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Abstract

We show how some model-theoretical devices (local reasoning, modes of

presentation, an additional accessibility relation) can be combined in frst-

order modal logic to formalize the consequence relation that includes de

dicto and de re contradictory beliefs. Instead of special “sense objects”,

appearances of objects in an agent’s belief are introduced and presented as

ordered pairs consisting of an object and an individual constant. A non-

classical identity relation is applied. A relation S on the set of possible

worlds is introduced, which models possible distortions in an agent’s pic-

ture of a (real) world. The application of such models in deontic logic is

illustrated by a characteristic example.
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As is well known, a rational agent can have beliefs that contain contradictions,

including disturbances of the identity of objects. Contradictions can arise not only

in the de re sense of a belief (cf. the Hesperus—Phosphorus puzzle), but also, as

Kripke has shown, in the de dicto sense. The aim of the logic of belief is, among

other things, to formalize such “non-classical” states of affairs.

This paper attempts to show how some model-theoretical devices (local rea-

soning, modes of presentation, an additional accessibility relation) can be com-

bined in frst-order modal logic to formalize de dicto contradictory beliefs, as well

as de dicto non-contradictory beliefs that have de re contradictory consequences.

An agent’s de dicto and de re contradictions, if presented to the agent, are an im-

portant motive for the agent’s change of belief (we are not dealing here with the

*Published in Perspectives on Universal Logic, J.-Y. Beziau and A. Costa-Leite, eds., Monza:

Polimetrica, 2007. Here some slight corrections.
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belief change itself). After some introductory remarks on local reasoning, inten-

sion functions, and mode of presentation in the literature of logic, an ontologically

reductive version of the logic of belief is presented, without introducing special

“sense objects”, and keeping worlds (states) classical at least regarding the valu-

ation of predicates (except =) and terms. Besides modal accessibility (to defne

the satisfaction of belief formulas), a special accessibility relation (S) on worlds

is introduced by which a strong connection between de dicto and de re beliefs is

established and a non-classical concept of satisfaction of atomic formulas is de-

fned. Subsequently, we add an example of a possible application of the presented

semantics in deontic logic.

1 Some related results

1.1 Local reasoning

The aim of the “local reasoning” approach (Fagin and Halpern [1]) was to

model contradictory beliefs (even contradictory knowledge), defning the satis-

faction of a belief formula Biφ in the following way:

M,w |=v Biφ if there is T ∈ Ci(w) such that for each t ∈ T, M, t |=v φ,

where T is a cluster of worlds, and Ci a function that maps each world to a set

of clusters (M is a model, w a world, v a variable assignment). In this way, it

is possible for an agent i to believe that φ in relation to one cluster of possible

accessible worlds, and to believe that ¬φ in relation to another cluster of possible

accessible worlds, i.e. Biφ ∧ Bi¬φ (both times either in the de dicto or in the de

re sense).

An agent is in fact modeled as a “society of minds” with a pluralism of beliefs

(each cluster representing one “mind”). Here, Bi(φ ∧ ¬φ) does not follow from

Biφ∧Bi¬φ, because both occurrences of Bi need not be determined by the same

cluster of i-accessible worlds. Thus, contradiction of belief disappears, no “ex-

plosion” of belief results, and the self-identity of objects and the rigidity of names

can be preserved.

For example, if Peter believes that Paderewski had musical talent, and if he

also believes that Paderewski had no musical talent, both times in the de dicto

sense (as Kripke insists in his famous puzzle1), or in the de re sense, then those

1In the well known puzzle, Peter does not recognize that Paderewski, a Polish politician of the

frst half of the 20th century, is the very same person as Paderewski, a famous pianist [9].
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two contradictory beliefs can be dependent on two different clusters (“frames of

mind”), so that in no cluster of the two does the contradictory belief arise that

Paderewski had musical talent and had no musical talent, or, consequently, that

Paderewski is not Paderewski.

Nevertheless, if asked whether Paderewski, the politician, and Paderewski, the

pianist, are the same person, Peter would probably say that they are not identical.

Logically, he applies two different names, say, ‘Paderewski1’ and ‘Paderewski2’.
2

Peter’s belief that Paderewski1 is not identical to Paderewski2 is de dicto non-

contradictory, but in the de re sense it is a contradiction. We cannot avoid that con-

tradiction by local reasoning, since ‘Paderewski1 is not identical to Paderewski2’

is a literal (negated atomic formula) which cannot be distributed over different

clusters. Moreover, we feel that Peter’s de re contradictory belief is somehow a

consequence of his de dicto non-contradictory belief. Hence, the two different

appearances of Paderewski (from Peter’s viewpoint) are somehow logically con-

nected to Paderewski himself. In general, to model the contradictory (de re) side

of some beliefs as a consequence of their non-contradictory (de dicto) side, some

means are needed to trace the appearances of objects in the agent’s beliefs to the

real objects to which these appearances belong.

A mode of presentation or a similar intension function seems to be appro-

priate to model the relation of appearances to objects, as well as to model the

diversity and changeability of the appearances of objects with respect to possible

worlds and agents. In the next two subsections, some recent frst-order modal

logic approaches are sketched where individual concepts and a mode of presenta-

tion function are used.

1.2 Individual concepts as objects

In the FOIL quantifed modal logic by M. Fitting (cf. [4] and [5], also [3]), in-

tension (concept) is a (partial) function G −→ D0, where G is a non-empty set

of worlds, and D0 a domain of objects. A special domain of intensions, DI , is

introduced in a model, M , where the model is defned as an ordered quintuple

〈G,R,D0, DI , I〉 (R is an accessibility relation on worlds, and I is an interpreta-

tion). The identity of objects (and, possibly, of intensions) is preserved across the

worlds (in contrast to the counterparts semantics). Besides, object variables and

intension variables are distinguished, as are the object types and intension types

of the relation symbols. The set of agents can easily be supplied to accommodate

2For indexing names in Kripke’s puzzles about belief, see, e.g., [2] and [18, p. 346].
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FOIL to the logic of belief. De re and de dicto readings are disambiguated by the

λ-abstraction device, as, for example, in 〈λx.Bi 〈λy.¬x = y〉(h)〉(h), where the

left occurrence of ‘h’ is in the de dicto position and the right occurrence in the

de re position. In general, the designation of an intension variable f is relativized

with respect to worlds by the λ operator:

M,Γ ∈ G |=v 〈λx.φ〉(f) iff M,Γ |=v[v(f,Γ)/x] φ (1)

(M is a model, Γ a world, and v a mapping of each object variable to an object

and of each intension variable to an intension).

Objects (members of D0) are conceived in a liberal way, so that, for instance,

for some Γ, the object that is the value of the intension Phosphorus at Γ is differ-

ent from the object that is the value of the intension Hesperus at Γ, since there are

agents (say, the ancient Babylonians) who believe that Phosphorus and Hesperus

are two different objects. In the “real world”, both intensions have one and the

same object (Venus) as their value. Hence, what we in the real world designate by

‘Venus’ is identical, as taken in the de re sense, to at most one of the two, to Phos-

phorus or to Hesperus as perceived by the Babylonians. Otherwise, according to

(1), a contradiction also in the Babylonians’ de dicto belief would arise (for in-

stance, the same object would be and would not be a morning star). Accordingly,

there is no de re contradiction in the ancient Babylonians’ beliefs about Phospho-

rus and Hesperus either.—Similarly, for Kripke’s belief agent Peter, Paderewski,

the politician, and Paderewski, the pianist, should also be distinguished as two

different objects.

Below, we will propose a semantics where a de re contradiction is allowed as

a consequence of a de dicto non-contradictory belief.

Remark 1. Besides FOIL, Fitting proposed an epistemic logic where the quan-

tifcation over reasons (evidences) is introduced [6]. That could be an interesting

approach to model the situations where, for different reasons t and s, contra-

dictory beliefs are held about one and the same object, for example, ∃xBi(t :
φ(x) ∧ s : ¬φ(x)).

Close to FOIL models are, for example, “coherence models” (by M. Kracht

and O. Kutz [8, 10]), where instead of many intensions, there is a unique surjective

intension function (“trace function” τ ), which maps each object at a world w to a

thing (which is the trace of that object at w):

τ : U ×W −→ T,
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(U is a set of objects, W a set of worlds, and T a set of things). We could say that

“objects” in a pair with the function τ are, in fact, individual concepts (the authors

think of the objects themselves as “modal individuals”, “transcendental” objects).

So, for example, Paderewski, the politician, and Paderewski, the pianist, would

be two objects with the same trace in the real world, but with different traces in

each of Peter’s accessible worlds. Here, contradictory de re consequences are

avoided by the reduction of the identity of objects to the world-relative identity of

the traces of objects.

1.3 Modes of presentation in the FMP logic

Let us pause also on the FMP logic of belief by R. Ye [19], and Ye and M. Fit-

ting [20], where the mode of presentation function m plays the role of an inten-

sion function for agents. In FMP, for each name a, belief agent i, and world w,

m(a, i, w) ⊆ D(w), whereD is a domain function on the setG of possible worlds.

A model is an ordered set 〈G, I, R1, . . . , R|I|, D, σ,m, π〉, where I is the set of be-

lief agents, Ri the accessibility relation for an agent i, and σ and π functions that

assign values to names and predicates, respectively.

The de re and de dicto sense of names are disambiguated by the abstraction

notation (similar to Fitting’s λ-abstraction), which indicates that a name (an indi-

vidual constant) a designates each object referred to by a mode of presentation m
of a for an agent i at a world w (in a model M). The following is the satisfaction

condition of a de dicto belief:

M,w |=v Bi 〈x.ψ〉(a)
iff for each o ∈ m(a, i, w), M,w |=v[o/x] Bi ψ. (2)

If we take it that m(a, i, w) = ∅, we can model de dicto contradictory beliefs of

the form Bi〈x.φ ∧ ¬φ〉(a) because of the vacuous satisfaction of the right side

of (2). Outside the abstraction notation, names are “weakly” rigid (the value of a

name at w remains the same at each world accessible to w).

This approach is especially appropriate for the case where an agent believes of

several objects to be one and the same object (e.g., if an agent believes that there

is only one author of Principia Mathematica). In the case when an agent splits

one object, in his/her belief, into several objects, disjoint sets of objects (probably

containing, new, “sense objects”) are to be introduced. For example, if an agent

i believes at w that Hesperus and Phosphorus are two distinct objects, formally

Bi〈x1x2.x1 6= x2〉(h, p), that should mean, according to condition (2) above, that
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under the mode of presentation of i at w ‘Hesperus’ and ‘Phosphorus’ refer to two

disjoint sets of objects (possibly just to two distinct singletons).3 Venus could be

(although it need not be) one of these objects, but cannot be a member of both sets,

in which case it would and it would not be denoted by the same predicate (e.g., ‘to

be a morning star’) at the same worlds, contrary to the defnitions of the valuation

and satisfaction in [19, 20]. Hence, de re contradictions do not result in the FMP

logic from consistent de dicto beliefs (similarly as in the logics considered above),

since such contradictions would follow only if one and the same object would be

included under two non-equivalent modes of presentation (cf. [19, pp. 60–62]).

Remark 2. The mode of presentation concept originates, in modern philosophy,

in Frege’s On Sense and Reference (1892) [7]. It is used in the contemporary

philosophy of language, for example, on the basis of a Kripkean semantics as a

“mode of acquaintance with propositions”, a “proposition guise” [13, pp. 117]

[14, pp. 255–256], or as an “extra descriptive information evident to the con-

versational participants” [17, p. 214] (see a discussion, for example, in [15] or

[16]). Finally, the mode of presentation concept is introduced in modal logic (cf.

[20, pp. 389, 406]). See also E. Zalta [21], where the author takes modes of

presentation to be abstract objects of his previously developed intensional logic.

2 The QBL logic of belief

One idea of the QBL logic now to be proposed is to allow an agent’s de re con-

tradictions as consequences of the agent’s de dicto beliefs. The intuition is that

an agent’s de re contradictions should be suffcient reason for rejecting or revising

the agent’s corresponding de dicto beliefs. Pure de dicto contradictions (with all

terms taken de dicto) will also be possible, but only in the sense of local reasoning

(i.e. relativized by agent’s different frames of mind). Both, de re and de dicto

contradictions are a ground for a dynamics that is a topic of a possible dynamic

logic of belief.

Related to the strong connection of de dicto beliefs with their de re coun-

terparts is another idea, namely to propose a reductive ontology that does not

presuppose a distinct object (a distinct set of objects) for each sense of a term.

In QBL we need not presuppose such different things (or objects) like “Phos-

phorus”, Hesperus”, etc. Instead, we merely have appearances (aspects) of real

objects, and represent appearances (in a simplifed way) by the association of the

3See also [19, p. 57 Remark].
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objects with their logical names (imagine these appearances, for example, like

shadows in Plato’s cavern from the seventh book of the Republic).

Technically, de re contradictions of beliefs will be modeled in QBL by a spe-

cial accessibility relation (S), by which the satisfaction of atomic formulas will be

defned, and which will make contradictions possibly true at a world without mak-

ing the valuation of predicates (except =) at the world contradictory. The identity

will be non-classical in order to account for the relationship between appearances

and objects.

Remark 3. For the concept of appearance, see in [13, p. 106] how, for Salmon, “a

change in appearance” (either objective or subjective appearance) is responsible

for the subject’s failure to recognize an object. Let us also note that, for Salmon,

“the mode of acquaintance by which one is familiar with a particular object”, i.e.

the appearance of an object, “is part of the mode of acquaintance by which one

grasps a singular proposition involving that object” [13, p. 108].

2.1 Syntax

For QBL we build a language LQBL, with, in general, familiar frst-order modal

syntax including λ-abstraction formulas.

So, the vocabulary of LQBL consists of the set C of individual constants (a, b,
c, a1, . . .), set V of individual variables (x, y, z, x1, . . .), set P of n-place predi-

cates (P n, Qn, Rn, P n
1 , . . . , and ‘=’ ), connectives ‘¬’ and ‘→’ (other connectives

being defned), the quantifer symbol ‘∀’ (‘∃’ is defned), ‘λ’ (abstraction opera-

tor), belief operators (B1, . . . , Bn), and parentheses.

The formulas are of the form Φnt1 . . . tn (where Φn is a predicate, and ti a

term), ¬φ, (φ→ ψ), Bi φ, ∀αφ, and λ-abstraction formulas of the form (λα.φ)(κ)
(where φ and ψ are formulas, κ an individual constant, and α a variable).

2.2 Semantics

In a frame we distinguish @ as a “real” world, which behaves in a classical way.

Other worlds could behave, to some extent, in a non-classical way and serve to

model agents’ beliefs. There is a cluster function Ci, which maps each world to

a set of clusters of worlds. Further, there is an S-function, which has the role

to model a possibly “broken” picture of a world, in the sense that the world can

split, in an agent’s view, into a set of mutually different worlds. For example, if

an agent does not always recognize an object d to be one and the same object,
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and both ascribes and denies of it a property Φ, we model this situation by two S-

accessible worlds, in one of which d has the property Φ, and in the other of which

d does not have Φ. The possibility of an agent’s correct picture of the world is

retained. There is a domain D of “real objects”, which exist in @, but which do

not necessarily exist in each world accessible to some agent i (since i has not to

be aware of the existence of each real object).

Defnition 1 (Frame). A frame is an ordered set F = {W,@, C1, . . . , Cn, S,D,Q}
where

1. W is a non-empty set of worlds (w will be a member of W ),

2. @ ∈ W ,

3. Ci(w) ∈ ℘℘W (i is a belief agent),

4. S ⊆W ×W , @ is S-related only to itself, S is refexive and transitive,

5. D is a non-empty set of objects (d will be a member of D),

6. Q :W −→ ℘D − {∅}, Q(@) = D (we abbreviate ‘Q(w)’ as ‘Qw’).

For a cluster function Ci, we introduce some further conditions, corresponding

to a plausible concept of belief:

1. each T ∈ Ci(w) is non-empty,

2. if T ∈ Ci(w), then for some T ′ ∈ Ci(w) and for each w′ ∈ T ′, T ∈ Ci(w′),

3. for each w there is T ∈ Ci(w) such that for each w′ ∈ T , Ci(w′) ⊆ Ci(w).

The frst of the conditions above models seriality. It can be easily shown that

the second one models positive introspection, and the third one negative intro-

spection.

In the defnition of a model below, we have a twofold valuation of individual

constants. The frst one is rigid (condition 1), and the second one is non-rigid

and implicitly includes “modes of presentation” (condition 2). Corresponding to

the mentioned distinction between (real) objects and their appearances, we have,

besides D (real objects), a set A of pairs 〈object, name〉, i.e. of appearances,

which result from the non-rigid valuation of constants. A pair 〈object, name〉
should present an object as it appears (to an agent) in association with a logical

name, so that the pair may be called a mode of presentation of the object. The
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(apparently “baroque”) valuation of predicates (condition 3) has some restrictions

in order to ensure the de dicto consistency of an agent’s beliefs (condition 3a)

and the correspondence of each de dicto belief to some de re belief (condition

3b). The valuation of predicates has also to ensure the classical behavior of @, as

well as to account for the identity relation. Identity is interpreted in some respects

like any other predicate and thus behaves in a non-classical way, except that the

self-identity of appearances is ensured in each world, and the self-identity of (real)

objects is ensured, for each world, in some S-accessible world (condition 3d). The

idea is that the self-identity always holds in de dicto beliefs, but not necessarily

always in de re beliefs. For example, the belief that Hesperus is an evening star,

and that Phosphorus is not an evening star, is consistent if taken in the de dicto

sense, but not if taken in the de re sense, since in the de re sense both ‘Hesperus’

and ‘Phosphorus’ refer to one and the same object, Venus. Finally, since @ is a

real world, modes of presentation at @ entirely correspond to the rigid valuation

of logical names (see condition 3c below).

Defnition 2 (Model). A model is an ordered set M = 〈F , V 〉 where

1. V (κ) ∈ D,

2. V (κ, w) ∈ ℘D − {∅}, in particular, V (κ,@) = {V (κ)};

we use the following abbreviations:

A = {〈d, κ〉 | d ∈ V (κ, w) for some w} and

U = D ∪ A (u will be a member of U),

3. V (Φn, w) ∈ ℘Un, where

(a) for eachw′, w′′ with wSw′ andwSw′′, 〈〈d1, κ1〉, . . . , 〈dn, κn〉〉 ∈ V (Φn,
w′) iff 〈〈d1, κ1〉, . . . , 〈dn, κn〉〉∈V (Φn, w′′),

(b) 〈u1, . . . , un〉 ∈ V (Φn, w) iff for each n-tuple e ∈ {u1, d1} × . . . ×
{un, dn} there is w′ with wSw′ such that e ∈ V (Φ, w′), where di ∈ ui
if ui ∈ A, otherwise ui = di,

(c) there are following restrictions regarding @:

i. 〈u1, . . . , d, . . . , un〉∈V (Φn,@) iff 〈u1, . . . , 〈d, κ〉, . . . , un〉∈V (Φn,
@), for each d and κ such that d ∈ V (κ,@),

ii. for each d, 〈d, d〉 ∈ V (=,@),

(d) there are following general restrictions for the identity predicate:
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i. for each w and 〈d, κ〉 ∈ A, 〈〈d, κ〉, 〈d, κ〉〉 ∈ V (=, w),

ii. for each d and w, there is w′ with wSw′ such that 〈d, d〉 ∈ V (=,
w′),

(e) if 〈u, u′〉 ∈ V (=, w), then 〈u1, . . . , u, . . . , un〉 ∈ V (Φn, w) iff 〈u1, . . . ,
u′, . . . , un〉 ∈ V (Φn, w).

Let us pause, frst, on the non-rigid valuation of individual constants (condition

2). The non-rigid valuation has a non-empty set of objects as value, in order to

account for a possible fusion of objects in an agent’s perception. That valuation

could be regarded as a simplifed m of [19, 20] in that in the non-rigid valuation

of QBL there is no argument for agents, and agents differ one from another only

with respect to their accessible worlds. Hence another difference, namely, that

non-rigid valuation in QBL is relativized to the agent’s accessible worlds (not to

a world at which the agent has a belief). Besides, for reasons already mentioned,

FMP allows empty set as a value of a mode of presentation.—Let us remark that

individual constants (names in a logical sense) need not always be conceived as

names of ordinary language. For example, ‘this’ or ‘that’, too, could serve as

logical names.4 Hence, logical modes of presentation are not confned to the

names of ordinary language.

Condition 3a says that all worlds that are S-accessible to the same world w
agree on the properties and relations of appearances (but not necessarily also on

the properties and relations of real objects). This feature will be used in the def-

inition of satisfaction below (Defnition 6) to model-theoretically ensure the con-

sistency of de dicto beliefs in one cluster.

Condition 3b essentially says, informally, that at the ground of each property

of an appearance there is the same property of the corresponding real object. The

corresponding real object behind the appearance 〈d, κ〉 is d. More technically, 3b

says that for each ordered n-tuple of entities (objects or appearances) with some

property Φ at w, each corresponding n-tuple that could be obtained by replacing,

in the original n-tuple, some or all (or none) appearances with the corresponding

objects, has the property Φ at some S-accessible worldw′. This feature of models,

together with the transitivity of S-accessibility (see condition 4 of Defnition 1),

will serve in Defnition 6 to ensure that for each de dicto belief an agent will also

have all the corresponding de re beliefs. Note that at @ appearances and corre-

4As is known, Russell even states that ‘this’ and ‘that’ are ‘the only words one does use as

names in the logical sense’ [12, p. 201].
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sponding objects are equivalent regarding the extension of predicates (condition

3c).

Note also that for each w and d there is w′ with wSw′ such that 〈d, d〉 ∈ V (=
, w′) (see condition 3d), which will serve in Defnition 6 to ensure the satisfaction

of self-identity of objects in each world. The identity between entities (members

of U) means only that they share the same properties (condition 3e), not that they

are one classically (logically) identical entity. Hence, for example, 〈d, κ〉 and

〈d′, κ′〉 could share all their properties, although they are two classically different

entities.

In what follows, the defnitions of a variable assignment and of a variant of a

variable assignment are partially dependent on modes of presentation, since A ⊆
U .

Defnition 3 (Variable assignment). A variable assignment is a mapping v : V −→
U .

Defnition 4 (Variant of a variable assignment). A variant of a variable assign-

ment v is a variable assignment v[u/α] that differs from v at most in assigning u
to α.

Defnition 5 (Designation). A designation JκKM,w
v of an individual constant and a

designation JαKM,w
v of an individual variable are defned in the following way:

1. JκKM,w
v = V (κ),

2. JαKM,w
v = v(α).

In Defnition 6 below, we distinguish t-satisfaction (“verifcation”) and f-

satisfaction (“falsifcation”). The satisfaction of an atomic formula at w depends

on the valuation of the predicate of the atomic formula at an S-accessible world

(see case 1). Because of that dependency, an atomic formula can be both t-

satisfed and f-satisfed at the same w, except at @ (i.e. both an atomic formula

and its negation can be t-satisfed). Consequently, in general, formula φ can also

be both t-satisfed and f-satisfed at the same w, except at @. So @ is a possible

(and real) world, while the other worlds could be impossible worlds—not as they

are in themselves, but due to their different S-accessible worlds. We note that the

world where 〈d, d〉 /∈ V (=, w) is not in a strong sense impossible, since ‘=’ is

not, in fact, a logical predicate.

Case 6 of Defnition 6 shows that, in general, the satisfaction of a λ-formula

depends on the mode of presentation of an object d in association with the indi-

vidual constant κ.
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First, we introduce two new abbreviations:

Aw = {〈d, κ〉 | d ∈ V (κ, w)},
Uw = Dw ∪Aw.

Defnition 6 (t-satisfaction, f-satisfaction).

1. (a) M, w |t=v Φt1 . . . tn iff for some w′ with wSw′, 〈Jt1KM,w
v , . . . , JtnK

M,w
v 〉

∈ V (Φ, w′),

(b) M, w |f=v Φt1 . . . tn iff for some w′ with wSw′, 〈Jt1KM,w
v , . . . , JtnK

M,w
v 〉

/∈ V (Φ, w′),

2. (a) M, w |t=v ¬φ iff M, w |f=v φ,

(b) M, w |f=v ¬φ iff M, w |t=v φ,

3. (a) M, w |t=v (φ → ψ) iff M, w |f=v φ or M, w |t=v ψ,

(b) M, w |f=v (φ → ψ) iff M, w |t=v φ and M, w |f=v ψ,

4. (a) M, w |t=v Bi φ iff there is T ∈ Ci(w), such that for eachw′ ∈ T, M, w′

|t=v φ,

(b) M, w |f=v Bi φ iff for each T ∈ Ci(w) there is w′ ∈ T such that

M, w′ |f=v φ,

5. (a) M, w |t=v ∀α φ iff for each u ∈ Uw, M, w |t=v[u/α] φ,

(b) M, w |f=v ∀α φ iff for some u ∈ Uw, M, w |f=v[u/α] φ,

6. (a) M, w |t=v (λα.φ)(κ) iff for each d ∈ V (κ, w), M, w |t=v[〈d,κ〉/α] φ,

(b) M, w |f=v (λα.φ)(κ) iff for some d ∈ V (κ, w), M, w |f=v[〈d,κ〉/α] φ,

As already mentioned, and according to condition 3b of Defnition 2, for

each t-satisfed de dicto atomic formula, corresponding de re formulas are also

t-satisfed. Besides, note that t = t is always t-satisfed (cf. case 3d of Defni-

tion 2), but possibly also ¬t = t, except at @ (because @ has only itself as an

S-accessible world).

Let us now defne three concepts regarding the t-satisfaction of formulas

through worlds and models.
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Defnition 7 (Satisfability). A set Γ of formulas is satisfable iff there is a model

M, a world w, and a variable assignment v such that for each φ ∈ Γ, M, w |t=v φ.

Defnition 8 (Consequence). Γ |= φ iff M, w |t=v φ whenever for each ψ ∈ Γ,

M, w |t=v ψ.

Defnition 9 (Validity). A formula φ is valid iff it is satisfed at each world in each

model, for each variable assignment.

It can be shown that in the proposed QBL logic, formulas of the form K are

not valid (due to the locality of belief). 4 and 5 are valid (due to the corresponding

properties of Ci). D (i.e. Bi¬⊥) is valid if ⊥ does not contain a mode indepen-

dent (rigid) individual constant. Not only Biφ ∧ Bi¬φ, but also Bi(φ ∧ ¬φ) and

Bi(λα.φ ∧ ¬φ)(κ) are satisfable in QBL if φ contains a mode independent indi-

vidual constant. In addition, the locality of belief enables the satisfability of a set

of formulas like {Biφ ∧ Biψ,¬Bi(φ ∧ ψ)}.

Further, for instance, the formulas of the form Bi(λx.∃y y = x)(κ) are valid,

i.e. each agent i believes that what is an appearance with respect to i is an existing

thing (cf. analogously for FMP in [19, p. 62]). Namely, according to Defnition 6,

M, w |t=v Bi(λx.∃y y = x)(κ) iff (∃T ∈ Ci(w)) (∀w′ ∈ T )M, w′ |t=v (λx.∃y y =
x)(κ). And further,

M, w′ |t=v (λx.∃y y = x)(κ)

iff (∀d ∈ V (κ, w′))M, w′ |t=v[〈d,κ〉/x] ∃y y = x

iff (∀d ∈ V (κ, w′)) (∃u ∈ Uw′)M, w′ |t=v[〈d,κ〉/x,u/y] y = x

iff (∀d ∈ V (κ, w′))(∃u ∈ Uw′)(∃w′′w′Sw′′) 〈〈d, κ〉, u〉 ∈ V (=, w′′).

Because of the refexivity of S the last line always holds, since if d ∈ V (κ, w′)
then 〈d, κ〉 ∈ Uw′ . However, it can be shown that Bi ∃xBj(λy.y = x)(κ) is not

valid, i.e. an agent i does not need to believe that what is an appearance with

respect to some (other) agent j is an existing thing for i.

2.3 Some examples

Let us defne a model M in the following way (we informally use individual con-

stants h, p and v, and the predicate H2):

1. W = {@, w1, w2, w3, w4, w5},
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2. T1 = {@}, T2 = {w1, w2}, T3 = {w3, w4, w5},

Ci(@) = Ci(w1) = Ci(w2) = {T1, T2, T3},

Cj(@) = Cj(w1) = Cj(w2) = Cj(w3) = Cj(w4) = Cj(w5) = {T1, T2, T3},

3. S = {〈@,@〉, 〈w1,@〉 〈w1, w1〉, 〈w1, w2〉, 〈w2,@〉, 〈w2, w2〉, 〈w3, w3〉, 〈w3,
w4〉, 〈w3, w5〉, 〈w4, w4〉, 〈w4, w5〉, 〈w5, w4〉, 〈w5, w5〉},

4. for each w, Dw includes the planet Venus,

5. V (v) = V (p) = V (h) = V enus (Phosphorus,Hesperus),

6. for each w, V (h, w) = V (p, w) = {V enus} (hence, set Aw includes

〈V enus, h〉 and 〈V enus, p〉),

7. for each w, V (H2, w) = {〈u, u′〉 | u is hotter (on the surface) than u′}:

〈〈V enus, h〉, V enus〉 /∈ V (H2,@),

〈〈V enus, h〉, 〈V enus, p〉〉, 〈〈V enus, h〉, V enus〉, 〈V enus, V enus〉 ∈ V (H2,
w2),

〈〈V enus, p〉, 〈V enus, h〉〉 /∈ V (H2, w2)

〈〈V enus, p〉, 〈V enus, h〉〉 ∈ V (H2, w3),

〈〈V enus, p〉, 〈V enus, h〉〉 ∈ V (H2, w4),

〈〈V enus, p〉, 〈V enus, h〉〉 ∈ V (H2, w5),

8. 〈V enus, V enus〉 ∈ V (=,@),

〈〈V enus, h〉, V enus〉 ∈ V (=,@),

〈V enus, V enus〉 /∈ V (=, w2),

〈〈V enus, h〉, V enus〉 /∈ V (=, w2).

We can illustrate the model with Figure 1, where S-accessibility is indicated by

dashed lines, the values of predicates at a world are indicated by (pseudo)literals,

and individual constants that serve for a mode of presentation are put in brackets:

Example 1. M,@ |t=v BiHvv.

Proof.

For each w ∈ T2, there is w′ with wSw′ such that 〈V enus, V enus〉 ∈ V (H2, w′),
since 〈V enus, V enus〉 ∈ V (H2, w2) and w1Sw2, w2Sw2,

hence, for each w ∈ T2,M, w |t=v Hvv,

therefore, M,@ |t=v BiHvv, since T2 ∈ Ci(@).
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T2

w1

i, j

w2

i, j

w2 :

H [h][p],¬H [p][h],
H [h]v,Hvv,
v 6= v, [h] 6= v

T1

@
i, j

@ :
¬H[h]v,
v = v,

[h] = v

T3

w3

j

w3 :

H [p][h] w4

j

w4 :

H [p][h]

w5

j
w5 :

H [p][h]

Figure 1: Model M
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Example 2. M,@ |t=v Bi(λx.Hxv ∧ ¬Hxv)(h)
Proof.

M, w1 |t=v[〈V enus,h〉/x] Hxv, since 〈〈V enus, h〉, V enus〉 ∈ V (H2, w2) and w1Sw2,

also, M, w1 |t=v[〈V enus,h〉/x] ¬Hxv, since 〈〈V enus, h〉, V enus〉 /∈ V (H2,@) and

w1S@,

therefore, M, w1 |t=v[〈V enus,h〉/x] Hxv ∧ ¬Hxv,

thus, M, w1 |t=v (λx.Hxv ∧ ¬Hxv)(h), since {V enus} = V (h, w1).

Also, M, w2 |t=v[〈V enus,h〉/x] Hxv, since w2Sw2,

and M, w2 |t=v[〈V enus,h〉/x] ¬Hxv, since w2S@,

therefore, M, w2 |t=v[〈V enus,h〉/x] Hxv ∧ ¬Hxv,

thus, M, w2 |t=v (λx.Hxv ∧ ¬Hxv)(h), since {V enus} = V (h, w2).

Therefore, M,@ |t=v Bi(λx.Hxv ∧ ¬Hxv)(h), since {w1, w2} = T2 and T2 ∈
Ci(@).

Example 3. M,@ |=v Bi(λx.Bj(λy.Hxy)(h))(p)
Proof.

M, w3 |t=v[〈V enus,p〉/x,〈V enus,h〉/y] Hxy, since 〈〈V enus, p〉, 〈V enus, h〉〉 ∈ V (H2,
w3) and w3Sw3

thus M, w3 |t=v[〈V enus,p〉/x] (λy.Hxy)(h), since {V enus} = V (h, w3),

similarly,M, w4 |t=v[〈V enus,p〉/x] (λy.Hxy)(h) andM,w5 |t=v[〈V enus,p〉/x] (λy.Hxy)
(h),

therefore, M, w1 |t=v[〈V enus,p〉/x] Bj(λy.Hxy)(h), since {w3, w4, w5} = T3 and

T3 ∈ Cj(w1).

Similarly, M, w2 |t=v[〈V enus,p〉/x] Bj(λy.Hxy)(h), since T3 ∈ Cj(w2).

Further, M, w1 |t=v (λx.Bj(λy.Hxy)(h))(p), since {V enus} = V (p, w1),

also, M, w2 |t=v (λx.Bj(λy.Hxy)(h))(p), since {V enus} = V (p, w2).

Therefore, M,@ |t=v Bi(λx.Bj(λy.Hxy)(h))(p), since {w1, w2} = T2 and T2 ∈
Ci(@).

Example 4. M,@ |t=v Bi(v = v ∧ ¬v = v).
A sketch of the proof. Note that 〈V enus, V enus〉 ∈ V (=,@), but 〈V enus, V enus〉
/∈ V (=, w2). Since both w1S@, w1Sw2 and w2S@, w2Sw2, we obtain that M, w1

|t= v = v,¬v = v and M, w2 |t= v = v,¬v = v. Hence the proposition easily

follows.
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Example 5. M,@ |t=v Bi(λx.x = v ∧ ¬x = v)(h).
For the proof, note that 〈〈V enus, h〉, V enus〉∈V (=,@) and 〈〈V enus, h〉, V enus〉
/∈ V (=, w2), and that both w1S@, w1Sw2 and w2S@, w2Sw2. Also, {V enus} =
V (h, w1) = V (h, w2). With the help of this, the proposition follows.

Let us note that examples with an agent who mistakes many objects for one

and the same object can be modeled similarly as in [20], using the fact that the

non-rigid valuation of individual constants has a set of objects (not a single object)

as a value.

2.4 A note on a deductive system

A natural deduction system QBL can be proposed for the above semantically

described QBL. The usual frst-order modal logic rules are used with some ex-

ceptions. We need a restriction on the indirect subproof within a Bi-subproof,

i.e. in a Bi subproof, the introduction and elimination rules for ¬ are valid only

by means of de dicto formulas φ and ¬φ. Also, for each formula Bi φ, a new

Bi-subproof has to be opened, where Bi φ should be reiterated in an appropriate

way (local 4 reiteration, local 5 reiteration). In the introduction and elimination

rules for ∀α φ, Et → φ is used as the substitution instance, where Et abbreviates

∃αα = t. In the introduction and elimination rules for λ-abstraction we can use

individual constants with one or more asterisks as instantiating mode dependent

(non-rigid) terms, e.g., (λα.φα)(κ) ⊢ φ(κ∗/α). We can then, within a Bi sub-

proof, replace a mode dependent term with a mode independent (rigid) constant,

but not vice versa: if ΓBi ⊢ κ∗i = κj , φ(κ
∗
i ), then ΓBi ⊢ φ(κj//κ∗i ).

Soundness could be proved by mathematical induction on the number of lines

of a proof, where the modal degree of a line should be taken into account. For

a possible completeness proof, a Gallin style of proof could be proposed, with

the construction of a system of saturated sets of sentences, and with a canonical

model, where, for example, the cluster function Ci is defned as follows: T ∈
Ci(w) iff there is a non-empty set X such that X ⊆ Bi

√
w and (∀v ∈ T ) X ⊆ v

(w, like v, is here a saturated set of sentences, and Bi

√
w is set {φ | Biφ ∈ w}).

3 An example in deontic logic

Local reasoning has been employed by L. Royakkers [11] to formalize the enact-

ment of conficting norms. In deontic language, the modal operator NAi and the

following kind of formulas are included:
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NAi : θ (‘an authority Ai enacted a norm θ’),

where θ is a deontic formula (a norm), and there are no nested enactments.

In a way similar to QBL, S-accessibility and non-rigid valuation of constants

(modes of presentation) can make it possible to model contradictory de re obli-

gations being consequences of non-contradictory de dicto obligations. This is

briefy illustrated in the following example, where we combine deontic logic with

the logic of belief:

Example 6. An authority i could simultaneously enact an obligation to arrest the

person b, and to release the person c, without being aware that b and c are one

and the same person. Thus, i in fact believes of one and the same person (taken in

the de re sense) that he/she is b as well as c. The following enactment and beliefs

are included in the situation:

NAi : O(λx.(λy.Ax ∧Ry)(c))(b),
BAi

(λx.x = c)(b),
BAi

(λx.x = c)(c),

where ‘A’ and ‘R’ mean ‘to be arrested’ and ‘to be released’, respectively. Those

enactment and beliefs should be expressed as being in the same frame of mind of

the authority Ai, which can be accomplished by the following formula:

Ai.(NAi : O(λx.(λy.Ax∧Ry)(c))(b)∧BAi
((λx.x = c)(b)∧(λx.x = c)(c))), (3)

where Ai simultaneously “bounds” the belief and the enactment operator. Now,

from (3)

NAi : O(λy.Ac ∧Ry)(c)

and

NAi : O(Ac ∧ Rc)

logically follow as consequences. Note that, according to our semantics, the de

dicto identity of b and c, BAi
(λx.(λy.x = y)(c))(b), is not a consequence of the

beliefs in (3). Thus, the following enactment:

NAi : O(λx.(λy.Ax ∧ Ry)(c))(c)

is not a consequence of (3) either.
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4 Conclusion

Contradictory beliefs appear to be deeply rooted features of belief agents and are

a strong motive for an agent’s change of belief. The paper aims to show how an

agent’s contradictory beliefs can be modeled in a frst-order modal setting, on the

presuppositions of a reductive ontology without separate “sense objects”.

Technically, we aim to show how local reasoning and modes of presentation

can be combined and employed in modeling contradictory beliefs. Local reason-

ing distributes two contradictory beliefs over two different clusters of accessible

worlds. Modes of presentation (non-rigid valuation of constants) and an additional

S-accessibility relation help to model contradictions which occur in the scope of

one and the same belief operator and which thus cannot be distributed over clus-

ters.

The dynamics of belief is an interesting open problem for a future research. In

dealing with that problem, it should be shown how two or more clusters confate

into one and how modes of presentation accommodate to de re references of terms

in order to revise an agent’s beliefs, once contradictions in the agent’s beliefs have

been discovered.
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