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Abstract

In this paper we consider the phenomenon of superpositions in quantum
mechanics and suggest a way to deal with the idea in a logical setting from
a syntactical point of view, that is, as subsumed in the language of the for-
malism, and not semantically. We restrict the discussion to the propositional
level only. Then, after presenting the motivations and a possible world se-
mantics, the formalism is outlined and we also consider within this schema
the claim that superpositions may involve contradictions, as in the case of the
Schrodinger’s cat, which (it is usually said) is both alive and dead. We argue
that this claim is a misreading of the quantum case. Finally, we sketch a new
form of quantum logic that involves three kinds of negations and present
the relationships among them. The paper is a first approach to the subject,
introducing some main guidelines to be developed by a ‘syntactical” logical
approach to quantum superpositions.

Keywords: Superpositions, quantum logic, modal logic, Schrodinger’s cat,
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1 Introduction

Superposition is one of the most strange and difficult concepts of quantum me-
chanics. It is used in the most impressive applications of the theory, being es-
sential, for instance, in quantum information theory.1 But it is rather difficult to
understand precisely what a state of superposition stands for, albeit it is impor-
tant for the challenge of providing a coherent interpretation of quantum theory.
Surely superposition is one of the keys to the multiplicity of quantum mysteries
that must be dealt with in any attempt to understand quantum mechanics.

The traditional Copenhagen interpretation, so as other ‘collapse interpreta-
tions” of quantum mechanics, assume that a superposition of states disappears
when a measurement is made on the superposed state, and then only one of
the superposed states appears as the state of the system after the measurement
(emerging one of the eigenstates of the measured operator). Common to all these
theories is the fact that, if we think that each superposed state stands for a certain
‘property’ of the system, we never attribute to the superposed system all of the
particular properties involved in the superposition: superposition means a dif-
ferent thing than ‘having all the involving properties at once’, and some no-go
theorems grant that under plausible conditions, these “properties” cannot have
actual values at once. The differences reside in the interpretation about what (or
who) causes the collapse or the change of state.

In this paper we shall be dealing with interpretations that assume some form
of collapse, and in section 2 we provide a particular way to introduce syntactically
the idea of superpositions in the vocabulary of a formal quantum language. To
begin with, we advance a Kripke-style semantics for the system. We will not re-
vise here all the history related to the phenomenon, so we assume that the reader
is comfortable with the concepts to be introduced below, including those involv-
ing modal logic.

In particular, in section 3 we shall employ our formalism to discuss the claim
that entanglement and superpositions should be understood as involving or rep-
resenting contradictions (even if only potential contradictions; see [CosdRon.13]
and [dRon.14] for a defense and development of such claims). We shall argue

ISuffice to have a look at the wiki entry ‘Quantum Information’.
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that this is not the most interesting understanding of what is going on in the for-
malism of quantum theory, and suggest that it involves presuppositions which
are difficult to swallow. To advance a claim we had already defended before (see
[AreKra.14], [AreKra.15a], [AreKra.15b]), we argue that quantum superpositions
are better understood not as involving contradictions, but rather a different kind
of opposition, traditionally known (from the square of opposition) as contrariety.>
As we hope to make clear, this opposition is in tune with traditional approaches
to the proper understanding of negation in quantum logics. We develop this in
section 4 discussing aspects of negation involved in quantum mechanics. The
paper finishes with a conclusion.

2 A modal logic of superpositions

In this section we present a modal logic in which we introduce the notions of
superposition and measurement at the syntactical level. It is just an attempt to
do it, for we are still very tentatively for instance about which should be the right
modal system that would underly our system. Furthermore, it seems also that
a kind of temporal logic could be profitably used in this context. But these are
works to be done. In saying that, we hope the reader take this paper as a first
work in the subject, approaching it from the scratch.

2.1 Syntax

Let us assume that our basic logic is the standard propositional modal system S4
with =, A, V and ¢ as primitive, being — and <> defined as below. Perhaps a
weaker system will be enough, say T, but we wish that the Euclidean property
does not hold,? so we shall not assume S5 to begin with. We enlarge the language
of our system with two new connectives, a binary connective ‘x’, representing
‘superposition” and a unary one, ‘M’, which will stand for ‘a measurement is
made on’. Furthermore, to facilitate the physical interpretation, we will denote

2We must also acknowledge that we are not the first to find such a claim; later we realized that
itis present also in other authors, yet in a different perspective; see for instance [BelCas.81, pp.220-
1], [Har.79], [vanE75]. Indeed, it seems to be a well known fact among quantum logicians that a
‘quantum negation” would have these characteristics, so that some of them call it choice negation
in contradistinction to exclusion negation (see [vanF.75, p.582]) which has the characteristics of
‘classical” negation. We shall be back to this point later.

3A frame for the system is Euclidean if wRw’ and wRw" entails that w'Rw”, being R the acces-
sibility relation and w and w’ standing for worlds. Soon we will make it clear why the Euclidean
property is not desired in our system.



the propositional variables by ‘|)’, ‘|1, *|®)’, ‘|¢1)’, etc.* Intuitively, proposi-
tional variables will denote only pure states that are not superposed. Formulas
are defined as usual, except that x and M apply only to both propositional vari-
ables and formulas of the type |¢1) % [2), but not to formulas in general. Intu-
itively speaking, |¢) x |¢) is read as indicating the superposition of |) and |¢),
while Mu is read as ‘a measurement is made on the state a’.

We define formulas explicitly to avoid confusion. We begin with a simple class
B of formulas called basic formulas:

i) [¥), |¢), |w), ... arebasic formulas.

ii) If @ and B are basic formulas, so that « and p share no proper subformula,
then (a % B) is a basic formula.

iii) These are the only basic formulas.

Notice that basic formulas are of the form |¢), or things like (i) * |¢)) and
longer iterations of %, such as () * |¢)) x |w) (already using the standard paren-
theses convention). We have a proviso in the second clause in order to avoid
things like |¢) x |¢)) from being formulas. So one may formally write the super-
position of many diverse states, but we shall not allow superposition of a state
with itself.

The molecular formulas are now defined as follows:

i) If & and B are any formulas, then —a, (¢ A ), (« V B) and O are molecular
formulas.

ii) If « is a basic formula, then Ma is a molecular formula.

iii) These are the only molecular formulas.

Notice that it does not make sense to put an operator like M in front of molec-
ular formulas in general, but only in front of basic formulas. As we shall make
clear in the next table, the idea is that M formalizes that a measurement in a sys-
tem in a given state is being made, so it would be strange or even senseless to
measure a conjunction of states or negation of a statement that the system is in a
given state, for instance.

In Table 1 below we exemplify the intuitive understanding of a superposed
state |) * |¢) with a particular case of the entanglement of two states, typical of
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| Logic | Informal interpretation (with examples) |

) state vector, wave function |¢)
M|yp) || a measurement is made on the system in the state |¢)

9) x|¢) | Example: 1/ V2(|p}) © [95)) £1/ V2([9%) ® [y5)

-~

¥) 9)

oly) |¢) is a possible state the system may evolve to
or |p) is a state in potentia of the system.
=[y) not the state |¢)
1Y) A |p) state ) and state |¢p)
etc. etc.

Table 1: Intuitive semantics: the worlds represent the possible states of physical systems.

the Schrédinger’s cat case, to be considered below. More explanations are given
after the axiomatics being presented.

The bi-conditional <+ is defined as usual, being the implication defined as
follows (Sasaki hook). The reason for using this implication is that within the
formalism of classical modal logic, it acts as the standard implication (—|y) V |¢)),
but we can also associate our system to some axiomatization of an orthomodular
quantum logic, and then the chosen implication would be adequate, as is well
known [DalGiuGre.04, p.166].

Definition 2.1 (Implication)
Y1) = |2) == =) V ([¢1) Alih2)

Now, we advance a modal logic semantics to cope with the above intuitions
about the workings of our apparatus.

2.2 Semantics

Here we sketch a way to introduce a Kripke-style semantics for our logic based
on a possible world semantics for S4. We give here just a sketch of this formal
semantics because we are more worried with the ‘concrete’ part of the logic, to
employ the words of Hardegree [Har.79, p.50], that is, in its connections with the
quantum realm.

4From now on we shall not make more distinctions between use and mention, leaving the
details for the context.



A frame F is a pair (W, R), being W a non-empty set of worlds and R being
a binary relation on W, the accessibility relation. A valuation for basic formulas
can be introduced as follow:.

Definition 2.2 (Valuation) A valuation is a mapping y : B x W — {0,1}, where B
is the set of basic formulas.

Now, obviously, we are not willing to take every valuation into account. One
of our claims is that a superposition is a sui generis state a system may be in, which
is not reducible to anything else except by a measurement. So, we shall discard
valuations that could conduce to u(|1), w) = u(|P2), w) = u(|P1) * |o), w) = 1.
That is, when a system is in a superposition (y(|¢1) * |2), w) = 1 obtains), the
individual superposed states should not obtain (so, we must have u(|y1), w) =
(192}, ) = 0 when pe(|g1) * [¢2), w) = 1)

In order to preserve this fundamental idea, as a further condition for our se-
mantics we shall filter the valuations, dividing them between acceptable and un-
acceptable ones. The valuations which shall have “physical content” in our inter-
pretation are those accepting the following consistency requirement:

Acceptability We shall only take into account valuations y such that, for any
world w, whenever u(a x f,w) = 1, then for any subformula 7 of « or ,

u(y,w) =0.

That is, if a superposition (« x ) is the case in w, then « is not the case in w, p
is not the case in w, and also none of their proper subformulas are the case in w.

Having selected those valuations, we now extend p to more complex formulas
as follows:

Definition 2.3
i) The usual definitions for propositional connectives and modal operators;

i) u(M|¢1),w) = Liff u(|1), w) = 1and Iw' # w, wRW', such that u(|pq), w') =
1.

iii) u(M(a* B),w) = 1 iff (i) there is w' # w such that wRw' and yu(a,w') #
u(p,w'), and (ii) Vo' # w, if wRW', u(a, w') # u(B, w').

This condition says that the valuation attributes distinct values to a and B to
all accessible words distinct from the actual world and that there exists at least



one of such such worlds (to which the superposed system evolves after the mea-
surement).

Given those conditions, it is easy to show that some interesting formulas are
valid.

To begin with, one may easily check that as a result of our acceptability con-
straint, |¢1) * |¢2) — (=|p1) A =) is valid. In fact, in any valuation p satisfy-
ing the antecedent (i (|¢1) * |1P2), w) = 1 for some w), by our acceptability condi-
tion we must also have p(|¢1), w) = u(|p2), w) = 0, so that p(—|¢1), w) = 1 and
i), w) = 1.

Consider now the formula M|y;) — |1). Suppose there exist w and y such
that u(M|y1), w) = 1 but u(|p1), w) = 0. However, since u(M|y), w) = 1 we
have by definition that u(|;1), w) = 1, contradiction. So, M|1) — |ip1) is also
valid.

Still taking into account a simple case, consider M(|¢1) * [¢2)) — —=O(|¢h1) A
|2)). Suppose again that there exist w and u such that u(M(|p1) * [¢2)) —
= (|1) Alr)), w) = 0. Then, we have

H(M([91) x [¢h2)), w) =1

and
u(=0([91) Aly2)), w) = 0.

From this last line we have that there exists w’ accessible to w such that both
ulp1), w') = 1and u(|o)), w') = 1. From the truth of the antecedent, however,
we must have among other things that u(|1), w’) # u(|y2)), w’). Anyway one
chooses such values, we get a contradiction.

For a more sophisticated case, consider |¢1) x [2) A M(|1) * [¢2)) — (Olpr) V
O|Pn)). Suppose, again for a proof by reductio, that there exist w and y such that

u(lgr) * [h2) A M([¢p1) x [¢2)), w) =1

and
u((O[g1) V Olya)), w) = 0.

By the fact that u(|1) * [¢), w) = 1 we know (by the acceptability constraint)
that (ln), @) = p(la), @) — 0. From u(M(g1) * [i)),w) — 1, we know
that there exists w’ accessible to w such that u(|y1), w’) # u(|ys), w'). Now,
given that u((O|¢1) V Oln)), w) = 0, we know that both 1 (0|p1), w) = 0 and
1(Oln), w) =0, so that u(|yr), w') = u(|p2), w') = 0, contradicting the fact that
those formulas must have opposite truth values. So, the formula is valid. Notice
that not even the system T was used here.
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2.3 Postulates

The previous discussion helps us in providing some interesting formulas that are
valid in our system, according to the semantics sketched above. Let us now take
those formulas as a minimal axiomatic basis for our treatment of superposition
and measurement.

The postulates of our system are those of 5S4 plus the following ones. We
also add an intuitive explanation of the meaning of each postulate, following the
informal suggestions given at Table 1:

1. |¢1) * [2) — —(|$1) V |¢2)) — When a system is in a superposition, it is
not in both the superposed states. This will be relevant for the discussion on
contradictions. In fact, using the standard ‘quantum semantics” and taking
the orthogonal complementation of a state for its negation, then if we sup-
pose that the superposed states are orthogonal, that is, that something like
l1) % |1) happens, then this axiom will avoid that the system has both
properties associated with the states (to the extent that we can speak of the
system and of its properties of course.’

2. M|¢y) — |¢) — Being in a state that is not superposed, the system, if mea-
sured, evolves to the same state.

3. M([ip1) % |2)) A ([91) x [i2)) = (O|P1) V O|h2)) — After a measurement of
a system in superposition, the system evolves to only one of the component
states.

4. M(|p1) * [$2)) — —O(|91) A |i2)) — After a measurement, a system in
superposition does not evolve to both superposed states.

Of course the above schemata can be extended to involve more than two
states. We think that the axioms capture the basic ideas concerning superposi-
tions and measurements under the general view that collapse in quantum theory
can be assumed. Furthermore, we shall depart from some views, in particular the
standard Copenhague interpretation, in assuming that we can speak of quantum
systems even before measurement. This is, we think, the main novelty of quan-
tum mechanics on what concerns the interpretation of quantum states. Thus, we
agree with Sunny Auyang in that “physical theories are about things” [Auy.95,
p-152], so we shall assume a realistic point of view in saying that there are quan-
tum systems which may be in certain states and that these states may be in super-
position. Furthermore, we can measure the relevant observables for the systems

SThat is, we are purposely avoiding a purely instrumentalistic view. See below.
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in certain states. The observables are subsumed in the above axiomatics, for we
are assuming that, in measuring a certain state, in reality we are measuring a
certain observable in that state, and the axiomatics does not depend on the par-
ticular observable being measured, so that they need not be considered in our
logical framework.

Furthermore, we also do not make reference to the specific mechanism of col-
lapse, neither the observer (as in von Neumann’s original proposal) nor anything
else. This detail does not matter to our schema, so that entering into these contro-
versies would not be productive to our present study.

3 Schrodinger’s cat and contradictions

Schrodinger’s cat is a paradigmatic example of quantum superposition. We think
it is not necessary to revise the details of the description of the experimental sit-
uation here, for it is quite well known in the discussions on the philosophy of
quantum mechanics. Here, as said before, we shall assume that we can speak of
the cat even before a measurement of the entangled state between the cat and the
radioactive material inside the cage. That is, the cat is an element of reality even
when in a superposed state. Hence, there are three possible situations for the cat:
no measurement is made and (1) she is in a superposed state; or else a measure-
ment is made and (2) she is alive or (3) she is dead. But, of course, she cannot
be alive and dead at once, for situation (1) does not say that. Recall that such a
situation was ascribed by Schrodinger as being the characteristic trait of quantum
mechanics [Sch.35]. In fact, the superposed state vector can be written as follows,
if we consider the system composed by the cat plus the radioactive material that
activates the deadly poison:

|cat) = %ﬂcat alive) ® |no decay) + |cat dead) ® |decay)) (1)

or, in a simpler way,
|cat) = |cat alive) + |cat dead). ()

The superposed state is a vector expressing a situation where the cat is neither
definitively alive nor definitively dead, but in a limbo, expressed by the superpo-
sition. According to us, and following Schrédinger, this is the great novelty of
quantum mechanics. As was already much discussed in the literature, superpo-
sitions cannot be understood or explained in terms of classical concepts; it is a sui
generis idea.

®The following passage by Dirac is also usually quoted: “[t]he nature of the relationships
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There is also a well quoted passage by Schrodinger which deserves attention,
for it is not usually mentioned and which enters quite well in the discussion.
Just after the well known (and highly quoted!) passage where he presents his
description of the situation of the cat, we can read that the situation

“[i]n itself it would not embody anything unclear or contradictory. There is
a difference between a shaky or out-of-focus photograph and a snap-
shot of clouds and fog banks.” (our emphasis) [Sch.35]

It seems that he is suggesting that the superposed state acts as a snapshot of
clouds, really a situation involving vagueness of some sort. It is not that the cat,
when in the superposed state, is blurred by the cloud, but she is the cloud. And,
as we see (and agree with Schrodinger), there is no contradiction here, if by a
contradiction we understand, as in standard logic, a conjunction (not a vector
sum) of two propositions, one of them being the classical negation of the other.

This affirmative can be seen from a more ‘technical” point of view. In the
formalism of quantum mechanics, the situations ‘cat alive” and ‘cat dead” are rep-
resented by arrays in orthogonal subspaces, say S and St so that S @ S+ = H
(the whole Hilbert space, being @ the direct sum of subspaces). Thus we should
agree with Gary Hardegree when he says that

“Since a given vector x may fail to be an element of either S or S+,
the quantum negation differs from classical exclusion negation, being
instead a species of choice negation. A choice negation is characterized
by the fact that a sentence A and its choice negation A~ may both fail
to be true at the same time. Common examples of choice negation
include intuitionistic negation and the standard (diametrical) negation
of three-valued logic.” [Har.79]

This ‘choice negation” will be briefly discussed in the next section, where we
will identify it with the operation that gives us the contrary of a certain proposi-
tion, in the sense of the square of opposition. Let us read by a moment |¢) and
=) as vectors in S and in S+ respectively. Even if S @ S+ = 7, there may be
vectors of H which are neither in S nor in S+, so ) and —|¢) do not exhaust
all possible situations. Thus, being not in state |i), this does not mean that the
system is in state i)+, for it can be in the superposed state (a sum of two non
null vectors, one in S, another in St). This motivates the discussion about the

which the superposition principle [that one which enables the formation of superposed states]
requires to exist between the states of any system is of a kind that cannot be explained in terms of
familiar physical concepts.” [Dir.11, p.11]
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meaning of the negation in the quantum context. Our claim is that it is not ‘clas-
sical” negation, where « is true iff -« is false (‘exclusion negation” to use Hard-
egree’s and van Fraassen’s term). According to us, the quantum negation is (in
van Fraassen’s terms, to whom Hardegree attributes the name),” a “choice nega-
tion” or, as we prefer to say, contrary negation. In the next section we shall discuss
this point in the context of an alternative interpretation of the above logic.

Taking into account our system, some results can be easily obtained, and their
intuitive meaning are clear enough:

Theorem 3.1 F ([1) % [¢2)) = (=¢1) A=[¢2)
Proof: Immediate from our first axiom.l

A similar result is the following one:

Theorem 3.2 F (|1) * |¢2)) — = (|¢1) A |¢2))

Corollary 3.1 Here and below sometimes we shall use the quantum mechanics notation
for emphasis. The + operator may be understood as emphasizing the choice negation.
A stronger situation than that one shown before (without the need of a measurement):

[¥) *[¥) = = () A ) h)

Theorem 3.3 = M(|ih1) * [¢2)) — = (1) A|g2))
Proof:

1. (|¢1) * |yn)) (hypothesis)

2. M([1) * [P2)) — =O(|91) A|ga)) (Axiom 4)
—o(|y1) A [$2)) (1, 2 Modus Ponens)

o (|g1) A |2)) (basic modal logic)

=(|¢p1) A |2)) (T principle) B

SARL RS

That is, a measurement on a system in superposition never has both the su-
perposed states as a result. Notice that here we have employed only the resources
of T.

We could continue exploring our system here, mainly in trying to link it with
quantum mechanics. But since our aim is just to introduce the logical system
with a minimum of discussion, we leave this job for future works. Anyway, two
further theorems follow, whose proofs are immediate:

7van Fraassen introduces this terminology in [vanF.75]. However, in this paper van Fraassen

attributes the terminology to other origins.
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Theorem 3.4 1) = —(|P1) * [2))

Theorem 3.5 |1) A |o) B =(|1h1) + [42))

Finally, the promised explanation about the preference for not using S5. If in
the world wy the system (say, the cat) is in a superposed state and in w; she is alive
and in w, (both accessible from wy) she is dead, of course we don’t want that these
two last worlds are accessible one each other, so the accessibility relation should
not be Euclidean.

4 Many worlds and a new quantum logic

Another way of interpreting our system is by considering many worlds. In this
case, we do not speak of collapse, but of bifurcation. Thus, in making a measure-
ment we get two actual worlds and the considered system may be in both, but
since the ‘parallel” worlds do not access one another, we shall not have a con-
tradiction here either; that is, the conjunction of two contradictory propositions.
Indeed, let us consider once again the case of the cat. In one world, say w;j, the
catis alive, while in w, it is dead. Now if we read one of the states as the negation
of the other, it seems that in this case we may have subcontrary situations, for the
cat can be in both states in different worlds, that is, the propositions can be both
true, although not both false. But even here there is no strict contradiction (one
of them is true if and only if the other one is false; in particular, we don’t have the
conjunction of the two situations).

There is a logic that can express this situation, a non-adjunctive logic. In such
logics, we can have propositions like |¢) and —|¢), but not their conjunction, that
is, they can both be true, but not in the same world. But the involved negation
must be treated with care. So, let us just discuss this concept a little.

Inspired in the square of opposition (and in [Bez.05]), we can consider three
kinds of negation, which we term standard negation, —1 (characterized by ‘ex-
clusion negation” and delivering contradictories — the diagonals of the square),
contrary-negation, —, (or ‘choice-negation’ in the sense of Hardegree’s quotation
of the previous section), given by the upper side of the square, and sub-contrary-
negation, —3, given by the bottom side of the square. Our previous discussion
about the cat has suggested that |cat dead) should be read as —;|cat alive) and
vice-versa. A typical —3 is paraconsistent negation, while classical logic formal-
izes =1 and intuitionistic logic (for instance) also deals with —,. Thus, in the case
of many worlds, we can read ‘cat in world 1" as “—(cat in world 2)” and vice-
versa, so that they can be both false but not both true. In this case, they can be
both true but neither in this case do we have a “true’ contradiction (involving —1).

12



w1
|cat alive) = —|cat dead)
wy (actual world)

|cat alive) * |cat dead)

wy
|cat dead) = —;|cat alive)

A measurement is made

Figure 1: A measurement is made in a superposed entangled system and the world splits in
two. Both states of the cat, alive and dead become atual, but not in the same world.

We sketch here a minimum of such a quantum logic. We can take our system
from above and just change the notion of deduction as follows (we use the symbol
I- for this new deduction):

Definition 4.1 (Quantum Deduction) Let I be a set of formulas of the language of
our system and let o be a formula. We say that « is quantum deduced from I', and write
I' I+ «, if one of the following clauses hold:

1. « €T, or
2. wis a thesis of the logical system, or

3. There exists a subset A C T such that AU {a} is non-trivial (according to classical
logic), and A = «, where = is the standard (classical) deduction symbol.

A set of formulas A is =—non-trivial (according to classical logic) if there is
a formula B such that A ¥ B. Analogously, we can define I — non triviality.
The most typical situation is to require that A be consistent according to classical
logic, that is, there is no formula B such that A = g and A = —18. A consistent
set of formulas is of course non-trivial. But the most interesting case is that A U
{|y) A —3|9)} is non-trivial. That is, our system enables I I i) A —=3|1p) without
trivializing the system. In doing so, our system, which is standard logic plus the
above notion of deduction plus —3, is paraconsistent. Anyway, we have neither
Tk |¢) A —2|¢p) nor T i |) A —1|¢p), as it is easy to see, and that is what matters.

13



Of course you could say that once we have admitted the possibility of a para-
consistent quantum logic, then some form of contradiction is possible in the case
of superpositions. Really, perhaps you can force the things this way, once you
provide a reasonable interpretation about what does a paraconsistent negation
mean, that is, what is the intuition behind —3|¢) (and not only a formal set-
ting). Anyway, in this case, we should agree that we can speak of the cat hav-
ing properties (contradictory separated properties) before measurement and that
these properties do have true values, something questionable in the usual inter-
pretations of the quantum realm.

An interesting theorem can be obtained in considering the above negations,
at least if we consider the modal logic S5 as the underlying logic (the case of S4
involving —3 must be further investigated).

Theorem 4.1 We cannot derive a contradiction from a superposition even by using a
paraconsistent negation —3: that is, superposition does not entail ‘contradictions’!
Proof:

1. = (Jp) Al)H) = o=(Jp) Aw)t) (modal logic — T system)

2. o= ([w) A |p) ) — —a(Jw) A |p)+) (in S5, ~O stands for a paraconsistent nega-
tion ”—3”, thatis, p, 73p ¥ g and p, ~3p ¥ —14q [Bez.05]).

3. [9) x|yt — ~ (|9) A [p)+) (Our axiom plus propositional calculus) — being
superposed, the system is not in both states even with the paraconsistent nega-
tion —3. 1

Other arguments contrary the reading that superpositions may involve con-
tradictions can be seen in the papers by Arenhart and Krause mentioned in our
references. The figure below shows the interrelations among the three negations
we have considered.

5 Conclusion

In this paper we provided a first approach to a logical understanding of super-
positions and measurements. Obviously, superpositions will not be fully under-
stood from a purely logical approach, but we feel that it is fair to put some things
clearly by introducing an explicit talk about superposition and measurement in
the object language. Perhaps this can help us in spotting the most thorny issues
involved with superpositions so as in helping us to achieve a better understand-
ing of the subject. We have approached the problem by first trying to set some
intuitive properties superpositions and the result of measuring a physical sys-
tem in a state of superposition, and only then sought to provide for some formal
counterparts to those ideas.
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cat alive cat dead

¥) P)" = lyp)

)t = -ly) ) = —aa|y)t

cat not dead cat not alive

Figure 2: The interplay among the negations, inspired by the square.

Certainly much more is still required in order to achieve a better logical (and
physical) understanding of superposition but, as it happens to almost every in-
quire into a great mystery, one must proceed with great care and a disposition
to revise what was already settled. In particular, we hope to have convinced the
reader that, given some fairly uncontroversial assumptions about superpositions
and their measurements, there is no sensible sense to be made of the claim that
superpositions involve contradictions, a very common claim in popular accounts
to quantum mechanics. So, we agree that quantum mechanics produces oddities,
but a dead and alive cat is not one of them.

We guess our approach hits correctly at some of the core features of super-
position and its measurements, at least for those willing to accept some form of
collapse. We grant that this is a very big “if’, but one has to make a choice. Fur-
thermore, still talking about choices, the modal logic underlying our approach
is still very much open to further discussion. We have used most of the time
the resources of T, but perhaps distinct systems of modal logic and even distinct
fragments of a tense reading of the modal operators could be even better suited
(given that ‘measure” has a dynamical understanding in collapse interpretations).
These are some paths we intend to investigate as a sequence to this first step.
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