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Abstract

Given a normal (multi-)modal logic Θ, a characterization is given of the finitely presentable alge-
bras A whose logics LA split the lattice of normal extensions of Θ. This is a substantial gener-
alization of [Rautenberg, 1980; Rautenberg, 1977] in which Θ is assumed to be weakly transitive
and A to be finite. We also obtain as a direct consequence a result by [Blok, 1978] that for all
cycle-free and finite A LA splits the lattice of normal extensions of K. Although we firmly be-
lieve it to be true, we have not been able to prove that if a logic Λ splits the lattice of extensions of
Θ then Λ is the logic of an algebra finitely presentable over Θ; in this respect our result remains
partial.

A Introduction

The concept of a splitting has been very fruitful in modal logic. Although splittings originated in
lattice theory they proved to have rather surprising applications to modal logics with no obvious
relation to lattice theory. The idea of a splitting in modal logic is this: given a logic Θ is there
a logic Θ/A whose models are all the Θ-models that omit A in the sense that the variety they
generate does not contain A, or, equivalently, does there exists a least logic containing Θ not
havingA as a model? If it exists it is called the splitting of Θ byA.

Splittings first appeared in pure modal logic in [Fine, 1974a] where they were called frame
logics. By showing that the lattice of normal extensions of S 4 has ℵ0 incomplarable splittings,
Fine showed that this lattice has 2ℵ0 elements. In [Blok, 1978], W. Blok applied splittings to
obtain completeness results. He proved that a normal extension of K is complete exactly if it is
a splitting logic of K and that the degree of incompleteness is 2ℵ0 otherwise; and that an algebra
splits the lattice of K if and only if it is finite, subdirectly irreducible and cycle–free. The first
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B SPLITTINGS IN LATTICES 2

general and theoretic approach to splittings was given in [Rautenberg, 1980], [Rautenberg, 1979]
and [Rautenberg, 1977]. He not only showed that many important extensions of K4 are splitting
logics of K4, but also gave a way of deciding wether or notΘ(P) is a splitting logic ofΘ. However,
the splitting theorem presented there only treats weakly transitive logics. In modal logics this is
not a severe restriction, but as soon as the language has more than one modal operator—e.g. in
tense logics—transitivity is no longer a desirable property.

Our main aim is a general characterization of all algebras which split Θ for an arbitrary normal
modal logic without any assumptions of transitivity. We allow the language to have more than one
modal operator, and also the splitting algebra to be infinite. However, we have to assume that the
algebras we are dealing with are extit finitely presentable over Θ. The road to the main splitting
theorem presented here is quite long compared to the splitting theorem for transitive logics because
it is no longer true that only the finitely presentable, subdirectly irreducible (s.i.) algebras induce
splittings. Moreover, since Θ does not necessarily have the finite model property, it is not true that
the class of splitting algebras of Θ coincides with the class of finite s.i. algebras, which is then
also the class of finitely presentable s.i. algebras. The investigation into this problem leads directly
back to the lattice-theoretic definition of a splitting and the characterization of splitting elements
in a lattice.

The first section contains all the relevant lattice facts about splittings. In the next section we
introduce modal logics and a new semantics which unifies both modal and dynamic logics. Al-
though we do not include any application for dynamic logic it will become clear that this semantics
makes the application of our results even within modal logics easier and more concise. We have
tried to keep this part as short as possible. The third part is the heart of the paper, where we prove
the splitting theorem. There we try to flesh out the interconnection between the structure of Θ-
algebras and the structure of the lattice of normal extensions of Θ. As a byproduct we get several
theorems which are of interest in their own right. They deal with the problem of how to decide
whether a s.i. algebra is in the variety generated by a set of other algebras. Finally, a nontrivial
example of an infinite splitting algebra is given.

I am very grateful to Prof. Rautenberg for his supervision of my diploma thesis out of which
the present paper developed as well as to Frank Wolter for carefully reading this paper and making
many helpful suggestions. Some anonymous referees have also helped to significantly improve
earlier versions.

B Splittings in Lattices

The notion of a splitting was first used in the context of varieties of algebras by [McKenzie, 1972].
However, splittings as a concept of lattice theory date back to [Whitman, 1943] who also coined
this expression. 1

1Whitman claims that [Birkhoff, 1937] uses ‘cleavage’ in much the same sense as ‘splittings’ but this is not correct.
A cleavage for a prime ideal in a lattice is defined in [Birkhoff, 1937] as a prime quotient b/a such that a ∈ P but b < P.
Incidentally, our usage of ‘splitting’ which we borrowed from [McKenzie, 1972] differs sightly from the original one
in [Whitman, 1943].
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Let L := 〈L,u,t,
�
,
⊔
, 0, 1〉 be a complete lattice. For a ∈ L define F a := {x ∈ L : x ≥ a},

the filter generated by a, and Ia := {x ∈ L : x ≤ a}, the ideal generated by a. Also define
Ea := 〈F a,u,t,

�
,
⊔
, a, 1〉. Ea is called the extension lattice of a.

Definition 1 〈p, q〉 is called a splitting ofL if L = F q+Ip that is, L = F q∪Ip and∅ = F q∩Ip.
In that case we say that p splits L and that q is its splitting companion. q is uniquely determined
by p and denoted by L/p or sometimes by 0/p.

Dually, we say that q co-splits L if for some p Ip+F q = L. Again, p is uniquely determined
by q and called the co-companion of q. Hence there is a bijection between splitting elements and
co-splitting elements of L. If p splits L and p ∈ F a then p splits Ea and a/p = at 0/p. If p < Ea
we define a/p := a. Splittings can be iterated, e.g. (L/p)/r. There it need not be the case that r
splits L; but if it does it is easily checked that (L/p)/r = (L/r)/p = L/p t L/r. Thus for a set N
of splitting elements we define L/N :=

⊔
〈L/p : p ∈ N〉.

Definition 2 a ∈ L is called irreducible if a =
�
〈x(i) : i ∈ I〉 implies a = x(i) for some i ∈ I.

a ∈ L is called prime if a ≥
�
〈x(i) : i ∈ I〉 implies a ≥ x(i) for some i ∈ I.

The dual notions are join-irreducible and join-prime. If a is prime a is also irreducible. If the
lattice is upper continuous, i.e. if a u

⊔
〈bi : i ∈ I〉 =

⊔
〈a u bi : i ∈ I〉, then every join–irreducible

element is also join–prime. This is the case with the lattice of normal extensions of a modal logic.

Theorem 3 (McKenzie) p splits L iff p is prime in L.

By duality, q co-splits L iff q is join-prime in L. Thus we have a bijection σ : Σ∗ −→ Σ∗
from the set of prime elements Σ∗ of L onto the set Σ∗ of join-prime elements of L defined by
σ(p) := L/p. Moreover, if p ≤ q in Σ∗ then σ(p) ≤ σ(q) in Σ∗ and vice versa, in other words, σ
is an isomorphism of posets.

C Modal Logics: Syntax and Semantics

We assume that the reader is familiar with the basic ideas of modal logics and elementary dynamic
logics. For the latter we refer to Harel [7]. For several reasons we use the language of dynamic
logics. First of all they are more general and flexible than modal logics. Second, the development
of dynamic logic cannot be ignored by modal logicians. Instead, they should make their results
accessible to a wider audience by adopting the new language of programs. And third, most of our
general results can be stated in a more compact way in terms of programs. Thus our language is
the language of EPDL (Elementary Propositional Dynamic Logic). It consists of a countable set
Var of proposition variables, a countable set Prg := {πi : i ∈ ω} of elementary program constants,
the connectives ¬,∧,∨,→,↔, ; ,∪ as well as [ ] and <>. We also use the symbols 0 (false), 1
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(true) and 1 (no operation). The brackets [ ] and <> turn programs into modal operators. Thus
if µ is a program and P a proposition then [µ]P and < µ > P are propositions. By L we denote
the set of propositions generated by Var and Prg, by Ln the subset of propositions generated by
Var and {πi : i ∈ n}. However, it should be said that none of our results ultimately depends on
the choice of the language of programs as long as it contains ‘∪’ since all our results only depend
on the semilattice–structure of the programs defined by ‘∪’. It is only for shortness and simplicity
that we have not included the star ‘?’. Or we could have added the intersection ‘∩’ or negation ‘\’
of programs (which for a program π yields a program \π which makes all and only those worlds
accessible which are inaccessible for π). The splitting theorem and all the others remain valid.
However, our results do not extend to dynamic logics which have the ‘?’ because we have no
semantics for it. In fact, the semantic framework used here does not extend to any semantics for
‘?’.

The important innovation of dynamic logic is the notion of a program as an object of a different
category. In EPDL and PDL the programs form an algebra generated by a set of basic programs
in Prg and ; ,∪ and (in PDL) ?. We call this algebra a P-ring:

Definition 4 An algebra X = 〈X, 1,∪, ; 〉 of type 〈0, 2, 2〉 is called P-ring iff the following equa-
tions hold:

(ra; ) π; (σ; τ) = (π;σ); τ
(r1; ) π; 1 = 1; π = π
(ra∪) π ∪ (σ ∪ τ) = (π ∪ σ) ∪ τ
(rc∪) π ∪ σ = σ ∪ π
(ri∪) π ∪ π = π

(rdl) π; (σ ∪ τ) = π;σ ∪ π; τ
(rdr) (π ∪ σ); τ = π; τ ∪ σ; τ

A P-ring is always assumed to be finitely generated by X0 ⊂ Prg.

Definition 5 An algebra X = 〈X, 1,∪, ; ,? 〉 of type 〈0, 2, 2, 1〉 is called a P?-ring if X � {1,∪, ; } is
a P-ring and for all π ∈ X

(in∗) (1 ∪ π); π∗ = π∗

This equation is reflected in dynamic algebras by the induction axiom

(rc∗) [π∗](p→ [π]p).→ .p→ [π∗]p.

As we said already, we will not discuss the case of the star (viz. dynamic algebras) for this would
make our introduction unnecessarily long. However, it should be clear that it runs exactly parallel.

Definition 6 Let A = 〈A, 1, \,∩〉 and B = 〈B, 1, \,∩〉 be boolean algebras. τ : A −→ B is called
a hemimorphism, if τ1 = 1 and τ(a ∩ b) = τa ∩ τb for all a, b ∈ A. The set of all hemimorphisms
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from A to B is denoted by Hem(A,B). If A = B we simplify this to Hem(A). If σ, τ ∈ Hem(A,B)
we define σ ∪ τ by (σ ∪ τ)a := σa ∩ τa.

Proposition 7 H(A) := 〈Hem(A), id,∪, ◦〉 is a P- ring. ♣

Definition 8 Let X be a P-ring. A X-algebra is a pair A = 〈A, f 〉 where A is a boolean algebra
and f : X −→ H(A) a P-homomorphism. 2 A homomorphism between X-algebras 〈A, f 〉 and
〈B, g〉 is a pair 〈h, t〉 of mappings, h ∈ Hom(A,B) and t : im( f ) −→ im(g) a P-homomorphism,
such that for all π ∈ X:

(xh) h ◦ f (π) = g(π) ◦ h
(xp) t( f (π)) = g(π)

A

A B

B

f (π) g(π)

h

h
-

-

??

X

im( f )

im(g)

t

f

g

��
�

�
�

��*

HHHHH
HHj

?

The idea of this semantics is best explained with an example. Take the varietyVn of algebras
with n modal operators. A = 〈A, 〈τi : i ∈ n〉〉 ∈ Vn is then a boolean algebra with n operators.
Alternatively, if Xn is the P-ring freely generated by {πi : i ∈ n}, the assignment f : πi 7→ τi
induces a P-homomorphism f : Xn −→ Hem(A) whose direct image is the subring generated by
the τi. This shows how to turn an n-modal algebra into a Xn-algebra.

Under certain circumstances it is possible to replace Xn by a homomorphic image. For con-
sider the case when f : Xn −→ Hem(A) factors through g : Xn −→ Y. Then 〈A, f 〉 can equally be
viewed as a Y-algebra. The conditions under which this identification is possible can be spelled
out explicitly. For f factors through g iff f (π) = f (σ) for all π, σ such that g(π) = g(σ). So we
must have f (π)(a) = f (σ)(a) for all a ∈ A which is equivalent to 〈A, f 〉 |= [π]p ↔ [σ]p for all
such pairs. The algebras satisfying these identities therefore form a variety. A particular example
is the class of interior algebras or S4-algebras, which are modal algebras satisfying the identities
a ∩ �a = �a and ��a = �a. An interior algebra as an X1-algebra can also be construed as a
Xi-algebra, where Xi is X1 factored through 1 ∪ π0 = π0 and π0; π0 = π0. It turns out that Xi

has only two elements, namely 1 and π0. In general, distinct logics need not have dictinct rings of
programs. The interior algebras provide an example. It is readily checked that if an extension Λ
of S4 has a proper image of Xi as it’s ring programs, this ring must satisfy 1 = π0. Consequently,
Λ ⊇ S 4(p↔ �p).

2We generally refer toX-algebras as modal or multimodal algebras. IfX is a P∗-ring we call them dynamic algebras.
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The kernel of a homomorphism of X-algebras is an open filter: a subset F ⊆ A is called an
open filter if it is closed under

( f ≤) a ∈ F and a ≤ b⇒ b ∈ F
( f∩) a, b ∈ F ⇒ a ∩ b ∈ F
( f�) a ∈ F and π ∈ X ⇒ [π]a ∈ F

Open filters are in one-to-one correspondence to surjective homomorphisms.

In the same way we defineX-frames (or Kripke-frames) as we have done forX-algebras. AX-
frame Γ is a pair 〈G, γ〉 where G is a set (the set of worlds) and γ : X −→ Rel(G) a homomorphism
into the P-ring of relations over G. We leave the details of this construction to the reader. Mappings
between X-frames are called p-morphisms. As an example he may check the definitions in the S4-
case which is the most simple one. Other P-rings of interest are Xn, the P-ring freely generated
by n elements, and Xk

n, the P-ring generated by n elements in which every program is k-transitive.
To define Xk

n we need some notation:

(exm) π0 := 1 πm+1 := πm; π
(ex≤) π(0) := 1 π(m+1) := π(m) ∪ πm+1

(d f ξ) ξ :=
⋃
〈πi : i ∈ n〉

Xk
n is generated by {πi : i ∈ n} and the equation ξ(k+1) = ξ(k). Xk

n is called k-transitive. A logic Θ
is called k-transitive if [ξ(k+1)]p ↔ [ξ(k)]p ∈ Θ and weakly transitive if it is k-transitive for some
k ∈ ω. In a frame for a k-transitive logic every path consisting of more than k successive moves
from one point to another can be replaced by a path of at most k moves joining these points.

Now let X be any P-ring generated by {πi : i ∈ n},Y ⊆ Var a set of proposition variables.
F (Y) := 〈FrX(Y), p〉 denotes the free X-algebra generated by Y . FrX(Y) is the boolean algebra
generated by X and Y and the equations

(ie; ) [µ;σ]p = [σ]([µ]p)
(ie∪) [µ ∪ σ]p = [µ]p ∧ [σ]p
(ie1) [1]p = p
(ieµ) [µ]1 = 1
(sm∧) [µ](p ∧ q) = [µ]p. ∧ .[µ]q for all µ, σ ∈ X

p : X −→ H(FrX(Y)) is defined by p(π)(Q) := [π]Q. IfA = 〈A, f 〉 is a X-algebra and β : Y −→ A
a valuation then β defines a unique extension hβ : 〈β, t〉 : 〈FrX(Y), p〉 −→ 〈A, f 〉. We say, 〈A, β, a〉
is a model for P if 0 < a ≤ β(P) and we writeA, β |= P > 0. We say, 〈A, β〉 satisfies P if 〈A, β, 1〉
is a model for P and write A, β |= P. This corresponds to the usual definition of a model where
instead of an algebra a frame g is given: 〈g, β, s〉 is a model for P iff g, β, s |= P. We also say that
〈g, β〉 is a model for P if such an s ∈ g exists. The logic LA of A is the set of all P ∈ Ln which
are always satisfied: LA := {P ∈ Ln : ∀β : var(P) −→ A : A, β |= P}.
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A normal (n-)modal logic is a subset of Ln which contains the axioms of classical logic, the
axioms corresponding to the above equations,

(bd) ` [π](p→ q).→ .[π]p→ [π]q, π ∈ X

and which is closed under substitution of formulas for proposition variables, modus ponens and
necessitation: P/[π]P, π ∈ X. Usually, we denote logics by upper case Greek letters. A logic Θ
corresponds to a uniquely determined variety V(Θ) := {A : LA ⊇ Θ} of Xn-algebras and every
variety of Xn-algebras V determines a logic L(V) :=

⋂
〈LA : A ∈ V〉. The minimal normal

n-modal logic is denoted by Kn.

D Splitting Varieties of Modal Logics

D.1 Irreducible and Prime Logics

The aim of this section is to describe how the concepts from lattice theory are translated into
properties of algebras and varieties of modal algebras. We assume that the language is some fixed
Ln and the logic Θ ⊆ Ln. We will show that the splitting logics are of type LA where A is not
only subdirectly irreducible (henceforth s.i.) but also prime inV(Θ), and then proceed to describe
the notion of primeness in terms of algebras and their varieties. We have seen in section A that in
contrast to irreducibility of an element a in a lattice L, which depends only on the structure of the
local extension lattice Ea, primeness depends on the overall structure of L. It is therefore natural
to expect that irreducibility corresponds to an internal property of an algebra i.e. a property that
depends only on the structure of the algebra itself; and that primeness of an algebra is dependent
also on the variety it is contained in. But even in the case of irreducibility the matter is quite
complicated. Suppose we are given a P-ringX and the corresponding varietyV ofX-algebras and
Θ correponds to a subvariety ofV. Then we have the

Theorem 9 Λ ∈ EΘ is irreducible only if Λ = LA for a subdirect irreducibleA.

Proof: Surely we have Λ = LA for someA ∈ V. IfA is not s.i., sayA is a subdirect product of
〈Ai : i ∈ I〉, where every Ai is s.i., then we have LA =

⋂
〈LAi : i ∈ I〉. Hence there is a Ai such

that LAi = LA = Λ. ♣

A criterion for subdirect irreducibility is given in [Rautenberg, 1980]:

Theorem 10 A ∈ V is s.i. iff there is a c ∈ A \ {1} such that ∀a ∈ A \ {1} : ∃µ ∈ X : [µ]a ≤ c.
Every c that has this property is called an opremum of A. c is not uniquely determined. If A is
finite thenA is s. i. iff the corresponding frame is generated by a single point.

But the converse of Theorem 9 is generally false. As an example take the S4-frame 〈{∞}∪ω,C〉
with s C t iff s = ∞ or s ≥ t. This frame is generated by ∞ and therefore the algebra A of finite



D SPLITTING VARIETIES OF MODAL LOGICS 8

and cofinite subsets of that frame is s.i. However, it can be shown that LA = S 4.Grz.3 which has
the finite model property (f.m.p.) and is therefore not irreducible in EK. To obtain a converse of
Theorem 9 we remind ourselves of the fact that in a lattice an element a is irreducible iff it is prime
in Ea. So we find

Theorem 11 Λ is irreducible in EΘ if and only if Λ = LA for a s.i. algebra such that LA is prime
in ELA.

which reduces the problem of finding the algebras whose logics are irreducible to the more general
problem of characterizing splitting algebras. Therefore we will now attempt such a characteriza-
tion.

By analogy, an algebraA or a frame Γ is called prime in EΘ orV(Θ) if LA (LΓ) is prime in
EΘ. In previous work only finite algebras have been considered (see for example [Blok, 1978],
[Rautenberg, 1980; Rautenberg, 1977]). This restriction is only justified if the base logic Θ has
f.m.p. For if a logic is prime in EΘ it is also irreducible and so it is generated by a s.i. algebra.
Thus, if Θ has f.m.p. then only finite algebras can induce splittings of EΘ. Since we want the
most general characterization of splitting algebras we do not want to make any assumptions on Θ.
However, we have not been able to obtain full generality. Our characterization is restricted to the
class of finitely presentable algebras over Θ, which, from a technical point of view, is the most
natural class of algebras to work with.

D.2 Finetely Presentable Algebras

Definition 12 LetA ∈ V(Θ) be finitely generated by {ai : i ∈ k}. A is called finitely presentable
over Θ if there exists a formula ∆ ∈ Ln so that var(∆) ⊆ {pi : i ∈ k} and the canonical homomor-
phism pr : FΘ(var(∆))/〈∆〉 −→ A defined by pr(pi) = ai is an isomorphism. FΘ(Y) denotes the
free Θ-algebra generated by Y and 〈∆〉 the open filter generated by ∆. We call ∆ a diagram of A
over Θ. ∆ is not uniquely determined.

We also say that A is k-presentable to indicate that ∆ is based on no more than k variables.
Similarly we use the expression that A is k-generated if a set of no more than k elements of A
exists which generatesA.

Example: Let R denote the recession frame, which is defined by R := 〈ω, /〉 where n / m iff
n ≤ m + 1 (see [Blok, 1978] and [Rautenberg, 1977]). Let B be the algebra of the finite and
cofinite subsets of ω and Θ := LB = K(�^p → ^��p, �p → p, ^p ∧ �(p → �p) → p). B is
1-generated e.g. by {0} ⊆ ω. Thus we have a surjective homomorphism π : F (p) −→ B defined
by π(p) = {0}. {0} satisfies the equation �{0} = ∅ and if we let ∆ := ¬�p we get B � FΘ(p)/〈∆〉.
It is known (see [Blok, 1980], Theorem 5.2) that B is s.i. and EΛ � 3 (see picture). Hence B is
prime in EΘ and induces a splitting EΘ/Θ = L • , where • denotes the frame with one reflexive
point.
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3 :

•

•

•

1

L •

Θ

IfA is finite thenA is k-presentable iff it is k-generated. In particular, A is k-presentable for
k = card(A):

Proposition 13 LetA be finite. Define

∆(A) :=
∧
〈pa ∨ pb ↔ pa∪b : a, b ∈ A〉

∧
∧
〈¬pa ↔ p\a : a ∈ A〉

∧
∧
〈[π]pa ↔ p[π]a : a ∈ A, π ∈ X0〉

Then ∆(A) is a diagram forA over Θ.

Proof: Consider ε : FΘ(var(∆)) −→ A : pa 7→ a. ε is surjective and factors through pr, that
is, ε = pr ◦ κ for a homomorphism κ. Since pr ◦ κ = ε is surjective, pr is surjective. It remains
to show that pr is injective. This is done by showing that κ(P) = κ(Q) iff P ↔ Q ∈ 〈∆〉 and for
every P there is a a ∈ A such that P ↔ pa ∈ 〈∆〉 which is proved by induction on P. Hence
card(im(κ)) = card(A) and since A is finite, pr is injective. ♣

D.3 Varieties of Modal Algebras

Definition 14 Let ∆ be a diagram ofA over Θ, B ∈ V(Θ) and µ ∈ X. B is said to be µ-consistent
withA, if a valuation β : var(∆) −→ B exists such that B, β |= ¬pc ∧ [µ]∆ > 0, where pc ∈ var(∆),
c being an opremum of A. If M ⊆ X is a set of programs, B is called M-consistent with A if a
valuation β : var(∆) −→ B exists satisfying B, β |= ¬pc ∧ [µ]∆ > 0 for all µ ∈ M.

We say that M exhausts X if ∀ξ ∈ X∃µ ∈ M : ξ ⊂ µ. If B is µ-consistent with A for every
µ ∈ M (M-consistent with A) and M exhausts X then B is said to be weakly consistent with A
(extremely consistent withA).

Remark: B is µ-consistent with A iff ∃β : B, β |= [µ]∆ ∧ ¬pc > 0 iff [µ]∆ → pc < LA iff
ConLA[µ]∆→ pc. Also, B is M-consistent withA iff ConLA{[µ]∆→ pc : µ ∈ M}. If M exhausts
X this is equivalent to ConLA{[π]∆ → pc : π ∈ X}. Hence extreme consistency does not depend
on M. Weak consistency does also not depend on the choice of M.

Theorem 15 Let A be s.i. and finitely presentable over Θ. Then the following assertions are
equivalent for all B ∈ V(Θ):
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(i) B is extremely consistent withA
(ii)A ∈ SH(B)
(iii)A ∈ HS(B)

Proof: Let ∆ be a diagram ofA over Θ.
(i) ⇒ (ii) : Let M exhaust X and let β : var(∆) → B be such that B, β |= ¬pc ∧ [µ]∆ > 0 for all
µ ∈ X. Define F := {b ∈ B : ∃µ ∈ M : β([µ]∆) ≤ b}. F is an open filter:

( f ≤) is obviously fulfilled.

( f∩) Let b1, b2 ∈ F and β([µi]∆) ≤ bi, i = 1, 2. Then there is a µ3 ⊃ µ1 ∪ µ2 for M exhausts X.
Hence β([µ3]∆) ≤ β([µ1 ∪ µ2]∆) ≤ β([µ1]∆ ∩ β([µ2]∆) ≤ b1 ∩ b2 and therefore b1 ∩ b2 ∈ F.

( f�) Let b ∈ F and π ∈ X. We have β([µ]∆) ≤ b for a certain µ ∈ M and there is a µ̂ ∈ M such that
µ; π ⊂ µ̂ and β([̂µ]∆) ≤ β([µ; π]∆) = [π]β([µ]∆) ≤ [π]b whence [π]b ∈ F.

Consider the induced mapping ε : B −→ B/F =: C and set γ := ε ◦ β : var(∆) −→ C. Then
γ([µ]∆) = 1 for all µ ∈ M. The morphism γ factors through η : FΘ(var(∆)) −→ A, for A �
FΘ(var(∆))/〈∆〉.

var(∆)

B C A

FΘ(var(∆))

- �
?

6

�
�

�
�

�
�

�	
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@

@
@
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@

@I

�
�

�
�

�
�
��

ε ζ

γ

γ

β

β η

The induced mapping ζ is injective because A is s.i. and has a minimal nontrivial congruence
relation which is generated by c. It is therefore sufficient to show that ζ(c) , 1 or equivalently
ζ(\c) , 0. But ζ(\c) = ζ◦η(¬pc) = γ(¬pc) = ε◦β(¬pc) > 0 because for every a ∈ F : β(¬pc)∩a ≥
β(¬pc) ∩ β([µ]∆) = β(¬pc ∧ [µ]∆) , 0 for some µ ∈ M with β([µ]∆) ≤ a. Hence ζ is injective and
A ∈ S(C) ⊆ SH(B).

(ii)⇒ (iii) : from universal algebra.

(iii) ⇒ (i) : Let A ∈ HS(B). Then there is a C such that ε : C −→ B is injective and ρ : C −→ A
is surjective:
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Here, F := FΘ(var(∆)) and κ is the canonical mapping. F is free and a fortiori projective and thus
κ can be lifted over ρ to γ : F −→ C. Then β = ε ◦γ. For every π ∈ X, κ(¬pc∧ [π]∆) = κ(¬pc) > 0
and since ε is injective, β(¬pc∧[π]∆) = ε◦γ(¬pc∧[π]∆) > 0 for every π ∈ X. HenceB is extremely
consistent withA. ♣

Lemma 16 Let A be s.i. and finitely presentable over Θ, B ∈ V(Θ). If B weakly consistent with
A then there is a S ∈ PU(B) which is extremely consistent withA.

Proof: Let M exhaust X and βµ : var(∆) −→ B be such that βµ(¬pc ∧ [µ]∆) > 0. Then define
S :=

∏
B/U, σ :=

∏
βµ/U, where U is an ultrafilter on M which contains all sets of the form

Mµ := {̂µ : µ̂ ⊃ µ}. Such an ultrafilter exists because Mµ∩Mµ̂ ⊇ Mµ , ∅ for some µ ⊇ µ∪ µ̂. Then
σ(¬pc ∧ [µ]∆) > 0 for every µ ∈ M, for {̂µ : βµ̂(¬pc ∧ [µ]∆) > 0} ⊇ {̂µ : µ̂ ⊃ µ} = Mµ ∈ U. Hence
S is extremely consistent withA. ♣

This lemma can be generalized as follows: If M satisfies ∀µ1, µ2∃µ3 : µ1 ∪ µ2 ⊂ µ3 and for every
µ ∈ M there is a Bµ ∈ B—B a class of algebras –, which is µ-consistent with A then there exists
a S ∈ PU(B) which is M-consistent with A. S will be explicitly constructed in the proof of the
splitting theorem.

Putting our results together we get the the following result which also makes use of Jónsson’s
lemma on congruence distributive varieties:

Theorem 17 Let A be s.i. and finitely presentable over Θ. Then the following assertions are
equivalent for every B ∈ V(Θ):
(i) B is weakly consistent withA
(ii)A ∈ SHPU(B)
(iii)A ∈ HSP(B).

Proof: (i) ⇒ (ii) There is a S ∈ PU(B) which is extremely consistent with A. Hence A ∈
SH(S) ⊆ HSPU(B).
(ii)⇒ (i) : If B is not weakly consistent withA then there is an M exhausting X and a µ ∈ M such
that B |= [µ]∆→ pc. It follows that S |= [µ]∆→ pc for any S ∈ PU(B). Hence S is not extremely
consistent withA and thusA < SH(S). Since this valid for all S ∈ PU(B),A < SHPU(B).
(ii)⇔ (iii) : Jónsson’s lemma. ♣
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D.4 The Splitting Theorem

Theorem 18 (Splitting Theorem) Let A be s.i. and finitely presentable over Θ. LA is prime in
EΘ iff there is a µ ∈ X such that for all B ∈ V(Θ)

(†) If B is µ-consistent withA then B is weakly consistent withA

Proof: (⇒) Let M = X. Assume that (†) is not satisfied for all µ ∈ M. For every µ ∈ M there
is a Bµ which is µ-consistent with A but not µ′-consistent for a µ′ ∈ M. Hence by the preceding
theorem A < HSP(Bµ) or LBµ + LA. But by the generalized Lemma 16 we know that there is
a S ∈ PU({Bµ : µ ∈ M}) which is extremely consistent with A. So A ∈ HS(S) and therefore
A ∈ HSP({Bµ : µ ∈ M}), i.e. LA ⊇

⋂
〈LBµ : µ ∈ M〉. Hence LA is not prime in EΘ.

(⇐) Let (†) be fulfilled by some M and µ ∈ M for all B ∈ V(Θ). Let LA ⊇
⋂
〈LBi : i ∈ I〉 i.e.

A ∈ HSP({Bi : i ∈ I}). For a suitable S ∈ PU({Bi : i ∈ I}), A ∈ HS(S). Hence S is extremely
consistent and a fortiori µ-consistent with A. Consequently, there exists an i ∈ I such that Bi is
µ-consistent with A. By assumption, Bi is then weakly consistent with A and so by Theorem 17
A ∈ HSP(Bi) and thus LA ⊇ LBi. Hence LA is prime in EΘ. ♣

Corollary 19 IfA and µ fulfill the conditions of the Splitting Theorem we have

EΘ/A = Θ([µ]∆→ pc).

Proof: B ∈ V(EΘ/A) iff LB * LA iffA < HSP(B) iff B is not weakly consistent withA iff B is
µ-inconsistent withA for some µ ∈ X iff [µ]∆→ pc ∈ LB. ♣

It can be shown that if Λ splits EΘ then EΘ/Λ = Θ(P) for some formula P and Λ = LA
where A ∈ HFΘ(var(P)); thus A is card(var(P))-generated. We conjecture that A is also finitely
presentable so that this assumption can effectively be dropped from the Splitting Theorem.

Conjecture 20 IfA is prime inV(Θ) thenA is finitely presentable over Θ.

In addition we would get a characterization of algebras whose logics are irreducible. For if A
is s.i. and finitely presentable over LA then LA is irreducible iff A is prime in HSP(A) iff A
satisfies (†) within HSP(A). Now if primeness implies finite presentability we get the

Conjecture 21 Λ is irreducible iff Λ = LA for a s.i. A which is finitely presentable over LA and
satisfies (†) of the Splitting Theorem for HSP(A).

An important specialization of Theorem 18 is

Corollary 22 If X has a maximal element µ, every finitely presentable s.i. algebra is a splitting
algebra. In particular every finite s.i. algebra is a splitting algebra.
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Proof: {µ} exhausts X. ♣

As a consequence we get the following theorem due to Rautenberg [10]:

Corollary 23 Let Θ be weakly transitive. Then every finite s.i. Θ-algebra splits EΘ. ♣

This result implies among other that if Θ is weakly transitive and has f.m.p. then no infinite s.i. Θ-
algebra can be finitely presentable. If the free algebra on k generators is infinite it is therefore not
s.i. Looking again at the counterexample for Theorem 9 we surprisingly get that the constructed
algebra is not finitely presentable although it is 2-generated.

With the help of Theorem 18 a theorem of Blok [2] can be generalized. Let us say that a finite
X-algebra is cycle–free iff A |= [ξm+1]0 for some m ∈ ω. It can be seen that A is cycle–free iff
the corresponding Kripke–structure contains no cycles. 3 If A 2 [ξm]0 then [ξm]0 is an opremum
ofA.

Corollary 24 (Blok [2]) LetA ∈ Vn be finite s.i. and cycle–free. ThenA is prime in every variety
containing it.

Proof: LetA |= [ξm]0. Then µ := ξ(m) satisfies (†) in Theorem 18. For if B, β |= [ξ(m)]∆∧ [ξm]0 >
0 then B, β |= [ξ(m+r)]∆ ∧ [ξm]0 > 0 because ` [ξm]0→ [ξm][ξr]∆ = [ξm+r]∆ for all r ≥ 0 whence
0 < [ξ(m)]∆ ∧ [ξm]0 ≤ [ξ(m)]∆ ∧ [ξm][ξr]∆ for all r. Since M := {ξ(r) : r ∈ ω} exhausts X (†) is
satisfied for all B. ♣

In general, the application of the Splitting Theorem is not straightforward. For example, the
converse of Corollary 24 is also true. This can be shown with the help of the ramification technique
(see Rautenberg [12]); but there seems to be no simple proof for this—let alone for the stronger
result by Blok [2] that 1 , Λ = K/N for some set N of algebras iff N is a set of finite, cycle-free
algebras.

E An Infinite Splitting Algebra

In this chapter I will conctruct a modal logic which has infinitely many nonfinite splitting algebras.
This logic is Θ := S 4.I3.2. Here, S 4.I3 is the logic of S 4-frames of width 3. Θ is complete (see
[Fine, 1974b]) but lacks the finite model property since it has a nonfinite splitting frame.

∆1 • • •
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•

- -
���*

���*HHHj

HHHj
∆2 •

•
•

•

•

•HHHj

������:

���*
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HHHj
-

���*

3Generally, we would define a π-cycle to be a sequence <ai : i ∈ n> such that ai Cπ ai+1(mod(n)) but ai , a j for i , j.
A cycle is then simply a ξ-cycle.
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Let Γ be the following frame
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and let α be the following valuation on Γ: α(ri) = {ui}, α(qi) = {si}, α(p) = {t}. Also let B :=
FΘ(X)/〈Q〉 where X = {p1, p2, p3, q, r1, r2} and

Q = p1 → ¬r1 ∧ ¬r2 ∧ ¬q ∧ ¬p2 ∧ ¬p3
∧ p2 → ¬r1 ∧ ¬r2 ∧ ¬q ∧ ¬p1 ∧ ¬p3
∧ p3 → ¬r1 ∧ ¬r2 ∧ ¬q ∧ ¬p1 ∧ ¬p2
∧ q→ ¬r1 ∧ ¬r2 ∧ ¬p1 ∧ ¬p2 ∧ ¬p3
∧ r1 → ¬r2 ∧ ¬q ∧ ¬p1 ∧ ¬p2 ∧ ¬p3
∧ r2 → ¬r1 ∧ ¬q ∧ ¬p1 ∧ ¬p2 ∧ ¬p3
∧ ¬r1 ∧ ¬r2 → �¬r1 ∧ r2
∧ p1 → ¬^r1 ∧ ¬^r2 ∧ ^q ∧ ¬^p2 ∧ ¬^p3
∧ p2 → ¬^r1 ∧ ¬^r2 ∧ ^q ∧ ¬^p1 ∧ ¬^p3
∧ p3 → ¬^r1 ∧ ¬^r2 ∧ ^q ∧ ¬^p1 ∧ ¬^p2
∧ q→ �q
∧ r1 → ^r2 ∧ ^q ∧ ^p1 ∧ ^p2 ∧ ^p3
∧ r2 → ^r1 ∧ ^q ∧ ^p1 ∧ ^p2 ∧ ^p3

LetA be the algebra of finite and cofinite subsets of Γ. I will now prove the following

Proposition 25 The canonical homomorphism h : B −→ A induced by h(p) = α(p) for p ∈ X is
an isomorphism.

Having proved this proposition, the rest will easily follow. Since Γ is generated by a single point,
A is s.i. and sinceA is finitely presentable we have thus shown with the help of Corollary 22 that
A is a splitting algebra of Θ.
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The way we assess the proof for the proposition is by showing that the dual map for h between
the frames for B and A is an isomorphism. Having thus found the underlying frame of B it is
routine to check that B is the algebra of finite and cofinite subsets of Γ. Before we start the proof
we need a couple of definitions and observations. Let us say that a subset N of a frame ∆ is a slice
iff it is a maximal set of incomparable points. Equivalently, since ∆ is reflexive and transitive, N
is a slice of h iff ∀u ∈ h∃m ∈ N : m C u or u C m. If card(N) = k we also call N a k-slice. If
N is a slice of h and T ⊆ N we say that u is a unifier for T iff ∀n ∈ N : u C n ⇔ n ∈ T and u
immediately precedes every t ∈ T but ¬∃n ∈ N : n C u. If card(T ) = k we call u a k-unifier. Now
let δ : X −→ 2D a valuation on ∆.

Lemma 26 If u1 and u2 are within the same cluster and h, δ, u1 |= p iff h, δ, u2 |= p for all propo-
sitional variables of X then h, δ, u1 |= P iff h, δ, u2 |= P for all P with variables in X. ♣

Lemma 27 If u1 is a 1-unifier for {u2} and h, δ, u1 |= p iff h, δ, u2 |= p for all propositional
variables of X then h, δ, u1 |= P iff h, δ, u2 |= P for all P with variables in X.

Proof: By induction on P. The nontrivial case is P = ^Q. Suppose, u1 |= ^Q. Then there is a
v B u1 such that v |= Q. If v = u1 then by induction hypothesis u2 |= Q whence u2 |= ^Q. If v , u1
then, since u1 immediately precedes u2, u2 C v and thus u2 |= ^Q. Conversely, if u2 |= ^Q then
u1 |= ^Q as well. ♣

Lemma 28 Let N be a slice and u1, u2 be unifiers for T1 and T2 with T1 , T2. Then u1 and u2 are
incomparable.

Proof: Suppose u1 C u2. Then either u1 and u2 are in the same cluster, in which case T1 , T2
cannot hold, or u1 does not immediately precede every t ∈ T1. ♣

Proof of the proposition: Let ∆ be the frame of B whose points are the ultrafilters of B with
U C T ⇔ ∀�a ∈ U : a ∈ T . Now take an ultrafilter U such that q ∈ U. Then �q ∈ U by Q
and ¬pi,¬r j,�¬pi,�¬r j ∈ U, i ≤ 3, j ≤ 2. Thus U C T iff T = U. Likewise, let p1 ∈ T . Then
�¬r1,�¬r2,�¬p2,�¬p3,^q ∈ T and so T C T ′ iff T = T ′ or q ∈ T ′ i.e. T ′ = U. Thus one can
prove that ∆ contains exactly one point of depth 1 and exactly 3 points of depth 2 which form a
3-slice. Finally, it can be shown that ri ∈ T implies T C T ′ for all T ′. Consequently, if S , S ′ are
two points of finite depth > 2, we have for all generators p ∈ X : p ∈ S ⇔ p ∈ S ′. (In fact,
∀p ∈ X : p < S ).) Lemma 26 guarantees that all clusters with more than one point are of infinite
depth.

Now we show by induction that for every n ∈ ω, n > 1, there are exactly 3 points of depth n
which are incomparable and that the points of depth n+1 form a slice of all 2-unifiers of the slice
of depth n. Looking at ∆ we see that ∆ is built the same way and so ∆ � Γ.

(A) To start the induction, we note that the points of depth 2 are a 3-slice since they satisfy ∆.

(B) Now assume that the points of depth n are a 3-slice. Call them x1, x2 and x3. Let y be of depth
n+1. Then y immediately precedes an xi. Furthermore, y must be a unifier because if it precedes a
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point of the slice it must immediately precede it. y cannot be a 3-unifier because ∆ omits ∆1, since
it is a Θ-frame. Also, y cannot be a 1-unifier because of Lemma 27. Thus y is a 2-unifier. What
is left to prove is that there are 3 2-unifier for {x1, x2, x3}. Clearly, there cannot be more. Let us
therefore see whether there might be less.

(i) If there is just one unifier y we can assume that it unifies {x1, x2}. Then {x3, y} is a 2-slice. For
assume y 6 u and x3 6 u. Then neither x1 C u nor x2 C u can hold. Hence uC xi for some i. If i = 3
we are done. If i , 3 then u must precede either x1 or x2. But then it must precede both because
there is no 1-unifier for {x j}. Hence u C y. Since {y, x3} is a 2-slice, and again by Lemma 27 we
see that there are no 1-unifier, there can only be a single 2-unifier z. But then ∆ does not omit ∆2
since the p-morhism which maps all points of depth < n onto a single point maps the subframe
generated by z onto ∆2.

(ii) Thus assume that there are two 2-unifier, y1 unifying {x2, x3} and, y2 unifying {x1, x3}. Again,
it can be shown that now we have a 2-slice {y1, y2}. Again there are no 1-unifier so there is a single
2-unifier z. If z is contained in a 2-point cluster, the subframe generated by z maps onto F1. But
if {z} is an 1-point cluster we can show that {z} is a 1-slice. Then the map which reduces all points
between the initial cluster of ∆ and z onto z reduces ∆ to F2.

But ∆ omits all those frames. Hence the points of depth n+ 1 are a 3-slice consisting of all the
2-unifiers of {x1, x2, x3}. ♣

Theorem 29 A is a nonfinite splitting algebra of Θ.

The same proof can be used not only for Γ but for frames of similar shape. For if Γ −→ ∆ is a
subframe and {u1} is a slice of ∆ such that there are only finitely many points x C u1 in ∆ then ∆
is finitely presentable and if ∆ is one generated it therefore underlies a splitting algebra. Thus we
have the

Theorem 30 Θ has infinitely many infinite splitting algebras.
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