Algebraic aspects of quantum indiscernibility

Décio Krause, and Hércules de Araujo Feitosa*
Department of Philosophy
Federal University of Santa Catarina
deciokrause@gmail.com

haf@fc.unesp.br

* Leave from the Department of Mathematics, State University of Sdo Paulo,
Bauru Campus

Abstract

We show that using quasi-set theory, or the theory of collections of in-
distinguishable objects, we can define an algebra that has most of the
standard properties of an orthocomplete orthomodular lattice, which is
the lattice of all closed subspaces of a Hilbert space. We call the mathe-
matical structure so obtained J-lattice. After discussing (in a preliminary
form) some aspects of such a structure, we indicate the next problem of
axiomatizing the corresponding logic, that is, a logic which has J-lattices
as its Lindembaum algebra, which we postpone to a future work. Thus we
conclude that the initial intuitions by Birkhoff and von Neumann that the
“logic of quantum mechanics” would be not classical logic (a Boolean al-
gebra), is consonant with the idea of considering indistinguishability right
from the start, that is, as a primitive concept. In the first sections, we
present the main motivations and a “classical” situation which mirrors
that one we focus on the last part of the paper. This paper is our first
analysis of the algebraic structure of indiscernibility.

1 Introduction

Indiscernibility is a typical concept of quantum physics, and some facts implied
by indiscernibility, as the properties of a Bose-Einstein condensate, have no
parallel in classical physics. Without considering that quanta are indiscernible,
no explanation of colors would be done, no vindication to the periodic table of
elements would result, and (among other things), Planck would not arrive to his
formula for the black body radiation. Some authors have sustained that quan-
tum indiscernibility results from the raise of quantum “statistics” (really, ways
of counting), while others think that they can explain quantum statistics with-
out presupposing indiscernibility, but at the expenses of rejecting equiprobabil-



ity.! The discussion is still alive, and we have much to do in the philosophical,
epistemological, logical, and on ontological aspects of quantum indiscernibility,
mainly if we agree (with Arthur Fine) that philosophy of science should be en-
gaged with on-going science (apud [13]). This poses us directly to the quantum
field theories, and perhaps more, to string theories and to quantum gravitation.
Acknowledging this naturalistic claim, we shall be here quite modest in dis-
cussing some algebraic aspects of a mathematical theory which was conceived
to deal with indistinguishable objects, termed quasi-set theory. Without revis-
ing all the details of such a theory (to which we refer to chapter 7 of [14]), we
shall keep the paper self-contained so that the reader can understand the basic
ideas, although sometimes in the intuitive sense, and only the really necessary
concepts and postulates are mentioned.

It should be recalled that indiscernibility enters in the standard quantum
formalism by means of symmetry postulates. The relevant functions for sys-
tems of many quanta ought to be either symmetrical or anti-symmetrical, and
this assumption makes the expectation values to assume the same values be-
fore and after a permutation of indiscernible elements. Thus, physicists (and
philosophers accept that) say that “the individuality was lost”, as if there would
be something to lose. In this work, we enlarge our research program of providing
a mathematical basis for quantum theory that takes indiscernibility “right from
the start”, as claimed by Heinz Post [24], see [14], with the algebraic discussion
of indiscernibility. All the considerations are performed within quasi-set theory,
which we revise in its main ideas below.

2 Quasi-sets

Quasi-set theory (denoted £) was conceived to handle collections of indistin-
guishable objects, and was motivated by some considerations taken from quan-
tum physics, mainly in what respects Schrodinger’s idea that the concept of
identity cannot be applied to elementary particles [28, pp. 17-18]. Of course
the theory can be developed independently of quantum mechanics, but here we
shall have this motivation always in mind. Our way of dealing with indistin-
guishability is to assume that expressions like x = y are not well formed in all
situations involving x and y. We express that by saying that the concept of iden-
tity does not apply to the entities denoted by x and y in these situations. Here,
quantum objects do not mean necessarily particles, but ought to be thought as
representing the basic objects of quantum theories, which although differ form
one theory to another ([12, cap.6]), have some common characteristics, as those

IThis is in particular van Fraassen’s view; for instance, he supposes two particles 1 and 2
in two possible states A and B, and the possible cases are (i) 1 and 2 in A, (ii) 1 and 2 in
B, both cases with probability 1/3 each, (iii) 1 in A and 2 in B, and (iv) 1 in B and 2 in A,
both with probability 1/6. According to this author, this way we can arrive at Bose-Einstein
statistics [30]. But the problem is that situations (iii) and (iv) need to be distinguished from
one another, and if the involved quanta are indiscernible, this can be done only either by the
assumption of some kind of hidden variable or by some form of substratum, and we know that
both possibilities conduce to well known problems.



related to indiscernibility (with the exception of some hidden variable theories,
like Bohm’s, which will be not discussed here).? Due to the lack of sense in ap-
plying the concept of identity to certain elements, informally, a quasi-set (gset),
that is, a collection of such objects, may be such that its elements cannot be
identified by names, counted, ordered, although there is a sense in saying that
these collections have a cardinal (not defined by means of ordinals, as usual —
but see below). But we aim at to keep standard mathematics intact,® so the
theory is developed in a way that ZFU (and hence ZF, perhaps with the axiom
of choice, ZFC) is a subtheory of £ (in other words, there is a “copy” of ZFU
in ). In other words, the theory is constructed so that it extends standard
Zermelo-Fraenkel with Urelemente (ZFU); thus standard sets (of ZFU) can be
viewed as particular gsets (that is, there are gsets that have all the properties
of the sets of ZFU, and we call then Q-sets; the objects in Q corresponding
to the Urelemente of ZFU are termed M-atoms). But quasi-set theory encom-
passes another kind of Urelemente, the m-atoms, to which the standard theory
of identity does not apply (that is, expressions like z = y are not well formed if
m-atoms are involved).

When £ is used in connection with quantum physics, these m-atoms are
thought of as representing quantum objects (henceforth, g-objects), and not
necessarily they are ‘particles’, as mentioned above; waves or perhaps even
strings (and whatever ‘objects’ sharing the property of indistinguishability of
pointlike elementary particles) can be also be values of the variables of Q. The
lack of the concept of identity for the m-atoms make then non-individuals in
a sense, and it is mainly (but not only) to deal with collections of m-atoms
that the theory was conceived. So, £ is a theory of generalized collections of
objects, involving non-individuals. For details about 9 and about its historical
motivations, see [5, p. 119], [9], [14, Chap. 7], [16], [19].

In 9, the so called ‘pure’ gsets have only g-objects as elements (although
these elements may be not always indistinguishable from one another), and to
them it is assumed that the usual notion of identity cannot be applied (that
is, x = y, so as its negation, x # y, are not a well formed formulas if x and y
stand for g-objects). Notwithstanding, there is a primitive relation = of indis-
tinguishability having the properties of an equivalence relation, and a concept of
extensional identity, not holding among m-atoms, is defined and has the prop-
erties of standard identity of classical set theories. Since the elements of a gset
may have properties (and satisfy certain formulas), they can be regarded as in-
distinguishable without turning to be identical (that is, being the same object),
that is, * = y does not entail x = y. Since the relation of equality (and the
concept of identity) does not apply to m-atoms, they can also be thought of as

2Since such theories present difficulties due to results like Kochen-Specker theorem and
Bell’s inequalities, so as due to the fact that apparently they cannot be extended to quantum
field theories, we shall leave them outside our discussion.

380 respecting the quite strange rule what Birkhoff and von Neumann call “Henkel’s prin-
ciple of the ‘perseverance of formal laws’ 7, explained by Rédei as “a methodological principle
that is supposed to regulate mathematical generalizations by insisting on preserving certain
laws in the generalization” [25]; of course we are ‘preserving’ all standard mathematics built
in ZFC.



entities devoid of individuality. We remark further that if the ‘property’ x = =
(to be identical to itself, or self-identity, which can be defined for an object
a as I,(x) =4 * = a) is included as one of the properties of the considered
objects, then the so called Principle of the Identity of Indiscernibles (PII) in the
form VF(F(x) « F(y)) — « = y is a theorem of classical second order logic,
and hence there cannot be indiscernible but not identical entities (in particular,
non-individuals). Thus, if self-identity is linked to the concept of non-individual,
and if quantum objects are to be considered as such, these entities fail to be
self-identical, and a logical framework to accommodate them is in order (see
[14] for further argumentation).

We have already discussed at length in the references given above (so as
in other works) the motivations to build a quasi-set theory, and we shall not
return to these points here,* but before to continue we would like to make
some few remarks on a common misunderstanding about PII and quantum
physics. People generally think that spatio-temporal location is a sufficient
condition for individuality. Thus, an electron in the South Pole and another
one in the North Pole are discernible, hence distinct individuals, so that we can
call “Peter” one of them and “Paul” the another one. Leibniz himself prevented
us about this claim (yet not directly about quantum objects of course), by saying
that “it is not possible for two things to differ from one another in respect to
place and time alone, but that is always necessary that there shall be some
other internal difference” [20]. Leaving aside a possible interpretation for the
word ‘internal’;, we recall that even in quantum physics, where fermions obey
the Pauli Exclusion Principle, which says that two fermions (yes, they ‘count’
as more than one) cannot have all their quantum numbers (or ‘properties’)
in common, two electrons (which are fermions), one in the South Pole and
another one in the North Pole, are not individuals in the standard sense.® In
fact, we can say that the electron in the South Pole is described by the wave
function g, while the another one is described by ¥y (words like ‘another’ in
the preceding phrase are just ways of speech). But the joint system is (in a
simplified form) given by sy = ¥s — 1 n (the function must be anti-symmetric
in the case of fermions, that is, ¥sy = —1ng), a superposition of the two first
wave functions, and this last function cannot be factorized. Furthermore, in
the quantum formalism, the important thing is the square of the wave function,
which gives the joint probability density; in the present case, we have |[sn]||? =
|s||?+||v¥n||?—2Rew st y. This last term, called ‘the interference term’ cannot
be dispensed with, and says that nothing, not even in mente Dei, can tell us
which is the particular electron in the South Pole (and the same happens for
the North Pole), that is, we never will know who is Peter and who is Paul,
and in the limits of quantum mechanics, this is not a matter of epistemological
ignorance, but it is rather an ontological question. As far as quantum physics is
concerned in its main interpretations, they seem to be really and truly objects

“But see [6], [7], [8], [14], [17], [19]

5Without aiming at to extend the discussion on this topic here (but see [14], by an indi-
vidual we understand an object that obeys the classical theory of identity of classical logic
(extensional set theory included).



without identity.

In the next sections, we shall discuss from an algebraic point of view some
issues of non-individuality. It should be interesting to recall that the ‘gset’-
operations of intersection (M), union (U), difference (—) work similarly in 9 as
the standard ones in usual set theories.

3 Algebraic aspects: the lattice of indiscernibil-
ity

Quantum logic was born with Birkhoff and von Neumann’s paper from 1936 [1].
Today it consists in a wide field of knowledge, having widespread to domains
never thought by the two celebrated forerunners. For a look on the state of the
art, see [10]. The main idea is that the typical algebraic structures arising from
the mathematical formalism of quantum mechanics is not a Boolean algebra,
but an orthocomplete (c-orthocomplete in the general case [10, p. 39]) ortho-
modular lattice. We shall see below that in quasi-set theory, by considering
indiscernibility right from the start, a similar structure ‘naturally’ arises. Let
us provide the details before ending with some comments and conclusions.

We shall be working in the theory £, and use the equality symbol = to
stand for the extensional equality of Q. Intuitively speaking, x = y holds when
x and y are both gsets and have the same elements (in the sense that an object
belongs to x iff it belongs to y) or they are both M-objects and belong to the
same gsets. It can be proven that = has all properties of standard identity
of first-order ZFC. Qsets which may have m-atoms as elements are written (in
the metalanguage) with square brackets “[” and “|”, and Q-sets (gqsets whose
transitive closure have no m-atoms) with the usual curly braces “{” and “}”.

Definition 3.1 (Closure) Let U be a non empty gset and A be a subgset of
U. The cloud of A, here called the closure of A, is de gset

A=4slycU:Ix(xc ANy =2)].

Intuitively speaking, A is the gset of the elements of U (the universe) which
are indistinguishable from the elements of A. If A is a Q-set, that is, a copy of a
set of ZF'U, then of course the only indistinguishable of a certain x is x itself, thus
A = A. According to this definition, we have that § = . From now on, we shall
suppose that U is closed, that is, it contains all the indistinguishable objects of
its elements. Some interpretations linked to physical situations are possible. For
instance, A can be thought as the region where the wave function A of a certain
physical system is different from zero. Another possible interpretation is to
suppose that the clouds describe the systems plus the cloud of virtual particles
that accompany those of the considered system. But in this paper we shall be
not considering these motivations, but just to explore its algebraic aspects.

It is immediate to prove the following theorem:



Theorem 3.1 The application® that associates to every subgset of U its closure
is a Tarski’s operator, that is, for all A and B in P(U), we have: (i) A C A;

(i) AC B=A CB; (iii) AC A.

Proof: (i) Let t € A. Then, by the reflexivity of =, we have ¢t =, hence t € A.
(ii) Let A C B, and let t € A. Then there exists € A such that ¢t = x. Since

x € B, then t € B. (iii) Let t € A. Then there exists € A such that t = x.
But then there exists y € A such that z = y. By the transitivity of =, we have
t=y, hencet € A. I

Corolary 3.1 It follows that A = j, that is, the closure of a closed gset is
closed.

Proof: Consequence of (i) and (iii) of the preceding theorem. I

Definition 3.2 (Closed qgset) A gset A is closed if A= A.

Theorem 3.2 From the above results and definitions, we have that:

Proof:

(i) AC AUB,s0 A C AU B. In the same way, BC AUBand B C AUB.
Thus AUB C AU B. Conversely, suppose t € AU B, then thereis x € AUB
such that ¢ = x. So there is t = x such that z € A or x € B. In this way
t € Aort e B and therefore t € AU B.

(i) ANB C A, hence ANB C A. Also ANB C B, then AN B C B. Thus
AN B C ANB. That we don’t have equality may be seem with the following
argument. Let A and B such that A € B but AN B # (. Furthermore, let
a € Aand b€ B. If c € AN B is such that ¢ = a and ¢ = b, it does not
follow that ¢ € AN B. This will happen iff a,b € AN B.

6In 9, the concept of function must be generalized, for if there are m-atoms involved, a
mapping in general does not distinguish between arguments and values. Thus we use the
notion of g-function, which leads indistinguishable objects into indistinguishable objects, and
which reduces to standard functions when there are no m-atoms involved. Thus, from the
formal point of view, the defined mapping may associate to A whatever gset from a collection
of indistinguishable gsets. But this does not matter. As in quantum physics, it is not the
extension of the collections which are important; informally saying, any elementary particle
of a certain kind serves for all purposes involving it. This is the principle of the invariance of
permutations.



(iii) Ttem (i) entails that AU B C AU B C AU B. Furthermore, since A C A

and BC B, then AUB C AUB.

(iv) Firstly, fromiA C A, we have ANB C AN B. Secondbl, ANBCA

entails ANB C A = A, while AN B C B entails ANB C B = B. Hence
AN B C AN B. Both results imply the enunciated. 1

The next definition introduces the lattice operations on subgsets of a gset
U, the universe.

Definition 3.3 (J-lattice operations) Let A and B be subgsets of U. Then:
(M) AN B =4 AN B;
(U) AU B =4 AU B;
(0) 0 =aer 0;
(1) 1 =4es U.

We note that even if AN B =, may be that AN B # (.

Theorem 3.3 For any A and B in P(U):

(i) AN B C (AN B);

(ii) ANMBC AUB;

(iii) If A and B are closed, AU B and AN B are closed, and AT1B = ANB.
Proof:

(i) Immediate, since AN B C AN B (Theorem 3.2 (ii));

(ii) AN B =ANB C (Theorem 3.2 (ii)) CANBC AUB = AU B;

(iii) If A= A and B = B, then AUB = AUB = AU B (Theorem 3.2 (iii)).

Furthermore, the same hypothesis entails that AN B = AN B = (Theorem
3.2 (iv)) = ANB = AN B. Finally, since ANB = (ANB)=ANB=ANB
(Theorem 3.2 (iv) and the hypothesis). I

Theorem 3.4 Let C be the gset of all closed subgsets of U (that is, such that
A= A). Then the structure € = (C,M,11,0,1) is a lattice with 0 and 1. But,
if we consider also the sub-qsets of U that are not closed, then some of the
properties of such a structure do not hold, as we emphasize in the proof below.

Proof: Firstly, it is immediate to see that if U # (), then P(U) # 0. Further-
more, we can prove that AN(BNC) = (ANB)NC and AU(BUC) = (AUB)UC
for closed gsets.



(a) Idempotency (restricted to closed gsets): AMA=ANA=A(=Aif A
is closed). Also, AUA=AUA= A (= Aif closed). If A is not closed, then
ANA=Aand AUA=4;

(b) Commutativity (unrestricted): AMB =ANB=BNA=BMA. In the
same way, AUB=AUB=BUA=BL A,

(¢) Associativity (unrestricted): (we shall be using items (iii) and (iv) of
Theorem 3.2 without mentioning):

(BUC)=AU(BUC) = ju(ﬁu?) (Theorem
UB)UC = (Theorem 3.2 (i)) (AUB)UC =
(AUB)UC’ (AUB)UC = (AU B)UC;

(d) Absorption (restricted):

(i) AN(AUB)=AN(AUB)=AN(AUB). But AC A,s0 AC AUB,
then AN (AUB)=A (= A for closed gsets);

(i) AU(ANB) =AU(ANB) =AU(ANB) = AU(ANB) = A, for
ANBC AC A (= A for closed gsets);

(e) The properties of 0 and 1:

HOMA=0NA=0=0=

() OUA=0UA= (ZJUZ:Z( A for closed gsets);

(iii) A1 =ANU = A(= A for closed gsets);

(iv) AUl =AUU =U = U =1 (recall our initial hypothesis that U is
closed). 1

Theorem 3.5 The lattice € of the closed gsets of U is distributive.

Proof: We shall emphasize those passages which make use of the hypothesis
that the gsets are closed.

(i) AU(BNC)=AU(BNC)=AU(BNC) = (th.3.2(1))) AU(BNC) = (A
is closed) = AU (BN C) = (th. 3.2(iii)) AU(BNC)=(AUB)N(AUC) =
(th. 3.2(ii) and being AUB and AUC both closed, for otherwise the equality
does not hold) = (AU B)N(AUC) = (th. 3.2(i)) (AUB)N(AUC) = (closed)
(AUB)N(AUC) = (th. 3.2(iv)) (AUB)N(AUC) = (AUB)N(AUCQC) =
(AUB)M(AUC);

(ii) (ANB)U(ANC)=(ANB)U(ANC) = (ANB)U(ANC) = (th. 3.2(1))
(ANB)U(ANC) = (for AnNB and ANC are closed) = (ANB)U(ANC)
= AN (BUC) = (for closed gsets) AN (BUC) = (th. 3.2(1)) AN (BUC)
= (since A is closed) = AN(BUC)=AN(BUC). 1




This result is not surprising, for we are dealing with set theoretical opera-
tions which, defined on the closed gsets of U, act as the usual set theoretical
properties on standard sets. But if we consider all gsets in U and not only the
closed ones, the distributive laws do not hold, as we can see from the above
proof, which makes essential use of the fact that the involved gsets are closed
(without such an hypothesis, the proof does not follow). Since the correspond-
ing structure J = (P(U),M,U,0,1) has similarities with a lattice with 0 and
1, we propose to call it the lattice of indiscernibility, or just J-lattice for short.
Other distinctive characteristics of this “quasi-lattice” are obtained when we
introduce other operations similar to those of order and involution, or general-
ized complement [10, p. 11]. At Section 4, we sum up the main properties of an
J-lattice.

Definition 3.4 (J-order) A < B =4 AUB = B.

Theorem 3.6 The order relation obeys the following properties:
i)A<Aand A< A;
ii) A< Band B< A= A=DB (and A = B if they are both closed);
i) A<Band B<C=A<C
iv) ANMB< A, and AN B < B;

(

(

(

(
(v)yC<AandC<B=C<ANB
(vij A< AUB, B<AUB;

(vii) A< Cand B<C= AUB<C(;

(viii) 0 < A, and A <1 (recall that 1 = U is closed);
(

ix) A<B=ANB=A.

Proof.
(i) AUA=AUA=4,s0 A< A;and AUA=AUA=AUA =14, so
A<A;
(i) A< B=AUB =B, while B< A= BUA=A, since AUB=BUA,
then A = B (A = B for closed gsets);
(iii) If AUB = Band BUC = C, then AUC = AU(BUC) = (AUB)UC =
BUC=C;
(iv) ANB < Aiff (AN B)UA = A. But, by Theorem 3.2 (i), (AN B)UA =
(ANB)UA = A. . Equivalently, A1 B < B iff YU B = B. But, by

JUA = (AnB
Theorem 3.2 (i), (ANB)UB = (ANB)UB = B = B;



(v) C<ANBiff CU(ANB) = (

(A
the hypothesis tells us that C U A =
C C B, that is, C C (AN B). So, C'U

MB) = (Theorem 3.2 (iv)) An B. But
Aand CUB = B, hence C C A and
(AN B):AﬂB thatls C < ANB;

(vi) A AUBiff AU(AUB) = AUB = (AUB)
32 (). But AU(AUB)=AU(AUB) = AU (AU
AU (AU B) = AU B), using the same theorem.;

AU B by Theorem
)=AU(AUB) =

Do \

(vii) The hypothesis says that ALIC' = C and BUC = C, that is, AUC = C,
hence A C C. In the same vein, B C C. But these results entail that

AUB C C, hence (AUB)CC then (AUB)UC = C;

(viii) 0 UA=0UA=A, and AULl = AUU = U = 1 (recall that U is
closed);

< B, then AU B = B. But this entails that A C B. Thus
AN B =A (Theorem 3.2 (ii)), that is, AN B = A. |

Alternatively, we could define A <; B iff AN B = A. The theorem above
follows, with the exception of item (ix), which should be substituted by ALIB =
B. Really, assuming this definition, we have AU B = AUB = AU B = B, for
the hypothesis entails that AN B = A, that is, A= AN B C AN B by Theorem
3.2 (ii). So A C B, then AU B = B, that is, AU B = B. Item (ix) of the
theorem and this result show that A< Biff A<{ B

We have proved that < is both reflexive and transitive ((i) and (iii) above)
but only “partially” anti-symmetric, that is, A < B and B < A entail A =
Thus, (P(U),<) is a kind of “weak” poset. Since it contains 0 and 1 and
since any two elements of U have a supremum (namely, AU B) and an infimum
(namely, AN B). Jis a “weak lattice”, but of course it is a lattice stricto sensu
if we consider only closed gsets.

The complement of a gset A relative to the universe U is the sub-gset of U,
termed AL, which has no element indistinguishable from any element of A.

Definition 3.5 (J-involution, or Generalized J-complement)
At =4 U - A.
Theorem 3.7 Let A,B € P(U). Then:
(i) 0+ =
(i) U+ = 0;
(iii) U — AL = 4;

(iv) AL = AL =4,

)

(v) ALT =4 (= A for closed gsets);

10



(vi) A< B= Bt < At
Proof:

QO =U-0=U~-0=U;

(i) Ut =U~-U=U-U=0 (U is closed);

(iii) U — A+ = U — (U — A) = A for they are all closed;

(V)AL =U-A=U-4=AL= at Informally speaking, in U — A there
are no elements indiscernible from the elementb of A (according to Definition
3). Thus, it is closed, and coincides with A -U-A

(v) ALt —U-AT=—yU-4t=14 (= A for closed gsets);

(vi) A< B= AUB =B, hence AUB = B and A C B. But this implies
that U — B C U — A, that is, B- C A+. So B+ U A+ = AL, then, by
Theorem 3.2 (i), BXUAL = Al hence B+ U AL = AL that is, BL < Al
|

Properties (v) and (vi) of the preceding theorem show that * is an involution
for closed gsets. For gsets in general, we shall call it J-involution, in the spirit
of the above discussion.

Theorem 3.8 If A, B € P(U), then:
(i) AU A+ =1;
ii) A ALt =0;
iii) AL (BN B*Y) = A (= A for closed gsets);

(
(
(iv) AN(BUB*)=A (= A for closed gsets);
(v) (De Morgan) (AU B)*+ = At Bt;

(

vi) ("Partial” De Morgan) (A B)* C At U B+ (equality holds for closed
gsets).

Proof:
() AUAT =AUAL =AUA+=A-U-A)=U=1,

(ii)AﬂAi:AH(U—Z):Am(U—Z):Zm(U—A):(Z):O (for

v
(

is closed);

4)
iii) AU(BMB+)=A4AU0=A4AUp=A (= A for closed gsets);

(iv) AN (BUBY) = AN(BUBL) = AN(BUB") = An(BUB") =
AN1=A (= A for closed gsets);

11



() (AUB): = (AUB)! = U~ (AUB) = (th. 32(;i) = U~ (AU B) =
(th. 3.2()) = U — (AUB) = ( AN (U B) = (th. 3.2(i) and the fact
that the involved gsets are closed) = (U — A)N (U — B) = A+ N B+;

(vi) (AN B)*+ —(ANB)=U-(ANB)=U—- (AN B) C (th. 3.2(ii);
equality holds for closed gsets) C U (ANB) = (U—A) (U-B) = AtuB*+ =
(th. 3.7(iv)) = ALUBL = At U Bt 1

The lattice J is J-orthomodular, that is, if A < B, we have that B =
AU (AU BH)L.

Theorem 3.9 (J-orthomodularity) For all A,B € P(U): A< B = AU
(AuBH)t =B.

Proof: AU(AUBH)t =AU(BNAY)=Au(BnALt)=Au(BnAL)=AuU
(BN AL) = AU(B N AL) = (th. 3.2 (iii)) U(BﬂAJ-) (AUB)N(AUAL) =
(AUB)N1=AUB = (th. 3.2 (i)) AUB = AU B = (by the hypothesis) = B.
|

A
B

Definition 3.6 (Orthogonality) Let A, B C U. We say that A is orthogonal
to B, and write A 1L B, as follows: A 1 B =4 A < B'. Furthermore,

a collection S of elements of P(U) is called pairwise orthogonal iff for any
A, B € S such that A # B, it results that A 1. B.

Theorem 3.10 A L Biff ANB=10.

Proof: 1f A 1 B, then A < B+, that is, AN B+ = BL. Thus, AUBL = B, so
A C B1, hence A C BL=B* (by Theorem 2.7 (iv)), so ANB = (). Conversely,
if ANB =0, then A C B+, hence AU B+ = B+ = Bt by Theorem 3.7 (iv),
that is, A L B. 1

Intuitively speaking, AN B = @ (by the way, this could be an alternative
definition) says that A has no element indistinguishable from elements of B.

In quantum logic, the operations < and * are usually understood as an im-
plication relation and a negation relation respectively. Thus, we may introduce
the concept of logical incompatibility just using the idea of orthogonality ([10,
p. 12]): A is incompatible with B iff A implies the negation of B, that is iff they
are orthogonal. The negation of the relation L is called accessibility (ibid.),
written A Y B.

All of this show that our structure J resembles a non-distributive orthocom-
plete orthonormal lattice, and it is a Boolean lattice if we consider only the
closed gsets. Since every modular ortholattice is orthomodular [10, p. 15], it is
an open question whether our lattice has some similarity with modular lattices,
that is, A < B entails AU (CM B) = (AUC) N B (we still need to check this
and other results).
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4 Summing up
We resume here the properties of the quasi-lattice 3 = (P(U),M, U, +,0,1):
J-idempotency) ANMA=A, AUA=A
Commutativity) AMA=BMNA AUB=BUA
Associativity) AN (BMNC)=(AnNB)NC, AU(BUC)=(AuB)ucC
-absorption) AN (AUB)=A4, AU(ANB)=A4

-minimum) 0MA=0,0UA=A

J-maximum) AN1=A4, AUl=1

J-involution - 2) A < B = B+ < A+
Complementation) AT A+ =0, ALUAL =
J-absorption -1) AL (BN B+)=A

-absorption-2) A (BUB*) =4

(
(
(
(3
(3
(
(J-involution - 1) A" =4
(3
(
(
(3
(3-De Morgan) (A U B)L = At N B+, (AT B)L cAtuBt
(

J-orthomodularity) AU (AU BY)t = B.

As we see, it is a rather unusual mathematical structure which resembles
the non-distributive ortholattice of quantum mechanics. What the specific J-
properties show is that sometimes we need to consider the closure of a certain
gset for getting the desired result. If we interpret the gsets of elements of U as
extensions of certain predicates, which might stand for physical properties, the
necessity of considering the closure of the gsets show that some fuzzy character-
istic of these properties are been shown. In fact, take for instance a gqset A as
the extension of a certain property P, that is, A should stand for the collection
of objects having the property P.” Then, for instance, if we transform A twice
by the operation + (J-involution - 1), we do not obtain A anymore, but the gset
of the indiscernible of its elements. It seems that something is changed when
we operate with the collections of objects of the physical systems: we really
transform them, as we really do with quantum systems. But we remark that
the physical interpretation of such a structure and its consequences is still being
investigated. For the moment, let us keep with its mathematical counterpart
only.

"By the way, this is something that is lacking in the usual discussion on quantum theories,
that is, a right “semantics”, which would enable us to talk of the extension of the relevant
predicates.
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5 The corresponding logic

In this section, we shall be dealing with the first ideas for an alternative axiom-
atization of a logic that has as its algebraic counterpart the lattice J, based on
the above assumptions and definitions. We remark once more that this is only a
preliminary sketch, and maybe some modifications would need to be done, but
let us continue even so. As before, we shall be working within the theory 9.
The concepts introduced below, which mirror the standard ones, can be devel-
oped in the “standard part” of £, so that we can use the usual mathematical
terminology. Here, as before, the equality symbol “=" stands for the extensional
equality of 9.

Let us take our algebra J = (P(U),M,,+,0,1). Now we shall introduce
a generalized (or abstract) logic £ = (F,7,~ A,Y,—») in the sense of [4], and
we shall continue to use use — A, V, =, V and 3 as metalinguistic symbols
for implication, conjunction, disjunction, negation, the universal quantifier, and
the existential quantifier respectively. The elements of the Q-set F' will be
called formulas, and denoted by small Greek letters, while the elements of 7°
(T C P(F)) are the theories of L, and denoted by uppercase Greek letters
(indices can be used in both cases).

To begin with, let us see how we link such a logic with the quasi-lattice J.
Suppose that there is a valuation v : F' +— P(U) such that:

(i) For any a € F', v(a) € P(U);

(ii) A and Y are binary operations on F', and we denote the corresponding
images of the pair (a, 3) respectively by a A 5 and « Y 3. These operations
obey the following rules:

(a) v(a A B) = v(a) Mov(B)
(b) v(a Y B) = v(a) Uv(B);

(iii) ~ is a mapping from F into F', and we define v(~ a) = (v(a))*, for any
a € F. This means that if v(a) = A, then v(~ o) = U — A according to the
above definitions;

(iv) FeT;

(v) If {T; }ser is a collection of elements of 7, then T'; € 7.

It is clear that this definition is an algebraic characterization of our logic £
by means of the lattice J. Some immediate consequences of this definition are:
v(iak ~a) =0, v(aY ~a) =1, v(~~ a) = v(a), etc.

It is well known that in standard quantum logics there is an “implication-
problem”, to use Dalla Chiara et al.’s words [10, p.164]. That is, all conditional
connectives “that can be reasonably introduced” in quantum logics are “anoma-
lous” (ibid.), and this was taken by some authors as a motive to criticize quan-
tum logics as not being “real logics”. As Dalla Chiara et al. say, there are some
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conditions that a conditional would satisfy to be classified as an implication.®
These conditions are:

Conditions for an Implication
(i) identity, that is, @ > a, being = the considered conditional;

(ii) modus ponens, that is, is a is true and o — 3 is true, then 3 is true (op.
cit., p. 164);

(iii) In an algebraic semantics, a sufficient condition is: for any structure

A= (Av), A= a > 3iff v(a) < v(p).

We say that a formula « is true in the structure J, and write J E « iff
v(a) = 1, for any valuation v. In this case, J is a model of a. We write I' = «
to mean that every model of (the formulas of) T' is model of . Finally, « is
valid iff it is true in every structure which is an J-lattice. In this case, we write
= «. It is quite obvious that our aim is to prove a completeness theorem for
our logic relative to the given semantic, but to do so we need to introduce the
concept of deduction from a set of premises. To begin the issue we shall finish
only in a forthcoming paper, let us define implication.

Definition 5.1 (J-conditional) o — 3 =gef 8 Y (~ ak ~ ()

This conditional is quite similar to that one called “Dishlkant implication”
n [22]. Using the above definitions and Theorem 3.2(i), it is immediate to see

that v(a — 8) = v(8) U (v(a)+ Nwu(B)L). Thus,

v(a = a) =v(a) U (v(a)t Nu(a)+) =v(a) Uv(a)t =1 =1,

for 1 = U is closed. So, = @ — a. Furthermore, if v(a) = 1 and v(a — () = 1,
then v(3) U (v(a)+ No(B)L) = 1 and, since v(a) = 1, we get that v(8) = 1.
Thus, our conditional obeys conditions (i) and (ii) of the Conditions for an
Tmplication. In addition, we can see that condition (iii) is also fulfilled. In fact,
by the hypothesis, we have Ea — 3, s0 v(B8Y (~ ak ~ (3)) = 1. Call v(a) = A
and v(8) = B. Then BU(AL N B+) = U, that is, BU(AL N B+) = U. For this
equality to hold, we need that (AL N BL) = B = BL. Then AL N Bt = B*,
so B+ C At that is (for Q-sets), A C B. By Theorem 3.7 (vii), A < B, that
is, v(a) < v(P).

Let us make a further remark on this definition. We say that A € P(U) is
definable by a formula o € F if v(a) = A. Let 3 be such that v(3) = A. Is there
such a 3?7 The answer is in the affirmative. Since A C A, then v(a) < v(f),

8Really, several “quantum implications” can be defined, as shown in [21], [22], [26], but
we shall not continue with this discussion here. One of the first works (to our knowledge)
that proposed an axiomatization of the lattice of quantum mechanics is [15], in which other
conditionals are defined. We had no access to this paper, but know it from indirect sources,
namely, [11] and [27].
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hence by condition (iii) above, | o« — (. So, § is any formula implied by
a. This affirmative makes sense, for v(a — ) = 1 and v(3) = A say that
AU(ALNAD) = U, thatis, AU(AL N ALD) = AU(AL N AD) = AUAd =U.
This fact will be important for the definition of the connectives of the logic L.
Finally, let us say that o «— 8 =gef (0 = 8) A (8 — «).
Next we introduce the notion of syntactical consequence from a set of premises,

written I' F «, as follows, where v(I') = J[v(a) : a € T (the terminology is
from £ — see again Section 2, if necessary).

Definition 5.2 (Syntactical Consequence) I' F « iff any theory containing
T (really, the formulas of T') contains a.

Let - o abbreviates () F «, while o - 3 abbreviates {a} F 3 (recall that they
are -sets, so the standard notation can be used), and I' I/ v says that it is not
the case that I' - «. It is immediate to prove the following theorem:

Theorem 5.1 In L, we have

i) @ € T entails I' - «. In particular, o F «a;
i) T'Faentails TUA F a;

(
(
(iii) If '+ « and for every 8 € T', we have that A F 3, then A b «;

(iv) If {T'; }ies is a family of subgsets of F' such that Va(a € T « T'; b «),
then Va(a € ¢, i« Ve Ti F ).

Proof: Immediate, for the definition of consequence is standard (see [4], [23]). I

We shall not continue to develop the syntactical aspects of this logic (in
algebraic terms, but see [4]), but just try to link it with the semantic aspects
sketched above. The least theory containig « is denoted T, and it coincides
with the intersection of all theories containing « (op. cit.). Thus, I' b « iff
v(a) Cv(Ty). In particular, if T is a theory, that is, Cn(I') =gef [0 : T F o] =T,
then v(a) C v(I"), and in particular v(«) C v(I'). Finally, let us recall that since
no deduction theorem holds in quantum logics [21], the same seems to happen
here due to the nature of our implication (but this is still a open problem).

The last point of this paper, which conduces us to another work, is the
question: how to characterize the logic £ axiomatically? We shall follow the
approach of generalized logics in the sense of [4], but not here.
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