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Abstract. The present paper investigates the groups of automorphisms for some lattices of
modal logics. The main results are the following. The lattice of normal extensions of S4.3,
NExtS4.3, has exactly two automorphisms, NExtK.alt1 has continuously many automor-
phisms. Moreover, any automorphism of NExtS4 fixes all logics of finite codimension. We
also obtain the following characterization of pretabular logics containing S4: a logic properly
extends a pretabular logic of NExtS4 iff its lattice of extensions is finite and linear.

1. Introduction

Depending on circumstances, one may define a logic to be either a set of inference rules or a
set of tautologies. These notions are clearly distinct; two different sets of inference rules may give
rise to the same set of tautologies. A third notion, that is in between the two, is the notion of a
consequence relation. The same consequence relation can be axiomatized differently by means of
rules, and a given set of tautologies can be the set of tautologies of different consequence relations.
Each of these three notions is significant in its own right. A definition of a logic by a set of inference
rules takes a logic to talk about proofs, a definition by a consequence relation takes logics to talk
about consequence and the definition of a logic by a set of tautologies takes a logic to talk about
truth. In modal logic the situation is somewhat simplified by the fact that the set of proper rules
is usually fixed (it contains only Modus Ponens). Hence, the consequence relation is no more
informative than the set of tautologies.

There is an even more abstract way of studying logics, namely by their lattice of theories or their
lattice of extensions. Also this has its motivation, namely focussing on the notion of expressivity.
If we study, for example, the lattice of theories of a logic, we ask: In what ways can the formulae of
the language discriminate states–of–affairs? To give an easy example: If there are κ many theories,
only κ many states–of–affairs can be discriminated. If we study the lattice of axiomatic extensions
we ask: in what ways can the formulae of the language discriminate logics? Moreover, it would be
interesting to study to what extent a logic is determined by its lattice of extensions. Although we
will not directly deal with this problem, some answers will be obtained in this paper as well.

In this paper we study the groups of automorphisms of lattices NExt Λ of normal extensions
of certain modal logics Λ. This question makes of course sense independently of any motivation
and has a similar significance as the study of the automorphisms of the lattice of Turing degrees.
However, in trying to establish the structure of these groups we often meet the following problem,
which we think is of independent interest. Namely, you are given a logic Θ and some lattice L of
extensions of a logic Λ, Λ ⊆ Θ, together with an element x of L. Can you say whether x is the
logic Θ? The answer to this question depends on the way in which the objects are given. If Θ is
given as a set of tautologies, and L simply is the same as NExt Λ, then x is Θ iff x = Θ. (If Θ is
given by means of an axiomatization, the answer may however also depend on the decidability of
Θ.) However, we want to analyse the situation that we are given NExtΛ only up to isomorphism.
In that case, the question should be modified slightly to account for the fact that L can in many
ways be mapped onto NExt Λ. So, the question is therefore the following:

Let Λ and Θ be a normal logic and Θ ⊇ Λ. Given x ∈ L, is i(x) = Θ for all
isomorphisms i : L → NExt Λ?

The answer is rather easy. It is positive if (1) Θ is fixed under all automorphisms of NExt Λ,
and (2) there is some isomorphism i : L → NExt Λ such that i(x) = Θ. Hence, we can make
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the question independent of L and ask simply: Is an element fixed by all automorphisms? Now
assume that Θ is fixed under all automorphisms. Still, determining whether or not for a given
element x ∈ L we have i(x) = Θ is far from trivial. For example, we do not know of any criterion
that would allow us to identify S4 or K4 in the lattice of normal modal logics. (We do however
also not know whether they are fixed under all automorphisms.) The lattice of normal extension
of K is so complex that we have at present no hope of being able to attack this problem. In the
present paper we make the simplifying assumption that Θ is the logic of a finite, rooted frame F.
This frame is then unique up to isomorphism. In that case Θ is a strictly meet–irreducible logic
and has finite codimension. Since every logic of finite codimension is the intersection of strictly
meet–irreducible logics (which can be effectively computed either on the basis of F or on the basis
of x), the first is no restriction in view of the second. Let us however note that it makes a difference
whether Θ is given by means of an axiomatization or by means of a finite frame. For in general
it is undecidable given a finite frame F and a finite set X of axioms whether or not K⊕X is the
theory of F. (This has been shown by A. Chagrov. See [6] for a proof.) Now, if a tabular logic
contains K4 this question becomes in fact decidable. For a tabular logic has a representation the
form K4/N , where N is a finite set of finite frames. We will assume — with the exception of §8
— that our logics contain K4. Indeed, we shall work with the lattice of extensions of S4 mainly,
though some of the results can be transferred down to K4. If that is assumed, we have reduced
the problem to the following question.

Let Λ be a normal modal logic with NExtΛ the lattice of its normal extensions.
Given L ∼= NExt Λ and some element x in L which is the logic of a finite, rooted
frame F, how much can we say about F?

Notice that this question makes sense even if F is not uniquely determined. For example, with
Λ an extension of S4 one always determine the number of elements of F, independent of whether
the theory of F is invariant under all automorphisms. We say that the cardinality of F is a lattice
constructible function in NExtS4. Or, given x we can effectively determine whether F contains
a proper cluster. We say therefore that contains a proper cluster is a lattice definable property in
NExtS4. It turns out that in order to determine the structure of the group of automorphisms of
a lattice we have to study quite carefully which properties are lattice definable or which functions
are lattice constructable. We will show for example that any automorphism of NExtS4 must fix
all elements of finite codimension, by establishing enough lattice definable properties and functions
so that F can be recovered uniquely.

The paper is structured as follows. In §2 we introduce some basic notions and facts about the
lattices of normal modal logics and in §3 we establish some results about the groups of automor-
phisms of these lattices. §4 contains two major results: the first is that a logic containing S4 of
finite codimension is an extension of a pretabular logic iff its lattice of extensions is linear (and
finite). The second is that the pretabular logics and all their extensions are pointwise fixed by any
automorphism of NExtS4. The next section, §5, introduces the notions of lattice definable prop-
erties and lattice definable functions and establishes that cardinality, fatness, depth and weight are
all lattice definable functions in NExtS4. In §6 we show that the lattice NExtS4.3 has exactly two
automorphisms and in §7 that the lattice of logics of finite codimensions extending S4 has only one
automorphism. In §8 we turn to the lattice of extensions of K.alt1. Its group of automorphisms is
proved to be isomorphic to the symmetric goup over the set of natural numbers. Furthermore, for
many finite groups G we will construct logics Λ such that the group of automorphisms of NExt Λ
is isomorphic to G. We end the paper with some open problems.

I wish to thank Ralph–Hardo Schulz and an anonymous referee for their help in improving this
paper.
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2. Lattices and Locales

A structure L = 〈L,u, 〉, where u is a binary and an infinitary operation, is called a locale
if it is a complete lattice that satisfies the following distributivity law

x u i∈Iyi = i∈Ix u yi

A locale is therefore distributive as a lattice. Examples of locales are the open sets of a topological
space together with the operations of intersection and infinitary union. A locale is continuous if
it also satisfies the dual law

x t i∈Iyi = i∈Ix t yi

There is a representation theory for locales. The background can be found in [5] and, for modal
logic, in [6]. Let I(L) be the set of all meet–irreducible elements. (An element x is meet-irreducible
if from x = y u z follows x = y or x = z.) Now let x† := {y ∈ I(L) : y � x}. Then the following
holds:

(1) (x u y)† = x† ∩ y†
(2) ( i∈Iyi)† =

⋃
i∈I y

†
i

Put Spec(L) := 〈I(L), {x† : x ∈ L}〉. Spec(L) is a topological space and called the spectrum of
L. Spec(L) is a T0–space. (A space is a T0–space if for each pair x and y, if x and y are distinct
there exists an open set that contains exactly one of them (though we may not be able to choose
which one).) The closure of a set {x} is exactly the set I(L) − x† = {y ∈ I(L) : y ≥ x}. For x†

is the largest open set not containing x. Given a topological space X, the open sets form a locale,
denoted by Ω(X). L is called spatial if L ∼= Ω(Spec(L)). The locales of (normal) extensions of a
given modal logic are always spatial (see [6]). The elements of I(L) are ordered by ≤. Moreover,
given a T0–space, we can define a relation x ≤t y by y ∈ {x}. This is a partial order, as is easily
verified. It turns out that ≤t = ≤. For x ≤t y iff y ∈ {x} iff y ≥ x, by the remarks above.
Therefore, we will in sequel not distinguish between the order derived from the lattice and the
topological order. Now let us look at the connection between the order and the topology. We have
seen that the open sets of the topology are lower closed sets. The set of all lower closed sets is a
topology, called the Alexandrov topology. However, this is not necessarily the only topology
that can be defined on a given order. An example will appear below in the last section. It is easy
to see that a locale is continuous iff the spectrum carries the Alexandrov topology.

The following is clear. If α : L → L is an automorphism then there is a unique automorphism
induced on Spec(L), which we will also denote by α. Likewise, an automorphism on a topological
space X induces a unique isomorphism on Ω(X). So, automorphisms of spatial locales can be
studied via the automorphisms of their spectrum.

An element x is called strictly meet–irreducible if from x = i∈Iyi follows that x = yi for
some i ∈ I. x is strictly meet–prime if from x ≥ i∈Iyi follows x ≥ yi for some i ∈ I. Dually,
the notions strictly join–irreducible and strictly join–prime are defined. In what follows, we
call an element irreducible (prime) if it is strictly meet–irreducible (strictly meet-prime), and
coirreducible (coprime) if it is strictly join–irreducible (strictly join–prime). In a locale, an
element is coprime iff it is coirreducible. And a prime element is also irreducible, but the converse
does not hold in general. We denote by Pr(L) the set of primes and by Pr(L) := 〈Pr(L),≤〉 the
poset of primes. Likewise, CPr(L) is the set of coprimes and CPr(L) the poset of coprimes. A
splitting pair is a pair 〈x, y〉 such that L is the disjoint union of the filter generated by y and the
ideal generated by x. In other words, every element is either below x or above y, but not both.
The following holds.

Proposition 2.1. Let L be a complete lattice.
(1) If 〈x, y〉 is a splitting pair, then x is prime and y is coprime.
(2) If x is prime there exists a unique coprime y such that 〈x, y〉 is a splitting pair.
(3) If y is coprime there exists a unique prime x such that 〈x, y〉 is a splitting pair.
(4) If 〈x, y〉 and 〈x′, y′〉 are splitting pairs then x ≤ x′ iff y ≤ y′.



4 MARCUS KRACHT

Let x be prime and y the unique element such that 〈x, y〉 is a splitting. Then y is called the
splitting companion of x and denoted by L/x.

Proposition 2.2. x 7→ L/x : Pr(L) → CPr(L) is an isomorphism of posets.

Clearly, an automorphism of a locale induces an automorphism of Pr(L). However, automor-
phisms of Pr(L) may exist without there being a corresponding automorphism of L. However,
if the locale is continuous, automorphisms of Pr(L) are in one–to–one correspondence with au-
tomorphisms of L itself, for any automorphism of L sends lower closed sets onto lower closed
sets.

An element x is a lower cover of y if x < y and for no z, x < z < y. In that case, y is also
called an upper cover of x. There is an important characterization of cosplittings. It uses the
cocovering number of x, which is the cardinality of the set of cocovers of x.

Proposition 2.3. x is cosplitting element of L iff (1) x has the cocovering number 1 and (2) for
the unique cocover y of x holds that if z < x then z ≤ y.

Proof. x is a cosplitting element iff it is coprime iff it is coirreducible. So, we nust show that x is
coirreducible iff it satisfies (1) and (2). Let x be coirreducible. Then x cannot have two cocovers,
for their join would be x. Therefore, there is a unique cocover. Call it y. If there is an element z
such that z < x but z � y then also z t y = x. So, (1) and (2) hold. Now assume that (1) x has a
unique cocover, y, and that (2) for all z with z < x we have z ≤ y. Then x is coirreducible. For
assume x = Z but z 6= x for all z ∈ Z. Then z ≤ y for all z ∈ Z, and so x > Z. Contradiction.
So, x is coirreducible. �

Now, for a set N of splitting elements we put

L/N := 〈L/x : x ∈ N〉

N is called independent or an antichain if for all elements x, y ∈ N : if x ≤ y then x = y.

Proposition 2.4. Let N be an independent set of splitting elements of cardinality κ. Then L/N
has cocovering number κ.

Proof. Let N be independent. Then for each x ∈ N the element xuL/N is a lower cover of L/N .
These lower covers are different. For let x, y ∈ N and x u L/N = y u L/N . Then x u L/N ≤ y.
But since x � y and L/N � y, we have x u L/N � y, since y is prime. �

3. Isomorphisms of Lattices of Logics

Given a modal logic, Λ, the normal extensions of Λ form a locale, denoted by NExtΛ. (The
results of this section do not depend on the language. They carry over to classical logic, interme-
diate logics, relevance logics and so on.) For a proof of this fact see [6]. In this section we want
to consider briefly the correspondence between automorphisms of the lattice of extensions of some
logic and bijections of the language. Before we do so, we need to emphasize that if this bijection
is required to be a homomorphism (ie a substitution) this correspondence turns out to be trivial.
Suppose that we are given a language L and a bijective homomorphism π : L → L. Then π is
a substitution, and its inverse is also a substitution. It is easy to see that π is generated by a
permutation of the set of variables. In that case, the induced action on NExt Λ, which we take to
be Θ 7→ π[Θ], is the identity. Hence, we shall not assume that π is a homomorphism.

Every logic is an intersection of meet–irreducibles. Therefore, the previous representation theo-
rems can be sharpened somewhat by taking instead of the set of meet–irreducibles the set of strictly
meet–irreducibles. Let Ir(L) be the set strictly meet–irreducible elements, and let ISpc(L) be the
topological space induced by Spec(L) on Ir(L). Let

x‡ := Ir(x)− x†

Theorem 3.1. Λ = Λ‡. Moreover, NExtΛ ∼= Ω(ISpc(L)). Hence, NExtΛ is spatial.
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The following theorem underlines the thesis that a logic is — in a sense still to be defined —
determined by its lattice of extensions.

Theorem 3.2. Let Λ and Λ′ be two modal logics in the modal language L. NExtΛ ∼= NExtΛ′ iff
there exists a bijection π : L→ L such that for any logic Θ extending Λ, π[Θ] is a logic extending
Λ′, and for every logic Θ′ extending Λ′, π−1[Θ′] is a logic extending Λ.

Proof. It is clear that if π has the desired properties then NExtΛ and NExtΛ′ are isomorphic.
Now assume that the two lattices are isomorphic. Let β : NExt Λ → NExt Λ′ be an isomorphism.
Call a set S of formulae Λ–minimal if it is of the form

S(Θ) := Θ−
⋃

∆<Θ

∆

for some Θ. Here, ∆ ranges over logics containing Λ. The following is observed about minimal
sets. (i) If Θ 6= Θ′ then S(Θ)∩ S(Θ′) = ∅. For suppose that ϕ ∈ S(Θ)∩ S(Θ′). Then ϕ ∈ Θ∩Θ′,
but ϕ is not in any logic properly contained in Θ or Θ′. Hence Θ∩Θ′ cannot be properly contained
in Θ or Θ′. So, Θ ∩ Θ′ = Θ = Θ′. (ii) Each formula is in a minimal set. For let ϕ be a formula.
Let Θ be the intersection of all logics in NExtΛ which contain ϕ. This is a logic, and its minimal
set contains ϕ. (iii) S(Θ) = ∅ iff Θ is the limit of an infinite ascending chain. Otherwise S(Θ)
is countably infinite. For a proof, suppose that Θ is the limit of an infinite ascending chain, say
Θ = i∈ω∆i. Then Θ =

⋃
i∈ω ∆i, by compactness. Hence, S(Θ) = ∅. Now suppose that Θ is

not the limit of an infinite ascending chain. Then Θ is finitely axiomatizable relative to Λ. Hence
there is a ϕ such that ϕ ∈ Θ, but ϕ 6∈ ∆ for any ∆ < Θ. Now, fix such a ϕ. The formulae

> ∨> ∨ . . . ∨ > → ϕ

are then also in S(Θ). Hence, S(Θ) is infinite. Since the language is countable, S(Θ) is countably
infinite.

Now define similarly the sets S′(Θ) for Θ ∈ NExt Λ′ by

S′(Θ) := Θ−
⋃

∆<Θ

∆

where now ∆ ranges over all extensions of Λ′. S′(Θ) is empty iff Θ is the limit of an ascending
chain. Otherwise S′(Θ) is countably infinite. For each Θ ∈ NExt Λ there exists a bijection
πΘ : S(Θ) → S′(β(Θ)). Hence, let π :=

⋃
πΘ be the union of these bijections. This is well–defined,

since the minimal sets are pairwise disjoint. It is a function from L to L′ since every formula is
in a minimal set. It is injective since the S′(β(Θ)) are pairwise disjoint and every πΘ is injective.
Finally, π is surjective. For let ϕ be given; then ϕ ∈ S′(∆) for some ∆. Since β is an isomorphism,
there is a Θ such that β(Θ) = ∆. Since πΘ is surjective, there is a ψ such that πΘ(ψ) = ϕ.
Consequently, π(ψ) = ϕ. �

Even if Λ 6= Λ′ or L 6= L′, π is in general not a homomorphism (that is, a substitution). For
suppose it necessarily is. Then π−1 is a substitution, and so is π−1 ◦ π. But we have seen earlier
that this map induces the identity. So, there are bijections which are not homomorphisms. Another
argument is the following. Suppose that π is a bijection and a homomorphism of the languages.
Then π is induced by a bijection between the variables. It follows that Θ has interpolation iff π[Θ]
has interpolation. For assume that π[Θ] has interpolation and let ϕ→ ψ ∈ Θ. Then π(ϕ→ ψ) ∈
π[Θ]. Since π(ϕ → ψ) = π(ϕ) → π(ψ) we have a χ′ such that var(χ′) ⊆ var(π(ϕ)) ∩ var(π(ψ))
and π(ϕ) → χ′, χ′ → π(ψ) ∈ π[Θ]. Now put χ := π−1(χ′). Then var(χ) ⊆ var(ϕ) ∩ var(ψ), and
π(ϕ → χ) = π(ϕ) → χ′ ∈ π[Θ] as well as π(χ → ψ) = χ′ → π(ψ) ∈ π[Θ]. Hence, ϕ → χ ∈ Θ and
χ → ψ ∈ Θ. So, Θ has interpolation. Exchanging the roles of Θ and π[Θ] we find that if Θ has
interpolation then π[Θ] has interpolation as well. Similarly, it is shown that Θ is Halldén–complete
iff π[Θ] is Halldén–complete.

The logic Θ1 := K⊕22⊥ has interpolation, since it is the extension of K by a constant formula.
(See [9] for a proof.) It is not Halldén–complete. For the formula 2⊥ ∨ ¬2⊥ is a theorem of Θ1,
but neither 2⊥ nor ¬2⊥ are theorems of Θ1. The logic of the frame 〈{0, 1},≤〉, which we denote
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by Θ2, does not have interpolation, but is Halldén–complete. (It is namely identical with the
quasi–normal logic of the pointed frame 〈{0, 1},≤, 0〉. All such logics are Halldén–complete.) Now
NExt Θ1

∼= NExt Θ2
∼= 3. This proves that the map π cannot be a homomorphism in general.

We are interested mainly in the structure of the group of automorphisms of the locales of some
modal logics. If X is some structure (for example, a locale or a topological space) we write AutX
for the group of automorphisms of X. X is rigid if AutX is the one–element group. Not much
group theory is needed to understand the results of this paper. The group of bijections from M
to M is denoted by Sym(M). As usual, we choose M to be a cardinal number. The cyclic group
of order n is denoted by Zn. We are interested in automorphisms of structures, notably lattices
of logics. If G operates on a structure S over a set S, then the set {α(x) : α ∈ G} is called the
G–orbit of x. An automorphism α of some structure fixes an element x if α(x) = x. We write
Fix (α) for the set of elements fixed by α. α fixes a set S if α[S] = S. α fixes S pointwise if
α(x) = x for all x ∈ S iff S ⊆ Fix (α). It is clear that for example the set of prime elements and the
set of coprime elements of a locale are fixed under any automorphism — though not necessarily
pointwise. Moreover, if 〈x, y〉 is a splitting pair then so is 〈α(x), α(y)〉. By the uniqueness of the
splitting companion we deduce the following lemma.

Lemma 3.3. Suppose that α ∈ Aut(L) and that x splits L. x ∈ Fix (α) iff L/x ∈ Fix (α). Moreover,
α fixes the following sets: ↑x, ↓x, ↑L/x and ↓L/x.

It follows that if α fixes x, its restriction to ↑L/x is an automorphism of NExt L/x. An imme-
diate consequence of the previous theorem is the following.

Lemma 3.4. Suppose that every automorphism of L fixes x and x is prime. Then every automor-
phism fixes L/x.

The lattice of extensions of a logic has cardinality ≤ 2ℵ0 . Many standard logics (K, S4, Grz)
have continuously many extensions. At first blush the size of the group of automorphisms can
therefore be larger than 2ℵ0 . This however is not so. This is a corollary of the next theorem.

Proposition 3.5. An automorphism of NExtΛ fixes the set of logics which are finitely axiomati-
zable over Λ.

There are two proofs of this theorem. A logic is finitely axiomatizable iff it is compact. (x is
compact if x ≤ i∈Iyi, then there exists a finite set J ⊆ I such that x ≤ i∈Jyi.) Since the set
of compact elements is fixed, so is the set of finitely axiomatizable logics. Clearly, the action of the
group on the lattice is completely determined by its action on the compact elements. Now there
are only countably many finitely axiomatizable logics. Hence we have the following theorem.

Theorem 3.6. Let Λ be a logic. Then ] AutNExtΛ ≤ 2ℵ0 .

We will see that there are logics for which this limit is obtained. So no better bound exists.
A second proof consists in the observation that by Theorem 3.2 an automorphism of NExt Λ is a
factor group of Sym(L).

Theorem 3.7. Let St(Λ) be the group of all permutations of L that induce the identity on NExtΛ.
St(Λ) is a normal subgroup of Sym(L), and Aut NExtΛ ∼= Sym(L)/St(Λ).

We will draw some conclusions from these facts. Blok has shown that each of the two logics of
codimension 1 in the lattice of normal modal logics has 2ℵ0 cocovers. These logics of codimension
2 all have the same lattice of extensions, namely 3. However, not every permutation of these logics
is induced by an automorphism. The reason is simple: an automorphism must send a finitely
axiomatizable logic to a finitely axiomatizable logic. This will be rephrased as follows. Let

CΘ(Λ) := {Λ′ : for some α ∈ Aut(NExt Θ) : α(Λ′) = Λ}
Call CΘ(Λ) the l–spectrum of Λ with respect to Θ and ]CΘ(Λ) the l–indeterminacy of Λ with
respect to Θ. (The l–spectrum is nothing but the orbit of Λ under the group of automorphisms of
NExt Θ.)
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Lemma 3.8. Let Λ be finitely axiomatizable over Θ. Then the l–indeterminacy of Λ with respect
to Θ is countable.

4. Getting Started

A Kripke–frame is a pair F = 〈F,�〉, where F is a set and � ⊆ F 2. We assume here always
that F is nonempty. In sequel, a frame is always understood to be a Kripke–frame. G = 〈G,�G〉
is a generated subframe of F if G ⊆ F and �G = �∩G2. F is rooted if there is a point x ∈ F
such that F is the smallest generated subframe of F containing x. We assume familiarity with the
usual concepts such as p–morphism. Given two frames F and G we write π : F → G iff π is a
p–morphism from F into G. If π is onto we write π : F � G. Put ThF := {ϕ : F |= ϕ}. If Θ = ThF
for some finite rooted frame F, we say that Θ is tabular and that F a generating frame of Θ.
The next theorem asserts that this frame is unique up to isomorphism.

Proposition 4.1. Assume that F and G are finite rooted frames. Then ThF = ThG iff F ∼= G.

Proof. By Jónsson’s Theorem. We prove it for algebras, which is the same in the case of finite
structures. We have ThA = ThB iff A ∈ HSPB and B ∈ HSPA iff A ∈ HSPu B and B ∈ HSPu A
iff A ∈ HS B and B ∈ HS A iff A ∼= B. �

This means in particular, that we may study the action of α on the set of rooted finite frames
modulo isomorphism. Namely, if Λ = ThF, Θ = ThG and α(Λ) = Θ, then we also write α(F) = G.
Notice that this is uniquely defined only if there is only one frame from each isomorpism class.

In what follows, we will write Λ/F in place of NExt Λ/ThF. Now let L = 〈L,≤〉 be a lattice,
and x ∈ L. It follows, by a theorem of Blok ([2]), that an automorphism must fix the set of logics
of rooted, finite, cycle–free frames. Furthermore, by a theorem of Makinson ([7]), NExtK has only
two coatoms. Only one of them is a prime element.

Proposition 4.2. An automorphism of NExtK fixes the set of coatoms pointwise.

Given a partial order ≤ we write x ≺ y if x is a lower cover of y. x has codimension n if
the longest properly ascending chain starting at x has n + 1 members. However, we generally
look at a different codimension of x, namely in the poset of coirreducibles. We call this its order
codimension. Λ has order codimension n if the longest ascending chain of coirreducible logics
starting at Λ has length n. (We note that maximal chains need not be of equal length. Therefore
we take the order codimension to be the length not of a maximal chain but of a chain of maximal
length, ie a longest chain.) It might be deemed that the codimension is 1 + the order codimension.
However, the situation is more complicated. For look at the following frame.

◦◦ ◦ ◦- -

Its order codimension is 3, for the following chain can be constructed.

◦◦ ◦ ◦- - ◦ ◦ ◦- - ◦ ◦- ◦

However, the logic has other extensions as well, for example based on the frame

◦◦ ◦-

Therefore the codimension of this logic is 5, which is greater than 1 + 3. x has order covering
number n if x has exactly n irreducible covers, and order cocovering number n if it has exactly
n irreducible cocovers. The reason for taking these numbers rather than the ordinary covering and
cocovering numbers lies in the fact that irreducible logics of finite codimension correspond to finite
rooted frames (at least in NExtK4). Therefore, we do not measure how many covers or cocovers
an element has in the lattice but rather how many there are in the partial order of irreducible
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elements. Usually, these numbers are studied with x in a sublattice of the form ↑y. The order
covering number of x does not depend on the choice of y; however, the order cocovering number
of x does. It is clear that if α : L → L is an automorphism of a lattice, then α(x) has the same
codimension, the same covering number and the same cocovering number as x.

Below we will focus on S4–logics. Hence, let us review some basic facts and terminology for
them. The following is folklore.

Theorem 4.3. Let Θ ∈ NExtS4. Then Θ is tabular iff it is of finite codimension.

Let F = 〈F,�〉 be a reflexive transitive frame. A subset C ⊆ F is called a cluster of F if it is
of the form {y : x� y� x}. ]C is called the fatness of C and ft(F) := max{]C : C a cluster of F}
the fatness of F. We shall in general not distinguish between the cluster C and the frame 〈C,C2〉
defined by it. The latter type of frames is in fact also called a cluster. F is slender if it is of
fatness 1. Grz is the logic of finite slender frames. C is proper if it has fatness > 1, otherwise it
is improper. In a finite transitive frame F, the depth of a point, dp(x), is defined by

dp(x) := {dp(y) : x� y 6 x}

This means the following. A frame is of depth 0 if it is in a final cluster. x is of depth n+ 1 if it
has successors of depth n and every successor y of x is either in the same cluster or of depth ≤ n.
The depth of the frame F is defined as dp(F) := {dp(x) : x ∈ f}. So, the frame above has a two
point cluster of depth 2, and two improper clusters of depth 1 and 0. The depth of the frame is 3,
by definition.

For an extension Θ of S4 we can show that Θ is irreducible and has order codimension n iff Θ
is the logic of a rooted n–point S4–frame. This follows from the following fact.

Lemma 4.4. Let F be a rooted n+1–point S4–frame. Then there exists a rooted n point S4–frame
G and a p–morphim from F onto G.

Proof. Look at the set T of final clusters. Case (A). There is a proper cluster C in T . Then two
points in C can be identified, reducing C by one point. Case (B). T has two elements, C and D,
both improper. Then collapsing D and C is a p–morphism reducing the number of points by 1.
Case (C). T has one member only, C, and C is improper. Then if F has at least two points, there
exists a cluster D immediately preceding C. If D is proper, we proceed as in (A). So, assume
that D is improper. Then collapsing D and C is a p–morphism, reducing the number of points by
1. �

Lemma 4.5. Let F be a rooted S4–frame of cardinality n. Then ThF has order codimension n
in NExtS4. Let Λ, Λ′ ∈ NExtS4. Let α : NExtΛ → NExtΛ′ be an isomorphism. Suppose that
Θ ∈ NExtΛ is the logic of an n point rooted frame. Then α(Θ) too is the logic of an n point rooted
frame.

We will introduce some further notation. Given two frames, F = 〈F,�F 〉 and G = 〈G,�G〉, we
write F >©G for the frame obtained by placing F before G. It is defined formally as follows.

F >©G := 〈f × {0} ∪ g × {1},�+〉

�+ :=

 {〈〈x, 0〉, 〈y, 0〉〉 : x, y ∈ F, x�F y}
∪ {〈〈x, 0〉, 〈y, 1〉〉 : x ∈ F, y ∈ G}
∪ {〈〈x, 1〉, 〈y, 1〉〉 : x, y ∈ G, x�G y}

We will use Lemma 4.5 to show that automorphisms must fix certain elements in the lattice. We
say that a rooted frame F has covering number n if there are exactly n rooted frames G such that
ThG covers ThF. Analogously the cocovering number of F is defined. A logic is pretabular
if it is not tabular, but all its proper extensions are. Recall that S4 has five pretabular systems
(see [8]). The first is S5. It is the logic of the clusters; the n–point cluster is denoted here by Cln.
The second is the logic of the tacks; the n+ 1–point tack is Cln >©◦. The third is the logic Grz.3.
It is the logic of all chains. The n–point chain is denoted by Chn. The fourth is the logic of the
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Figure 1. The five pretabular extensions of S4
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forks. Fkn, where n is the number of points of depth 0, is the n+1–point fork. And the fifth is the
logic of the kites. The n+ 2–point kite is Fkn >©◦. (See Figure 1.) There are a few isomorphisms:
Cl1 ∼= Ch1, Ch2

∼= Cl1 >©◦ ∼= Fk1, Fk1 >©◦ ∼= Ch3. We call a frame a handle if it is one of the above,
ie a cluster, a tack, a chain, a fork or a kite.

Lemma 4.6. Each handle has covering number 1.

The converse does not hold. There are frames with covering number 1 which are not handles.
An example are the frames of [4]. These are defined as follows.

Un := {r} ∪ {si : i < n} ∪ {ti : i < n},
�n := {〈x, x〉 : x ∈ Un} ∪ {〈r, x〉 : x ∈ Un}

∪ {〈si, tj〉 : i 6= j}
Uu := 〈Un,�n〉
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t2
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These frames have covering number 1. For a proof, suppose that G is a cover of Un. Case A.
There is a p–morphism π : Un → G. Then π collapses exactly two points, say x and y. It is easy
to see that x and y must be of same depth, and that this depth is 0. Moreover, for any pair x′

and y′ of depth 0 there is an automorphism of Un mapping x to x′ and y to y′. So, G is unique
up to isomorphism. Case B. G is a generated subframe of Un. Then it is the fork Fkn−1. But
Fkn−1 is also a generated subframe of the frame obtained in Case A. So, Un has only one cover.
For example, the frame U3 has the following unique cover:
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However, this cover has the following frames as p–morphic images
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This is no coincidence. For the following can be shown. (Notice that the proof makes use of the
classification of cocovers, established below.)

Lemma 4.7. Let F be a finite rooted S4–frame such that NExtThF is linear. Then F is a handle.

Proof. We prove the claim by induction on the size of F. If it is 1 or 2, we are done, since F is
a handle. Now suppose that F has at least 3 elements, and that NExtThF is linear. Then for
every G such that ]G < ]F, NExt ThG is also linear. By induction hypothesis, G is a handle. It
follows that F has covering number 1 and the unique cover, G, is a handle. We can on this fact
alone exclude the case that F has two proper clusters. For G has at most one proper cluster, and
therefore this case can only arise if G is a tack. Then F ∼= Cln >©Cl2. Then F has two covers,
Cln >©◦ and Cln−1 >©Cl2. Contradiction. So, at most one cluster is proper.

Now assume that G is a cluster, say G ∼= Cln, n > 1. Then F ∼= Cln+1 or F ∼= ◦ >©Cln. The
latter case cannot arise, however, since in that case F has two covers, ◦ >©Cln−1 and Cln, contrary
to our assumption.

Next assume that G is a tack, say G ∼= Cln >©◦, n > 0. Then F is isomorphic to either of the
following frames: ◦ >©Cln >©◦, Cln+1 >©◦, Cln >© ◦ >©◦, Cln >©Cl2 or Cln ◦ (◦⊕◦). (Here, ◦⊕◦ is the
disjoint sum of two improper clusters.) It is readily checked that F has two covers except when it
is isomorphic to a tack.

Now we assume that G is a chain, a kite or a fork. In particular it has no proper cluster. We
will show first that also F has no proper cluster. Suppose for the sake of contradiction that it does.
Then the proper cluster is of size 2. Let it be {x, y}. G is obtained from F by dropping from this
cluster one point, say y. Now, there is a p–morphism π : G � H onto some (unique) cover of G, H.
Expand the cluster π(x) by adding some point, z. This defines the frame H+. Define π+ : F � H+

by putting π+(y) := z and π+(x) := π(x) else. This is easily seen to be a p–morphism. Now, G is
not isomorphic to H+, but both have the same cardinality, namely ]F− 1. So, F has two covers, a
contradiction.

Therefore F has no proper clusters. We consider F as the result of adding a point x to G. G is
either a chain, a kite or a fork. Suppose that it is a chain and of depth at least 4. (The case that
G has depth 2 is covered by the case where G is a tack, and in case the depth is 3, G is also a kite.
This case will be dealt with below.) If F is not also a chain then x is not seen by all members of G.
Let I be the set of members not seeing x. If I has more than two members, it has two members
y1 and y2 such that y2 immediately succeeds y1. Collapsing y1 and y2 is a p–morphism producing
a cover of F that is not a handle. Contradiction. So I has one member. So the complement of
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I contains two points y1 and y2 such that y2 immediately succeeds y1. Collapsing y1 and y2 is a
p–morphism onto some frame that is not a handle. Contradiction. So F is also a chain.

Now suppose that G is a kite. Then it is easy to see that x is not at the root of F and therefore
not of depth > 1. If it is of depth 1 then F is already a kite. So assume for sake of contradiction
that x has depth 0. Let y be the other point of depth 0. Case 1. There is a point z seeing only
x. Then collapsing x and z is a p–morphism onto some frame that is not a handle. Contradiction.
Case 2. There is a point seeing only y. Similarly. Case 3. All points see both x and y. There are
at least two points of depth 1. Let u and v be such points. Collapsing u and v is a p–morphism
onto some frame that is not a handle. Contradiction.

Finally, assume that G is a fork. As in the previous case we can see that x is not of depth 2 or
1. So it is of depth 0, and F is a fork. �

(I am indebted to the referee for pointing out this idea of proof.) Since this is a rather remarkable
fact, we restate it once again. (We use the notation L⊥ for the lattice dual to L. For example,
ω⊥ = 〈ω,≥〉.)

Theorem 4.8. (a) An S4–logic properly contains a pretabular logic iff its lattice of extensions is
finite and linear. (b) An S4–logic is pretabular iff its lattice of extensions is isomorphic to ω⊥, the
order dual to ω.

From this fact we derive first of all that an automorphism of NExtS4 leaves the set of handles
invariant. However, a closer look at the matter reveals that Theorem 4.8 is not needed. This
follows namely directly from the fact that a logic is tabular iff it is of finite codimension. A logic is
therefore pretabular iff it has codimension ω. (In the infinite case, the codimension is not always
defined, but in this case it is.) We deduce that any automorphism must send pretabular logics
to pretabular logics. Hence it fixes the sets of handles which contain handles of same cardinality.
There are at most five of them.

Let Hd be the logic of handles. Hd is uniquely defined as the smallest logic whose tabular
extensions all have linear extension lattices. AutNExtHd is a subgroup of Sym(5). This group
is rather large. However, in fact NExtHd has far less automorphisms. This follows from the fact
that the partial order of handles is not the disjoint sum of 5 linear orders of type ω⊥. Its structure
is more complex. The proof of the next result can in fact be deduced immediately from looking at
the upper part of the poset, as depicted in Figure 2.

Proposition 4.9. Aut(NExtHd) ∼= Z2×Z2. Moreover, every automorphism of NExtHd fixes the
clusters pointwise.

Proof. NExtHd has exactly two elements of codimension 2, the two element chain and the two
element cluster. Since the tacks, the chains, the forks and the kites are below the two element
chain, every automorphism of NExtHd fixes the clusters. There are three elements of codimension
3 below the chain Ch2. These are the chain Ch3, the fork Fk2 and Cl2 >©◦. The chains and the
kites are below Ch3. Automorphisms can send kites to chains, but not to tacks or forks. Therefore,
the set of forks and tacks, and the set of kites and chains are each fixed, though not necessarily
pointwise. Hence the group of automorphisms must be a subgroup of the direct product of Z2

with itself. We show that it is exactly that group. Let α be the map that sends the tack Clk >©◦
to the fork Fkk, and the fork Fkk to the tack Clk >©◦, and is the identity elsewhere. This is an
automorphism of the poset of handles, and therefore of NExtHd. α is an involution. Let β be
the map that sends the chain Chk+2 to the kite Fkk >©◦, and the kite Fkk >©◦ to the chain Chk+2

(k > 1), and fixes all other frames. Then β is an automorphism of order 2. It commutes with
α. �

We will also show that every automorphism of NExtS4 fixes Hd and therefore fixes NExtHd
pointwise. To this end we look at the order cocovering numbers. Actually, we only need to establish
that the forks cannot be mapped onto the tacks and that the chains cannot be mapped onto the
kites. We will prove a little bit more here by computing all cocovering numbers of the handles.
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Figure 2. The irreducibles of NExtHd
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Below in the picture it is shown where in the tack Cl2 >©◦ points can be inserted. (So, one sees in
total 8 points, three from the original frame and 5 for the possible insertion points. This shows
that the cocovering number is 5.)

Lemma 4.10. The clusters have order cocovering number 2.

Proof. Suppose we add somewhere a point to get a rooted frame G such that F is a p–morphic
image or a generated subframe of G. We may then either add a point at depth 1, or increase the
cluster by 1. (We may not place a point following the cluster, for we would get the frame Clk >©◦,
which cannot be mapped onto Clk, except when k = 1. In that case we get the frame ◦ >©◦, which
also results from ◦ by placing the point before the cluster.) �

◦ - ◦
◦◦ -�

�
��

◦

◦

-◦◦
? ?

6 6

?

Lemma 4.11. The tacks have order cocovering number 5.

Proof. We may add a point to the cluster, before it, after it, we may increase the final cluster, and
we may add a cluster at depth 1. (See also the picture. The points with an arrow are possible
places of insertion. The frame under consideration is Cl2 >©◦. Therefore we have three points
without an arrow pointing to them, and five more points.) �

Lemma 4.12. The chain Chn has order cocovering number n+
(
n+1

2

)
.

Proof. (a) We may increase each cluster by 1. (n possibilities.) (b) We may increase the length
of the chain (1 possibility). (c) We may add a point which is incomparable to some other points.
Let I be the set of points, to which the new point is incomparable. I is not empty, containing at
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Figure 3. Distinguishing the forks and the tacks
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least the root. It is not the full set of points. And it is an interval. There are in total
(
n+1
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− 1

possibilities. �

Lemma 4.13. The fork Fkn has order cocovering number 5.

Proof. We may increase a cluster by a point. This gives only 2 possibilities, since increasing any
of the final clusters gives the same result modulo isomorphism. We may add a point of depth 2,
or a point of depth 0. The last option gives 2 possibilities. For a new point of depth 0 may be a
successor of a point of depth 0 in Fkk (and therefore only one such point), or not, in which case
we get the frame Fkn+1. �

Lemma 4.14. The kite Fkn >©◦ has order cocovering number n+ 5.

Proof. We may increase one of the clusters (3 possibilities), add a point of depth 3 (1 possibility),
of depth 1 (1 possibility) or of depth 0. In the last case, the point is seen by a subset of the set of
points of depth 1. This set can have any cardinality. Hence n possibilities arise. �

These facts show already that the chains cannot be mapped onto the kites, since the cocovering
numbers are distinct. Therefore, we can identify in the lattice NExtS4 the clusters, the kites and
the chains. As regards the tacks and the forks, we have still not succeeded. So, take the tack
of three elements, T := Cl2 >©◦, and the fork F := Fk2. (To understand the argumentation, it is
helpful to look at Figure 3.) Both have three points, and their cocovering number is 5. For sake
of contradiction we assume that there is an automorphism α of NExtS4 that maps T onto F. We
know already that it is an involution on NExtHd, and so α(F) = T. Also, α(Cl2) = Cl2. We
compute the cocovers of T and F that are below Cl2. T has exactly one cocover that is below Cl2,
namely P := Cl2 >©Cl2. F has exactly one cocover that is below Cl2, which we denote by Q. Notice
that P � F and Q � T. The uniqueness of these elements implies that α(P) = Q and α(Q) = P.
We can also identify the cocovers of T and F that are handles. They are unique, and they are
Cl3 >©◦ for T and Fk3 for F. Again, these two elemtns are exchanged by α. Now we look at cocovers
of P that are not below Cl3, Cl3 >©◦ or F. P has no such cocover. We must expect therefore that
Q = α(P) has no cocover that is not below α(Cl3), α(Cl3 >©◦) or α(F), that is, not below Cl3, Fk3
or T. However, Q has such a cocover, R. This is the desired contradiction. Hence we see that
the three element tack and the three element fork may not be interchanged by an automorphism.
This is all we need to know for

Proposition 4.15. Let α be an automorphism of NExtS4. Then α fixes the handles pointwise.

This result can be strengthened in many ways, for example to the lattice of all S4–logics of
finite codimension. Further, by inspection of the cocovering numbers one can show
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Proposition 4.16. Let α be an automorphism of NExtGrz. Then α fixes the handles pointwise.

5. Lattice Definable Properties of Frames

We will draw some immediate consequences from the previous theorems. Before we do so,
however, we will outline the basic philosophy behind the proofs. Given a frame F, it is rather
straightforward to compute its lattice of extensions; it is moreover easy to determine how ThF is
related to ThG for some G. (If we want to compute these answers, we must assume here that F
and G are finite or in some sense ‘effective’.) Finally, given F, we can determine its position in the
lattice E Λ for any Λ rather straightforwardly. If we do not know the underyling frame, however,
the problem is by far more difficult. It is related with our question about automorphisms in the
following way. Suppose that NExt Λ has a nontrivial automorphism α, and let Θ ⊇ Λ. Then α(Θ)
and Θ cannot be distinguished by inspection of the lattice NExt Λ. On the other hand, if NExt Λ
has no nontrivial automorphisms, then every logic can be determined uniquely by the way it is
embedded in the lattice. We have established — for example — that an extension of S4 is the logic
of a handle iff it is of finite codimension and its lattice of extensions is linear. We say therefore
that the property of being a handle is lattice–definable or simply l–definable in NExtS4.

Definition 5.1. Let P be a property of logics. P is lattice–definable in NExtΛ, or l–definable
for short, if for each Θ ∈ NExtΛ and each automorphism α of NExtΛ, Θ has P iff α(Θ) has P.

Definition 5.2. Let P be a property of frames. P is lattice–definable or l–definable in NExtΛ
if (1) if F has P and ThF = ThG then G also has P, (2) the set of all ThF such that F has P is
closed under all automorphisms of NExtΘ.

Lattice definability is usually sufficient for our purposes, but we will often make use of a stronger
property than this one, namely lattice–constructibility or l–constructibility. The definition we are
giving below is a little bit vague, since we need to specifiy what we mean by finite information.
But this will become clear in Definition 5.4.

Definition 5.3. Let P be a property of frames. P is lattice–constructible or l–constructible
in NExtΘ if there exists an algorithm which computes whether F has P on the basis of some finite
information concerning ThF.

This definition is general enough to encompass also the case of infinite frames of even general
frames. But this is too general for the present purposes. Since we are dealing only with finite
frames, we might as well restrict them to frames defined over the natural numbers, that is, to
frames 〈F,�〉, where F ⊂ ω is finite. Then we have a set of frames; and this set is countable.
Hence we can restate the definition above, generalizing it at the same time to arbitrary n–ary
relations. Moreover, we now take advantage of the fact that finiteness is l–constructible in NExt Λ
for all transitive Λ. Therefore, the set of logics of finite codimension in NExtΘ, denoted here by
NExt Θδ, is countable. (Note that NExt Θδ is always a lattice, though not necessarily a locale. It
may also fail to have a lowest element.)

Definition 5.4. Let R be an n–ary relation of finite rooted Kripke–frames and Q := Th [R] its
direct image under Th (−). R is l–definable in NExtΛ if (1) R = Th−1[Q] and (2) Q is closed
under all automorphisms of NExtΛ. R is l–constructible in NExtΛ if there is a computable
function f : (NExtΛδ)n → {0, 1} such that f(〈xi : i < n〉) = 1 iff 〈xi : i < n〉 ∈ Q.

This definition is extended to functions from (NExt Λδ)n to some given set M . We only need
the case where n = 1. Also, a unary function f defined on the set of finite frames with values in M
is called l–constructible if there is a computable function g : NExtΛδ →M such that f = g ◦Th.
Usually, M = ω, the set of natural numbers, (the cardinality of F, for example). To continue our
example, the property being a handle is l–constructible in all lattices NExt Λ where Λ ⊇ S4, by
Theorem 4.8. Moreover, the cardinality of a frame F equals the order codimension of its theory.
The latter in turn depends only on the structure of NExtThF, which can be constructed in finite
time from F. Hence we conclude the following theorem.
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Lemma 5.5. The cardinality of a frame is an l–constructible function in NExtS4.

Indeed, say that a property P of frames is intrinsically l–definable (intrinsically l–constructible)
if P is l–definable (l–constructible) and P depends only on NExtThF, that is, if NExt ThF ∼=
NExt ThG then P(F) iff P(G). Likewise define l–constructibility of relations and functions. What
we have shown is that the cardinality is an intrinsically l–constructible function.

Furthermore, the type of the handle is also l–constructible. Since each handle is fixed by its
cardinality and its type (fork, cluster, etc.) we know that the property being isomorphic to F,
where F is a handle, is l–constructible. This is in fact our starting base. By means of these results
we will establish more and more properties of frames to be l–constructible. In the end, we will have
that for every finite rooted S4–frame F the property of being isomorphic to F is l–constructible,
and this establishes that the lattice NExtS4δ has only one automorphism. In fact, to establish
this we show how F can be constructed up to isomorphism from ThF.

We should issue a warning here that l–definability and l–constructibility are relative to the
lattice NExt Λ. It may very well be that a property of frames is l–definable in NExt Λ but not
in NExt Θ. This may have two reasons. (1) Λ properly extends Θ, but Λ is not fixed under all
automorphisms of NExtΘ, (2) Λ properly contains Θ, but NExt Θ admits automorphisms which
do not extend to automorphisms of NExtΛ. The second case appears for example with respect to
S4 and S4.3. Nevertheless, we will establish many results only for NExtS4. The generalizations
to arbitary lattices of S4–logics are often easy to make, and to state the theorems in their most
general form would make them rather unrevealing.

Call a logic of fatness k if it is complete with respect to frames of fatness ≤ k. Equivalently, a
logic Λ is of fatness k iff Λ ⊇ S4/{Clk+1,Clk+1 >©◦}. We denote the logic of frames of fatness ≤ k
by S4.fk. A particular case is k = 1. The logic of frames of fatness 1, S4.f1, is exactly Grz. From
Proposition 4.15 and Lemma 3.4 we deduce

Corollary 5.6. Every automorphism of NExtS4 fixes each logic S4.fk, in particular Grz.

Hence, if F is a rooted frame, α(F) has the same fatness as F. Furthermore, we deduce that any
automorphism of NExtS4 must induce an automorphism on NExtGrz, and this helps in reducing
the choices for automorphisms of NExtS4.

Given a frame F, write 0(k)(F) for the frame resulting from F by reducing all clusters to size
≤ k. That is to say, if a cluster of F has size ≤ k, it remains untouched, otherwise it is reduced to
size k. We call 0(k)(F) the k–skeleton of F. For k = 1 we speak of the skeleton rather than the
1–skeleton. The construction of passing to the k–skeleton can be defined on logics as follows. We
put

0(k) Λ := Λ t S4.fk

It is not hard to see that this does the job. S4.fk is fixed by any automorphism of NExtS4.

Proposition 5.7. The functions 0(k)(−) are l–constructible in NExtS4.

Clearly, 0(k) ThF = Th0(k) F. Hence, having the same k–skeleton is an l–definable relation
between frames (or logics). Unfortunately, it is not easy to deduce the structure of the k–skeleton
of the frame generating a logic. Indeed, this is the main task we have to set ourselves in order to
show that all finite rooted frames are fixed by an automorphism of NExtS4.

Proposition 5.8. The function ft, assigning to each S4–frame its fatness, is l–constructible in
NExtS4.

Proof. Let Θ = ThF. Then the fatness is less or equal to the cardinality of F. Now, for k ≤ ]F
check whether Θ = 0(k)Θ. This can be done in finite time. Since for k = ]F we have equality, the
exists a smallest k for which Θ = 0(k)Θ. This k is the fatness of F. �

We have previously seen that the cardinality of a finite rooted frame is l–constructible. Now, let
γk(F) := ]0(k) F− ]0(k−1) F, k > 1, and γ1(F) := ]0(1) F. Clearly, γk(F) is the number of clusters
of size k in F.
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Lemma 5.9. The number of clusters of size k is invariant under all automorphisms of NExtS4.

Proof. Let Λ be a logic of finite codimension. α(0(k)Λ) = α(Λ t S4.fk) = α(Λ) t α(S4.fk). Since
S4.fk ∈ Fix (α), we get α(0(k)Λ) = 0(k)(α(Λ)). The order codimension of a logic is invariant
under any automorphism. Hence 0(k)Λ and α(0(k)Λ) have the same order codimension. It follows
that their generating frames have the same number of points. So, the number of clusters of a given
size is invariant under any automorphism. �

We can restate this theorem in another, perhaps more visual way.

Definition 5.10. Let F be an S4–frame. Then bw(F) denotes the multiset of all ]C, where C
is a nonfinal cluster. bw(F) is called the body weight of F. tw(F), the tail weight of F, is the
multiset of all ]C, where C is a final cluster. Finally, the weight of F, wt(F), is the multiset
union of the body weight and the tail weight. Equivalently, it is the multiset of all ]C, where C is
a cluster of F.

For example, the body weight of the tack Clk >©◦ is {k}m, its tail weight is {1}m, and the weight
is {1, k}m. The subscript m reminds us that we are speaking of multisets, not of sets. The chain
Ch4 has body weight {1, 1, 1}m, tail weight {1}m, and its weight is {1, 1, 1, 1}m. Notice that the
multiset union, intersection and difference (denoted by ∪m, ∩m and −m, respectively) take notice
of the multiplicities of elements. If A contains an element x p times and B contains x q times then
A∪mB contains x p+ q times, A∩mB contains x min{p, q} times, and A−mB contains x exactly
p − q times if p ≥ q, and 0 times else. The three weight functions are connected with each other
as follows.

wt(F) = bw(F) ∪m tw(F)
bw(F) = wt(F)−m tw(F)
tw(F) = wt(F)−m bw(F)

Given the numbers γk(F), the weight of F is the multiset containing the number k exactly γk(F)
times, for each k. (Clearly, if k exceeds the fatness of F, γk(F) = 0, and so nothing is added to the
multiset.) The following theorem is a restatement of Lemma 5.9 with respect to the weights of F.

Lemma 5.11. Let α be an automorphism of NExtS4. Then bw(α(F)) = bw(F), tw(α(F)) =
tw(F) and wt(α(F)) = wt(F). In other words, the body weight, the tail weight and the weight are
invariant under all automorphisms of NExtS4. Moreover, the weight functions are l–constructible
in NExtS4.

Proof. Let δk(F) be the number of final clusters of F of size k. We show that this number is
invariant. To this end, we define the operation Fk : Λ 7→ ΛtS4/Clk+1. Its effect on the generating
frame is to reduce the final clusters of size > k to clusters of size k. Now reason as in Lemma 5.9.
To show the theorem for the body weight, we appeal to the fact that the body weight is the
multiset–difference of the weight and the tail weight. Alternatively, we can define the function
Bk : Λ 7→ Λ t S4/Clk+1 >©◦ and reason in the same way as before. �

A logic containing S4 is said to be of depth n if it is complete with respect to frames of depth
≤ n. The logic of S4–frames of depth ≤ n is called S4n. It is the logic of all S4–frames of depth
≤ n. S4n is the result of splitting a handle from S4, namely the chain Chn+1.

Corollary 5.12. Every automorphism of NExtS4 fixes S4n for all n.

So, the depth of a frame is also invariant under automorphisms. The depth function is l–
constructible in NExtS4, as can be seen easily. Finally, let us note that S4.3 = S4/{Fk2,Fk2 >©◦}
(see [8]).

Corollary 5.13. Every automorphism of NExtS4 fixes S4.3.

This allows us to deduce various important results on automorphisms of NExtS4 from results
on Aut(NExtS4.3). It follows that an automorphism of NExtS4 fixes NExtS4.3, though we
cannot conclude that it fixes the lattice pointwise. However, this is the case, as we will show in
Theorem 7.1.
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6. The Group of Automorphisms of NExtS4.3

NExtS4.3 is continuous (see [6]). A logic is prime iff it is the logic of a finite rooted frame.
Therefore, by the results of §2, any automorphism of the poset of finite rooted frames (up to isomor-
phism) induces an automorphism of NExtS4.3. We will therefore study possible automorphisms
of this structure. We write 〈ki : i < n〉 for the frame of depth n whose cluster of depth j contains
kj elements. Obviously, ki > 0 for all i. Given F let σ(F) denote the sequence 〈ki : i < n〉 where
kj is the cluster size of the cluster of depth j of F. For example, σ(Cln) = 〈n〉, σ(Cln >©◦) = 〈1, n〉
and σ(Ch3) = 〈1, 1, 1〉. Let γ = 〈ki : i < n〉 and δ = 〈mj : j < p〉. Write γ ≤ δ if there is a strictly
ascending sequence j(i), i < p, such that j(0) = 0 and mj(i) ≤ ki for all i < p. It follows that
ThF ⊆ ThG iff σ(F) ≤ σ(G). Hence, we may restrict ourselves to the study of the automorphisms
of the order 〈(ω− {0})+,≤〉, where (ω− {0})+ is the set of finite, nonempty sequences of nonzero
numbers.

The linear handles are fixed under any automorphism of S4.3. This does not follow from the
previous results but can be established in the same way. First of all, it follows that the set of
handles is fixed, though not necessarily pointwise. There are only three types of handles: the
clusters, the tacks and the chains. The cocovering numbers are now: 2 for the n point cluster, 3 for
the tacks, and n+ 1 for the n element chain. Since for large enough n these numbers are distinct,
it follows that the set of handles is fixed pointwise.

Lemma 6.1. Every automorphism of NExtS4.3 fixes the set of handles pointwise.

An immediate corollary, using Lemma 3.3, is

Lemma 6.2. Every automorphism of NExtS4.3 fixes the set of logics S4.fk pointwise.

Since by Lemma 6.1 the logic of the n–point cluster is invariant under any automorphism, it
follows that the logic S4.3/Cln is also fixed by any automorphism. Hence α(F) has the same tail
weight as F.

Lemma 6.3. Let α be an automorphism of S4.3 and F a rooted frame for S4.3. Then α(F) and
F have the same tail weight and the same body weight.

This means in effect that the automorphism can only permute the nonfinal clusters of a frame.
Now we shall determine the kinds of permutations that are induced by an automorphism α. Let
x(n, i, k) be a frame of length n with weight {k, 1, 1, . . .}m, where the cluster of depth i has size k.
It is easy to see that

〈ki : i < n〉 = glb{x(n, i, ki) : i < n}
(Here, glbM denotes the greatest lower bound of M .) We call a frame a snake if it is of the form
x(n, i, k) for some numbers i, k, n. By the results above, α fixes the set of snakes. It follows from
the equation above that

Lemma 6.4. α is an isomorphism of NExtS4.3 iff it induces an isomorphism on the partial order
of the logics of snakes.

It suffices therefore to study automorphisms α of the partial order of the logics of snakes. α
fixes the set of snakes of a given length and a given k. Since any frame is the greatest lower bound
of a set of snakes, it is enough to study the action of α on snakes. The next lemma reduces the set
to be looked at even more.

Lemma 6.5. Suppose that α(x(n, i, 2)) = α(x(n, j, 2)). Then α(x(n, i, k)) = α(x(n, j, k)) for any
k ≥ 2.

Proof. x(n, i, k) is uniquely determined by the fact that it is a snake of fatness k and length n, and
is below x(n, i, 2). Since α leaves length and fatness invariant, it follows that α(x(n, i, k)) is a snake
of fatness k, length n, and below α(x(n, i, 2)) = x(n, j, 2). Hence α(x(n, i, k)) = x(n, j, k). �
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α fixes the set {x(3, 1, 2), x(3, 2, 2)} = {〈1, 2, 1〉, 〈1, 1, 2〉}. Let us assume that α(〈1, 1, 2〉) =
〈1, 1, 2〉. It follows that α(x(n, n − 1, 2)) = x(n, n − 1, 2), n > 2. Namely, 〈1, 2, 1〉 � x(n, n − 1, 2)
and so 〈1, 2, 1〉 = α(〈1, 2, 1〉) � α(x(n, n − 1, 2)). Hence α(x(n, n − 1, 2)) = x(n, n − 1, 2). Also,
α(x(n, 1, 2)) = x(n, 1, 2), by an analogous argument. Let us now assume that α(〈1, 1, 2〉) = 〈1, 2, 1〉.
Then by the same argument, α(x(n, n− 1, 2)) = x(n, 1, 2) and x(n, 1, 2) = x(n, n− 1, 2).

Lemma 6.6. Suppose that α(〈1, 1, 2〉) = 〈1, 1, 2〉. Then α is the identity.

Proof. By induction on the length of the snakes we show that α(x(n, i, 2)) = x(n, i, 2). The case
n = 3 is settled. Assume that α is the identity on all snakes of length ≤ n where n ≥ 3. α is a
permutation of the set {x(n+ 1, i, 2) : 0 < i < n+ 1}. We have

x(n, i, 2) ≥ x(n+ 1, j, 2) iff j = i or j = i+ 1

Therefore,
α(x(n, i, 2)) ≥ α(x(n+ 1, j, 2)) iff j = i or j = i+ 1

We have shown that α(x(n + 1, n, 2)) = x(n + 1, n, 2). Now assume that α(x(n + 1, i + 1, 2)) =
x(n+ 1, i+ 1, 2). By assumption on n this gives

x(n, i, 2) ≥ α(x(n+ 1, i, 2)), α(x(n+ 1, i+ 1, 2)

Therefore {α(x(n+ 1, i, 2), α(x(n+ 1, i+ 1, 2))} = {x(n+ 1, i, 2), x(n+ 1, i+ 1, 2)}. It follows that
α(x(n + 1, i, 2)) = x(n + 1, i, 2). So, α must fix all x(n + 1, i, 2). This establishes the claim for
n+ 1. �

Lemma 6.7. Suppose that α(〈1, 1, 2〉) = 〈1, 2, 1〉. Then α(x(n, i, 2)) = x(n, n− i, 2) for all n and i.

Proof. A similar argument. Assume that α(x(n, i, 2)) = x(n, n − i, 2) for all 0 < i < n. We show
that then α(x(n+1, i, 2)) = x(n+1, n+1− i, 2) for all 0 < i < n+1. The claim then follows, since
for n = 3 it holds by assumption on α. Assume that α(x(n + 1, i + 1, 2)) = x(n + 1, n − i, 2). We
aim to show that α(x(n + 1, i, 2)) = α(n + 1, n + 1 − i, 2). Since α(x(n + 1, 1, 2)) = x(n + 1, n, 2),
the claim is then established. Recall that

x(n, i, 2) ≥ x(n+ 1, j, 2) iff j = i or j = i+ 1

Hence
α(x(n, i, 2)) ≥ α(x(n+ 1, j, 2)) iff j = i or j = i+ 1

By induction hypothesis this gives

x(n, n− i, 2)) ≥ α(x(n+ 1, j, 2)) iff j = i or j = i+ 1

Hence α(x(n+ 1, j, 2)) ∈ {x(n+ 1, n− i, 2), x(n+ 1, n+ 1− i, 2)}. By inductive hypothesis, α(x(n+
1, i+ 1, 2) = x(n+ 1, n+ 1− i, 2). Therefore α(x(n+ 1, i, 2)) = x(n+ 1, n− i, 2). �

Let Zn denote the cyclic group of order n. Then we have the following main result.

Theorem 6.8. Aut(NExtS4.3) ∼= Z2.

Although the proof is now complete by Lemma 6.4, we will spell out the details more concretely.
α is a permutation of S3 = {〈1, 1, 2〉, 〈1, 2, 1〉}. By Lemma 6.6, if α is the identity on S3, α is the
identity on the snakes of fatness 2, and by Lemma 6.5 it is the identity on all snakes. This implies
that α is the identity. Now let α(〈1, 1, 2〉) = 〈1, 2, 1〉. By Lemma 6.7 and Lemma 6.5, α(x(n, i, k)) =
x(n, n− i, k) for all snakes. From this we deduce that α(〈ki : i < n〉) = 〈k0, kn−1, kn−2, . . . , k2, k1〉.
It remains to be shown that α is an isomorphism of the poset 〈(ω − {0})+,≤〉. Therefore, let
γ = 〈mi : i < p〉 and δ = 〈nj : j < q〉 and assume that γ ≤ δ. Then there exists a strictly
ascending sequence 〈s(j) : i < q〉 such that j(0) = 0 and ms(j) ≥ nj for all j < q. We have to show
that α(γ) ≤ α(δ).

α(γ) = 〈m′
i : i < p〉 = 〈m0,mp−1,mp−2, . . . ,m2,m1〉

α(δ) = 〈n′j : j < q〉 = 〈n0, nq−1, nq−2, . . . , n2, n1〉
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The sequence t(j) defined by t(0) := s(0) and t(j) := p − s(q − i) is strictly ascending as well.
Moreover, n′t(0) = n0 ≥ m0 = m′

0 and for 0 < j < q we have n′t(j) = ns(q−j) ≥ mq−j = m′
j .

Therefore, α(γ) ≤ α(δ). Since α is an involution, it follows from α(γ) ≤ α(δ) that γ ≤ δ. Hence,
α is an isomorphism.

It follows that the l–indeterminacy of logics with respect to S4.3 is either 1 or 2. This in turn
means that not all logics are uniquely determined by their position in the lattice NExtS4.3. We
remark here that there is a rather fast intuitive proof of Lemma 6.6 and 6.7. Namely, the poset
of snakes of the form x(n, i, 2), n, i > 0, is isomorphic to the set ω2 ordered by 〈i, j〉 ≤ 〈i′, j′〉 iff
i ≥ i′ and j ≥ j′, which in turn is isomorphic to the poset underlying the lattice ω⊥ × ω⊥, where
ω⊥ = 〈ω,≥〉. It is not hard to see that this poset has exactly two automorphisms.

7. The Automorphisms of NExtS4

We have seen in the previous section that there are only two automorphisms of NExtS4.3.
Here we will attack the question of automorpshims of NExtS4. We already know that every
automorphism of NExtS4 fixes S4.3. Hence it induces on NExtS4.3 an automorphism. We will
show that this automorphism is always the identity. Hence only the identity on NExtS4.3 can be
extended to an automorphism of NExtS4, though the extension need not be the identity itself.

Theorem 7.1. Every automorphism of NExtS4 fixes NExtS4.3 pointwise.

Proof. Consider the frame to the left.
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Call this frame F. F is obtained form a kite by blowing up the middle clusters. This frame is below
the snake x(3, 1, 2) but not below x(3, 2, 2). Consider α(F). This frame is either below x(3, 1, 2) or
below x(3, 2, 2), but not both. If α(F) is below x(3, 2, 2), then it is not below x(3, 1, 2). α(F) has
fatness 2, and is the frame shown to the right. This frame has cardinality 5. But F has cardinality
6. Contradiction. Hence α(F) is below x(3, 1, 2). It follows that α(x(3, 1, 2)) = x(3, 1, 2), and so α
is the identity. �

This gives us a good start. Unfortunately, the lattice of normal extensions of S4 is far more
complicated than the lattice of extensions of S4.3. For unlike S4.3, not all extensions of S4
have the finite model property, and so the action on the logics of finite codimensions may not
be enough to determine the action of the automorphism on the entire lattice. Nevertheless, it is
already a rather intricate problem to show that any automorphism must fix the elements of finite
codimension pointwise. This is what we will prove now, leaving the full problem unsolved for the
moment.

We can sharpen Lemma 5.11 as follows. Let S4.f(k, d) be the logic of frames whose cluster of
depth ≥ d have fatness k. Then S4.fk = S4.f(k, 0). It turns out that for d > 0,

S4.f(n, d) = S4/x(d+ 1, k + 1, d)

For suppose that F has a cluster C of size > k of depth d > 0. Then let G be the subframe
generated by C. G can be mapped onto the snake x(d + 1, k + 1, d). Conversely, if there exists a
subframe of F that can be mapped onto the snake x(d + 1, k + 1, d), then F contains a cluster of
size at least k + 1 which is of depth at least d.
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Definition 7.2. Let F be a finite S4–frame. Then γk(F, d) denotes the number of clusters of size
k at depth d in F.

So, γk(F) =
∑

d∈ω γk(F, d). Now let 0(k:d)(F) be the generating frame of ThF t S4.f(d, k). (In
other words, we squash all clusters of size > k of depth ≥ d onto clusters of size k.) Consider the
number βk(F, d) := ]f − ]0(k:d)F. Suppose that F is of fatness k+ 1. Then βk(F, d) counts exactly
the number of clusters of size k + 1 of depth ≥ d. Hence, the number of clusters of size k + 1 and
depth = d can be computed for all d. Now we continue this procedure with 0(k:0)F in place of F
and thereby determine the number of clusters of size = k − 1 of given depth of 0(k:0)F. This is
however the same as the number of clusters of size ≥ k− 1 of given depth of F. And so forth. The
following is now immediate.

Lemma 7.3. Let α be an automorphism of NExtS4. Then for all finite rooted S4–frames F and
natural numbers d: γk(α(F), d) = γk(F, d).

Let F be a frame. Then Aut(F) denotes the group of automorphisms of F. Let x be a point of
F. Then denote by [x] the orbit of x under Aut(F). We denote by ∂F the following frame. Its set
of worlds is {[x] : x ∈ f} and we put [x] � [y] iff there exists x′ ∈ [x] and y′ ∈ [y] such that x′ � y′.
We call this the derived frame of F. The following holds.

Proposition 7.4. Let F be an S4–frame. Then ∂ F is slender. Moreover, the map ∂ : x 7→ [x] is
a p–morphism from F onto ∂ F.

Proof. If x and x′ are in the same cluster, there is an automorphism mapping x to x′. (In fact,
the map which exchanges x and x′ and is the identity otherwise is an automorphism.) Hence ∂ F
is slender. To show that ∂ is a p–morphism, we need to prove that if [x] � [y] then there exists a
y′ ∈ [y] such that x�y′. By assumption there exist x̂ ∈ [x] and ŷ ∈ [y] such that x̂�ŷ. Furthermore,
there exists an automorphism α such that α(x̂) = x, by definition of [x]. Put y′ := α(ŷ). Then
y′ ∈ [y], and x = α(x̂) � α(ŷ) = y′, since α is an automorphism. �

Definition 7.5. A frame F is called rigid if the identity is the only automorphism of F.

It may be thought that ∂ F is a rigid frame for every F. This is not so. In fact, derivation
sequences of frames can assume any finite length.

Lemma 7.6. For every number n there is a finite frame F such that ∂n−1 F � ∂n F.

Proof. Take Dn := 〈Dn,�n〉, where Dn := {〈p, q〉 : p+q ≤ n} and 〈p, q〉�n 〈p′, q′〉 iff (i) p′ ≤ p and
q′ = q or (ii) p+ q = p′ + q′ = n and p′ ≤ p. It turns out that ∂nDn

∼= Chn, but ∂n−1Dn � Chn.
For a proof the reader may take a look at Figure 4. �

We will make heavy use of the skeleton. Suppose that we are given two frames F and G with
identical skeleton such that G ≤ F. Then the interval [ThG,ThF] in 〈Ir(NExtS4),≤〉 (the partial
order of irreducible S4–logics) is called the matching space of F and G and denoted by M(G,F).
The matching space is a partially ordered set. We can define the codimension of Λ in M(G,F)
to be the maximum size of a maximal properly ascending chain from Λ to ThF diminished by 1.
(There may be several such maximal chains, so we only look at the length of the longest of them.)
The matching space of F and G consists of all those irreducible logics whose generating frames
are rooted frames which have the same skeleton as F (and as G), but the size of their clusters is
between that of the corresponding cluster in F and the corresponding cluster of G. The structure
of the matching space is not entirely straightforward to construct from F and G. Figure 5 gives an
example of a matching space for the fork Fk3 and the frame formed by blowing up each cluster to
two points.

Definition 7.7. Let F be a frame and C a cluster of F. Denote by �C F the result of adding a
point to C, and by �C F the result of removing a point from C. The map C 7→ Th �C F is called
the trimming map and C 7→ Th �C F the inverse trimming map.
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Figure 4. The derivation sequence of D3
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Notice that �C F is defined only up to isomorphism. Further, if C has only one point, the
operation �C F effectively removes C. We will however not make use of �C in that situation. By
definition, F is a subframe of �C F and �C F is a subframe of F. �C is therefore iterable, and �k

C F

is the result of adding k many points to C, and �k
C F — if defined — is the result of removing

k many points from C. Although �C �C F is generally not identical to F but isomorphic to it,
we assume here for simplicity that the two are identical. Similarly with �C �C F (]C > 1). The
following is now clear.

Lemma 7.8. Let F and G be finite S4–frames with isomorphic skeletons and G ≤ F. Then G
is isomorphic to some H which is obtained from F by a series of operations of the form �C , C a
cluster of F.

So, in a matching space, we can move from higher elements to lower elements by means of
trimming maps. The matching space is a central construction. By embedding an irreducible logic
carefully into some (l–constructible) matching space we will be able to extract the structure of the
generating frame.

There is a construction dual to 0(k) Λ, called Ω(k) Λ. For a frame F, we denote by Ω(k) F the
frame G with the least number of worlds such that (1) G ≤ F, (2) 0(1) G ∼= 0(1) F, and (3)
γj(G) = 0 for each j < k. ((3) says that every cluster of G must have size ≥ k.) It is not hard to
see that G is unique up to isomorphism. Then if Λ = ThF we put Ω(k)Λ := ThΩ(k) F. Although
this construction is not as easily describable in lattice theoretic terms, it is nevertheless clear that
Ω(k) Λ is l–constructible in NExtS4. Let now Θ = ThF for some rooted frame of fatness k. Then
we have the following sequence

. . .0(k+2) Θ ≤ 0(k+1) Θ ≤ 0(k) Θ ≤ Θ = 0(k) Θ ≤ 0(k−1) Θ ≤ . . . ≤ 0(1) Θ



22 MARCUS KRACHT

Figure 5. The trimming space of Fk3
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Definition 7.9. Let Θ ∈ NExtS4. Let k be such that Θ is of fatness k but not of fatness k − 1.
The trimming space of Θ, T (Θ), is the matching space of Θ and Ω(k+1) Θ.

If F is the generating frame of Θ, we shall also speak of T (Θ) as the trimming space of F. The
trimming space of F is the set of all irreducible logics ThG where G is rooted such that (1) G ≤ F,
(2) G is of fatness ≤ k + 1 and (3) 0(1)G ∼= 0(1)F. The following is clear.

Lemma 7.10. Let F be a finite rooted slender S4–frame. Then the trimming space is l–constructible
in NExtS4.

Notice also that the property of slenderness is l–definable. The trimming space will be of cardinal
importance in recovering the structure of F. Notice first of all that the trimming space has a largest
element, ThF, and a lowest element, ThΩ(k+1)F. The dimension is defined in such a way that
the highest element has lowest dimension. This is due to the geometrical intuition that underlies
the trimming space. We analyse first the trimming space of slender frames. If F is slender, the
trimming space consists of all logics of frames G obtained from F by increasing any number of
clusters by one point. We will however restrict our attention to logics of the form Th �C F and of
the form Th �C �D F, where C and D are distinct clusters. It is easily seen that the first of them
have codimension 1 and the second has codimension 2.

Definition 7.11. Let Θ be the logic of a finite rooted slender S4–frame. A point in the trimming
space is an element of codimension (!) 1; a line is an element of codimension 2 which is below
the frame 〈1, 2, 2〉 or 〈2, 2〉. The trimming plane of F is the triple 〈P (F), L(F), I〉, where P (F)
is the set of points, L(F) the set of lines, and I ⊆ P (F)×L(F) is defined by P I L iff P ≥ L, for all
P ∈ P (F) and L ∈ L(F).

The reader may check that the trimming plane is also l–constructible. An example of a trimming
space is shown in Figure 5. Let us look at slender frames first. An element of dimension 1 is the
logic of a frame G which has one more point than F and the same skeleton. Hence, G contains
somewhere a proper cluster. It might seem that there are as many points in the trimming space as
there are points in F, but this is not true. For if x and y are in the same orbit of the automorphism
group, then the same logic arises if we blow up x to a proper cluster, or if we blow up y instead.

Lemma 7.12. Let F be slender S4–frames and C = {x}, D = {y} be clusters. Then �C F and
�D F are isomorphic iff there exists an automorphism of F mapping C to D iff y ∈ [x].

Proof. Suppose there is an isomorphism π : �C F → �D F. Let the cluster of x in �C F consist
of the points x and x′, and the cluster of y in �D F of the points y and y′. It is clear that
π[{x, x′}] = {y, y′}. Hence two cases arise. Case (1). π(x) = y. Then π � F is an automorphism of
F mapping x to y. Case (2). π(x) = y′. Then define π′ by π′(x) := y, π′(x′) := y′ and π′(z) := z
for all other points. Then π′ is an isomorphism from �C F to �D F. (Namely, it is the composition
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of π with the automorphism of �C F which exchanges x and x′.) Now we are in Case (1). Namely,
π′ � F is an automorphism of F mapping x to y. �

So, the trimming space has as many points as there are orbits in F. Hence, only if F is rigid
the set of points of the trimming space has the same cardinality as F, and the trimming map is
injective.

Lemma 7.13. Let F be a finite rooted slender S4–frame. The trimming map is injective iff F is
rigid.

In case F is rigid, the structure of F is recoverable from the trimming space. In general, only
the structure of ∂ F can be determined in this way. For now look at the elements of codimension 2.
These have exactly two covers in the trimming space, which are points. So, a line is in fact some
two element subset of P (F). (Again, this will not hold in general.) Not any pair of points defines
a line. Namely, two points are incident on a line exactly when the line lies below the linear frames
〈1, 2, 2〉 or 〈2, 2〉. However, this means exactly that the improper clusters are related via �. This
follows from the next theorem.

Lemma 7.14. Let F be a finite S4–frame. Then F contains two different clusters C and D of
fatness at least k with C �D iff F ≤ 〈1, k, k〉 or F ≤ 〈k, k〉.

Proof. Clearly, if F ≤ 〈1, k, k〉 or if F ≤ 〈k, k〉, F contains two clusters C and D of fatness ≥ k such
that C�D and C 6= D. So, only the direction from left to right still needs a proof. Suppose C and
D are clusters of F of fatness at least k, C 6= D, and that C�D. Let G be the subframe generated
by C. Without loss of generality we may assume that ]C = ]D = k. Case (1). D is not final.
Take all clusters which cannot see D and map them to a single point. This is a p–morphism onto a
frame of the form C >©K >©D >©◦. Now, collapse K into D. This yields the frame C >©D >©◦, which
is isomorphic to 〈1, k, k〉. Case (2). D is final. Take all clusters different from C and collapse them
into D. This is a p–morphism onto 〈k, k〉. �

Let P be a point in the trimming plane of F. Let us agree to write dp(P) = d if the (unique)
proper cluster of the generating frame of P has depth d. This map is l–constructible in NExtS4.
Hence, P1 and P2 are incident on a line iff the corresponding points of F are connected via �.
Now, since F is slender and rigid, we may identify points of the trimming plane with elements (=
clusters) of F. This bijection is in fact the trimming map. So, let P1 = Th �C F and P2 = Th �D F.
Then C � D with C 6= D iff (0) P1 6= P2 (by rigidity), (1) P1 and P2 are incident on a line and
(2) the depth of C is larger than the depth of D (by the previous lemma). The following is now
proved.

Lemma 7.15. Let F be a finite, rooted, slender and rigid S4–frame, and let 〈P (F), L(F), I〉 be
the trimming plane of F. Let P1,P2 ∈ P (F). Put P1 J P2 iff either P1 = P2 or: (a) P1 and P2

are on a line and (b) dp(P1) > dp(P2). Then the trimming map is an isomorphism from F onto
〈P (F),J〉.

Corollary 7.16. Let F be a finite, slender and rigid S4–frame. Let α be an automorphism of
NExtS4. Then α fixes ThF.

Proof. α(F) is of fatness 1. Moreover, the cardinality of the points of the trimming space and
the cardinality of F are invariant. Hence, the trimming space of α(F) has as many points as the
trimming space of F, and α(F) has as many points as F. It follows that α(F) is rigid. Now, α(F)
is recoverable from the trimming space using comparison with frames which are invariant under
automorphisms of NExtS4. It follows that α(F) ∼= F. �

So, we have shown that slender and rigid frames must be fixed. To extend this result to other
frames, we observe that given F there are frames below F with identical skeleton which are rigid in
a certain sense. Namely, we blow up the clusters in such a way that they end up having pairwise
different cardinality. The resulting frame is rigid on the clusters: we can only permute the points
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of a cluster, but we cannot permute the clusters. This will help us to get a grip on the structure
of the skeleton of F.

Definition 7.17. Let F be a S4–frame. Call F n–spread if for all clusters C and D such that
D 6= C, |]C − ]D| ≥ n.

Clearly, since the weight functions are l–constructible in NExtS4, so are the properties of being
n–spread. If a frame is n + 1–spread it is also n–spread. Any frame is 0–spread. Any frame F is
a p–morphic image of some n–spread frame G with identical skeleton for any given n. We can use
this to show the following.

Lemma 7.18. Suppose that F is a finite and slender S4–frame. Then there exists some G such
that ∂G ∼= F.

Proof. Choose some G which is 1–spread such that 0(1) G ∼= F. An automorphism of G may not
map an element of some cluster C onto some element of some other cluster D. However, if x and y
are elements of the same cluster, there exists an automorphism α of G such that α(x) = y. Hence
∂G ∼= 0(1) G ∼= F. �

Actually, for the last lemma finiteness is not needed.

Lemma 7.19. Let F be an S4–frame which is n–spread for some n > 0. Then there exists an
isomorphism from �C F onto �D F iff C = D.

Proof. Suppose that π : �C F → �D F is an isomorphism. We claim ]C = ]D. For assume not.
Let ]C < ]D. Then F contains a cluster E of same cardinality as D. So, �D F contains two clusters
of cardinality ]D. But �C F contains only one such cluster. Contradiction. Hence, ]C = ]D, and
since F is n–spread with n > 0, C = D. The converse is straightforward. �

So, n–spread frames, where n > 0, are ideal targets for our investigation. Even though n = 1
would be enough for the previous theorem, we will concentrate on frames with n ≥ 2. The reason
is that if a frame is at least 2–spread then we can l–define the function Th �C F → Th �C F.

Lemma 7.20. Let F be a 2–spread S4–frame and C and D clusters of F. If there is a number k
such that wt(�C F)−m {k + 1} = wt(�D F)−m {k − 1}, then C = D.

Proof. The weight of �C F is wt(F), where ]C is replaced by ]C+1. The weight of �D F is wt(F),
where ]D is replaced by ]D − 1. Now, let P := wt(�C F) and M := wt(�D F). P and M differ
by only one element iff C = D. Otherwise, they differ by two elements. (The case ]D = 1 needs
special attention, but causes no difficulty here.) �

The following is an immediate consequence of the preceding theorem.

Lemma 7.21. Let F be a rooted, 2–spread S4–frame. Then the map Th �C F → Th �C F is
l–constructible in NExtS4.

Definition 7.22. Let F be a frame of fatness k. A point of the trimming space is a maximal
element with a cluster of size k+1. The fatness of the point P is defined by f(P ) := k+1−codim P.
A line is a maximal element L with two clusters of size k + 1 such that G ≤ 〈1, k + 1, k + 1〉 or
L ≤ 〈k + 1, k + 1〉. The set of points is denoted by P (F), the set of lines by L(F). The trimming
plane of F is 〈P (F), L(F), I〉 where P I L iff L ≤ P.

This definition generalizes the Definition 7.11. Again, it is clear that the trimming plane is
l–constructible.

Lemma 7.23. Let F be a rooted, finite 1–spread S4–frame and Λ ∈ T (F). Λ is of the form
Th �k

C F for some k iff there is a point P ≤ Λ.
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Proof. We show that Λ is a point iff Λ = Th �d
C F, where d := codim P. Suppose that ]C = f .

Put d := k + 1 − f . Then �d
C F contains exactly one cluster of size k + 1, and it is maximal in

T (F) with this property. Put P := Th �d
x F. Then any extension of P is of the form �m

C F, m ≤ d.
Furthermore, d = codim P and f = f(P). This shows one direction. For the other direction, assume
that P is maximal with the property of containing a cluster of size k + 1. P can be obtained by a
series of operations �C . Suppose that the cluster of P of size k + 1 is C. Then �d

C F ≥ P, where
d := codim P. Clearly, the frame �d

C F also contains a cluster of size k + 1, hence it is isomorphic
to the frame of P, by maximality of P. �

Proposition 7.24. Let F be a 1–spread rooted S4–frame of fatness k and let 〈P (F), L(F), I〉 be
the trimming plane of F. Then put K := {〈P, i〉 : P ∈ P, i < f(P)}, and let 〈P, i〉 J 〈Q, j〉 iff P = Q
or P and Q are on a line and the depth of the (unique) cluster of fatness k+ 1 of P is greater than
the depth of the (unique) cluster of fatness k + 1 of Q. Then 〈K,J〉 is isomorphic to F.

Proof. Before we prove the theorem, let us note that 〈K,J〉 is constructible from the lattice.
Namely, let P and Q be given. To know whether P J Q we not only have to determine whether
they are on a line, but also whether the cluster of depth k + 1 in the generating frame of P has
depth greater than the depth of the cluster of fatness k + 1 occurring in the generating frame of
Q. It follows from Lemma 7.3, that we can determine at which depth the cluster of size of k+ 1 in
a point occurs. Furthermore, given P there is a unique cluster C such that P ≤ �C F. Otherwise
P would not be a maximal frame containing exactly one cluster of size k + 1. Hence we have a
bijection between points and cocovers, and the number f(P) is unique. Therefore, 〈K,J〉 can be
constructed (and is unique). Now define the following map. For each cluster C, let γi : ]C → C
be a bijection. Furthermore, let ζ : C 7→ P (F) map each cluster C to the point P ≤ �C F. Then
the map β : x 7→ 〈ζ(C), γ−1

i (x)〉 is well–defined and a bijection. From Lemma 7.14 we deduce that
J= β[�]. This concludes the proof. �

So we have managed to reconstruct F from the trimming space of its logic, however on condition
that F is 1–spread in addition to being rooted. We finally show that we can reconstruct F even
when it is not 1–spread. Clearly, we can concentrate on irreducible logics. Suppose that Λ = ThF
is given. We look for a logic Θ = ThG where G is 2–spread, is below Λ and has the same skeleton
as F, and has no improper clusters. It is not hard to see that Θ can be constructed using only the
structure of the lattice. Namely, we know the fatness and cardinality of F, hence we can give an
upper bound on the order codimension of G. Finally, we can decide, given Θ, whether G has the
same skeleton as G, whether G ≤ F, and whether G is 2–spread (simply look at the weight). From
Θ the structure of G is reconstructible. Moreover, we can determine the skeleton of F. What is
still left to determine is the cardinality of the clusters of F.

We proceed as follows. The skeleton of F will be 〈P(G),J〉. We have a bijection from P(G) to
the set of cocovers in T (G), which are exactly the frames of the form �C G. Using Lemma 7.20
we construct a bijection from the set of cocovers of G in T (G) onto the set of covers of G in the
matching space M(G,F).

Definition 7.25. Let F be a finite rooted S4–frame and G ≤ F a frame with isomorphic skeleton.
The tower over C, C a cluster of G, is the set TC of elements the matching space M(F,G) which
are above Th �C G but not above any other atom. The cardinality of TC is called the height of
TC .

Lemma 7.26. Let F and G be finite S4–frames with identical skeleton, G ≤ F, and G 1–spread.
Let 〈Ci : i < m〉 be an enumeration of the clusters of G. Further, let hi be the height of the tower
TCi in the matching space of F and G. Then

F ∼= �h0
C0

�h1
C1
. . .�hm−1

Cm−1
G

Proof. Let Λ ∈ TC , C a cluster of G. Then Λ = ThP for some frame P such that �C G ≤ P.
We know that P is obtained from G by a composition of inverse trimming maps. Now, it is clear
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that this composition is of the form �k
C for some k, otherwise Λ ≥ Th �D G for some C 6= D.

Hence, P ∼= �k
C G for some k. Let TC have height h. Then the maximal element of TC is the logic

Th �h
C G. Hence, from the cluster C we must take exactly h elements. Now, F is the least upper

bound of these logics, and it is not hard to check that this least upper bound is the logic of the
frame that is obtained from G by removing from each cluster C exactly ] TC elements. �

Theorem 7.27. There exists an elementary function f : ω → ω such that the following holds.
For every logic Λ ∈ NExtS4 of codimension n the generating frame of Λ is reconstructible up to
isomorphism from the structure of the poset of logics of order codimension at most f(n).

In fact, let F have n elements. Let its weight be {wi : i < p}, where wi ≤ wj if i < j. Then
p ≤ n. Then the cluster sequence {wi + 2i : i < p} is 2–spread. wp−1 + 2(p− 1) < 3n. Therefore
there is a frame of fatness at most 3n which is 2–spread, below F and has the same skeleton as F.
Hence, the trimming space of G consists of the frames of fatness ≤ 3n + 1 and skeleton size ≤ n.
These logics are of order codimension at most 3n2 + n. So, f(n) := 3n2 + n is a good choice.

We conclude with a series of corollaries.

Theorem 7.28. Aut(NExtS4δ) ∼= 1.

This means that the lattice of S4–logics of finite codimension is rigid.

Theorem 7.29. Let α be an automorphism of NExtS4. Then Fix (α) contains all elements of
finite codimension.

Corollary 7.30. Let α be an automorphism of NExtS4 and let Λ have the finite model property.
Then Λ ∈ Fix (α).

Denote by Λo the smallest logic having the same finite models as Λ, and by Λo the largest such
logic. Λo is well–defined, being the intersection of all ThF where F is rooted, finite and F |= Λ. Λo

is well–defined. For
Λo = 〈S4/F : F 2 Λ,F finite and rooted〉

We call [Λo,Λo] the prime spectrum of Λ. (This terminology is due to the fact that the logics
of finite rooted frames are the prime elements of NExtS4.)

Theorem 7.31. Every prime spectrum of NExtS4 is fixed under an automorphism of NExtS4.
In particular, the maximal and the minimal element of a given spectrum are fixed.

Of course, if α fixes all spectra pointwise, α is the identity. So, as far as the results go, we can
only show that the spectra are fixed as sets, not necessarily pointwise.

8. Automorphisms of NExtK.alt1

We will show in this section that the automorphism groups can be rather large. A particular
case is AutNExtK.alt1. Recall from [10] that all extensions have the finite model property, and
that the rooted frames are of the following types. (a) The infinite chain Ich∞, (b) the finite chains
Ichk, k ∈ ω, (c) the loops Loopp,q. The infinite chain is the frame Ich∞ = 〈ω,�〉 where i � j iff
i+ 1 = j. The finite chain Ichk, is the initial segment of Ich∞ of length k. The loops Loopp,q are
based on the set of numbers < p+q, and we have i�j iff i+1 = j or j = p and i = p+q−1. Hence,
the loops contain a cycle of length q, and an initial segment of length p. Figure 6 shows the frame
Loop2,4. Let U be the set of all finite chains and loops. Put F ≤ G iff ThF ⊆ ThG. It turns out
that chains and loops are incomparable, that Ichk ≤ Ichm iff k ≥ m, and that Loopp,q ≤ Loopr,s

iff r ≤ p and s | q (s divides q). This defines the partial order of finite frames. Logics are identified
by closed subsets of U . We will determine these sets as we proceed. First, notice that the chains
are exactly the splitting frames of K.alt1. Their companions are the so–called Chellas–Hughes
logics

CHk := K.alt1/Chk

(This name is taken from [10].) In particular, CH1 = K.alt1.D.
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Figure 6. The frame Loop2,4
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Lemma 8.1. Every automorphism of NExtK.alt1 fixes the Chellas–Hughes logics and the logics
of chains.

A logic extending K.alt1 is either an extension of K.alt1.D or it is the intersection of an
extension of K.alt1.D and the logic of a chain. Since the chains are fixed, we obtain the following
result.

Theorem 8.2. Aut(NExtK.alt1.D) ∼= Aut(NExtK.alt1). Moreover, the following holds.
(1) Every automorphism of NExtK.alt1 induces an automorphism of NExtK.alt1.D.
(2) Every automorphism of NExtK.alt1.D can be uniquely extended to an automorphism of

NExtK.alt1.

A logic properly containing NExtK.alt1.D is tabular. Hence, the closed sets of U are as follows.
M ⊆ U is closed iff it is upward closed and (a) M is a finite set of loops and a finite set of chains,
or (b) M contains all loops and a finite set of chains, or (c) M contains all loops and all chains.

By the previous theorem, we need to study only the group of automorphisms of K.alt1.D.
Therefore, we may restrict our attention to the closed sets of loops. Now denote by L the set of
loops. It is easy to see that there is a bijective correspondence between automorphisms of 〈L,≤〉
and automorphisms of NExtK.alt1.D. For all we need to see is that an order automorphism is
also continuous. But this is clear: the closed sets are the finite subsets L and L itself. These sets
are invariant under any order automorphism. Hence, even though the topology of the spectrum is
not the Alexandrov–topology, the automorphisms of the locale are those of the underlying poset.

We are left with the problem of determining the automorphisms of 〈L,≤〉. We have Loopp,q ≤
Loopr,s iff r ≤ p and s | q. There is exactly one element of codimension 1 (in NExtK.alt1.D),
namely Loop0,1. The elements of codimension 2 are Loop1,1 and Loop0,q, q a prime number. We
call ∆ the set of these elements.

Lemma 8.3. Any permutation of ∆ can be uniquely extended to an automorphism of 〈L,≤〉.

Proof. Let P be the set of elements of L with covering number 1. We claim that

P = {Loopn,1 : n ∈ ω, n > 0} ∪ {Loop0,q : q a prime power}

Let Loopp,q have only one (order) cover. Assume p > 0. Then Loopp−1,q is a cover of Loopp,q. Let
r be a maximal divisor of q. Then Loopp,r is another cover of Loopp,q. Hence q = 1. Now assume
that p = 0. Suppose that q is not the power of a prime. Then q = ab for some relatively prime a
and b. Then

Loopp,q = glb {Loopp,a,Loopp,b}
Therefore, the element Loopp,q has more than one cover. Hence, q is a prime power. Now, for
other direction assume that p > 0 and q = 1. Then Loopp−1,1 in the only cover of Loopp,q. Assume
next that q = qk

∗ , k > 0 and q∗ a prime number. Then Loopp,qk−1
∗

is the unique cover of Loopp,q.
So, P is the set of elements with exactly one cover.
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For each element of P , F, there exists a unique G ∈ ∆ such that G ≥ F. The order on P is a
disjoint union of orders of the form ω⊥, each maximal member corresponding to an element of ∆.
Hence any permutation of ∆ extends to a unique automorphism of 〈P,≤〉.

Now observe that
F = glb {G : G ∈ P,G ≥ F}

For let F = Loopp,q. Since q can be decomposed into a product of prime powers with dis-
tinct base, the claim follows from the following facts: (a) glb {Loop0,q,Loopp,1} = Loopp,q, (b)
glb {Loop0,q1

,Loop0,q2
} = Loop0,q1q2

if q1 and q2 are relatively prime. Hence, each frame corre-
sponds to an upward closed set in P . This correspondence is unique. Moreover, it turns out that
〈L,≤〉 ∼= 〈℘?(P ),⊆〉, where ℘?(P ) is the set of finite, upward closed subsets of P . Therefore each
automorphism of P gives rise to an automorphism of 〈L,≤〉. �

The following is now immediate.

Theorem 8.4. AutNExtK.alt1.D ∼= Sym(ℵ0).

From this theorem we obtain

Corollary 8.5. AutNExtK.alt1 ∼= Sym(ℵ0).

We note the following fact.

Theorem 8.6. Let Λ be a consistent logic properly containing D.alt1. Then the l–indeterminacy
of Λ with respect to NExtD.alt1 is ℵ0.

The proof is rather easy. All proper extensions are finitely axiomatizable, so the l–indeterminacy
is ≤ ℵ0. The orbit of any coirreducible logic is infinite, as we have seen. Hence Λ is mapped onto
infinitely many logics, since all proper extensions of D.alt1 are characterized by finitely many
coirreducibles. With respect to K.alt1 the facts are a little bit more subtle.

Theorem 8.7. Let Λ be a consistent logic properly containing D.alt1. Then the l–indeterminacy
of Λ with respect to NExtK.alt1 is either 1 or ℵ0. It is 1 exactly in the case where Λ is the logic
of a chain or a Chellas–Hughes logic.

The results of this section can be exploited to show that a great variety of groups are automor-
phism groups of some lattices of extensions. We start with the symmetric groups.

Lemma 8.8. Let P be a set of prime numbers with cardinality n. Let k ∈ ω and let Π(P, k) be
the logic of the frames Loop0,pk , p ∈ P . Then AutNExtΛ ∼= Sym(n).

Theorem 8.9. Let G be a finite product of finite symmetric groups. Then there exists a modal
logic Λ such that G ∼= Aut(NExtΛ).

Proof. Let G ∼=
∏

i<n Sym(mi). Choose pairwise disjoint sets Pi of prime numbers such that
]Pi = mi for i < n. Then let Λ := i<nΠ(Pi, i). An automorphism of NExtΛ is uniquely defined
by an automorphism of Spec(NExt Λ). It is easy to see that any automorphism of Λ fixes the
logics Π(Pi, i), and therefore is determined by its action on the lattice NExt Π(Pi, i). The rest
immediately follows. �

This can be generalized. Recall that a graph is a pair 〈E,K〉, where E is a nonempty set, the
set of vertices and K a set of two–element subsets of E, called edges.

Theorem 8.10. Let G a finite product of automorphism groups of finite graphs. Then there exists
a logic Λ such that G ∼= AutNExtΛ.

First, let G be the automorphism group of a graph. For a proof, we may assume that E is a set
of prime numbers. Then Λ is defined to be the intersection of ThLoop0,p, p ∈ E, and the logics
ThLoop0,pq, {p, q} ∈ K. It is easily verified that there is an isomorphisms from Aut 〈E,K〉 onto
AutNExt Λ. If G is a finite product of automorphism groups, observe that we may choose E a set
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of prime powers pi for some fixed i instead. Now reason as above. Examples of groups covered by
this theorem are the dihedral groups.

A somewhat more delicate example are groups arising as automorphism groups of finite t–
designs. A (simple) t–design is a pair 〈P,B〉 where P is a nonempty set and B ⊆ ℘(P ) such that
(1) all members of B have the same cardinality and (2) there is a number λ such that for each set
T ⊆ P of cardinality t there exist exactly λ elements of B containing T . (See [1].) If λ = 1 we
speak of a Steiner triple. Any finite simple t–design is a 2–design as can easily be shown. Other
examples of designs are the finite projective planes, which are 2–designs with λ = 1.

Proposition 8.11. Let G be the automorphism group of a finite simple t–design. Then there is a
modal logic Λ such that G ∼= AutNExtΛ.

Proof. Let G ∼= Aut(〈P,L〉), where 〈P,L〉 is a t–design. Let Q be a set of primes, and β : P → Q
be a bijection. Now let

R := {β[U ] : U ⊆ T ∈ L}
The set W := {Loop0,p : p ∈ R}, is upwards closed. Finally, put

Λ := V∈W ThV = p∈RThLoop0,p

g is an automorphism of NExt Λ iff it is an automorphism of 〈W,≤〉 iff it is an automorphism of
〈P,L〉. This gives the claim. �

Groups covered by this theorem are AΓLd(q), PΓLd(q), and the Mathieu groups. (See [3].) The
previous result can be extended to finite products of such groups, by observing first that we could
have taken Q a set of powers of primes, as in the example with symmetric groups. No doubt these
results can be improved even further.

9. Conclusion

We have established that the group of automorphisms of NExtS4.3 is isomorphic to Z2 and
that the group of automorphisms of NExtK.alt1 is isomorphic to Sym(ℵ0). Furthermore, every
automorphism of NExtS4 fixes all elements of finite codimension and hence all tabular logics and
all logics with the finite model property. The greatest obstacle in improving these results is the
fact that we have no good knowledge about the lattice of S4–logics. It might seem that if we are
only interested in the automorphism group of this lattice we need not know its structure too well,
but at present we see no way to determine the group of automorphisms independently from the
structure of the lattice. It seems feasible to show that the lattice of elements of finite codimension
of the lattice of K4–logics are fixed under every automorphism. To see that, one needs to establish
first that every automorphism of NExtK4 fixes S4, so that we know already that it must be the
identity on the upper part of S4.

We end the paper with a series of conjectures, in order of increasing difficulty.

Conjecture 9.1. The lattice of S4–logics of width n is rigid for every n.

Conjecture 9.2. The lattice of K4–logics of finite codimension is rigid.

Conjecture 9.3. The lattice of K4–logics is rigid.

Conjecture 9.4. The lattice of normal modal logics is rigid.

The last conjecture is the most interesting one for many reasons. For if it is true then a normal
modal logic is uniquely identified by its place in the lattice of normal modal logics.

A related question is whether the lattice of intermediate logics is rigid. Since this lattice is iso-
morphic to NExtGrz, we may ask whether our results on NExtS4 extend to the lattice NExtGrz.
However, only intrinsically l–definable properties do not depend on the lattice in which a logic is
embedded. For example, in NExtGrz cardinality is l–definable, since it is intrinsically l–definable
in NExtS4. Likewise the property of being a handle. However, many constructions have made
heavy use of blowing up clusters, so are not intrinsic in the sense of the definition. Our preliminary
results (only partly contained here) seem to support the
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Conjecture 9.5. The lattice of intermediate logics of finite codimension is rigid.
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