks on ordinals introduced and developed by S. Todorcevic (for a survey see
[48]). Todorcevic proved in ZFC [44] a strong failure of the Ramsey property at ω1
and developed methods of stepping up (this failure and other phenomena) to higher
cardinals based on the assumption of �κ and using colorings ρ : [κ+]2 → κ with
some stronge coherence properties (see [44] Section 2). It was Morgan (Definition 2
of [32]) who realized that using a simplified morass one can define colorings sharing
many properties with ρ.3

In this section after the proof of the fundamental properties of the colorings we
use them for the proof of the existence of κ+-Aronszajn tree and the existence of a
function with property�. Our arguments work in a new context of κ > ω1 apparently
not addressed in the literature before. This presentation is very modest compared to
the applications of ρ-functions which resulted in the case of κ = ω in many fascinat-
ing constructions (see [48,49]) for example of Banach spaces (e.g. [1]) extraspecial
p-groups [40], quadratic vector spaces [6], zero-sets of polynomials in the infinite
dimension [2] and many others. The main results concerning coherent partitions of
pairs which are present in the literature at the moment in a language which can be
easily interpreted in the context of 2-cardinals concern generic stepping up and are
addressed in the next section. Also the main applications of property � discussed in
this section belong there.

3 For κ = ω1 the existence of (ω1, ω2)-cardinal implies �ω1 , but it does not hold for other κ’s ([52]).
The opposite implication does not hold even for κ = ω1 as the consistency strength of the negation of
�ω1 is the existence of a Mahlo cardinal (see [10]) and the consistency strength of the nonexistence of an
(ω1, 1)-morass is the existence of an inaccessible cardinal (see [10]).
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Definition 5.1 ([32]) Let μ be a (κ, κ+)-cardinal, then the following function mμ =
m : [κ+]2 → κ is called a μ-coloring:

m(α, β) = m({α, β}) = min{rank(X) : α, β ∈ X ∈ μ}

The coherence of μ-sequences translates into the coherence of μ-colorings.

Lemma 5.2 Suppose that κ is a regular cardinal, β < α < κ+, μ is a (κ, κ+)-
cardinal and (μξ (α))α<κ is a μ-sequence at α as defined in 2.6. Then for every
ξ ≥ m(α, β) we have

μξ (β) = μξ (α) ∩ β.

Proof This follows from 2.7 and the definition of μ-coloring. 
�
The following proposition corresponds to 2.3 of [44].

Proposition 5.3 Let κ be a regular cardinal and μ be a (κ, κ+)-cardinal. Let
m : [κ+]2 → κ be a μ-coloring. Let α < β < γ < κ+, ν < κ , 0 < δ = ⋃

δ < ε <

κ+, then the following conditions are satisfied:

(a) |{ξ < α : m(ξ, α) ≤ ν}| < κ

(b) m(α, γ ) ≤ max{m(α, β),m(β, γ )}
(c) m(α, β) ≤ max{m(α, γ ),m(β, γ )}
(d) There is ζ < δ such that m(ξ, ε) ≥ m(ξ, δ) for all ζ ≤ ξ < δ.

Proof (a) Let (μξ )ξ<κ(α) be a μ-sequence at α (see 2.6). By the definition of m and
the coherence lemma 2.1 and Lemma 2.8 the following is satisfied:

{ξ < α : m(ξ, α) ≤ ν} = μν(α).

(b) Let X,Y ∈ μ be such that

α, β ∈ X, rank(X) = max{m(α, β),m(β, γ )}
β, γ ∈ Y, rank(Y ) = max{m(α, β),m(β, γ )},

which exist by the definition of m and the density lemma 2.3. Now β ∈ X,Y ∈
μ, rank(X) = rank(Y ), so X ∩ β = Y ∩ β by the coherence lemma 2.1, so α ∈ Y ,
and hence m(α, γ ) ≤ rank(Y ) = max{m(α, γ ),m(β, γ )}.
(c) Let X,Y ∈ μ be such that

α, γ ∈ X, rank(X) = max{m(α, γ ),m(β, γ )},
β, γ ∈ Y, rank(Y ) = max{m(α, γ ),m(β, γ )}.

As γ ∈ X,Y ∈ μ, rank(X) = rank(Y ), so X ∩ γ = Y ∩ γ by the coherence
lemma 2.1, so α ∈ Y , and hence m(α, γ ) ≤ rank(Y ) = max{m(α, γ ),m(β, γ )}.
(d) We will prove it by induction on m(δ, ε). Let X ∈ μ be of minimal rank which
contains δ and ε. Note that if ξ < δ and ξ /∈ X , then by 2.8 for μ-sequence at ε any
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element of μ which contains ξ and ε must contain δ, and so m(ξ, ε) ≥ m(ξ, δ), as
required.

Now let us turn to ξ ∈ X . By the neatness X = X1 ∗ X2. By the minimality
δ ∈ X1\X2 and ε ∈ X2\X1.

If ζ = sup(X1 ∩ X2) < δ, then note that any ξ ∈ X satisfying ζ ≤ ξ < δ belongs
to X1\X2 and so m(ξ, ε) = rank(X) > rank(X1) ≥ m(ξ, δ).

If sup(X1 ∩ X2) = δ, we consider two cases. First fX1X2(ε) = δ, then m(ξ, ε) =
m(ξ, δ) for all ξ ∈ X1∩X2 = {ξ ∈ X : ξ < δ} by the homogeneity ofμ. Secondly δ <

fX1X2(ε), thenweuse the inductive assumption to conclude that there is ζ < δ such that
m(ξ, fX1X2(ε)) ≥ m(ξ, δ) for every ζ ≤ ξ < δ. However m(ξ, fX1X2(ε)) = m(ξ, ε)

for ξ ∈ X1∩X2 by the homogeneity ofμ and in this case X1∩X2 = {ξ ∈ X : ξ < δ}.
This completes the proof of (d). 
�
Corollary 5.4 Suppose that κ is a regular cardinal, μ is a (κ, κ+)-cardinal and m is
the μ-coloring. Let γ1 < γ2 < γ3 < κ+. Then
(1) m(γ1, γ2) ≤ m(γ2, γ3) if and only if m(γ1, γ3) ≤ m(γ2, γ3);
(2) if m(γ1, γ2) > m(γ2, γ3) or m(γ1, γ3) > m(γ2, γ3), then m(γ1, γ2) = m(γ1, γ3).

Proof (b) and (c) of 5.3 assume the following forms

m(γ1, γ3) ≤ max{m(γ1, γ2),m(γ2, γ3)}. (*)

m(γ1, γ2) ≤ max{m(γ1, γ3),m(γ2, γ3)}. (**)

(1) For the forward implication, use the hypothesis and (*). For the backward impli-
cation, use the hypothesis and (**).

(2) In the first case, the hypothesism(γ1, γ2) > m(γ2, γ3) and (**) givesm(γ1, γ2) ≤
m(γ1, γ3)while the hypothesis and (*) givesm(γ1, γ3) ≤ m(γ1, γ2). In the second
case, the hypothesis m(γ1, γ3) > m(γ2, γ3) and (*) gives m(γ1, γ3) ≤ m(γ1, γ2)

while the hypothesis and (**) gives m(γ1, γ2) ≤ m(γ1, γ3). 
�
Theorem 5.5 ([10]) Let κ be a regular cardinal and μ a (κ, κ+)-cardinal. Suppose
that m : [κ+]2 → κ is a μ-coloring. Then T = {m(., α) � β : β < α < κ+} with
inclusion is a κ+-Aronszajn tree.

Proof The proof follows [44]. First note that T does not have branches of length κ+.
Since each function m(., α) is < κ-to-one (by 5.3a), as κ+ is regular, a branch of
length κ+ would give rise to < κ-to-one function from κ+ into κ which is impossible.
It can be easily seen that Levβ(T ) = {m(., α) � β : β < α < κ+}. We need to
show that this set has size at most κ . Let us define a relation for α1, α2 ∈ κ+ − β by
α1 =β α2 if and only if

∃X1, X2 ∈ μ rank(X1) = rank(X2), α1, β ∈ X1, α2, β ∈ X2, fX1X2(α1) = α2.

By the fact that fX3X2 ◦ fX2X1 = fX3X1 for X1, X2, X3 ∈ μ of the same rank, the =β

is an equivalence relation. Note that there are at most κ-many equivalence classes of
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this relation, as there are κ-many ranks and each element ofμ has less than κ elements.
So, it is sufficient to prove that if α1 =β α2, then m(., α1) � β = m(., α2) � β. Let
X1, X2 witness the fact that α1 =β α2. Let γ < β.

If γ ∈ X1 ∩ β = X2 ∩ β, then m(γ, α1) = m(γ, α2), since fX1X2(α1) = α2, and
by the homogeneity of μ.

If γ /∈ X1 ∩ β = X2 ∩ β, then m(γ, α1) = m(γ, α2) by 5.4 (2). 
�
The existence of a κ++-Souslin treemay also follow from the existence of a (κ, κ+)-

cardinal. It is so when 2κ = κ+ or when a Cohen subset of κ+ is added generically to
the universe (see [52] or [39]).

Proposition 5.6 Suppose that κ is a regular cardinal and μ is a (κ, κ+)-cardinal. All
the values of mμ are successor ordinals.

Proof This follows from the neatness of μ as in 1.1. 
�
Lemma 5.7 Let κ be a regular cardinal and μ be a (κ, κ+)-cardinal. Suppose that
M ≺ H(κ++) is an elementary submodel which contains μ. Let δ = M ∩ κ ∈ κ and
γ1 < γ2 < κ+, then

(1) If γ1, γ2 ∈ M, then m(γ1, γ2) < δ

(2) If γ1 /∈ M and γ2 ∈ M, then m(γ1, γ2) > δ

Proof (1) is clear as m(γ1, γ2) is an element of κ definable in M . For (2) suppose
that m(γ1, γ2) > δ does not hold and note that by 5.6 this means that m(γ1, γ2) < δ,
so m(γ1, γ2) is in M and hence μm(γ1,γ2)(γ2) (μ-sequence as in 2.6) is in M . Then it
must be a subset of M since M ∩ κ is an ordinal. But γ1 belongs to it, so γ1 ∈ M . 
�

In the case of a μ-coloring where μ is a 2-cardinal we can obtain some more
concrete information corresponding to (a) and (d) of 5.3 included in the following two
propositions.

Proposition 5.8 Let κ be a regular cardinal and μ be a (κ, κ+)-cardinal such that
|X | < rank(X)+ for all X ∈ μ. Let m : [κ+]2 → κ be a μ-coloring. Let α < β <

γ < κ+, ν < κ . Then

|{ξ < α : m(ξ, α) ≤ ν}| < ν+.

Proof It is like (a) of 5.3. 
�
Proposition 5.9 Suppose that κ is a regular cardinal, μ is a (κ, κ+)-cardinal and m
is the μ-coloring. Let δ < κ be a limit ordinal and let τ < ε < κ+.
There is ζ = ζ(τ, ε, δ) < δ such that whenever ξ < τ satisfies ζ(τ, ε, δ) < m(ξ, τ ) <

δ, then m(ξ, τ ) ≤ m(ξ, ε).

Proof Let X,Y ∈ μ be such that τ ∈ X , ε ∈ Y , and rank(X) = rank(Y ) = δ.
The existence of these sets follows from Lemma 2.5 and the density lemma. Note that
X ∩ Y < X\Y,Y\X . Using the homogeneity as in 1.1 there is an order preserving
function fXY : Y → X (If X = Y we just put fXY = I dX ).
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We claim that if m(τ, ε) < δ, then ζ = m(τ, ε) works; if m(τ, ε) > δ and τ �=
fXY (ε), then ζ = m(τ, fXY (ε)) + 1 works; and otherwise ζ = 0 works. First note
that ζ < δ by 5.6 in all these cases. We will consider two cases with subcases.
Case 1 τ ∈ X ∩ Y .

By 5.6, ζ = m(τ, ε) < δ. Now if ξ < τ < ε and m(ξ, τ ) > ζ , we can apply 5.4
(2) to conclude that m(ξ, τ ) = m(ξ, ε), that is ζ = m(τ, ε) works.
Case 2 τ ∈ X\Y .

The condition m(ξ, τ ) < δ from the statement of the proposition yields ξ ∈ X ,
and so we may consider only ξ ∈ X . Moreover, in this case we may consider only
ξ ∈ X ∩ Y , as the other ξ ’s satisfying m(ξ, τ ) < δ, ξ < τ are in X\Y and so, since
they satisfy ξ < ε (as τ < ε), we have that m(ξ, τ ) ≤ δ < m(ξ, ε). So ζ = 0 works
for ξ ∈ (X\Y ) ∩ τ .
Case 2.1 fXY (ε) = τ .

Then m(ξ, τ ) = m(ξ, fXY (ε)) = m(ξ, ε) for ξ ∈ X ∩ Y by the homogeneity 1.1.
Case 2.2 fXY (ε) �= τ .

As we are in Case 2 we have τ ∈ X\Y and so ε ∈ Y\X and so fXY (ε) ∈ X\Y .
Since as before we may assume that ξ ∈ X ∩ Y , we conclude that ξ < τ, fXY (ε). In
this situation, if

m(τ, fXY (ε)) < m(τ, fXY (ε)) + 1 = ζ < m(ξ, τ ),

we may use 5.4 (2) to conclude that m(ξ, τ ) = m(ξ, fXY (ε)). However as ξ ∈ X ∩ Y
we have m(ξ, fXY (ε)) = m(ξ, ε) which completes the proof. 
�
Proposition 5.10 Let λ be an infinite regular cardinal, such that λ<λ = λ and let
κ = λ+. Assume that μ is a (κ, κ+)-cardinal and m is the μ-coloring. Suppose that
{aξ : ξ ∈ κ} is a collection of subsets of κ+ of cardinalities smaller than λ. Then there
is A ⊆ κ of cardinality κ such that for any ξ, η ∈ A we have satisfied the following
relations: if τ ∈ aξ ∩ aη, α ∈ aξ − aη, β ∈ aη − aξ , then

(1) β > τ ⇒ m(α, τ ) ≤ m(α, β),

(2) α > τ ⇒ m(β, τ ) ≤ m(α, β).

Proof Using the hypothesis λ<λ = λ we may apply the �-system lemma (1.6. of
[29]) and we may w.l.o.g. assume that (aξ : ξ < κ) is a �-system with root �.

If the proposition is false, there are Aθ ⊆ κ such that |Aθ | < κ and Aθ < Aθ ′
for each θ < θ ′ < κ such that for each θ < κ and for every Aθ < ηθ < κ there is
ξ ∈ Aθ such that the pair ξ, ηθ does not satisfy the relations as in the proposition.
Indeed, otherwise for some ξ < κ one could build A ⊆ κ\ξ as in the proposition
by recursion. So we will assume the existence of Aξ s as above and will derive a
contradiction.

For the simplicity of the argument let us use an elementary submodel (see a survey of
Dow [11] for standardmethods concerning the applications of elementary submodels).
So let M ≺ H(κ++) be of cardinality λ and such that [M]<λ ⊆ M and λ,μ, {aξ :
ξ < κ}, {Aθ : θ < κ} ∈ M . Moreover let δ = M ∩ κ ∈ κ be such that c f (δ) = λ.

Let η < κ be such that η /∈ M . It follows that (aη\�) ∩ M = ∅ as the elements of
aη\� may belong to just one set in {aξ\� : ξ < κ}, namely aη.
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Now we start the search for conditions on ξ < κ which guarantee that all the
elements α ∈ aξ\aη, β ∈ aη\aξ and τ ∈ aξ ∩ aη satisfy (1) and (2). Later we will
find a θ < κ with Aθ < η such that for each ξ ∈ Aθ the ordinals ξ, η satisfy these
conditions which will bring the required contradiction.

Let π ∈ M be the minimal element of κ+ bigger than every element of aξ\� for
every ξ < κ . Recalling 5.9 define:

ζ = sup{ζ(τ, β, δ) : β ∈ aη\�, τ ∈ � ∩ β}.

As c f (δ) = λ and λ is regular we conclude that

ζ < δ. (a)

Now let δ′ < κ satisfy δ′ < δ and

μm(τ,β)(β) ∩ M ⊆ μδ′(π) (b)

for any β ∈ aη\� and any τ ∈ � with m(τ, β) < δ . The existence of such a δ′ for a
single pair τ, β as above follows from 2.9 because M ∩β ⊆ M ∩π = μδ(π) by 2.11.
As � and aη\� have cardinalites less than λ, the monotonicity of the μ-sequence 2.8
and c f (δ) = λ imply that we can find δ′ that does the job for all τ s and βs as above.

Claim If ξ ∈ M ∩ κ satisfies

(c) (aξ\�) ∩ μδ′(π) = ∅,
(d) ζ < m(α, τ ) for every τ ∈ � and α ∈ (aξ\�) ∩ τ ,

then the relations from the statement of the proposition are satisfied for ξ and η.

Proof of the claim By 5.7 we can improve (d) to

(d′) ζ < m(α, τ ) < δ for every τ ∈ � and α ∈ (aξ\�) ∩ τ

as aξ , τ ∈ M . Let α, β, τ be as in the proposition. Note that we may assume that
τ �= max{α, β, τ }.
Case 1 α = max{α, β, τ }.

We have m(τ, α) < δ < m(β, α) by 5.7. As m(τ, β) ≤ max(m(τ, α),m(β, α)) by
5.3 (c) we also have m(τ, β) ≤ m(β, α).
Case 2 τ < α < β.

First assume that m(τ, β) < δ. By (b) and (c) above m(τ, β) < m(α, β)

since μ-sequence at β is nondecreasing by 2.8. By 5.3 (c) we have m(τ, α) ≤
max(m(τ, β),m(α, β)) and so m(τ, α) ≤ m(α, β) holds as well.

Now assume that m(τ, β) ≥ δ and so by 5.7 we have m(τ, α) < δ ≤ m(τ, β). By
(c) of 5.3 we have m(τ, β) ≤ max(m(τ, α),m(α, β)) and so m(τ, α) < m(τ, β) ≤
m(α, β) follows.
Case 3 α < τ < β.

By (d’) and 5.9 we have that m(α, τ ) ≤ m(α, β). This completes the proof of the
claim. 
�
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By the claim to obtain the required contradiction with our initial assumption it is
enough to find θ < κ such that Aθ ⊆ M and (c), (d) are satisfied for each ξ ∈ Aθ .
But ζ, δ′,� are all elements of M , so using the pairwise disjointness of the Aθ s and
so of the sets Bθ = {aξ\� : ξ ∈ Aθ } it is easy to find in M a θ < κ satisfying
Bθ ∩ μδ′(π) = ∅, Bθ ∩ ⋃{μζ (τ) : τ ∈ �} = ∅. Then we also have Aθ , Bθ ⊆ M as
λ ⊆ δ ⊆ M and these are sets of cardinalities not bigger than λ. But this guarantees
(c) and (d) for each ξ ∈ Aθ , gives the required contradiction with the definition of Aθ

and completes the proof of the proposition. 
�

Definition 5.11 ([5]) A function f : [λ++]2 → [λ++]≤λ is said to have property� if
and only if whenever {aξ : ξ < λ+} is a collection of subsets of λ++ of cardinalities<

λ, then there are ξ, ξ ′ < λ+ satisfying the following �-relations: for any τ ∈ aξ ∩aξ ′ ,
α ∈ aξ − aξ ′ , β ∈ aξ ′ − aξ we have

(1) τ < α, β ⇒ τ ∈ f (α, β)

(2) β > τ ⇒ f (α, τ ) ⊆ f (α, β)

(3) α > τ ⇒ f (β, τ ) ⊆ f (α, β)

We say that property � is collectionwise if and only if under the above hypothesis
there is A ⊆ λ+ of cardinality λ+ such that the�-relations are satisfied for all distinct
ξ, ξ ′ ∈ A.

Theorem 5.12 Suppose that λ<λ = λ is a regular cardinal and thatμ is a (λ+, λ++)-
cardinal . Then there is a function f : [λ++]2 → [λ++]≤λ with collectionwise
property �.

Proof Let κ = λ+. Let m be a μ-coloring and for α < κ+ let (μξ (α))ξ<κ be the
μ-sequence at α. Let α < β, and put

f (α, β) = μm(α,β)(α) = {ξ < α : m(ξ, α) ≤ m(α, β)}.

Find A as in 5.10. Now suppose, that α, β, τ are as in Definition 5.11. To prove
(1) note that in this case 5.10 gives that m(τ, α), m(τ, β) ≤ m(α, β).

By the symmetry, in the proof of (2) and (3) we may assume that α < β. We have
two cases τ < α < β and α < τ < β. In the first case using (1) and (2) of 5.10 and
Lemma 5.2 we get

f (τ, α) = μm(τ,α)(τ ) = μm(τ,α)(α) ∩ τ ⊆ μm(α,β)(α) = f (α, β).

f (τ, β) = μm(τ,β)(τ ) = μm(τ,β)(β) ∩ τ ⊆ μm(α,β)(β) ∩ α = μm(α,β)(α) = f (α, β).

In the second case using (1) of 5.10 we get

f (α, τ ) = μm(α,τ )(α) ⊆ μm(α,β)(α) = f (α, β).


�
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6 Generic stepping-up

Inductive constructions along (κ, κ+)-cardinals as in Sect. 3, gaps and nonreflection
inherent in them as in Sect. 4 and coherent partitions of pairs as in Sect. 5 can be
unleashed in the context of constructions of forcing notions. We obtain stronger ver-
sions of all these phenomena in the generic extension. Often it is the only way of
stepping up of the above phenomena from ℘κ(κ) to ℘κ(κ+). This is related to the fact
that 2-cardinals cohabit with GCH in the constructible universe, and GCH gives some
Ramsey property of cardinals in the form of nice cases of the Erdos-Rado theorem.
Thus if wewant to get rid of both Ramsey charged principles as the Chang’s conjecture
and GCH we need to force 2<κ above κ .

In this section we consider only (ω1, ω2)-cardinals, that is, subfamilies of [ω2]ω
because preservingω1 is by far the most important cardinal preservation in the context
of generic extensions.

Probably the earliest problemof constructing a forcingwith a steppingup toolwas of
adding a Kurepa tree by a forcing notion satisfying the c.c.c. known as Generic Kurepa
Hypothesis. It was shown by Jensen (unpublished, see [19]) that �ω1 implies that a
Kurepa tree can be added by a c.c.c. forcing notion.4 In [50], Velickovic constructed a
c.c.c. forcing as above using directly the ρ-function based on�ω1 . Recall from Sect. 4
that the existence of a (ω1, ω2)-cardinal already implies the existence of a Kurepa tree.

Common stepping up tools hidden in 2-cardinals and used for construction of c.c.c.
forcings are functions f : [ω2]2 → [ω2]ω or f : [ω2]2 → ω1. The reason they appear
in the proofs of the c.c.c. of forcing notions which add some interesting structures on
ω2 is that many structures define an associated function F : [ω2]2 → ω2. If the forcing
is to be c.c.c. for every F(α, β) there must be a countable set Aα,β in the groundmodel
such that F(α, β) ⊆ Aα,β . In other words if our forcing allows uncountably many
possible values of F(α, β) it is not c.c.c. So the forcings for the results mentioned
above usually have the form P � p = (ap, S(ap)) such that

• ap ∈ [ω2]<ω,
• S(ap) is some finite structure,
• the behavior of S(ap) is limited on the pairs of ap by f .

A prototypical example of adding the third limiting condition above to the first
two is considered by Baumgartner in [3] where the consistency of the existence of
a family of size ω2 of uncountable subsets of ω1 with finite pairwise intersections
(strong almost disjoint family) is proved. Baumgartner first constructs a collection of
size ω2 of uncountable subsets of ω1 with countable pairwise intersections, and then
requires the finite approximations to the elements of a generic strong almost disjoint
family to be included in the elements of the collection. This does the trick needed for
the c.c.c. of the forcing with the finite approximations.

4 In [19] it is shown that a Mahlo cardinal is sufficient and necessary for obtaining the consistency of
nonexistence of a c.c.c. forcing which adds a Kurepa tree. Note that it is clear that PFA implies that there
is no c.c.c. forcing which adds a Kurepa tree; deciding the tree ordering in the tree would require meeting
only ω1 dense sets, thus the Kurepa tree would exist in the universe, but PFA implies the negation of the
weak Kurepa Hypothesis (see [4]).
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In [5], Baumgartner and Shelah solve an important and long standing problem
concerning scattered compact spaces or superatomic Boolean algebras, first forcing
a function with �-property and then using it to define a c.c.c. forcing which adds
the Boolean algebra. As we have seen in Sect. 5 one can naturally obtain a function
with property � using a 2-cardinal. The result says that it is consistent that there is a
superatomic Boolean algebra of countable width and height ω2. In this seminal paper
S(ap) is roughly a finite Boolean algebra generated by elements indexed by ω × ap
and if two of the generators gα,n , gβ,k are incomparable, then their meet is in the
algebra generated by the generators with indices in ω × f (α, β) (compare with the
construction in Sect. 3). This construction had several refinements and modifications
in various directions [7,20,36].

A weaker version of a function with �-property often used is the following:

Definition 6.1 ([46]) A function f : [ω2]2 → ω1 is called unbounded if and only if
for every uncountable pairwise disjoint family A ⊆ [ω2]<ω of finite subsets of ω2, for
every δ ∈ ω1 there are distinct a, b ∈ A such that f (α, β) > δ for every α ∈ a and
every β ∈ b.

It is straightforward, for example using property � to prove that the μ-coloring
of Sect. 5 for an (ω1, ω2)-coloring is an unbounded function. The existence of such
a function is equivalent to the negation of Chang’s Conjecture, as shown in §3 of
[46]. For more on unbounded functions see [49] or [25]. A function is used in [46] to
show that under MAω2 Chang’s conjecture is equivalent to the partition relation that
says that every coloring of ω2

2 into ω colors is constant on the product of some two
infinite sets. Unbounded functions were also used by Martinez and Soukup to force
superatomic Boolean algebras with prescribed cardinal sequences (see [31]).

A similar application of an unbounded function is presented in [12], where it is
shown that the failure of Chang’s conjecture andMAω2 imply that the product S(ω2)×
S(ω2) × ω1 is normal, where S(ω2) denotes the sequential fan with ω2-many spines.

One could interpret some of the uses of morasses for generic stepping up in the
spirit of our Sect. 3. For exampe Irrgang in [16] defines a forcing by recursion along
a morass. In our terminology and approach presented in Sect. 3, this corresponds to
defining a family of countable forcing notions (PX : X ∈ μ) where μ is a 2-cardinal
together with the appropriate embeddings and then making sure that the limit along
the directed set is a c.c.c. notion of forcing.

In some cases however it is impossible to obtain a required consistency by building
a c.c.c. forcing using a stepping-up structure which can be added by forcing preserving
CH.

In papers [24,25] we considered forcing notions with side conditions in 2-cardinals
(and 2-semi cardinals - semimorasses of [23]). This is a version of Todorcevic’smethod
of models as side conditions in the case when one considers matrices of models
and not just ∈-chains of models (see §4 of [43]). The point was that many of the
elementary properties of 2-cardinals simplify life if one works with the Todorcevic’s
method assuming moreover that the models M which appear as side conditions satisfy
M∩ω2 ∈ μwhereμ is a 2-cardinal. For this one takes a stationary 2-cardinal, actually
it is even better to take stationary coding sets because then we have 2.14. The forcings
assume the form P � p = (ap, S(ap),Fp) such that
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• ap ∈ [ω2]<ω,
• S(ap) is some finite structure,
• Fp ∈ [μ]<ω,
• the behaviour of S(ap) on pairs {α, β} ⊆ ap is limited by every X ∈ Fp such that

α, β ∈ X .

For example in [24] the distance |φα(γ )−φβ(γ )| fore some γ between two gener-
ically constructed functions φα and φβ in S(ap) is limited by sums of order types of
appropriate elements of Fp of rank not bigger than β. The result is the solution of
a problem of Hajnal by proving the consistency of the existence of a well-ordered
ω2-chain of functions in ω

ω1
1 modulo finite sets. It is also shown that such a chain

cannot be added by a c.c.c. forcing over a model of CH. This method was extensively
analyzed in the context of morasses by Morgan in [34]

Having in mind forcing with side conditions in 2-cardinals one can revise the use of
stepping up tools for obtaining c.c.c. notions of forcing. Namely, instead of obtaining
complicated functions f : [ω2]2 → [ω2]ω and then defining forcing notions P � p =
(ap, S(ap), Fp) as described above, in particular satisfying Fp({α, β}) ⊆ f ({α, β})
one can directly consider a forcing notion Q � q = (ap, Fp,Fp) where one requires
Fp({α, β}) ⊆ X for every X ∈ Fp such that α, β ∈ X . This way one can force directly
(without using property �) a superatomic algebra of Baumgartner and Shelah like in
Section 3.3. of [25]. Actually in [7] this route was taken and a stronger property than
property�was obtained where one requires aξ ∩min{α, β} ⊆ f (α, β) instead of just
aξ ∩ aξ ′ ∩min{α, β} ⊆ f (α, β) of (1) of Definition 5.11. It turned out that a function
with such a property � cannot exist under CH unlike the usual property �.

The final conclusions in [7] refer to topology as well as Banach spaces and Boolean
algebras. For example we answer a question of Todorcevic from [47] showing that
it is consistent that there are countably irredundant Boolean algebras of size ω2, or
we obtain the first example of a Banach space of density ω2 without uncountable
biorthogonal systems. The Banach space is of the form C(K ) where compact K
exhibits several new topological properties.

7 Towards n-cardinals

Although Jensen in his monumental work provided us with higher gapmorasses ([10])
and although they can be simplified ([33,42,55]) and even some attempts of generic
stepping up were made ([17]), one can safely claim that what we have at the moment
is unsatisfactory, especially in the context of basic questions concerning stepping up
and gaps like whether it is consistent that there is a superatomic algebra of countable
width and height ω3 (or higher) or whether it is consistent that there is a Banach space
of density ω3 (or higher) without uncountable biorthogonal systems. On the other
hand the level of complication of higher gap morasses in the context of the lack of
spectacular applications makes them remote for most set-theorists.

One possible approach to n-cardinals as a structure where (oversimplifying) higher
gap morass structure is replaced by ∈ and ⊆ as in the case of 2-cardinals could be to
see a 2-cardinal as a pair of families of sets κ+ = {α : α < κ+} ⊆ ℘κ+(κ+) and a
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(κ, κ+)-cardinal μ ⊆ ℘κ(κ+). With this in mind one can define, say a 3-cardinal as
two (really three, together with κ++) families:

• μ1 ⊆ ℘κ+(κ++)

• μ2 ⊆ ℘κ(κ++)

such that μ1 is a (κ+, κ++)-cardinal, such that μ2 is a (κ, κ++)-semicardinal (i.e. a
neat (κ, κ++)-semimorass of [23]) andmoreoverμ1 andμ2 are bound by the following
coherence condition which steps up our coherence lemma 2.1:

Whenever α, β ∈ κ++, X ∈ μ1 of minimal rank containing α, β and A, B ∈ μ2
of the same rank containing α, β, then

A ∩ X ∩ min{α, β} = B ∩ X ∩ min{α, β}.

Using forcing with side conditions one can prove the consistency of the existence
of such objects, however their usefulness is unclear. Also its relation to higher gap
morasses is unclear and almost certainly the above structures are less powerful. It may
also be possible that already a gap twomorass is too complicated to be comprehensibly
expressed in terms of ∈ and ⊆.

A similar approach focused on the applications of stepping-up in building forcing
notions is taken by Neeman in [35] or by Velickovic and Venturi [51] where forcing
side conditions have two types of models, those which are countable and those which
have cardinality ω1.

Perhaps for dealing with problems like those mentioned at the beginning of this
section having a transparent interaction among elementary submodels of several car-
dinalities like in the coherence relation mentioned above could be helpful like it was
helpful in [24] or [25]. However some surprising limitations are certainly awaiting,
for example Shelah showed in [41] that unlike ω2-chains in ω

ω1
1 [24] modulo finite

sets there cannot be ω4-chains in ω
ω3
3 modulo finite sets. Some limitations concerning

superatomic Boolean algebras are also well known (see [30]).
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