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Abstract 
The derivative is a basic concept of differential calculus. However, if we calculate the 
derivative as change in distance over change in time, the result at any instant is 0/0, 
which seems meaningless. Hence, Newton and Leibniz used the limit to determine 
the derivative. Their method is valid in practice, but it is not easy to intuitively ac-
cept. Thus, this article describes the novel method of differential calculus based on 
the double contradiction, which is easier to accept intuitively. Next, the geometrical 
meaning of the double contradiction is considered as follows. A tangent at a point on 
a convex curve is iterated. Then, the slope of the tangent at the point is sandwiched 
by two kinds of lines. The first kind of line crosses the curve at the original point and 
a point to the right of it. The second kind of line crosses the curve at the original 
point and a point to the left of it. Then, the double contradiction can be applied, and 
the slope of the tangent is determined as a single value. Finally, the meaning of this 
method for the foundation of mathematics is considered. We reflect on Dehaene’s 
notion that the foundation of mathematics is based on the intuitions, which evolve 
independently. Hence, there may be gaps between intuitions. In fact, the Ancient 
Greeks identified inconsistency between arithmetic and geometry. However, Eudox-
us developed the theory of proportion, which is equivalent to the Dedekind Cut. This 
allows the iteration of an irrational number by rational numbers as precisely as de-
sired. Simultaneously, we can define the irrational number by the double contradic-
tion, although its existence is not guaranteed. Further, an area of a curved figure is 
iterated and defined by rectilinear figures using the double contradiction.  
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1. Introduction 

Why was differential calculus developed? The consideration of this problem inevitably 
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relates to the concept of movement. The analysis of the motion of an object is a major 
problem in physics. However, we can only observe the position of the object at a point 
in time. Thus, we can only measure an average velocity for an interval of time between 
observations. When the position of an object is given as a function of time, the average 
velocity from time t to time t + Δt is represented by 

( ) ( ) ( )
average .

f t t f t
v

t
+ ∆ −

=
∆

                     (1) 

Formal differential calculus is based on the concept of the limit. As Δt decreases, the 
average velocity approaches the instantaneous velocity at time t. The instantaneous ve-
locity at time t is denoted as v(t). Then, Equation (2) shows that the limit of v(average) 
is v(t) (Klein, 1998): 

( ) ( ) ( )
0

lim .
t

f t t f t
v t

t∆ →

+ ∆ −
=

∆
                      (2) 

However, the average velocity never reaches the instantaneous velocity. Nevertheless, 
a limit of the average velocity is defined as the instantaneous velocity. This is difficult to 
accept intuitively. 

Then, the novel method of differential calculus based on the double contradiction is 
introduced in this paper. The method is easier to accept intuitively than the traditional 
method of differential calculus. Furthermore, the meaning of the double contradiction 
in the foundation of mathematics is considered. 

2. Zeno’s Arrow Paradox 

When we try to determine the instantaneous velocity, we confront Zeno’s arrow para-
dox. Aristotle wrote (Aristotle, 1996): 

Zeno's reasoning is invalid. He claims that if it is always true that a thing is at rest 
when it is opposite to something equal to itself, and a moving object is always in 
the now, then a moving arrow is motionless. But this is false, because time is not 
composed of indivisible nows, and neither is any other magnitude. 

Aristotle’s objection is legitimate. Surely, motion requires an interval of time. Since 
no time elapses at an instant, the arrow cannot move at an instant. Equation (3) shows 
that v(t) is indeterminate. That is, for Δt = 0, 

( ) 0 .
0

v t =                               (3) 

We must now consider how to determine instantaneous velocity. Usually, we can 
observe only the position of a moving object at a point in time. After we observe the 
positions of the object many times, we can postulate time-distance equation. We pro-
vide the following as an example of the differential calculus based on the double con-
tradiction. If the motion of the object is the constantly accelerated motion with initial 
velocity 0 and acceleration a, the time-distance equation is 

21 .
2

x at=                                (4) 
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Next, when we apply the double contradiction to the constantly accelerated motion, 
we can determine the value of the indeterminate fraction in Equation (3). To apply the 
double contradiction, we need the average velocity after time t and before time t. 

First, consider an arbitrary positive number h. Then, we calculate the average veloci-
ty from time t to time t + h. It is denoted as v(after), which is given in Equation (5): 

( ) 1after .
2

v a t h = + 
 

                          (5) 

Second, consider a positive number g, which is smaller than t. We calculate the aver-
age velocity from time t-g to time t. It is denoted as v(before), which is given in Equa-
tion (6): 

( ) 1before .
2

v a t g = − 
 

                          (6) 

In this case, if we calculate an average velocity of the object in an interval many times, 
we can postulate that the velocity is monotonically increasing. Then, inequality (7) is 
established: 

( ) ( ) ( )before after .v v t v< <                        (7) 

Substituting the definitions of v(before) and v(after), we obtain 

( ) ( )1 1 0 , 0 .
2 2

a t g v t a t h g t h   − < < + < < <   
   

              (8) 

If v(t) is larger or smaller than at, both cases contradict inequality (8). This leads to 
Equation (9): 

( ) .v t at=                                (9) 

Historically, Eudoxus developed the method of exhaustion for the quadrature of the 
curved figures (Klein, 1972; Heath, 1921). Thus, the double contradiction was originally 
generated from geometry. The geometrical meaning of the differential calculus based 
on the double contradiction is important for its generalization. 

3. The Geometrical Meaning of the Double Contradiction 

We consider the geometrical meaning of the double contradiction. First, we confine the 
object of consideration to a smooth continuous curve. If a curve has convex and con-
cave intervals, the curve between two proximate inflection points is either convex or 
concave. For simplification, we consider only the convex curve in the range of the posi-
tive real numbers. Similar logic can be applied to the concave curve. 

Figure 1 shows the smooth continuous convex curve in the range of the positive real 
numbers. First, we draw chord AB. Second, consider point C, which is a point on arc 
AB. Obviously, point C is under chord AB. We then draw chord AC and chord CB.  

Next, the slope of line AC plus (π − ∠ACB) equals the slope of line CB. Obviously, 
the slope of line CB is larger than that of line AC. We denote the slope of line AC 
ass(left) and the slope of line CB ass(right). Then, we obtain 
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Figure 1. The smooth convex curve y = f(x) and the chords AB, AC, and CB. 

 

( ) ( )left right .s s<                           (10) 

Next, point C is fixed. We focus on triangle ABC. As the length of AB decreases, 
∠ACB approaches π without limit. However, ∠ACB never reaches π because point C 
must be under chord AB because the curve is convex. If we postulate that ∠ACB could 
be π, line AB would only touch the curve at point C. This line is the tangent at point C. 

Although s(left) approaches s(right) without limit, s(left) cannot be equal to s(right). 
In this case, we can use the double contradiction. When we assume s(C) as the slope of 
the tangent at point C, inequality (11) is established: 

( ) ( ) ( )left right .s s C s< <                        (11) 

Then, the value of s(C) is determined by the double contradiction. First, we assume 
that the x-y coordinate of point C is (x, f(x)). Second, we assume that g is an arbitrary 
positive number less than x, and h is an arbitrary positive number. Then, the x-y coor-
dinate of point A is ( )( ),x g f x g− −  and the x-y coordinate of point B is  

( )( ),x h f x h+ + . Finally, the slope of the left-side chord and the slope of the right-side 
chord are represented by 

( ) ( ) ( )

( ) ( ) ( )

left ,

right .

f x f x g
s

g
f x h f x

s
h

− −
=

+ −
=

                    (12) 

The right sides of (12) are substituted into (11): 

( ) ( ) ( ) ( ) ( )
.

f x f x g f x h f x
s C

g h
− − + −

< <                 (13) 
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When the double contradiction is applied to inequality (13), s(C) can be only one 
value, which is the slope of the tangent. The slope of the tangent at point C is derived by 
the double contradiction. 

Next, we consider the geometrical meaning of inequality (13). The line passing 
through point C can be placed into three categories. The first category corresponds to 
chord CB. Such lines cross the curve at point C and to the right of point C. The second 
category is the tangent, which only touches the curve at point C. The third category 
corresponds to chord AC. Such lines cross the curve at point C and to the left of point 
C. 

Figure 2 shows the three categories of lines on the smooth continuous convex curve 
y = f(x). Line α represents those in the first category and line γ represents those in the 
third category. Line β is the tangent at point C. We denote the slope of line x ass(x), 
leading to the following Equations (14): 

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

,

,

.

f x h f x
s

h
s s C

f x f x g
s

g

α

β

γ

+ −
=

=

− −
=

                      (14) 

Substituting (14) into (13), inequality (15) is established: 

( ) ( ) ( ).s s sγ β α< <                        (15) 

The geometrical meaning of inequality (15) is obvious. Only one line can be the tan-
gent at point C. The slope of the tangent is determined by the double contradiction. 
The image is easy to accept intuitively. Furthermore, the differential calculus based on 
the double contradiction is founded on rigorous logic, as developed by Eudoxus. 
 

 
Figure 2. Lines α, β, γ pass through point C on the smooth convex curve y = f(x). 
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4. Discussion 

Initially, Zeno’s arrow paradox could be considered as a result of a feature of the hu-
man cognition of motion. Humans cannot distinguish between animation and real mo-
tion (Hoffman, 2000). Hoffman described as follows. 

When you watch a movie at the theater, what the projector shows you is a bunch 
of still pictures, one after the other. Each second, the projector shows you twen-
ty-four different still pictures, and it rapidly flashes each of these pictures on and 
off three times, for a total of seventy-two flashes per second. In between flashes the 
screen is dark. Indeed, much of your time in the theater, while watching a movie, 
is spent before a blank screen. 

When total 72 pictures are displayed on the screen in a second, we see a moving pic-
ture. That is, motion is created by our brain from still pictures. In other words, the mo-
tion which we cognize consists of the still images and the motion, the latter of which 
has been created by our brain. This is analogous to the mathematical description of 
motion described above, as it is created by our brain, but is not reality. Necessarily, we 
need to integrate the real and the model. The instantaneous velocity is determined by 
the double contradiction so that we maintain the compatibility between the model and 
the real. 

Indeed, our brain’s model of motion requires instantaneous velocity. However, is in-
stantaneous velocity required in real motion? Since time never stops, instantaneous ve-
locity is not required in reality. Furthermore, what we regard as an instantaneous image 
is the creation of the brain. Even a high-speed camera needs an interval of time for the 
photography (High-speed camera, n.d.) and human eyes are far slower (Hubel, 1995). 
In fact, the instant itself may be a creation of the brain. If time does not stop, who can 
recognize an instant? 

As discussed, our recognition of motion is deeply constrained by our brains. Hence, 
Zeno’s arrow paradox is a paradox in the model of motion created by our brains. Fur-
ther, the solution of Zeno’s arrow paradox by double contradiction is only in our 
brain’s model of motion. Also, our mathematics may be prescribed by our brain. Thus, 
when we try to incorporate differential calculus based on the double contradiction into 
mathematics, we must consider the feature of the cognition of our brain. 

Finally, we consider the meaning of the double contradiction in the foundation of ma-
thematics. Knowledge of both mathematics and neuroscience is required for this. Stanis-
las Dehaene, a mathematician and neuroscientist, stated the following (Dehaene, 2011): 

As humans, we are born with multiple intuitions concerning numbers, sets, con-
tinuous quantities, iteration, logic, and the geometry of space. Mathematicians 
struggle to reformalize these intuitions and turn them into logically coherent sys-
tems of axioms, but there is no guarantee that this is at all possible. Indeed, the ce-
rebral modules that underlie our intuitions have been independently shaped by 
evolution, which was more concerned with their efficiency in the real world than 
about their global coherence. This may be the reason why mathematicians differ in 
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their choice of which intuitions to use as a foundation and which to relinquish. 

Furthermore, Dehaene introduced Brouwer as the founder of constructivism. 
Brouwer rejected the application of the law of excluded middle to the infinite set. The 
law of excluded middle is the premise of reductio ad absurdum. Thus, if we aspire to 
constructive mathematics, we must be careful when accepting the result of reductio ad 
absurdum. 

For example, when it is elucidated that the length of the diagonal line of the square is 
not the rational number by reductio ad absurdum, we have two options. One, we can 
reject the irrational number and conserve the constructive mathematics, which might 
appeal to the Ancient Greeks as they called the irrational number “the irrational mag-
nitude” and excluded it from the set of numbers. Two, we can expand the realm of 
numbers without a regard to constructive mathematics, which is the option chosen by 
most modern mathematicians. 

However, there is a gap between arithmetic and geometry, with the discovery of the 
irrational magnitude demonstrating incoherence between them. The Ancient Greeks 
struggled to fill the gap. Finally, Eudoxus developed the theory of proportion, which is 
in Euclid’s Elements (Euclid, 1956). Definition 5 in book 5 of Elements corresponds 
exactly to the Dedekind cut (Dedekind, 1963). We can define the irrational number us-
ing the rational numbers with a Dedekind cut. However, we cannot determine whether 
the irrational number exists. This problem remains. 

The next problem is the quantification of the curved figure in the Euclidean plane. 
Euclid defined the straight line as “a breadthless length” in definition 2 of book 1 (Euc-
lid, 1956). When we accept this definition, we cannot define the curve. Further, since 
length is the length of the straight line, we cannot directly define the length of the curve. 
If a line is a breadthless length, the curve cannot be a line. In this situation, the exis-
tence of the curve itself is doubted. Still, the length of the curve can be approximated by 
line segments. Archimedes developed the method of the iteration of pi (Archimedes, 
1897).  

Archimedes used inscribed and circumscribed regular polygons to approximate pi. 
As the number of sides increased, the ratio of perimeters to the diameter of the circle 
would converge to pi. This method allows us to approximate pi as precisely as desired, 
in principle. Thus, if Archimedes’ method of the iteration of pi is applied repeatedly 
without limit, lengths of line segments are divided into two groups: those longer than pi 
and those shorter than pi. Then, the value of pi can be defined by the double contradic-
tion. This situation resembles the Dedekind cut, in which an irrational number divides 
rational numbers into two groups but the irrational number itself is not a rational 
number. In the same way, pi divides lengths of line segments into two groups, but pi it-
self is not a length of a line segment. Archimedes’ method serves both as the definition 
and the iteration of pi, but it does not ensure the existence of pi. Thus, Archimedes’ 
method of the iteration of pi is isomorphic to the Dedekind cut. Also, Archimedes ite-
rated and defined areas of curved figures by rectilinear figures using the double contra-
diction, which is also isomorphic to the Dedekind cut. 
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Now, we recall the claim of Brouwer. Reductio ad absurdum must be excluded in 
constructive mathematics. Thus, when we use the double contradiction, we necessarily 
renounce the constructive mathematics. That is, there are two gaps in mathematics. 
The first gap is between arithmetic and geometry; the second gap is between geometry 
and calculus. Calculus was developed for handling the curve. It is difficult for us to 
handle the curve quantitatively in Euclidean geometry because Euclid did not define the 
length of the curve. 

5. Conclusion 

In conclusion, our mathematics is based on many intuitions, and the coherence of in-
tuitions is not guaranteed. Thus, the existence of gaps in mathematics is a necessity. 
However, the Ancient Greeks tried to fill gaps in mathematics and developed the double 
contradiction in an attempt to maintain coherence in mathematics. It is time to once 
again pay attention to the double contradiction. 
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