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Abstract

Proponents of ontic conceptions of explanation require all explanations to be backed
by causal, constitutive, or similar relations. Among their justifications is that only ontic
conceptions can do justice to the ‘directionality’ of explanation, i.e., the requirement
that if X explains Y, then not-Y does not explain not-X. Using topological expla-
nations as an illustration, we argue that non-ontic conceptions of explanation have
ample resources for securing the directionality of explanations. The different ways in
which neuroscientists rely on multiplexes involving both functional and anatomical
connectivity in their topological explanations vividly illustrate why ontic considera-
tions are frequently (if not always) irrelevant to explanatory directionality. Therefore,
directionality poses no problem to non-ontic conceptions of explanation.

Keywords Explanation - Directionality - Multiplexes - Topological explanation -
Ontic conceptions of explanation - Neuroscience

1 Introduction

Philosophical discussions about scientific explanation are guided by two powerful
intuitions. The first is that scientific explanations ought to capture the world’s structure.
The second is that scientific explanations provide understanding. The two intuitions are
often in lockstep, but they occasionally come apart—especially when the mathematical
resources of science’s best explanatory models outstrip scientists’ capacity to map
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them neatly onto the dependency relations that make up its worldly structure. In such
cases, explanations seem to work without an ontological net.

In response to these cases, so-called ontic theorists hold fast to the first intuition and
provide a litany of challenges to those who wander from their flock. This is especially
clear in discussions of so-called topological or “network” explanations. While defend-
ers of topological explanation have addressed some of these challenges, e.g. asymmetry
(Kosti¢, 2020), other challenges remain. In several papers, Craver and Povich pose
a distinctive “directionality problem” for mathematical explanations, including some
topological explanations (Craver, 2016; Craver & Povich, 2017; Povich, 2019, 2020;
Povich & Craver, 2018). Roughly stated, causal explanations are directional in the
sense that causes explain effects but the absence of effects typically does not explain
the absence of causes. Craver and Povich argue that without causality or some other
kind of “ontic dependence relation,” mathematical explanations in general—and topo-
logical explanations in particular—Ilack an analogous kind of directionality.

In this paper, we provide a non-ontic account of topological explanations’ direc-
tionality. In so doing, we thereby answer Craver and Povich’s challenge, by showing
that directionality poses no serious threat to those who do not drink from the ontic
well. Furthermore, we highlight the importance of topological explanations involving
multiplexes in evaluating different solutions to the directionality problem. Specifi-
cally, we will argue that if ontic theorists are correct, these explanations can only be
directional under a far narrower set of conditions than neuroscientific practice allows.

We shall proceed as follows. First, we characterize the directionality problem with
greater precision than our predecessors. We will argue that when the directionality
problem is stated abstractly, it seems like a very serious problem (Sect. 2). However,
using the case of topological explanations as our guide, we show that the seriousness of
the directionality problem evaporates under closer scrutiny. A more detailed account
of topological explanation (as we provide in Sect. 3), paired with examples more
reflective of scientific practice, reveals that an overwhelming number of topological
explanations in science exhibit the required directionality without appeals to any ontic
dependence relations (Sects. 4 through 6). By the end of our romp, we will see that the
basis for generating directionality problems is a rather narrow sliver of cases that are
little more than intellectual curiosities. Hence, we conclude that those who distance
themselves from ontic conceptions of explanation have ample resources for addressing
the most serious of directionality problems.

2 The directionality problem

As we noted, Craver and Povich first put their finger on the directionality problem.
However, its precise contours—as well as its distinctiveness—have not been made
explicit. Filling this gap in the literature is our first task. (We stress at the outset that
we are more interested in formulating an interesting problem concerning explanation
than we are in Craver and Povich exegesis.) Sect. 2.1 provides both a formal and an
intuitive statement of the directionality problem. For further clarification, Sect. 2.2
contrasts the directionality problem with the more venerable asymmetry problem,
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(a) Konigsberg in 1736 (b) Euler's graphical representation

Fig. 1 Euler’s representation of Konigsberg’s bridges in 1736

arguing that the former’s novelty should not obscure the greater threat that it appears
to pose to non-ontic conceptions of explanation.

2.1 What is directionality? Why is it a problem?

At root, the directionality problem is an objection posed to proponents of non-ontic
conceptions of explanation.! For the purposes of this paper, a conception of explanation
is ontic if it requires every explanatory relation to be (or accurately represent)? an
“ontic dependency relation,” which we will take to be causal, constitutive, or nomic
(Craver & Povich, 2017, p. 32).3 Thus, non-ontic conceptions of explanation claim that
explanatory relations need not be one of these ontic dependency relations. Furthermore,
insofar as explanations support counterfactuals (as we require below), ontic theorists
demand that these relations “back them;” to serve as the counterfactuals’ truth-makers
(Craver & Povich, 2017, p. 37: n. 15). As Povich (2019, p. 26) puts it, “Relations of
counterfactual dependence hold in virtue of relations of ontic dependence.”

So, what is the precise challenge that directionality poses to non-ontic conceptions
of explanation? Here it is in a nutshell. The following seems true of all explanations:

If X explains Y, then not-Y’ does not explain not-X’, where X and Y are highly
similar but not identical to X’ and Y’ respectively.

For instance, Jack’s smoking explains why he has lung cancer, but Jill’s lack of lung
cancer doesn’t explain why she doesn’t smoke. The directionality problem arises for
non-ontic theorists of explanation, who seem unable to meet this requirement in certain
cases.

This is most immediately appreciated by a shopworn example. Consider the geog-
raphy of Konigsberg in 1736 (Fig. 1). Mathematician Leonard Euler wondered why it
is impossible to traverse the city crossing every bridge exactly once—an instance of

! Discussions thus far focus exclusively on directionality problems for distinctively mathematical expla-
nations. However, for reasons we discuss below, the directionality problem is in fact much broader.

2 This parenthetical is sometimes contested as abdicating everything to ontic theorists’ main opponents—so-
called epistemic theorists of explanation (Wright 2015). However, as has been noted by many, Salmon (1989,
p- 86), the chief progenitor of (or culprit behind?) this distinction took both ontic dependency relations and
their representations to be available to ontic theorists. Since Salmon’s way of carving up the problem space
better suits this paper’s purposes, we will switch freely between these two ways of talking.

3 This list is sometimes expanded to include other relations; we discuss this below.
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Table 1 Example of the Directionality Problem

Original Reversal
Mathematical A connected graph has neither zero nor A connected graph has neither zero
Premise two nodes of odd degree if and only if nor two nodes of odd degree if and
an Eulerian path around that graph is only if an Eulerian path around that
impossible graph is impossible
Empirical Premise In 1736, the bridges of Konigsberg had An Eulerian path around Kaliningrad
neither zero nor two landmasses (modern-day Konigsberg) is
connected by an odd number of bridges possible
Conclusion So, an Eulerian path around Konigsberg So, the bridges of Kaliningrad have
in 1736 was impossible either zero or two landmasses
connected by an odd number of
bridges

what has since been dubbed an “Eulerian path.” Representing Konigsberg’s bridge-
landmass structure as a graph, Euler noted that his eponymous paths are possible
only for connected graphs with zero or two nodes of odd degree. Since all four of
Konigsberg’s landmasses were connected by an odd number of bridges, it follows that
Konigsberg cannot be traversed by crossing each bridge exactly once.

To set up the directionality problem, it will be useful to retell a bit more of this
city’s subsequent history. Two of Konigsberg’s bridges from Euler’s time were sub-
sequently destroyed during World War II. Two others were demolished and replaced
by a single highway. Two additional bridges were built, but they connect different
landmasses than in Euler’s day.* Crucially, in modern-day Konigsberg—now called
Kaliningrad—two landmasses have an even number of bridges, and two have an odd
number of bridges. Thus, unlike Euler’s Konigsberg, Kaliningrad’s bridge-landmass
structure forms a connected network with four nodes containing an Eulerian path.
Hereafter, “Konigsberg” refers to the city as it was in 1736; “Kaliningrad,” as it is in
2021.

To appreciate the directionality problem, consider the two inferences in Table 1.
The first of these represents Euler’s reasoning and is an explanation—what we call the
“original.” Intuitively, the second, its “reversal,” is not an explanation. This is precisely
as the directionality requirement prescribes.

If this example begets a directionality problem, then ontic conceptions of expla-
nation should correctly classify the original as an explanation and the reversal as a
non-explanation. By contrast, non-ontic conceptions should classify both the original
and the reversal as explanations. This requires ontic theorists to provide a constructive
argument that their theories can establish this desired classification and also a negative
argument that other accounts of explanation cannot. We rehearse each in turn.

Regarding the constructive argument, ontic theories can handle this example in
at least two ways. First, landmasses and bridges are parts of a city that are spatially
organized, and can be intervened upon with, e.g., explosives, bridge-building, and

4 If one looks at the map of Konigsberg in Fig. 1, then in modern-day Kaliningrad, landmass A has three
bridges; B, five; C, two; and D, four. At least this is our best guess from squinting at Google Maps.
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artificial islands. However, there is no clear way of intervening upon an Eulerian path
(Elber-Dorozko, 2018). Given that intervention and causation are frequently thought
to go hand in hand, the ontic theorist may claim that causal relations account for this
example’s directionality.

Alternatively, instead of causation, ontic theorists may argue that constitution
accounts for this example’s directionality. This treatment of the Konigsberg exam-
ple appeals to the intuition that an Eulerian path is constituted by the city’s bridges
and landmasses. Hence, Euler’s reasoning appears to satisfy the ontic conception.
However, for parallel reasons, the Kaliningrad reversal does not: since bridges and
landmasses constitute the Eulerian path, bridges and landmasses cannot be consti-
tuted by the Eulerian path (Craver, 2016; Craver & Povich, 2017).

Of course, the directionality problem only has teeth if non-ontic conceptions of
explanations cannot preserve the difference between good explanations and their
reversals. This brings us to the ontic theorist’s negative argument. Two non-ontic
approaches’ failures to solve the directionality problem make this negative argument
vivid.?

Consider Lange’s (2013, 2017) modal view, in which explanations are not character-
ized in terms of ontic dependency relations, but rather in terms of the kind of necessity
that they confer upon their explananda. Lange takes Euler’s original Konigsberg expla-
nation to be an example of a modal explanation: it shows why an Eulerian path was
impossible. This is because the major premise of Euler’s explanation is a mathematical
statement and thereby confers mathematical necessity upon its conclusion. However,
by parity of reasoning, the “Kaliningrad reversal” confers the same high-grade neces-
sity upon its conclusion, but it’s not an explanation. Hence, modal considerations alone
do not solve the directionality problem. By contrast, we have already seen that ontic
considerations alone readily solve the directionality problem.®

Similarly, several non-ontic counterfactual accounts of the Konigsberg bridge
example have been proposed (Jansson & Saatsi, 2017; Reutlinger, 2016, 2018; Wood-
ward, 2018).” These views require the explanandum to counterfactually vary with the
explanans, but do not require it to be backed by an ontic dependency relation. On such
views, if X explains ¥, then, had X been different, ¥ would have been different. In the
Konigsberg example, the relevant counterfactual would be:

Had Konigsberg’s bridges formed a connected network containing zero or two
nodes with odd degree, then there would have been an Eulerian path around the
bridges of Konigsberg.

Remove the bridge/edge going from A to B in Fig. 1. Then the antecedent of
this counterfactual is true, and with what appears to be a minimal change to the
actual structure of Konigsberg’s bridges (“a nearby possible world”). The consequent

5 Povich (2019) argues that another non-ontic view, Baron’s (2017) deductive-mathematical account, also
fails to solve the directionality problem.

6 To be sure, Lange (2018) has proposed a solution to this problem. However, at least one of us holds that
his reply is unsatisfactory for reasons presented by Povich (2020). As such, we will not discuss his views
here.

7 Our own position—presented in Sect. 3—is also a non-ontic counterfactual approach. It differs in subtle
but important ways from the authors cited above.
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of this counterfactual is also true. An Eulerian path would be: DACBDAC. So, the
counterfactual theories deliver the right verdict on the original.

However, counterfactual approaches will wrongly classify the Kaliningrad reversal
as an explanation. The relevant counterfactual would be:

Had Kaliningrad contained no Eulerian path, then neither zero nor two of its
landmasses would have had an odd number of bridges.

This counterfactual must be true on pain of contradicting the mathematical premise
shared by both Euler’s reasoning and the Kaliningrad reversal. Thus, like Lange’s
modal conception, counterfactual considerations alone do not solve the directionality
problem, and in this way are at a disadvantage in comparison to ontic considera-
tions. However, as we will argue below, our more regimented non-ontic counterfactual
account of topological explanation can solve the directionality problem.

2.2 Directionality and asymmetry

At this point, readers may be wondering what distinguishes the directionality prob-
lem from the better-known asymmetry problem.® Recall Bromberger’s (1965) classic
example of the latter: from the laws of optics and a tower’s height, one may infer
the length of the tower’s shadow. However, from those same laws and the shadow’s
length, one may also infer the height of the tower. A popular and intuitive solution to
the asymmetry problem appeals to the fact that the tower’s height causes the length
of the shadow, but the shadow’s length does not cause the tower’s height. Hence, just
as ontic conceptions preserve explanation’s directionality in the Konigsberg example,
they also preserve explanation’s asymmetry in the tower example. Given these simi-
larities, this section’s first task is to clearly distinguish asymmetry from directionality.
Its second task is to show how, in certain sense, directionality problems pose a greater
threat to non-ontic theories of explanation than asymmetry problems.

Let us begin by distinguishing these two problems. At the most basic level, the dif-
ference between asymmetry and directionality is logical. The asymmetry requirement
on explanation is:

If X explains Y, then Y’ does not explain X’, where X and Y are highly similar
or identical to X" and Y’ respectively.

By contrast, we defined the directionality requirement on explanation as:

If X explains Y, then not-Y’ does not explain not-X’, where X and Y are highly
similar but not identical to X’ and Y’ respectively.

8 This concern may be abetted by the fact that earlier philosophical work on explanation is uneven in how it
interprets the phrases “directionality” and “asymmetry:” (1) Barrantes (2019), Beni (2019), Elber-Dorozko
(2018), and Jansson (2020) treat these words as synonyms. By contrast, on a single page, Craver and Povich
(2017, 33) vacillate between glossing “directionality” as: (2) a genus that includes, but is not limited to
asymmetry, when they say that the tower and shadow “example demonstrates that at least some (and in
fact, many) explanations have a preferred direction;” and (3) as something distinct from asymmetry, e.g.
“In what follows, we emphasize the directionality of explanations, not their asymmetry.” Our definition of
directionality accords best with this last reading.
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Table 2 Example of how asymmetry entails directionality

Original Reversal (for Reversal (for
Asymmetry) Directionality)
Major Premise tan 6 = height/length tan 6 = height/length tan 6 = height/length
Minor Premise Tower a’s height is 443 m Tower a’s shadow’s Tower b’s shadow’s
length is 256 m length is not 256 m
Conclusion So, its shadow’s length is So, Tower a’s height is So, Tower b’s height
256 m 443 m is not 443 m

We assume that the sun’s angle of incidence & = 60° in all three cases

Table 3 Example of directionality without asymmetry

Original Reversal (for Asymmetry)  Reversal (for
Directionality)

Major Premise 23 is not divisible by 3 23 is not divisible by 3 23 is not divisible by 3
Minor Premise ~ Mother a has 23 Mother a cannot divide Mother b can divide her
strawberries her strawberries evenly strawberries evenly
among her three children among her three
children
Conclusion Mother a cannot divide the ~ Mother a has 23 Mother b does not have
strawberries evenly strawberries 23 strawberries

among her three children

Table 2 presents these differences with respect to the tower and shadow problem.

Let us now turn to why directionality problems pose a deeper challenge to non-
ontic views than asymmetry problems. At root, the idea is that it is “easier” to generate
directionality problems than asymmetry problems. More precisely, every instance of
an asymmetry problem can be converted to a directionality problem, but not vice versa.
In saying this, we recognize that there may be peculiarities about specific cases that
make the corresponding directionality problem easy (indeed perhaps trivial) to solve.
Indeed, one can see the arguments in Sect. 4 through 6 as vindicating this point. So, it
might be more apt to say that every asymmetry problem has a potential directionality
problem, but not vice versa. This is implied hereafter.

Begin with the claim that any example of an asymmetry problem will have a cor-
responding directionality problem. As Table 2 shows, the classic asymmetry problem
has a corresponding directionality problem. Clearly, there can be two towers, a and b,
that make all three inferences in Table 2 sound. This point generalizes (see Appendix).

Turn now to the claim that not every directionality problem has a corresponding
asymmetry problem.” For instance, Table 3’s first and third columns present a direc-
tionality problem that Craver and Povich (2017) pose to Lange (2013). Like the tower

9 The Konigsberg example obscures this point, since it can be used as either a directionality or an asymmetry
problem (see Appendix). Both Barrantes (2019) and Jansson (2020) discuss this example’s asymmetry
problem, though neither distinguish directionality from asymmetry.
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example, the reversal for directionality (third column) is a valid inference.!® As such,
there is a directionality problem. However, unlike the tower example, the reversal for
asymmetry (second column) is not a valid inference: the conclusion does not follow
from the premises. Since the original (first column) is valid and its reversal for asym-
metry (second column) is not, the explanation in this particular example exhibits the
desired asymmetry. More generally, this establishes that some directionality problems
have no corresponding asymmetry problem.

Thus, every instance of an asymmetry problem can be converted to a directionality
problem, but not vice versa. As such, we claim that directionality problems are easier
to generate than asymmetry problems. This seems like bad news for non-ontic theories
of explanation, since it suggests that their critics will have greater freedom to construct
different kinds of counterexamples than they would for asymmetry problems. Hence,
for non-ontic theorists of explanation, the directionality problem appears more pressing
than the asymmetry problem.

3 From bridges to brains

Despite this apparent urgency, there is something amiss with the directionality prob-

lem. We offer the first of two diagnoses here: no detailed non-ontic account of

explanation is used when saddling such accounts with directionality problems. We

will argue that in a great many cases, these details prevent directionality from arising.
For the purposes of this essay, we focus on topological or “network” explanations,

but many of the lessons we draw here can be generalized to other non-ontic accounts of

explanation. To that end, we advance the following theory of topological explanation to

probe different ways in which topological explanations avoid directionality problems:
(TE) a’s being F topologically explains why b is G if and only if:

e Veridicality Requirement: a is F and b is G (or approximately so);

e Property Requirement: F is a topological property and G is an empirical property;
and

e Counterfactual Requirement: Had a been F’ (rather than F), then b would have
been G’ (rather than G);

e Perspectival Requirement: That a is F answers the relevant explanation-seeking
question Q about b’s being G.!!

TE has the benefit of already being a relatively developed account of topological
explanation. It draws heavily on Kosti¢ (2020) and Kosti¢ and Khalifa (manuscript).
It is also similar in spirit to the other non-ontic counterfactual accounts of explanation
mentioned above (Jansson & Saatsi, 2017; Reutlinger, 2016, 2018; Woodward, 2018),
but is more precisely tailored to topological explanation. Section 3.1 discusses its
details in further depth.

TE also provides proponents of topological explanation with the needed resources
to put the directionality problem to bed. Specifically, Sect. 4 shows how the property

10 Undoubtedly two mothers, a and b, have had different numbers of strawberries to distribute evenly
among their children, so the inference is sound.

1y many topological explanations, a and b will be identical.
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requirement ensures the directionality of many topological explanations without any
appeal to ontic dependence relations. Sections 5 and 6 do the same with the counter-
factual and perspectival requirements, respectively.

Our second diagnosis of why the directionality problem misses its mark concerns
ontic theorists’ choice of examples. Scientific explanations have greater resources
to block directionality problems than the Konigsberg example suggests. It is in this
context that topological explanations in neuroscience which appeal to multiplexes of
functional connectivity (FC) and anatomical connectivity (AC) provide an especially
fertile set of cases for evaluating solutions to the directionality problem.!> We discuss
two such examples and highlight the more general utility of these FC-AC multiplexes
in Sects. 4 and 5.

3.1 Topological explanation: a philosophical account

Let us discuss each of TE’s four conditions in greater detail, using Helling, Petkov,
and Kalitzin’s (2019) studies of multistate brain networks’ effects on epilepsy as an
illustration. Their leading hypothesis is that changes in mean functional connectiv-
ity (MFC) explain the dynamics of the onset of epileptic seizure or ictal transitions.
They conducted prospective studies involving subjects with focal seizures either start-
ing treatment with an anti-epileptic drug or undergoing drug tapering over several
days. Helling et al. found that MFC decreased for those who responded positively to
their drug treatment and increased for those who responded negatively. Qualitatively
speaking, ictogenicity’s (the probability of a seizure) dependence on MFC suggests
that “oversynchronization” of the brain explains seizures (Kalitzin et al., 2019, 7).

With these details in hand, let us illustrate how this explanation satisfies TE’s con-
ditions. Begin with the veridicality requirement, which holds that the explanans and
explanandum must be approximately true. Helling et al.’s explanans is an approxi-
mately true description of the functional connectivity in each patient’s brain. Similarly,
in characterizing their explanandum, they accurately describe different patients’ icto-
genicity plotted against their dosage levels of anti-epileptic medication.

Turn now to TE’s second condition, the property requirement. This distinguishes
topological explanations from other kinds of explanations. Hence, it is crucial that we
define a topological property. Let a predicate be topological if it is properly applied to
a graph (or subgraph) and occurs in some nontrivial theorem derived using only math-
ematical statements, including the characterization of the graph in terms of its vertices
and edges. Then a graph’s topological predicates denote its corresponding network’s
topological properties. Paradigmatically, topological properties concern quantifiable
patterns of connectivity in a network.

Quite clearly, MFC is a topological property. Importantly, however, it is instan-
tiated in cortical FC networks. Hence, it is not merely some abstract mathematical
property that does the explaining. Rather, it is a mathematical property instantiated in
a physical system. This requires careful modeling techniques. For instance, the nodes
are readings from EEG channels, i.e. the electrodes measuring the brain’s electrical

12 For the purposes of this paper, we define a FC-AC multiplex as a network made up of interdependent
FC and AC layers.
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activity, and the edges are synchronization likelihoods, which are correlations between
pattern recurrences in the time series data generated by two or more EEG channels.
The fact that MFC measures synchronization likelihoods across the cortical network
underwrites the aforementioned idea of epileptic brains being “oversynchronized.”

The property requirement also demands that the explanandum (that b is G) is an
empirical proposition, such that it can serve as a proper object of scientific investiga-
tion. Thus, TE is an analysis of topological explanations in the empirical sciences.
Insofar as pure mathematics has topological explanations, it is not our concern
here. Furthermore, we adopt a broad notion of “empirical” in line with recent work
on data, measurement, and phenomena.'® For instance, Helling et al.’s explanan-
dum—ictogenicity—is measured in terms of patients’ dose—response to anti-epileptic
medication.

The counterfactual requirement, mentioned above, differentiates topological expla-
nations from the broader category of topological models. As already mentioned, many
hold that explanations’ capacity to support change-relating counterfactuals, or answer
“what-if-things-had-been-different questions,” distinguishes them from other scien-
tific representations.'* Topological explanations also answer these questions, but they
are distinctive in highlighting counterfactual differences in a system’s topological
properties. Such counterfactuals can describe what would happen if the system exhib-
ited another topological property (in which case F’ is contrary to F) or if it simply
lacked its actual topological property (in which case F’ is contradictory of F). For
instance, Helling et al. are fruitfully interpreted as committed to the following:

Had the patient’s MFC decreased (rather than increased), then the patient’s icto-
genicity would have been lower (rather than its actual level.)

Finally, the perspectival requirement acknowledges that scientists’ interests, back-
ground knowledge, and presuppositions may favor a particular topological explanation
of aphenomenon, even though other topological explanations of the same phenomenon
also satisfy the other three requirements. While Achinstein (1983) and van Fraassen
(1980) have highlighted general pragmatic aspects of explanation, Kosti¢ (2020) exam-
ines the pragmatics specific to topological explanations. For instance, Kosti¢ (2020)
notes that some phenomena admit of both “horizontal” topological explanations, in
which local topological properties (e.g. properties of subgraphs) are explanatorily cen-
tral, and “vertical” topological properties, in which a network’s global properties are
privileged. The perspectival requirement appeals to scientists’ contexts to determine
which would be the appropriate topological explanation.

4 Property directionality

With our account of topological explanation in hand, we will now argue that it entails
that topological explanations in science exhibit the desired directionality. The general
strategy is this: we consider a correct topological explanation and its reversal, and then

13 We are broadly sympathetic to Boyd’s (2018) recent account of the empirical.

14 Furthermore, we assume that only non-backtracking counterfactuals underwrite this condition.
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show that only the former satisfies TE’s four conditions.!> Hence, according to TE,
the reversal is not an explanation. Furthermore, we do this without appealing to ontic
dependence relations. Importantly, the arguments we offer do not conclusively elimi-
nate the possibility of a reversal of a topological explanation. Rather, they drastically
contract the space of possible counterexamples. As such, we take the discussion that
follows to substantially shift the burden of proof back onto those who would continue
to press the directionality objection.

We begin by noting that many topological explanations will be directional because
their reversals will not satisfy the property requirement. Consider the general structure
of areversal, that something’s being not-G topologically explains why it is not-F. Note
if “bidirectionality” is to occur, then, per the property requirement, not-G would have to
be a topological property. Otherwise, according to TE, the reversal is not a topological
explanation. However, this is often not the case. For instance, Helling et al. offer a
topological explanation of why seizures are likely to occur in certain patients. If this
reversal is an explanation, then ictogenicity must be a topological property. However,
it is not. Hence, Helling et al.’s actual explanation satisfies the property requirement,
but its reversal does not.

Thus, some topological explanations will be directional because their reversals
do not invoke topological properties in their “explanantia.” As such, these reversals
violate the property requirement. In such cases, we shall say that the explanations are
property directional. Note that property directionality rests entirely on the intrinsic
properties of the explanans and the explanandum; it does not hinge on the relationship
between the explanans and the explanandum. As such, property directionality holds
regardless of whether this relationship is an ontic dependency relation. Hence, ontic
theorists have no monopoly on the solutions of directionality problems in which only
the explanans-property is topological. This constitutes a substantial portion of the
topological explanations found in science.

In this example, the original and reversal’s difference with respect to the property
requirement show that ontic backing is not needed to establish directionality. Paral-
lel points apply to TE’s other requirements. Call this the ontic irrelevance lesson.
Imparting this lesson is sufficient for our current purposes. However, the researchers’
methods for situating their FC model within a more encompassing multiplex involving
AC suggest an added bonus: namely, that ontic backing is not needed at all in this
example. As Craver (2016, 705) notes, functional connectivity models do not represent
mechanisms. !¢ Rather, he asserts that the main network-based explanations in neuro-
science must appeal to AC. In AC networks, nodes are segregated anatomical regions
of the brain (e.g. different Brodmann areas or cortical lobes) and their edges are causal
relations. Against Craver’s picture of neuroscientific explanation, Helling et al. model
the MFC-ictogenicity link in ways that constantly underscore the irrelevance of AC. It
is the functional connectivity that does the heavy lifting in their explanation. As such,
their use of multiplexes suggests that their explanation requires no ontic backing.

15 This strategy mirrors Kosti¢’s (2020) treatment of topological explanations’ asymmetry.

16 Craver infers from this that functional connectivity models are not explanatory. However, Kosti¢ (forth-
coming) argues against this claim.
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First, using a computational or “in silico” model to validate their hypothesis about
MEFC and ictogenicity, Helling et al. model anatomical connectivity as a random 128-
node graph with weighted edges and examine how different features of this network
affect the link between MFC and ictogenicity. Two broadly “ontic” considerations
emerge as potential “backers” of the MFC-ictogenicity link: the connectivity strength
of the anatomical network and a local tissue parameter. Crucially, however, the model
shows that the MFC-ictogenicity link holds irrespective of whether fluctuations in
MEFC were driven by changes in either of these two potential ontic backers (Helling,
Petkov, and Kalitzin 2019, p. 4).

Furthermore, how they model the AC network provides even further evidence that
while these two parameters are ontic, they do not “back” the topological explanation.
This in silico model does not represent specific brain regions (e.g. Brodmann’s area or
specific parts of a lobe), but simply has generic “brain units” as its nodes. As a result of
these modeling choices, even the two parameters mentioned above—the anatomical
graph’s connectivity strength and its local tissue parameter—abstract away too much
detail to serve as the truth-makers for the aforementioned counterfactual between MFC
and ictogenicity.

All told, then, their modeling strategies appear to entail little more than that the brain
has some anatomical structure, though which anatomical structure it has is largely irrel-
evant to explaining ictogenicity via MFC. By Craver’s own lights, ontic dependency
relations reside in AC networks. Thus, Helling et al.’s modeling strategies show that
functional connectivity has explanatory power independently of ontic backing. So,
in addition to the property requirement establishing this explanation’s directionality
without appealing to any ontic backing, Helling et al.’s use of FC-AC multiplexes
casts doubt on the available ontic factors having the capacity to back that explanation
in the first place.

5 Counterfactual directionality

The previous section showed that the directionality problem only has bite if it involves
property bidirectional explanations, i.e. ones in which a system’s having one topo-
logical property explains why it has another topological property. Interestingly, the
Konigsberg example exhibits this property bidirectionality, since both Euler’s expla-
nation and the Kaliningrad reversal invoke topological properties in their respective
“explanantia” (the number of nodes with odd degree and the presence of an Eulerian
path, respectively.)

Our previous example of an explanation involving a FC-AC multiplex was property
directional, but other explanations of this ilk are property bidirectional. For instance,
Adachi et al. (2011) explain why FC is higher than expected in anatomically uncon-
nected areas in macaque cortices by appealing to the frequency of three-node network
motifs in the corresponding AC network.!” Since connectivity and frequency of net-
work motifs are both topological properties, this explanation, like Euler’s and unlike
Helling et al.’s, is property bidirectional.

17 For a more detailed discussion of this example, see Kosti¢ and Khalifa (manuscript).
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Despite being property bidirectional, explanations involving multilayer networks
achieve their directionality through other (non-ontic) means. TE highlights these alter-
native resources for handling putative directionality problems. Specifically, there will
be explanations with originals that satisfy the counterfactual requirement and rever-
sals that don’t. Such explanations exhibit counterfactual directionality. Section 5.1
illustrates the power of counterfactual directionality with Adachi et al.’s explanation.
Section 5.2 then shows how this example provides valuable lessons for non-ontic
treatments of the Konigsberg example.

5.1 Counterfactual directionality in neuroscience

Adachi et al. show that the FC between any two anatomically unconnected areas
in the macaque cortex counterfactually depends on the AC network’s overall fre-
quency of three-node network motifs. They establish this by running simulations in
which randomly generated networks matched different topological properties of the
macaque’s AC network, such as global clustering coefficient, modularity, the frequency
of two-node motifs, and the frequency of three-node motifs. The last of these—called
MF3—uvastly outperformed the others in accounting for changes in the FC found in
the macaque neocortex. This suggests the following counterfactual:

(CF1) Had the frequency of three-node motifs (rather than the clustering coefficient,
modularity, or frequency of two-node motifs) in the macaque’s AC network
been lower, then the macaque’s FC would have been lower (rather than its
actual value).!8

The reversal of this states that low FC explains low MF3. Consequently, if this
reversal satisfies the counterfactual requirement, then the following must be true:

(CF2) Had the macaque’s FC been higher (rather than its actual value), then the fre-
quency of three-node motifs (rather than its clustering coefficient, modularity,
or frequency of two-node motifs) in the macaque’s AC network would have
been higher.

Given the contrast class in the consequent, the reversal’s counterfactual (CF2) is false.
For instance, if FC increases the frequency of three-node network motifs, then it also
increases the frequency of two-node network motifs.'® However, the consequent is
only true if FC increases the frequency of three-node network motifs without also
increasing the other topological properties in the contrast class. Consequently, the
reversal does not satisfy TE’s counterfactual requirement. Since the original does
satisfy this requirement, Adachi et al.’s explanation does not beget a directionality
problem.

As before, the ontic irrelevancy lesson applies: there is simply no need to look
for ontic backing if only the original supports true counterfactuals. Adachi et al.’s
statistical tests show that the relevant counterfactual (CF1) is true, and that (CF2) is

18 Strictly speaking, the dependent variable (explanandum) is the total increment of FC due to AC patterns
of length 2, where the FC is between two areas that do not exhibit a direct AC link (see Fig. 2 for relevant
examples). The simplification does not matter for the purposes at hand.

19 The converse of this is not true, so this is not a problem for CF1.
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Fig. 2 Different anatomical connectivity patterns (length = 2) discussed by Adachi et al. (2011). The black
nodes, 1 and 2, are functionally connected by the dotted line, but are only indirectly anatomically connected
via node 3 by the arrows

false, and that difference alone suffices to capture the directionality of their explanation.
Crucially, it does so without saying what makes CF1 true and CF2 false, and is thereby
compatible with any workable semantics for counterfactuals—even a semantics that
doesn’t invoke ontic relations or truth-makers. Once again, this is sufficient for our
purposes, yet further exploration of FC-AC multiplexes provides an added bonus: it
illustrates how some explanations clearly exhibit counterfactual directionality but do
not have a clear ontic backer. For instance, Adachi et al.’s explanation is not backed by
nomic, constitutive, or causal relations. It invokes no obvious laws of nature, so nomic
relations are implausible ontic backers of the aforementioned counterfactual (CF1).
Nor are constitutive relations plausible: the AC and the FC networks have the same
brain regions as their nodes. Presumably, when an explanans and explanandum appeal
to the same entities at the same level of description, one cannot constitute another.

Adachi et al.’s explanation is also noncausal. Consider two brain areas that are func-
tionally connected (and hence are correlated) but are also known to be anatomically
unconnected, i.e., known to lack any direct causal link. In principle, their functional
connection could be explained by some indirect cause, such as a third region serving
as either an intermediate cause or a common cause of FC between the two regions,
as represented by items b and c in Fig. 2. However, Adachi et al. show that some
functional connections occur even when two anatomically connected areas only share
a common effect (as illustrated by item « in Fig. 2.) Ontic theorists cannot claim
that the effect-to-cause relation ontically backs explanations, because doing so would
invite a host of asymmetry problems. Hence, no causal interactions in the AC net-
work could ontically back these FC patterns. By contrast, these patterns are explained
by the AC network’s frequency of three-node motifs—a global topological property.
Hence, it is far from obvious whether any ontic backing occurs in this case, whereas
its counterfactual directionality is apparent.

@ Springer



Synthese

Inresponse, ontic theorists may insist that there are other ontic relations than nomic,
constitutive, or causal relations, and it is these other relations that back CF1. However,
without precise and general criteria for identifying ontic relations, this looks unmoti-
vated.?? For instance, Craver and Povich (2017, p- 32) assert that statistical-relevance
is an ontic dependency relation. However, in our estimate, if counterfactuals need
ontic backing, then so do statistical-relevance relations. Indeed, one might interpret
Salmon (1984), the godfather of both ontic and statistical-relevance conceptions of
explanation, as conceding as much with respect to his earlier work on statistical rel-
evance (e.g., Salmon, 1971). Furthermore, as regards the directionality problem, the
search for ontic backings is superfluous when counterfactual directionality has been
established. In these cases, the counterfactuals alone establish the directionality of the
explanation. Hence, for theorists of explanation who prefer metaphysical austerity,
ontic theorizing can fall by the wayside in such examples.

Moreover, our two examples show how neuroscientists’ use of FC-AC multiplexes
provide powerful tools for evaluating whether an explanation is ontically backed—and
they do so in remarkably different ways. Helling et al.’s explanation shows how neu-
roscientists sometimes use these multiplexes to establish the “ontic independence” of
FC-based explanations. By contrast, Adachi et al.’s explanation shows how even when
an explanation is backed by an AC network, it is not thereby ontically backed. All told,
then, it appears that ontic conceptions do not do justice to FC-AC multiplexes’ diverse
explanatory roles.

5.2 Onticirrelevance, Konigsberg style

We shall now argue that the ontic irrelevance lesson provides a solution to the direction-
ality problem posed by Konigsberg’s bridges. Ironically, it is one that we take almost
verbatim from Povich (2019). The only difference is that we heed the ontic irrele-
vance lesson, and Povich does not. The crux of Povich’s solution to the Konigsberg
directionality problem is that:

e A distinctively mathematical explanation (DME) “shows a natural fact weakly nec-
essarily to depend counterfactually only on a mathematical fact” Povich (2019,
p. 17).2!

e In the Konigsberg example, the original—but not the reversal—satisfies these
requirements for a DME.

Let’s unpack these claims in tandem. Povich claims that Euler’s original supports
the following counterpossible®?:

20 povich’s (2018) “generalized ontic conception” is the most explicit on this front, but it merely acknowl-
edges that some ontic dependency relations are noncausal. It does not identify what distinguishes ontic
dependency relations from other kinds of relations. Povich (2019, p. 24) outlines two additional ontic rela-
tions, the grounding relation and a structuralist-inspired instantiation—realization relation. However, he does
not indicate what they share with nomic, constitutive, and causal relations.

21 Povich has a second route to DME-hood, but it is derivative of this first one. We omit it for simplicity’s
sake.

22 Mathematical counterpossibles (hence “CP”) face formidable semantic difficulties (Nolan, 2013). For
the sake of argument, we shall follow Povich in accepting the framework for evaluating counterpossibles
proposed by Baron, Colyvan, and Ripley (2017).
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(CP1) Had network structure P permitted an Eulerian walk, Konigsberg’s bridges,
which have network structure P, would have permitted an Eulerian walk
(Povich, 2019, p. 18).

Here, “network structure P” refers to the property of being a four-node network with
three nodes having three edges and one node having five, just as in Konigsberg. By
“weak necessity,” Povich (2019, p. 16) means that “any [possible] world where the
explanandum exists... is a world where [the counterpossible] is true.” Thus, in any
possible world, in which Konigsberg (in 1736) has network structure P, such as our
own, CP1 is true. Furthermore CP1’s antecedent is a denial of Euler’s theorem, which
means that this theorem is the only explanans. It is in this sense that DME requires a
natural fact—in this case, the possibility of an Eulerian walk around Konigsberg—to
depend “only on a mathematical fact.”

For Povich’s solution to work, the Kaliningrad reversal must not satisfy the require-
ments for a DME. On Povich’s approach, the directionality problem arises if the
Kaliningrad reversal supports the following counterfactual®*:

(CP2) Had network structure P permitted an Eulerian walk, Kaliningrad’s bridges,
which permit an Eulerian walk, would have had network structure P.

Consider our actual world. Kaliningrad’s bridge-landmass structure has exactly two
nodes of odd degree (i.e., not P), and permits an Eulerian walk. So, the closest possible
world in which CP2’s antecedent is true will retain these features. But in such a world,
CP2’s consequent is false. Hence, CP2 is false in the actual world. So, only the original
is a DME, and Povich has thereby provided a solution to Konigsberg directionality
problem.

Note that Povich’s solution is merely an instance of our counterfactual direction-
ality. After all, counterpossibles are, by definition, counterfactuals with impossible
antecedents, and only CP1 is true. We have not appealed to any ontic facts, only
different truth-values for different counterfactuals. So, the ontic irrelevance lesson
applies. We need no ontic backing to ascertain the truth of these counterfactuals.
Indeed, although we consider “weak necessity” a logical rather than an ontic feature
of an explanation, we did not even need to appeal to it in these cases. CP1 is true and
CP2 is false in the actual world, just as TE’s counterfactual requirement entails. So,
nothing about Povich’s solution to the Konigsberg directionality problem requires us
to add anything to TE.

The ontic irrelevance lesson distinguishes us from Povich. While we accept his
solution to the directionality problem, we contend that his further efforts to “demys-
tify” these counterfactuals by appeal to exotic ontic dependency relations, such as
“grounding” and “structuralist-inspired instantiation-realization” are not needed for
the tasks at hand. Indeed, although we are not especially enthusiastic about this kind
of metaphysical speculation, let us grant for the sake of argument that it bears some
fruit. That fruit still is unnecessary for solving the directionality problem. That task
was completed as soon as CP1 and CP2 were found to have differing truth-values, i.e.
as soon as counterfactual directionality was established. That is the ontic irrelevance
lesson.

23 Povich and Craver do not distinguish between Konigsberg and Kaliningrad. See the Appendix, and more
specifically n. 26, for why we think this is terminologically unfortunate.

@ Springer



Synthese

In summary, we have argued that property bidirectional explanations in science are
possible. However, this does not yet amount to a victory for ontic theorists, for topo-
logical explanations in neuroscience that are based on multiplexes provide powerful
examples of property bidirectional explanations that are counterfactually directional.
Moreover, we have seen that precisely because these explanations straddle different
networks, ontic backing is often far more difficult to ascertain than counterfactual
directionality. Hence, it appears that many solutions to otherwise-sticky directionality
problems can be achieved on the backs of counterfactuals alone. This makes metaphys-
ical assurances from ontic relations merely recreational, but irrelevant to the solution
of the directionality problem.

Finally, we conclude this section by noting that the tandem of counterfactual direc-
tionality and the ontic irrelevance lesson drastically transform the burden of proof in
debates between counterfactual and ontic theorists. Logically speaking, contraposi-
tion is not a valid inference-rule for counterfactual conditionals. In other words, “Had
not-Y been the case, then not-X would have been the case” does not follow from “Had
X been the case, then Y would have been the case.”?* Hence, the default assumption
should be that any account of explanation that has a counterfactual requirement is
directional. Something peculiar about the example at hand—such as the Konigsberg
example’s exceptional reliance on a mathematical necessity—must be established to
get the reversal to also meet this requirement. Once again, this greatly contracts the
space of directionality problems.

6 Perspectival directionality

However, the directionality problem will not die quietly. Neither property directionality
nor counterfactual directionality can solve some remaining directionality problem-
s—even some that that still involve Konigsberg’s bridges. Indeed, the astute reader
may have noticed that Povich’s interpretation of the Konigsberg example differs in
important ways from the counterexample to the counterfactual theorists presented in
Sect. 2.1. That latter example involved much simpler counterfactuals than CP1 and
CP2. We repeat them here:

(OCF) Had Konigsberg’s bridges formed a connected network containing zero or two
nodes with odd degree, then there would have been an Eulerian path around
the bridges of Konigsberg.

(RCF) Had Kaliningrad contained no Eulerian path, then neither zero nor two of its
landmasses would have had an odd number of bridges.

The original supports the first counterfactual (OCF); the reversal, the second (RCF).
As we argued above, both of these are true. So, they are “counterfactually bidirec-
tional.” Moreover, we have also seen that the Kdnigsberg example exhibits property

24 Lewis (1973, 35) illustrates this with the following example:

(a) If Boris had gone to the party, Olga would still have gone.
(b) If Olga had not gone, Boris would still not have gone.

Suppose Boris wanted to go, but stayed away to avoid Olga. Then (b) is false. Further suppose that Olga
would have been even more excited to attend if Boris had, so (a) is true.
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bidirectionality. Hence, we would still seem to have a directionality problem at odds
with non-ontic counterfactual theories in general, and TE in particular.

However, TE still has one more trick up its sleeve. Recall that TE’s perspecti-
val requirement holds that topological explanations must be answers to the relevant
explanation-seeking question. An explanation exhibits perspectival directionality
whenever its original satisfies this condition but its reversal does not. We submit
that only the original typically satisfies the perspectival requirement. To see why, note
that the original is an answer to the following (original) why-question:

(OWQ): Why is there no (rather than some) Eulerian path around the bridges of
Konigsberg?

By parity of reasoning, the reversal’s why-question is:

(RWQ): Why do two (rather than one, three, or all four) of Kaliningrad’s landmasses
have an odd number of bridges?

A why-question is individuated not just by its surface grammar, which mostly spec-
ifies its explanandum, but also by what van Fraassen (1980) calls “relevance relations,”
which can be thought of as constraints on possible answers. Both the specification of
the explanandum (most notably its contrast class) and its relevance relation are deter-
mined by a specific inquirers’ interests, background knowledge, and perhaps other
contextual factors.

With these clarifications in hand, our point is quite simple. In typical contexts in
which OWQ is asked, the relevance relation will allow at least one answer to satisfy
TE’s property requirement. In other words, some statements that appeal to a topological
property will be live options as answers. By contrast, in typical contexts in which RWQ
is asked, the relevance relation will likely prohibit any topological answers. If someone
asked why exactly two of Kaliningrad’s landmasses have an odd number of bridges,
they would expect some retelling of the city’s history of urban planning, but would
be sorely disappointed by a math lesson. So, insofar as we are concerned with typical
contexts, perspectival directionality is achieved.

This raises a natural question: can’t the ontic theorist simply set up an atypical
context to generate the desired directionality problem? Before providing our answer,
it’s important to note how the tide has turned. We have used property directional-
ity and counterfactual directionality to reduce the space of possible directionality
problems significantly. Indeed, with the latter, we seem to have a default presump-
tion that topological explanations (according to TE) are directional. Moreover, these
were shown to handle real scientific explanations. Arguably, the Konigsberg exam-
ple is toyish by comparison. We also showed that at least one interpretation of the
Konigsberg example—Povich’s interpretation circumscribed by the ontic irrelevance
lesson—also exhibits counterfactual directionality. Finally, we have just shown that on
a second interpretation of the Kdnigsberg example—involving OWQ and RWQ—per-
spectival directionality works in typical contexts. Against this backdrop, we think that
defenders of topological explanation can safely bite the bullet: the reversal in this very
specific interpretation of a foy example in a highly idiosyncratic context is explanatory.
After all, nobody should be remotely surprised that atypical contexts call for atypical
explanations.
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On this bullet-biting view, both the original and the reversal are technically cor-
rect explanations. By “technically correct explanations,” we mean that those models
that satisfy TE’s requirements, but may be bad or unacceptable explanations. (In other
words, they are merely technically correct.) As bullet-biters, we take this specific rever-
salin this fringe case to be technically correct but bad (e.g. lacking in depth, invariance,
specificity, and power) regardless of context. Whether it is ever acceptable depends
on the extent to which acceptability is context-specific. If acceptability is context-
invariant, then the reversal is unacceptable. If acceptability is context-sensitive, then
the reversal is only acceptable in weird contexts. Hence, the bullet bitten is never too
big.?

Thus, perspectival directionality accounts for even the toughest cases of putatively
bidirectional topological explanations when those cases are restricted to typical con-
texts. We have seen that the ontic theorist’s last resort is to advert to atypical contexts.
Here, we have suggested that a bullet-biting strategy is the way to go. We have even
shown how this bullet-biting strategy is compatible with these nagging remnants of
the directionality problem being bad and unacceptable (yet technically correct) expla-
nations.

7 Conclusion

The preceding arguments show that the directionality problem looks a lot scarier than
it is. When one speaks abstractly of “non-ontic conceptions of explanation” and only
considers examples that seem better-suited for mathematics textbooks than for sci-
ence journals, the directionality problem appears quite formidable. However, things
looked quite different once we turned to a developed account of a particular kind of
non-ontic explanation—such as our account of topological explanation—and started
trying to churn out directionality problems with neuroscientific explanations, with
special attention to FC-AC multiplexes. We found that few directionality problems
stuck. Some of the problematic “reversals” did not appeal to the properties required
of topological explanations. Other reversals did not support the relevant counterfac-
tuals. Finally, many reversals were pragmatically defective from the perspective of
their users. The space of possible directionality problems shrank to a few recherche
examples, and even these required little in the way of concession. Hence, we conclude
that directionality problems are quite manageable to those who would prefer to keep
their theories of explanation ontically parsimonious.

Acknowledgements We would like to thank Mark Povich and Carl F. Craver for their valuable and insightful
comments on an earlier draft and some early ideas of this paper, respectively.

25 Indeed, Craver and Povich seem to treat “good” explanations, “acceptable” explanations, and technically
correct explanations as interchangeable (Craver and Povich 2017, p. 32, 33, 34, respectively). But they appear
distinct: Newton’s mechanical explanations were good and acceptable but false, so not technically correct.
Democritus might have accepted bad but technically correct explanations about basic atomic structure.
Finally, it may take some testing before a good and technically correct explanation becomes acceptable.
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Appendix

In Sect. 2.2, we claimed that every asymmetry problem has a corresponding direction-
ality problem, but not vice versa. Here, we discuss the underlying logic that justifies
this result. Recall the preceding definitions:

Asymmetry Requirement: If X explains Y, then Y’ does not explain X’, where X
and Y are highly similar or identical to X and Y’ respectively.

Directionality Requirement: If X explains Y, then not-Y’ does not explain not-X’,
where X and Y are highly similar but not identical to X’ and Y respectively.

To this, we also note that each of the originals and reversals in Sect. 2 were represented
as inferences with a major premise, minor premise, and a conclusion, and that the
major premise stayed the same in both the original and the reversal; only the minor
premise differed in these two arguments. These points apply to both asymmetry and
directionality problems.

This means that the major premise in asymmetry problems must be at least as
logically strong as a biconditional, for only this will guarantee that both originals
and reversals will be valid arguments. In effect, the validity of both the original and
the reversal is guaranteed through the inference-rule sometimes called “biconditional
modus ponens:” from “X if and only if Y and “X,” infer “Y”” and from “X if and only
if Y and “Y,” infer “X”. When the major premise is weaker than a biconditional, the
reversal will be invalid, as is seen in the case of Mother’s strawberries in Table 3.

By contrast, the major premise in directionality problems only needs to be at least
as logically strong as a material conditional. In effect, the validity of directionality
problems’ original is guaranteed by (regular) modus ponens; its reversal, by modus
tollens. Moreover, the directionality requirement is itself an expression that, unlike
material conditionals, explanations do not obey the inference-rule called “contrapo-
sition:” from “if X, then Y infer “if not-Y, then not-X.” So, an effective strategy for
generating directionality problems is to present examples that use material condition-
als!

Finally, note that one may infer a material conditional (as required by directionality
problems) from a biconditional (as required by asymmetry problems), but not vice
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versa. Hence, every asymmetry problem has a corresponding directionality problem,
but not vice versa.

There is another difference between asymmetry and directionality problems worth
flagging.?® In directionality problems, the system in the original (denoted by “a” in
Table 2 and Table 3) must be similar but not identical to the system in the reversal
(denoted by “b”). Asymmetry problems have no such constraint: the systems may be
identical or merely similar and still generate an asymmetry problem. We first explain
why directionality problems have this feature, and then explain why this does not make
them more restrictive than asymmetry problems.

Most theories of explanation require both explanantia and explananda to be
(approximately) true. Call this the veridicality requirement. (TE has this requirement.)
If one and the same system were used in a directionality problem and the original sat-
isfied this requirement, then it would be logically impossible for the reversal to also
satisfy it. Hence, explanatory directionality would simply be a consequence of the
veridicality requirement.

Indeed, without the shift from identity to similarity, the veridicality requirement
provides a perfectly general “solution” of the directionality problem. Suppose that X
explains Y in the original. Then, by the veridicality requirement, X and Y are true.
Now consider the reversal of this explanation required by the directionality problem:
not-Y explains not-X. By the veridicality requirement, this requires X and Y to be
false. So, if the veridicality requirement is true, then the directionality problem does
not arise for any account of explanation—ontic or otherwise.

This is why we have used modern-day Kaliningrad (“b”) rather than Konigsberg
in 1736 (“a”) in our reversal. It is similar enough to Konigsberg in 1736 to raise the
directionality problem, but different enough to avoid the aforementioned inconsis-
tency. Thus, the Kaliningrad reversal satisfies the veridicality requirement.

Notably, asymmetry problems’ reversals, but not directionality problems’ reversals,
can use either identical or similar systems in their reversals. One might think that this
undercuts our claim that directionality problems are easier to generate than asymmetry
problems. However, this overestimates the difficulty in finding similar systems. Let
F and G be the respective “explanans-property” and “explanandum-property” in the
original. For instance, in the Konigsberg example, the original’s explanans-property
is having neither zero nor two nodes of odd degree. Its explanandum-property is con-
taining no Eulerian path. The domain is restricted to connected graphs. Directionality
problems are possible so long as there is at least one object a in the domain that is
both F and G, and another object b in the domain that is neither F nor G. For most
F and G, this is an incredibly low bar to clear. For instance, one could simply build
a network from arbitrary objects (say dots and lines on a paper) to create the reversal
to Euler’s reasoning. It needn’t be a city. The bar drops even lower if hypothetical
or abstract entities are admissible. More importantly, no extant asymmetry problem
has explanans- and explanandum-properties that cannot clear this modest similarity

26 we flag this largely because Craver and Povich (Craver 2016; Craver and Povich 2017; Povich 2019)
systematically present their examples in a manner inconsistent with the basic logical points made here. We
think that this is only an infelicity of presentation, since the logical point is clearly one that Craver and
Povich would appreciate.
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threshold. Hence, directionality problems’ “similarity constraint” does not limit their
scope to a very significant degree.
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