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ON THE INCOMPLETENESS THEOREMS 

HENRYK KOTLARSKI 

Abstract. We give new proofs of both incompleteness theorems. We do not use the diagonalization 

lemma, but work with some quickly growing functions instead. 

In the classical proofs of Gddel's incompleteness theorems one point, the di- 
agonalization lemma, when used as a method of constructing an independent 
statement, is intuitively unclear (at least from the model-theoretic point of view). 
On the other hand, many results of this sort may be proved either by using diago- 
nalization or by using some quickly growing functions. Therefore it seems to be of 
some interest to give proofs of both incompleteness theorems using quickly growing 
functions; such arguments are presented below. Some sort of diagonalization 
occurs in the proof when we are comparing two functions. 

We have tried to make the paper as model-theoretic as possible. The reason 
is that (at least from the author's point of view) model-theoretic arguments are 
intuitively clearer than proof-theoretic ones. 

We assume the reader to be familiar with arithmetization of syntax and with 
some model-theoretic constructions. Feferman [F], Hajek-Pudlak [HP], Kaye [K], 
Smoryn'ski [Sm], or Shoenfield [Sh] contain all the necessary information. Smoryn- 
ski's survey [Sm] was the main inspiration for us. 
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Roman Kossak, Jan Krajicek, and Jim Schmerl. 
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much younger. He died in February 1994. 

Let ProvT(x,y) be the usual formula which expresses "x is a proof of the 
statement y from the axioms of T" and let PrT(y) be 3x ProvT (x, y). Let ConpA 
be the statement which expresses "PA is consistent". Thus, ConpA is PrpA (0 = 1). 
Let us also denote Tro the usual universal formula for AO-formulas. Thus we have: 

(1) for every p E AO PA - Vb[(p(b) _ Tr (o (S 0)) 

Here by SbO we denote the bth numeral, i.e. 

times 

Sbo = S ... S 0. 
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The proof of (1), by induction on Sp, is well known. It is effective in the sense that as 
a matter of fact it gives a primitive recursive function which assigns to every p E A0 
the (Gddel number of the) proof of the desired statement Vb[jp (b) Tro (p (S 0))]. 
It follows that (1) itself is provable in PA. Thus we have 

LEMMA 1. PA proves the following statement: 

Vpn e AO PrpA(Vb[fo(b) _ Tro0(p(SbO))]). D 

The following remark may help the reader's intuition. Below we shall work 
in nonstandard models of PA. Lemma 1 ensures that if X' t PA, then for every 
object in AX which AX is a (Gddel number of a) AO formula, there exists an object 
in X' which AX thinks is a Gddel number of a proof of the statement Vb[p (b)= 
Tro(qo(Sb0))]. None of these objects need be standard, they are just elements of 
A'. Similar remarks apply to all statements that we claim are provable in PA. 

We shall need some more observations about the connection between truth and 
provability of Ao-formulas in PA. The next two lemmas are well known. 

LEMMA 2. PA proves the following statement: 

Vlp e Ao Vb [Tro (p (Sb O)) => PrpA ( (S 0))]. 

IDEA OF THE PROOF. By induction on p one constructs a proof of the desired 
statement 

Vb [Tro(p(SbO)) => PrpA(9 (St ))] 

primitive recursively in p. Simply the assumption Tro(p (SbO)) gives (essentially) 
a computation of the logical value of p (Sb0) and hence a proof of this statement 
in sentential calculus. -l 

LEMMA 3. PA proves the following statement: 

ConpA => V8 E Ao Vb[PrpA(3w < S"O Tro(9 (Sb0))) =X 3w < b Tro(fp(SWO))] 

PROOF. Assume PrpA(3w < Sb0 Tro(p (Sw0))). If Vw < b Tro(-, (Sw0)), then, 
by Lemma 2, we infer that PrpA(Vw < b -,p(Sw 0)), so -ConpA. l 

DEFINITION (in PA). 

F(a) = minb: V8,u < afop E A0A 3w Tro(p(SuO,SwO))] 

=X. 3w < b Tro(p(Su0, Sw0))}. 

Thus F is the natural function which dominates all AO functions. It is easy to 
prove in PA by induction the statement Va 3b b = F(a). The definition of F is 
not AO (because of the quantifier 3w). As we shall see, this is the heart of the 
matter in the proofs of the incompleteness theorems. 

LEMMA 4. There exists a natural number ao such that PA proves 

ConpA =X Vb -,PrpA(F(S`00) < SbO). 

PROOF. We define the following function: 

G(a) = min(x, b, z, d): d witnesses that z is a substitution 

of the form F(SaO) < SbO and ProvpA(x, z). 

Of course, (x, b, z, d) denotes the tuple whose items are x, b, z, d. Observe that the 



1416 HENRYK KOTLARSKI 

definition of G is AO as written. We put ao = the Godel number of the formula 
V2 =1 + G(vl) and shall verify that this number ao satisfies our demand. But 
first we need a preparatory remark. 

Let X' t PA + ConPA. Work inside X'. Fix a E ff and let G(a) = (x, b, z, d). 
Let p, u < a be given with p E A0. Assume 

3w Tro(p (SUO, SWO)). 

Then 3w PrpA ( (Su0, SW0)) by Lemma 2, and hence PrpA(3wp(Su0, w)) by the 
3-introduction rule (for which the appropriate derivability condition holds). By 
Lemma 1 we infer that 

PrpA(3w Tro(fp(SUO,SWO))) 

and, by definition of F, 

PrpA (3w < Sb 0 Tro (p (SU O, SW O))). 

It follows that 4' t 3w < b Tro(fp(SUO, SWO)) by Lemma 3. Summing up, we see 
that XW satisfies 

if G (a) exists then 

Vlp, u < a{[p EAO A 3w Tro(p (SU0, SWO))] 

=X 3w < G(a) Tro p(Su0, Sw0))}, 

because b < G (a). We let p = a0 and the parameter u = a0. Thus we infer that 

3w < G(ao) Tro(SWO 1 + G(ao)), 

i.e. 1 + G(ao) < G(ao), contradiction. Thus G(ao) cannot exist. l 
Observe that a0 played two roles in the proof of Lemma 4: it was used as a 

(Godel number of a) formula and a parameter. The diagonalization procedure 
occurred in the proof of Lemma 4; indeed, the function F was used in X' and 
inside ProvpA the heart of the matter was just comparison of the rate of growth 
of these two versions of F. 

Before going further let us describe the idea of the so-called arithmetized com- 
pleteness theorem. We follow Smoryn'ski's presentation [Sm], with some minor 
changes. Let Tr2 denote the usual universal formula for 2 formulas. Let Compl(C) 
denote the formula which expresses "C is the Godel number of some 12-formula 
which describes a complete and consistent extension of PX'. Thus Compl(C) is 

C E 12 A Vx[Tr2(C; x) =X Sent(x)] 

AVp{Sent(p) =X [Tr2(C;p) VTr2(C; -)]} 

A ~~~~V(So ,_1){[i < r Tr2 (C; (Api )] PrpA (-/1(\(Oi) 

Once again we want to point out that if we are given a model X' for PA and 
C E 4' satisfying Compl then C need not be a standard object. This is just an 
element of ,' which 4' thinks is the Godel number of a 12-formula. Observe that 
Compl(O) is H13. 
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The following fact is known as the Hilbert-Bernays arithmetized completeness 
theorem. 

LEMMA 5. PA proves ConpA _ 3C Compl(C). 
PROOF. See Smoryniski [Sm]. El 
Suppose we are given X t PA, and let X t Compl(C), i.e. C is a completion 

of PA in /'. These data determine a new model. It is constructed as follows. Let 
TmX denote the set of all (Skolem) constant terms in the sense of X. Divide 
it by the equivalence relation t1 - t2 =_ X Tr2 (C; t I t2). Clearly this is an 
equivalence relation, and the following definition of addition makes sense: 

K_ + t'_ = t, _ X Tr2(C; tl + t2 = -) 

We treat other atomic symbols in the language of PA similarly We denote by 
ACT(4'; C) the model constructed above. ACT stands for the arithmetized com- 
pleteness theorem. 

LEMMA 6. Let X be a model of PA and let C be a completion in X. Then for 
every formula A (vo, . ., ri- 1) and r-tuple to, .. . , t - I we have 

ACT(A; C) = A(t-, ,tri1) iff X I Tr2(C; A(to,. . . ,tr)). 

COMMENTS ON THE PROOF. This is a standard Henkin-like argument. Let us give 
one minor observation. The function which associates to every formula its Skolem 
term (given by the scheme of minimum) is primitive recursive, so we can work 
with it freely inside X. It follows that C has in XA the properties of a complete 
Skolemized theory, so the usual argument works smoothly. D 

Let X t PA and let C be a completion of PA in X. It turns out that there 
exists a natural embedding of XA onto an initial segment of ACT(.'; C). It is 
defined as follows: we map b E X to the equivalence class of the numeral SbO in 
ACT(X; C). Let j denote this embedding. Thus we have 

LEMMA 7. If A(vo,. . .,Vr-1) is a Ao formula and bo, . . ., bri1 E X, then 

X 4 A(bo,...,bri1) if ACT(4';C) kA(j(bo),..,j(bri-)). 

The same absoluteness holds for A1 formulas, etc. El 
Let a be a natural number with the property stated in Lemma 4. Let X be a 

model for PA + ConpA. Then 

A = Vb -'PrpA(F (Sa o) < StO) 

and by an inessential variant of Lemma 5 there exists a completion C in X such 
that 

X t Vb Tr2(C; F (Sao) > Sbo). 

It is convenient to think of this phenomenon as follows: F(a) in the sense of 
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ACT(,t; C) is not Xf, C-standard. By the definition of F this means for some 
p, u < a, (p E Ao, 

Vw e Af ACT(A'f; C) p (u,w) 

but 
ACT(A(; C) t 3x p (u,x). 

But p E A0, so by the absoluteness lemma (i.e. Lemma 7) X = -tp(u, w), and 
hence 

X kVw PrpA(-p (Su 0, SW 0)). 

Thus, if we assume that Xf "PA is co-consistent (with respect to A0 formulas)", 
then 

4X t PrpA(3x p(SU0, x)). 

On the other hand, we know that 1 X- PrpA(-'3x 'p(Su 0, x)), because the state- 
ment 3x ( (SUO, x)) is in C. Let us sum up. 

THEOREM 8 (The First Incompleteness Theorem). PA proves 

if Vp, u{[p E A0 A Vw PrpA(- p(S uO, S 0))] =X -'PrpA(3x p(SUO, x))} 

then Fip E AO 3u[- PrpA (3x (p (SUO, x)) A - PrpA (-'x (p (SUO, x))] 

In particular, if we apply Theorem 8 inside the standard model then we obtain a 1 
independent statement. El 

In order to derive the second incompleteness theorem from Lemma 4 we need 
some minor additional work. The reason is that in the proof of Theorem 8 we 
ensured that F(a) in the sense of ACT(16; C) is not X6-standard. But this could 
be caused by another formula than "there exists a proof 0 1 in PX' it could 
be caused, say, by the formula "there exists a proof of contradiction of ZF". Let 
us show how to overcome this difficulty. 

THEOREM 9 (The Second Incompleteness Theorem). PA does not prove ConpA. 
PROOF. Assume the contrary: PA proves its own consistency. Let a be a natural 

number with the property stated in Lemma 4. Enumerate 

Cpo(SU 0, X),. . . * pri- (S uI0, X) 

all substitutions with p, u < a and p E A0. Clearly there are at most (a + 1)2 

such substitutions. We iterate the construction of a new model by the arithme- 
tized completeness theorem. So let X = AO be a model of PA. Consider the 
first substitution po(Su,0, x). If AX t PrpA(Vx op0(Suo0, x)) then let X1 = X. 
Otherwise 

X t PrpA(-:3x Po(SUOO, x)), 

and hence there exists a completion C in A' such that ACT(A'; C) t 3x po(SUo0, x). 
Thus there exists X1l De A' such that 

either X1f t PrpA(-13x 9po(SuO, x)) 

or X1l t 3w PrpA ((p (SuO, SW 0)). 

(Here we use the fact that p is A0, hence its truth in X1l implies it provability.) We 
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iterate this construction (consider now X1 and (pi (SU 0, x), etc.). This induction 
either breaks before r - 1 steps, and hence we get a model for PA +-- ConpA, or 
the final model Afr-I satisfies ConpA by Lemma 4. EL 

Let us remark that the so-called formalized second incompleteness theorem is 
also a consequence of the construction presented above. In order to be a bit more 
precise, we claim that PA proves the following statement: 

ConpA =X ConpA + ConA - 

In order to see why it is so, we shall show that every model /j from the proof 
of Theorem 9 either is equal to X or has an elementary submodel of the form 
ACT(e'; E) for some completion E in X'. Granted this, we see that PA +-' ConpA 
is contained in some completion E in Xf, so is consistent. Moreover this consis- 
tency holds in every AX which is a model for PA + ConpA, so is provable in this 
theory. In order to verify the above property of the chain //6 of models considered, 
it suffices (by induction) to check the following. 

Observation 10. Let 4X t PA, let C be a completion in Xf, and let D be a 
completion in ACT(Af; C). Under these assumptions there exists a completion 
E in Id so that 

ACT(4d; E) -< ACT(ACT(.4'; C); D). 

IDEA OF THE PROOF. Let X, C, and D satisfy the assumption. Let j denote 
the embedding determined by Id and C in the manner described above. We put 

yV E E iff 3z[z - j(V) A Tr2(C; Tr2(D; z))]. 

It requires some minor work to check that E satisfies the conclusion; we leave it 
to the reader, but just mention a fine point. In order to check that E is 12 one 
replaces the definition of j by an inductive one. O 

It is not clear at the moment whether the method presented above will also give 
a new proof of Rosser's theorem. 
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