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0. Introduction. In [Schumm, 1981] a logic is said to bound a property P if all
proper extensions have P while the logic itself lacks P. If all extensions of a logic have
P then we say that this logic has P essentially. For some properties such as being tabular
bounding logics have been found; for other their existence has been proved without a
particular example being known. We will construct logics bounding various properties in
the lattice of normal modal logics and in the lattice of intermediate logics. In [Schumm,
1981] the prime examples of modal logics bounding certain properties are non-normal
logics and thus our results will be a definite improvement on this. We concentrate on
properties of finite axiomatizability and finite model property (fmp). The first to note that
finite axiomatizability is a bounded property was [Rautenberg, 1979]. Shortly after that
[Wroński, 1979] constructed a logic bounding finite axiomatisability which is based on a
3-valued matrix. The case of normal modal logics was still open. Our first example is an
extension of K4.3, and it bounds fmp as well; we have thus proved that not all extensions
of K4.3 have fmp, unlike the case of S4.3. We will also construct an intermediate logic
bounding finite axiomatizability thus solving a problem posed in [Rautenberg, 1979] and
also logics bounding fmp and other completeness properties. In order to prove these
results a number of theorems had to be established concerning the modal theory of infinite
frames and eliminability of points in frames. I guess these auxiliary results have made
the investigation into these rather obscure logics worthwile. I wish to thank first of all
Vladimir Rybakov for his extreme care in checking this manuscript and Dick de Jongh
for reading parts of an earlier version. If errors have remained, it is of course my own
responsibility. Wolfgang Rautenberg has helped me greatly with his knowledge of the
field. Furthermore, I wish to thank Sun Ra, Abdus Salam and the Kageyama School of
Go for the inspiration.

1. Notation. In this essay all logics are transitive, that is, extensions of K4. We will
assume familiarity with the notions of modal logic and we will keep our notation standard.
A frame is as usual a pair f = 〈 f ,C〉 where C is a binary relation on f . No distinction is
made between a frame and its set of worlds. We write an ordinary arrow p : f → g if p
is a p-morphism. If in addition p is injective we denote this by p : f � g and if p is a
surjective p-morphism we denote this by p : f � g. A frame g is called an extract of f
if g is the p-morphic image of a generated subframe of f . We say that f omits g if g is not
an extract of f . If p embeds f as a subframe in the sense of [Fine, 1985] then we write
f
⊂
→ g. If f is a transitive frame we call t a weak successor of s if either s = t or s C t.

A successor is called strong if it is not a weak successor. A frame f is one-generated
if there is a point s ∈ f such that every point t ∈ f is a weak successor of s. All logics



4

considered in this essay will be of finite width; to be more precise, they will all be of width
2. Logics of finite width have been defined and closely studied in [Fine, 1974b]. They
are known to be complete with respect to Kripke-frames; moreover, the Kripke-frames
can be chosen such that the function assigning depth to points can be extended over the
whole frame (see [Kracht, 1991]). In general, the depth of a point is therefore an ordinal
number, possibly infinite. If s ∈ f is a point of depth α (we write dp f (s) = α) and t a
strong successor then dp f (t) < α. If t is only a weak successor then dp f (t) ≤ α. Taking
the usual definition of an ordinal number as the set of all smaller ordinals, this allows us
to define the depth via dp f (s) = {dp f (t) : s C t 6 s}; note that by this definition terminal
points have depth 0 but this is rather welcome for our purposes. For a frame f we let
dp( f ) = {dp f (s) : s ∈ f }, and so a one-point frame is of depth 1.

For axiomatizing logics we use two tools. That of a splitting ([Rautenberg, 1980]

and [Kracht, 1990]) and that of a FINE-splitting ([Fine, 1985]). If Λ is a logic containing
K4 and f a finite, one-generated frame we denote by Λ/ f the logic obtained by splitting
f from Λ—which is the smallest logic Θ containing Λ such that f < Md(Θ)—and by
Λ{ f } the smallest logic containing Λ and the subframe logic K4 f . (We are not using
the subscript notation of [Fine, 1985] here in order to avoid small print.) Extensions
considered here are usually of the kind K4M/N where M and N are (possibly infinite)
sets of finite, one-generated frames. K4M/N simply denotes the splitting of the subframe
logic K4M by the frames of N.

For a property P a logic is said to have P essentially if all extensions have P. A
logic is said to bound P or to be pre-P if all proper extensions have P but the logic itself
is not. For finite model property and finite axiomatizability two important facts can be
proved. If Λ1,Λ2 are transitive logics which are essentially finitely axiomatizable (have
fmp essentially) then Λ1 ∩ Λ2 is essentially finitely axiomatisable (has fmp essentially).
Both are seen using the next lemma. A property P of logics is said to be intersective if
from the fact that Λ1 and Λ2 both have P we can infer that Λ1 ∩ Λ2 has P as well.

Lemma 1 Suppose that both Λ1 and Λ2 have P essentially and that P is intersective.
Then Λ1 ∩ Λ2 has P essentially. In other words, to have P essentially is intersective as
well.

Proof. Suppose that Θ ⊇ Λ1 ∩ Λ2. Then (Θ ∪ Λ1) ∩ (Θ ∪ Λ2) = Θ ∪ (Λ1 ∩ Λ2) = Θ, by
distributivity. By hypothesis, both Θ ∪ Λ1 and Θ ∪ Λ2 have P and since P is intersective,
Θ has P as well. �
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By this lemma, to have fmp essentially is intersective. Moreover, to be finitely axiomati-
sable is intersective if we concentrate on extensions of K4; thus to be essentially finitely
axiomatisable is intersective for transitive logics.

Some particular notations for frames will also be useful. A reflexive point is denoted
by • and an irreflexive point by x. The box � stands for either • or x.

2. Strings and Decompositions. In most cases it is not easy to decide whether a
particular frame can be mapped p-morphically onto another and to see that a given map
is a p-morphism is mostly also not straightforward. The story of this paper had to be
rewritten a number of times because a certain p-morphism has been overlooked. In order
to have some more rigorous methods for checking, two tools will be introduced here. The
first is the decomposition of p-morphisms. Call a p-morphism π : f � g minimal if it
is not an isomorphism and for every factorization f � h � g h is isomorphic either to
g or to f . Likewise a p-morphism ι : f � g which is not an isomorphism is minimal
if for every factorization f � h � g h is isomorphic to either g or f . Here is a lemma
that shows the importance of minimal morphisms in our context. It is an adaptation of a
result originally found in [de Jongh and Troelstra, 1966] and rediscovered in [Bellissima,
1988].

Lemma 2 Suppose that f , g are Grz-frames without ascending chains. Then π : f � g is
minimal iff there is exactly one nontrivial fibre π−1(x) and it contains two points. ι : f � g
is minimal iff ](g − ι( f )) = 1.

Proof. In each case the conditions on minimality are sufficient. That they are also neces-
sary will be shown. Let π : f � g be minimal. Then take a point s of minimal depth such
that there is a t , s with π(t) = π(s). If both are of equal depth then the map ρ identifying
just s with t is a p-morphism; for if ρ(s) C ρ(x) then either ρ(x) C ρ(s) in which case x = s
and so s C x or ρ(x) 6 ρ(s) in which case π−1(x) = {x′} since π−1(x) must contain points
of lesser depth than s (and t). But π was a p-morphism and so t C x′ as well. Similarly for
the remaining cases of ρ(x) C ρ(y). If, however, the depth of t is greater than the depth of
s then take an immediate predecessor x of s. By the same methods show that the map ρ
identifying x with s is a p-morphism. If π was not minimal, then it factors through ρ.

Now if ι : f � g is minimal, let M = g− ι( f ). Since M has no ascending chains there
is a maximal point m ∈ M. Now h = ι( f ) ∪ {m} is a generated subframe of g and ι clearly
factors through the embedding h� g. �
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It is clear that between such frames p-morphisms are decomposable into the elementary
operations of adding a point, conflating two points or dropping a point. (The latter two
are not the same.)

The next tool is that of a linear decomposition of frames. If f and g are frames, let
f >© g denote the frame obtained by putting f before g. To be precise, f >© g = 〈 f +g,C f ∪

Cg ∪ f × g〉 with f + g being the disjoint union. Any sequence >© i∈α fi with α ∈ Ordop, the
converse well-orders, is called a string and the fi are the segments. Segmentation plays a
role in the decomposition of p-morphisms. The operation >© produces chains of frames,
while the disjoint union ⊕ produces what is sometimes called an anti-chain.

Lemma 3 π : f >© g � d is a p-morphism iff π � f and π � g are p-morphisms. ι :
f >© g� d is a p-morphism iff ι � g is an isomorphism and ι � f a p-morphism. �

Moreover, if f >© g � d then d � f ′ >© g for some f ′. For surjections � this need not
hold. But for minimal p-morphisms we can get a clear picture of the possibilities. Let
π : f >© g� d a minimal p-morphism such that the nontrivial fibre π−1(x) is not contained
in either f or g. Then, as π−1(x) has two points, s, t say, one of them is in f the other in
g. Let then s ∈ f , t ∈ g. We have s C t 6 s. It then follows that g must be one-generated
and therefore g � • >© g′. Thus π may only conflate and end point of f with the generator
of g. If >© i∈α fi is a maximal decomposition if every fi cannot be decomposed into two
segments, then the following holds.

Lemma 4 Suppose that f = >© i∈α fi is a maximal decomposition and π : f � g a
minimal p-morphism. Then π is either of type πi : fi � f ′i or of type πi : fi >©•� f ′i >©•.
In the first case π is said to be decomposable. In the second case we call π a fusion. �

Finally a word about subframe axioms. In [Fine, 1985] it is shown that for most frames f
the subframe axiom for f reduces to a non-embeddability condition for a set F of frames.
In the special case of axioms that we are considering, this set reduces to { f }. Namely,
these are frames of the type • >© (φm ⊕ φn) where φn, φm are linear. Moreover, if • >© g is
indecomposable non-embeddability of • >© g into a string • >©Λ can be checked segment-
by-segment by looking whether g embeds into a segment of Λ; again, our frames have
this property.

3. Homogenization and dropping points. We will make heavy use of the homoge-
nization technique as developed in [Kracht, 1991]. The ideas, which were extracted from
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[Fine, 1974b] and [Fine, 1985], are as follows. Given the sentence letters Pn = {pi : i ∈ n}
and a k ∈ ω let Fm(k, n) denote the set of formulas based on Pn and of modal degree ≤ k.
Fm(k, n) is a boolean algebra whose atom set we denote by At(k, n). For the rest of this
essay, k and n will remain fixed throughout and P ∈ Fm(k, n). Suppose now that there is
a model 〈g, γ, s〉 |= P with dom(γ) = Pn. Then, as it was noted in [Fine, 1974b] and [Fine,
1985], a much simpler model can be constructed for P. Call u ∈ g A-maximal in 〈g, γ〉 if
〈g, γ, u〉 |= A and for all x B u such that 〈g, γ, x〉 |= A we have x C u. Call u maximal if it
is A-maximal for some atom A ∈ At(k, n). This A is called the atom of u in 〈g, γ〉. Since
we are working with frames without strictly ascending chains of points we know that for
every x ∈ g such that 〈g, γ, x〉 |= A there exists a maximal weak successor xµ with atom A.
There is now an important observation on ‘dropping’ points from a model. Let gµ denote
the subframe of maximal points in g, let h be a subframe of g such that gµ

⊂
→ h

⊂
→ g; then

by induction it can be shown that for P ∈ Fm(k, n)

〈g, γ, s〉 |= P⇔ 〈h, γ, sµ〉 |= P,

where γ : Pn → 2h is the natural restriction of γ : Pn → 2g (see [Kracht, 1991] for a
proof). Thus we can drop any set of non-maximal points from a model for P and still
we retain a model for P. Finally, if g is one-generated and a frame for Grz{wd(`)} then
]gµ < `×]At(k, n). This is so because if xµCyµ then the atom of xµ must be different from
the atom of yµ. Therefore a strictly ascending chain in gµ contains at most ]At(k, n) points.
Moreover, for every A there can be at most `maximal points with atom A. Maximal points
can be distributed quite arbitrarily in a frame. However, note that points of depth 0 are
always maximal. This is quite worth remembering.

The method of homogenization developed in [Kracht, 1991] is not sophisticated enough
to yield the results we need. What is called for in our context is a result which allows to
‘move’ the subframe of maximal points into a certain position. There is a rather simple
theorem telling us when this can be achieved. Let gσ

⊂
→ g be a subframe of g. We call

gσ m-compatible with gµ if there exists an isomorphism ι : gµ → gσ such that for every
x ∈ g there is a x̃ ∈ g such that for the sets xS := {y ∈ gσ : xC y} and x̃M := {y ∈ gµ : x̃C y}
we have xS = ι[x̃M]. We define x̃ on g by letting x̃ = ι−1(x) if x ∈ gσ and else choose x̃
such that xS = ι(x̃M). Next we define xσ := ι(x̃µ). The next theorem tells us that there is
a valuation γ̃ such that gσ is the subframe of maximal points of 〈g, γ̃〉 and that x and xσ

have the same atom in 〈g, γ̃〉.
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Theorem 5 Let gσ be m-compatible with gµ. Then there exists a valuation γ̃ such that for
all P ∈ Fm(k, n)

(†) x ∈ γ̃(P)⇔ x̃ ∈ γ(P)

Consequently, gσ is the subframe of maximal points of 〈g, γ̃〉 and x and xσ have the same
atom.

Proof. Define γ̃ by x ∈ γ̃(p) ⇔ x̃ ∈ γ(p) for p ∈ Pn. (†) is now proved by induction. It
follows that (‡) : x ∈ γ̃(P) ⇔ xσ ∈ γ̃(P). For x ∈ γ̃(P) ⇔ x̃ ∈ γ(P) ⇔ x̃µ ∈ γ(P) ⇔
x̃σ ∈ γ(P)(since x̃σ = ỹµ)⇔ xσ ∈ γ̃(P). Now for the proof of (†). The only critical step is
P = ♦Q. If x ∈ γ̃(♦Q) then y ∈ γ̃(Q) for some y B x. By IH, ỹ ∈ γ(Q) and ỹµ ∈ γ(Q) and
so x̃ ∈ γ(♦Q) since x̃ C ỹµ. (This is so because yσ ∈ xS and thus ỹµ = ỹσ ∈ ι−1[xS ] = x̃M.)

Conversely, assume x̃ ∈ γ(♦Q). Then y ∈ γ(Q) for some y B x̃. We can assume that
y = yµ and so y = z̃µ for z = ι(y). By IH, z ∈ γ̃(Q) since z̃ = y. But x̃ C z̃ = z̃µ and so
z̃µ ∈ x̃M from which z ∈ xS and consequently x C z. Thus x ∈ γ(♦Q).

By (‡), x and xσ have the same atom in 〈g, γ̃〉. To see that xσ is maximal, assume that
xσ C y and that both have the same atom in 〈g, γ̃〉. Then xσ C yσ and so x̃µ C ỹµ. Since x̃µ

and ỹµ have the same atom in 〈g, γ〉, ỹµ C x̃µ and so yσ C xσ from which y C xσ. �

Theorem 5 has consequences worth reflecting on. First, if we have a model, then this
theorem says that we can drop some or all non-maximal points with impunity. However,
sometimes dropping points has to be used with care. For if g is a frame for a logic Λ it is
not guaranteed that dropping points will yield another frame for Λ. Thus call dropping M
from g safe if Th(g − M) = Th(g); moreover, call dropping M supersafe if for every f , h
Th( f >© (g−M) >© h) = Th( f >© g >© h). If g−M is an extract of g, dropping M is safe and
if g − M is a p-morphic image of g dropping M is supersafe.

In addition to dropping from a model there is the possibility of dropping from a frame
analoguous to [Fine, 1974b]. But the difference is that we can actually give some explicit
criteria for when points can be dropped. Let us call a set N ⊂ g eliminable if for every
finite subframe gµ ⊆ g there is an m-compatible gσ such that no point of N is a point of
gσ. Then any model for a formula P on g can be made into a model of P on g−N. (For by
eliminability, for any model for P we can assume that no maximal point is in N since we
have finite width and no ascending chains; but N can be dropped from the model.) Hence
Th(g − N) ⊆ Th(g). However, the following theorems demonstrate that the situation is as
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good as it can be.

Theorem 6 Suppose that N ⊂ g is a set of eliminable points. Then dropping N is safe.

Proof. We need to show that Th(g−N) ⊇ Th(g). Thus let P be consistent with Th(g−N).
Then there is a model 〈g−N, γ, s〉 |= P. We will find a δ such that 〈g, δ, s〉 |= P. To this end
let (−)µ be as usual the function assigning to each x ∈ g − N a maximal weak successor
with the same atom (with respect to γ). Now extend (−)µ to a function (−)ν : g → g by
choosing for each x ∈ N a successor xν which is also maximal, that is, xνµ = xν (by which
also xνν = xν). (For example, there always is a successor of depth 0 that is maximal.)
Now define x ∈ δ(p) ⇔ xν ∈ γ(p). We will show by induction on Q ∈ Fm(n, k) that
x ∈ δ(Q) ⇔ xν ∈ γ(Q). In particular, it follows that if x < N, x ∈ γ(Q) ⇔ xµ ∈ γ(Q)
(by definition of (−)µ)⇔ xν ∈ γ(Q) (since xµ = xν)⇔ x ∈ δ(Q). After having done the
induction we have that 〈g, δ, s〉 |= P since s ∈ g − N and 〈g − N, γ, s〉 |= P.

In the induction there is only one critical case, that of ♦. Let thus Q = ♦R. If x ∈ δ(♦R)
then for some successor y ∈ δ(R). By IH, yν ∈ γ(R) and so yνµ ∈ γ(R). yνµ is a weak
successor of y and so x C yνµ from which x ∈ γ(♦R), as x C yν. Conversely, if xν ∈ γ(♦R)
then for some successor y ∈ γ(R) from which y < N and hence by IH yµ ∈ γ(R) and so
yν ∈ γ(R) from which again by IH y ∈ δ(R). Now as x C y, x ∈ δ(♦R). �

Lemma 7 Let N be eliminable in g. Then N is eliminable in f >© g >© h for every pair of
frames f , h.

Proof. Suppose N ⊂ f >© g >© h. Let N f = N ∩ f ,Ng = N ∩ g,Nh = N ∩ h. By assumption
on g, there is a N′g such that N′g ∩M = ∅ and N′g is m-compatible with Ng in g. We have to
show now that in that case N is m-compatible in f >© g >© h with N′ = N f ∪ N′g ∪ Nh.

To start, we have an isomorphism ιg : Ng → N′g such that for every x ∈ g there is a x̃
so that xN′g = ιg[x̃Ng]. Now let ι : N → N′ be defined by ι(x) = ιg(x) if x ∈ g and ι(x) = x
otherwise. Now define x̂ by x̂ = x if x ∈ f ∪ h and x̂ = x̃ if x ∈ g. Then ι is first of all an
isomorphism as is readily checked; moreover, if x ∈ f >© g >© h then ι[x̂N′] = xN . To see
this, note three cases. Case 1: x ∈ h. Then x̂ = x. And so ι[x̂N‘] = ι[xN′] = xN′ = xN . Case
2: x ∈ g. Then ι[x̂N′] = ι[x̃N′] = ιg[x̃N′ ∩ g]∪ ιh[x̃N′ ∩ h] = xN ∩ g.∪ .xN ∩ h = xN . Case 3:
x ∈ f . Then ι[xN′] = ι f [xN′∩ f ]∪ιg[xN′∩g]∪ιh[xN′∩h] = xN′∩ f .∪ .ιg[xN′∩g].∪ .xN′∩h =
xN ∩ f . ∪ .xN ∩ g. ∪ xN ∩ h = xN . �
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Corollary 8 Let N be eliminable in g. Then dropping N is supersafe. �

4. A logic bounding finite axiomatizability. If α is a converse well-order, that is
αop ∈ Ord, α is a isomorphic to the string >© i∈αx. (Recall here that x stands by convention
for the one-element irreflexive frame.) The logic of all converse well-orders is G.3. Every
proper extension of G.3 is finitely axiomatizable and tabular while G.3 has fmp and is
finitely axiomatisable. Although this also follows from the subframe theorem of [Fine,
1985] we will give a proof using the dropping technique to make the reader familiar with
it. Let α be an infinite converse well-order, that is, αop ∈ Ord. Take any finite αµ ⊆ α.
Then αµ is a finite well-order of cardinality k. Take as ασ the points of depth ≤ k in α. This
subframe is m-compatible with αµ iff 0 ∈ αµ. But if αµ is the subframe of maximal points,
0 ∈ αµ is guaranteed. By consequence, all points of depth ≥ ω can be dropped. Thus
for infinite α, Th(α) = Th(ωop). Now we are studying the logic of the frames • >©αop,
α ∈ Ord. Let K4.3• =

⋂
〈Th(• >©αop) : α ∈ Ord〉. K4.3• is a subframe logic; namely,

if we add to K4.3 the three following axioms we get K4.3•. (Note that � matches with
either • or x.)

-• • •-�

The first frame excludes that we have a non-initial reflexive point, while the second ex-
cludes proper clusters. Again by [Fine, 1985] K4.3• has fmp—a fact which the dropping
technique can also show nicely. Now it is easy to show that K4.3• has 2ℵ0 extensions and
therefore not all extensions can be decidable. Just consider from the powerset of ω into
the lattice of normal extensions of K4.3• denoted by EK4.3• the map ι : P(ω)→ EK4.3•

defined by ι : N 7→ K4.3•/{• >©αop : α ∈ N}. Since for finite α, β • >© βop is not an
extract of • >©αop unless α = β the logics Th(• >©αop) and Th(• >© βop) are incompara-
ble for different numbers; therefore, ι is injective and so ]EK4.3• = 2ℵ0 . (See [Fine,
1974a] for a similar argument.) Now consider the logic Ref := ι(ω). This logic is not
finitely axiomatisable; for we have an axiomatization by infinitely many axioms none
of which is dispensable. On the other hand, Ref has the same finite models as G.3.
Consequently, as G.3 is finitely axiomatisable the two must be different. So Ref lacks
fmp. This proves first of all that K4.3 does not possess fmp essentially. But there is
more. Using Theorem 6 we can show that for infinite α, Th(• >©αop) = Th(• >©ωop)
by showing that all points of depth > ω are eliminable except for the reflexive point.
K4.3• =

⋂
〈Th(• >©αop) : α ∈ Ord〉 =

⋂
〈Th(• >©αop) : α ∈ ω + 1〉 and so we have that
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Ref = Th(• >©ωop) since we have eliminated the finite • >©αop. Then no proper extension
of Ref can have • >©ωop among its models, nor any other • >©αop. Thus every proper
extension includes the logic of the converse ordinals, which is G.3.

Theorem 9 The logic Ref = K4.3•/{• >©αop : α ∈ ω} bounds finite axiomatizability and
finite model property. Moreover, Ref = Th(• >©ωop). �

The extension lattice of Ref looks as follows.

• Ref

• G.3
.
.
.
• Th(4)

• Th(3)

• Th(2)

• Th(1)

•

This can be interpreted as a splitting result as follows. We observe that • >©ωop is a
Ref-frame and therefore ♦p ∧ �(¬p ∨ ♦p) is consistent with Ref. Hence Ref 0 ♦p →
♦(p ∧ �¬p), that is, Ref 0 �(�p → p) → �p. But now, since Th(• >©α) = Th(• >© β) for
all infinite converse ordinals, we have that Ref = G.3∩Th(• >©ωop) = Th(• >©ωop). Thus
G.3 = Th(• >©ωop)/ • >©ωop. Indeed, the algebra of finite and cofinite sets of • >©ωop

is finitely presented by factoring out the equation a → ♦a = 1 from the freely one-
generated algebra; in symbols, A f (• >©ωop) � FRef(a)/{a → ♦a}. We thus obtain that
G.3 = Ref(�(�p → p) → �p) (see [Kracht, 1990]). It is striking that in the presence
of this axiom we can forget almost all other axioms; for we have G.3 = K4.3•(�(�p →
p) → �p). So while Th(• >©ωop) is obtained by splitting out countably many frames and
yet is not finitely axiomatisable, G.3 is obtained by splitting just one more frame and it
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is finitely axiomatisable. The paradox is quickly resolved if we remind ourselves of the
following facts. If N is a finite subset of ω then ι(N) can be shown to have the finite
model property and therefore A f (• >©ωop) is not finitely presentable and does therefore
not induce a splitting. However, as soon as N is cofinite, ι(N) contains sufficiently many
axioms to make A f (• >©ωop) finitely presentable.

5. The intergalactic research program. The intermediate case is by far more complex.
Obviously, one cannot use the example of a linear logic since all extensions of Grz.3 have
the finite model property. But we need not go very far beyond that. The logic we are
looking for will be of width 2.

wd(2) �
�

��

Q
Q

QQ

(We are now omitting the arrows; they are assumed to go from left to right.) Frames for
Grz{wd(2)} which are one-generated have at most two points of given depth. We call the
set s` f (α) = {s ∈ f : dp f (s) = α} the α-slice of f . Following [Kracht, 1991] we say that
a logic containing K4 is of tightness n if is contains the logic K4{ti(n)} where ti(n) is the
following set of frames. (Never mind the confusion between a frame and a set of frames;
above S4 this set reduces anyway to a singleton which will then carry the name ti(n)as
well.)

ti(n) �
�

��

Q
Q

QQ . . .� �
n

Alternatively, Λ is of tightness n if for every one generated frame f for a point s there
does not exist a chain of n points incomparable to a successor of s. For example, Λ ⊇ K4
is of tightness 1 iff no point in a one-generated frame is incomparable with any other iff
every one-generated frame is linear iff Λ ⊇ K4.3. Logics of finite width are complete
with respect to frames in which every point has a depth. If f is such a frame and s a point
of depth α = ω × k + β with β < ω then the maximally connected subframe containing
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s of points of depth less than ω × (k + 1) but at least k × ω is called the galaxy of s.
(This is reminiscent of the definition of a galaxy in non-standard analysis.) If Γ,∆ ⊆ f
are galaxies of f we write Γ C ∆ if for all g ∈ Γ and all d ∈ ∆ g C d; Γ and ∆ are called
comparable if either Γ C ∆ or ∆ C Γ or Γ = ∆. A frame is called a street if is a string
of galaxies. In a street there is in addition to the notion of a depth also the rather coarse
notion of galactic depth. A point is said to be of galactic depth k + 1 if it is of depth
k × ω + β for some β. In that case we also say that this point is of local depth β; here it
pays off to let terminal points have depth 0, since for points of galactic depth 0 local depth
and depth are the same. The depth is thus determined by the local depth and the galactic
depth. Likewise, a frame is of galactic depth k if it is of depth k × ω + β for some β. It
can be shown that logics of finite width and finite tightness are complete with respect to
streets. For let Λ ⊇ K4{wd(m), ti(n)}. Then Λ is complete; thus let f be a one-generated
Λ-frame. Let all galaxies of depth < β be linearly ordered. Assume that there are two
galaxies of depth β, namely Γ and ∆. They must then be incomparable but there is a s such
that s precedes both Γ and ∆. Then neither s ∈ Γ nor s ∈ ∆. In addition, one of Γ,∆ must
be an infinite galaxy; if not, s must belong to one of the galaxies. Let Γ be infinite. Then
Γ contains a chain of n points none of which is comparable with any point of ∆. Since no
member of ti(n) embeds into f , ∆ must be empty. So Γ is the only galaxy of depth β. It is
perhaps instructive to see an example of a frame with a non-finite and non-initial galaxy
in order to understand why the argument is not entirely trivial.

•

•

. . . • • • •�
�

�
�

A logic has fmp iff it is complete with respect to frames of galactic depth 1. A logic
has galactic fmp if it is complete with respect to frames of finite galactic depth.

Theorem 10 All extensions of S4 of finite width and finite tightness have galactic fmp.

Proof. We prove that dropping a galaxy of non-zero galactic depth is supersafe. It the
follows that any street is modally equivalent to its galactically finite substreets. Thus
let (Σ >© )Γ >© Σ̃ be a street. (The bracketed segment is optional.) Then (Σ >© )Γ >© Σ̃ �
(Σ >© ) • >© Σ̃. But Th((Σ >© ) • >© Σ̃) = Th((Σ >© )Σ̃) by the lemma given below. �
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Lemma 11 Let f be a one-generated S4-frame of finite width and finite tightness. As-
sume that f has exactly one point w of depth k × ω > 0. Then {w} is eliminable.

Proof. Suppose that N ⊂ f is finite. Let N+ = {x ∈ N : xCw 6 x}, N− = {x ∈ N : wC x 6
w}. Then by our assumptions about f , N = N+ ∪ {w} ∪ N− and N+ = {x ∈ N : dp f (x) >
dp f (w)}, N− = {x ∈ N : dp f (x) < dp f (w)}.

Claim: For every finite set M ⊂ f of points of depth < dp f (w) there exists a point of
depth < dp f (w) seeing all points of M.

Assume that f is of tightness `. The proof is by induction on the cardinality of M. The
case where M = {t} is trivial. Now assume M = {t} ∪ M′. By induction hypothesis,
there exists a s0 C M′ with dp(s0) < k × ω. Now take any strictly descending chain
s` C s`−1 C . . . C s0 with dp(si+1) = dp(si) + 1. Then s` is < k × ω. By tightness, s` C t.
Thus s` C M, as required.

The lemma is now proved by taking w′ to be a point of depth < k×ω such that w′CN−.
Then N′ := N+ ∪ {w′} ∪ N− is m-compatible with N. �

6. The subatomic research program. The following frames are of particular interest to
us.
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Let us call a generated subframe of φω a photon, a generated subframe of λω a lepton
and a generated subframe µω a meson. A string is photonic all segments are photons
and leptonic if all segments are leptonic or photonic and mesonic if all segments are
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either photonic, leptonic or mesonic. Our goal here is to determine the logic of photonic,
leptonic and mesonic strings. To do this we will develop a solid arithmetic of p-morphisms
for these frames. The photons might not seem worth a discussion, but it is worthwile
starting with the simplest case and see what gets lost when we go further down in the
lattice of intermediate logics.

Thus let us begin with the photons. They come in a variety φk where k is the depth of
the frame. Note that φ1 = • and φn+k = φn >©φk so that in fact photons decompose com-
pletely into strings of •. Any photonic string is then a string of •, which is the most basic
component of ‘frame matter’. Minimal p-morphisms are φk � φk+1 � φk; moreover,
φk � φω � φk.

Theorem 12 Pho = Grz.3 = Grz{wd(1)} is the logic of photonic strings. Pho is pretab-
ular, pre-compact, has fmp essentially and is essentially finitely axiomatisable and essen-
tially decidable.

We will sketch the proofs of the claims, which are well-known. In this simple case we
meet a number of standard arguments. First, if Φ is a photonic string, and Φµ ⊆ Φ a finite
subset of maximal points, we can supersafely drop non-maximal • (i) if they are behind
a • (ii) if they are directly followed by a • (iii) if they are of depth k × ω > 0. Hence, all
points of non-zero depth are droppable from a model. Thus if Φµ , ∅ everything outside
Φ can be supersafely dropped. If Φµ = ∅, we can drop everything except one •. This
shows that for every photonic string Th(Φ) has fmp and thus that Pho has fmp essentially.
Thus every extension of Pho is a splitting logic. For if Pho ⊆ Λ let N be the set of finite,
one-generated photons which are not frames for Λ. Then Pho/N ⊆ Λ; but since the logics
have the same finite models they are in fact equal. Now, Λ is finitely axiomatizable, if
N is finite or if N can be replaced by a finite set. But certainly N is a set of photons;
and for k < `, φk is an extract of φ` and so Pho/φ` ⊂ Pho/φk. Thus, as the photons are
linearly ordered by the order of being an extract of the other, we can replace N in the
splitting representation by φ` with ` being the least k with φk ∈ N. Hence Λ = Pho/φ`.
Decidability follows as well as tabularity.

Now on to the leptons. Leptons of depth k come in two varieties, one-generated and
two-generated. Let us write λ•k for the one-generated lepton of depth k and λ◦k for its two-
generated companion. It turns out that λω is best classified as one-generated; logically,
this is reasonable since λω and • >©λω have the same logical theory. Dropping or adding
this point is supersafe.
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λ◦4

There is a decomposition λ◦k = >© i∈kλ
◦
1 and λ•k+1 = λ

•
1 >©λ

◦
k , thus any leptonic string

decomposes into λ•1 and λ◦1. Moreover, λ•1 = φ1 = • and λ◦1 = • ⊕ •. This leaves, in
order to get a full picture of admissible p-morphisms, only two choices. We have fusion
λ•1 >©λ

•
1 � λ

•
1 and λ◦1 � λ

•
1. On the side of embeddings note λ•1 � λ

◦
1. We conclude this

lemma.

Lemma 13 There are p-morphisms λk � λ
•
n for all k ≥ n. There are no p-morphisms

λk � λ
◦
n, n < k < ω + 1. Every finite leptonic string is an extract of λω.

Proof. If k ≥ n then k = n + ` for some `. Then λ•k = λ
•
`
>©λ◦1 >©λ

◦
n−1 � λ

•
`
>©λ•1 >©λ

◦
n−1 �

λ•1 >©λ
◦
n−1 = λ

•
n. To see that no p-morphisms λ◦k � λ

◦
n exist simply note that every minimal

p-morphism produces at least a segment λ•1—of which we can never get rid. The last
observation goes as follows. λ◦n � λω; if Λ is a leptonic string of depth n, Λ decomposes
completely into the leptons λ•1, λ

◦
1. We can now reduce λ◦n to Λ by applying λ◦1 � λ

•
1 in

each segment where it is necessary. �

Theorem 14 The logic Lep = Grz{wd(2), ti(2)} is the logic of leptonic strings. More-
over, Lep = Th(λω). Lep has fmp essentially, is essentially finitely axiomatisable and
essentially decidable.

Proof. First, Lep is complete with respect to one-generated strings. We have to show that
any Lep-string is a leptonic string and vice versa. This is not hard to do. The strategy
is now to show that Th(Λ) has fmp for Λ a one-generated leptonic string. If any such
logic has fmp then Lep has fmp essentially. Now take a one-generated Λ = >© i∈αλ(i)1

with λ(i)k = λ
•
1, λ
◦
1. Now assume a finite subframe Λµ ⊆ Λ of maximal points. In any

segment that contains two points which are not both maximal we supersafely drop one
non-maximal point. This leaves us with finitely many components of type λ◦1. In between
these components sit photonic strings which can be supersafely reduced to either • or a
photon containing the maximal points. If we cannot drop any more points we end up with
a subframe Λ′ ⊇ Λµ of cardinality ≤ 3/2× ]Λµ. (Check that any non-maximal point must
immediately precede two maximal points in order not to be dropped at some stage.)
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Now the theorem is proved if we show that Lep is essentially fnitely axiomatisable,
since essential decidability will follow. Since Lep has fmp essentially, every extension of
Lep is a splitting of Lep. The question is then whether we can always choose a finite set F
such that Λ = Lep/F. To this end define a partial order 4 on the set Lep of one-generated
finite leptonic strings by f 4 g iff f is an extract of g. The order 4 is a well-partial
order (wpo) in the sense of [Kruskal, 1960] as we will show below. Recall that a partial
order is called a well partial order if for all sets N the set min M of 4-minimal elements
exists and every set of mutually incomparable elements (anti-chain) is finite. If v⊆4 has
minima and has no infinite antichains, neither has 4. Moreover, if 4i are wpo’s on Mi

(i = 1, 2) then 41 ∪ 42 is a wpo on M1 ∪ M2 and 41 × 42 a wpo on M1 × M2 (see
[Kruskal, 1960]).

Proposition 15 The following are equivalent.

(i) 4 is a well-partial order.

(ii) Lep is essentially fnitely axiomatisable.

(iii) Lep is essentially decidable.

Proof. Clearly, since Lep/M = Lep/min M, (i) implies (ii). However, if (i) does not
hold there is a set N such that min N is infinite. Then there is an extension which is not
finitely axiomatisable. Thus (i) and (ii) are equivalent. Moreover, in that case for every
M,M′ ⊆ min N we have Lep/M = Lep/M′ ⇔ M = M′ whence Lep has uncountably
many extensions; but only countably many of them are decidable. Hence (iii) implies (i).
Now if Lep is essentially finitely axiomatisable, it is essentially decidable since it has fmp
essentially. This shows (ii)⇒ (iii). �

All that is left to show is that 4 is wpo on Lep. Now let Λ ∈ Lep. Then Λ = >© i∈nλ
•
k(i)

for some numbers n, k(i) ∈ ω. If Λ̃ = >© i∈̃nλ
•

k̃(i)
is another such frame then Λ̃ � Λ if

there exists an isotone embedding σ : n � ñ with σ(0) = 0 and k(i) ≤ k̃(σ(i)). Thus if
we represent members of Lep by sequences 〈k(i) : i ∈ n〉 and define an order v according
to this definition then v is almost a wpo according to [Kruskal, 1960]. If we ignore the
clause ‘σ(0) = 0’ then we have exactly the definition of non-branching trees over 〈ω,≤〉,
the latter being a wpo, and hence the whole is a wpo by Kruskal’s Theorem. The extra
clause is a harmless complication which we can in fact ignore (this produces an order
which is a direct product of the space of trees-over-〈ω,≤〉 with 〈ω,≤〉). The uneasy reader
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may however observe that our order is isomorphic to the order obtained for S4.3-frames
ordered also by ‘being extract of’. By appealing to the result of [Fine, 1971] that this is a
wpo, our case is proved. �

Now we are treating the mesons; their case is much more involved and the decompo-
sition method will do its job rather well here. Again we use the subscript µk to denote
a meson of depth k and the superscript µ• for a one-generated meson and µ◦ for a two-
generated one. But it turns out that this does not determine them completely. Depending
on which point generates µ• we get a different meson and likewise we have two choices
for two-generated mesons. Namely, if µ◦k is two-generated of depth k then the two gener-
ating points might be of equal depth or of different depth. This we distinguish by writing
µ◦=k in the one case and µ◦<k in the other. Since a one-generated meson µ•k decomposes into
• >©µ◦k−1 this distinction is carried over to the one-generated mesons and we write µ•=k for
the meson whose generating point has immediate successors of equal depth and µ•<k if it
has immediate successors of different depth.
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µ◦=4

The mesons are indecomposable with the exception of µ•=k = • >©µ
◦=
k−1, µ

•<
k = • >©µ

◦<
k−1.

They can be generated via minimal embeddings from each other as follows.

µ◦=k � µ
◦<
k+1 µ◦<k � µ

•<
k+1 µ•=k � µ

◦=
k µ•<k � µ

◦<
k

µ◦=k � µ
•=
k+1 µ◦<k � µ

◦=
k

No other arrows exist. With respect to minimal p-morphisms we first observe that there
exist only two. The best way to see this is to recall that if a minimal p-morphism that
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identifies two points s, t then s and t share all successors which are not equal to s or t.
Then there are two choices. (i) s and t are of equal depth. Then if s or t had a successor,
we had decomposability. Thus s and t are of depth 0. (ii) s precedes t. Then s cannot have
two immediate successors. Hence s is of depth 1. This gives the following cases.

• • • •

• • • •�
�

�
�

�
�

�
�

�
�

�
�

H
H

H
H

H
H

HH

H
H

H
H

H
H

HH

�� �� • • • •

• • • •�
�

�
�

�
�

�
�

�
�

�
�

H
H

H
H

H
H

HH

H
H

H
H

H
H

HH

�
�

�
�

These p-morphisms produce the following outputs which for beauty’s sake are listed in
commutative diagrams. By decomposability of the one-generated mesons, we list only
the two-generated cases.

µ◦=k >©λ
◦
1 µ◦<k+1 >©λ

◦
1 µ◦=k+1 >©λ

◦
1

µ◦<k+2 µ◦=k+2 µ◦<k+3� �

� �

↓↓ ↓↓↓ ↓↓

µ◦<k >©λ
•
1 µ◦=k >©λ

•
1 µ◦<k+1 >©λ

•
1

µ◦<k+1 µ◦=k+1 µ◦<k+2� �

� �

↓↓ ↓↓ ↓↓

By the above it follows that µ◦=k+n+1 � µ
◦<
k+n � µ

◦<
k >©λ

◦
n � µ

◦<
k >©φn−1 � µ

◦<
k >©•. Also,

µω � µω >©λ
◦
1 � µω >©λ

◦
n � λω. We thus get that any µω >©Λ with Λ a finite mesonic

string is a p-morphic image of µω. As a result we note that there is no nontrivial p-
morphism µ � µ′ between mesons unless µ′ is leptonic because p-morphisms introduce
decomposability into a meson and a lepton and the lepton never disappears. Note that
there are a few exceptional mesons.
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µ•=1 = µ
•<
1 = λ

•
1 = • µ•=2 = λ

•
1 >©λ

◦
1

µ◦=1 = µ
◦<
1 = λ

◦
1 µ•<2 = λ

•
1 >©λ

•
1

A final note. Call a string one-mesonic if it is either leptonic or of the type µ >©Λ
where Λ is a leptonic string and µ a meson. Our considerations above show that if a string
contains n mesons then any extract of that string contains at most n mesons. Hence the
class of one-mesonic strings is closed under p-morphic images and generated subframes.
Moreover, any finite one-mesonic string is an extract of µω. Now define p2

2 = • >© (φ2⊕φ2).
p2

2 excludes two parallel two-element chains.

Theorem 16 The logic Mes = Grz{wd(2), ti(3), p2
2} is the logic of mesonic strings. Mes

has fmp essentially.

Proof. It suffices to study the one-generated strings. Since the subframes wd(2), ti(3), p2
2

are of the form • >© g for an indecomposable g, we can check by segmentwise inspection
whether Mes is the logic of mesonic strings. Now take a frame • >©µ such that µ is
indecomposable. If µ is a meson (lepton, photon) then it is a Mes-frame; thus the converse
needs to be established. Thus assume that µ is not a lepton; then it has at least three
points, and so there is some slice {x, a} of local depth n ∈ ω (see picture below). We now
investigate the points behind this slice. Suppose we have a point y immediately preceding
x. If a has no predecessors (in µ) then neither has y, by non-embeddability of ti(3). Thus
if we have not exhausted the points behind x or a, there must be at least a predecessor of
a. Now since p2

2 is not embeddable, either yC a or bC x. By symmetry, we may only deal
with one case, say b C x. If there is still another point, y has a predecessor. Otherwise
let there be only a predecessor c C b. Then c 6 y implies embeddability of ti(3) and thus
c C y, which was excluded. So, indeed there is an immediate predecessor z C y. Then we
must have z C a by ti(3) but we cannot have z C b; for otherwise µ was decomposable, for
any c C b 6 c must also satisfy c C y as we have seen.

• • •

• • •

c b a

z y x

�
�

�
�

�
�

�
�

HHHH
HHHH



21

Now, n was completely arbitrary. If we start with n = 0 we see inductively that µ is in fact
a meson µ◦=k , µ

◦<
k for some k.

Now let M be a mesonic string and let Mµ ⊆ M be a finite subset. We know by
previous proofs that leptonic and photonic segments can be made rare (at most ]Mµ such
segments) by supersafe dropping. In addition, mesons without maximal points can be
reduced to • and almost always be dropped, which leaves us with finitely many mesons.
Thus the only problem we have is that there might be a galactic meson µω. But here comes
a surprise.

Lemma 17 In µω >©µω the first galaxy is eliminable.

Proof. Assume gµ ⊂ g. Let gµ0 be the part of gµ containing all points of infinite depth
in µω >©µω and let gµ1 contain all the points of finite depth. gµ1 is finite and all points are
of depth, say, < n. Then we can shift gµ0 into the finite part of µω >©µω by mapping each
point of depth ω + k into a point of depth n + k. It is not hard to see that this map satisfies
the conditions of Theorem 5. �

By this lemma, for any meson µ, Th(µ >©µω) = Th(µω) and for every lepton Th(λ >©µω) =
Th(µω). Thus if M contains µω, we may forget all points seeing µω. Consequently,
Th(M) = Th(µω >©M′) for some finite mesonic string M′. And so Th(M) has fmp for
every M. �

Theorem 18 Mes1 = Mes/{• >© • >©µ◦<2 , • >© • >©µ
◦<
2 >©•} is the logic of one-mesonic

strings. Moreover, Mes1 = Th(µω).

Proof. If M is not one-mesonic, let M = • >© (M1 >© )µ( >©M2) >©µ′( >©M3) be such
that µ′ is an indecomposable meson. Then M � • >©µ◦( >©M2) >©µ′◦( >©M3) � • >© •
>©µ◦( >©•) � • >© • >©µ◦<1 ( >©•). This was excluded. But if M is indeed a one-mesonic

string then it omits the depicted frames since they are not one-mesonic. The last claim
follows from the fact that a finite one-mesonic string µ >©Λ is an extract of µω, which
itself is one-mesonic. �

7. An intermediate logic bounding finite axiomatizability. Consider the set Mes1 of
one-generated, finite strings ordered by f 4 g ⇔ f is an extract of g. Call µ >©Λ thick if
µ is not a lepton and Λ = λ◦n for some n ∈ ω. Th is the set of thick frames.
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Lemma 19 4 is a well partial order onMes1 − Th.

Proof. 4 is a well-partial order on the leptonic strings ofMes1; thus it suffices to look ot
the non-mesonic ones. Take any two µ >©Λ, µ′ >©Λ′. Then µ >©Λ is an extract of µ′ >©Λ
if only Λ′ � Λ and µ is an extract of µ′. The one-generated mesons are linearly ordered
by inclusion. Moreover, v defined f v g iff g � f is a wpo on the finite leptons which
are not of the form λ◦n. Now the product of two wpo’s is again a wpo; hence 4 is a wpo. �

Lemma 20 4 is not a wpo on Th. In particular, {µ•<3 >©λ
◦
n : n ∈ ω} is an infinite antichain.

�

Theorem 21 Mes1(3) = Mes1/{µ•=4 , µ
•<
4 }/{µ

•<
3 >©λ

◦
n : n ∈ ω} bounds finite axiomatizabil-

ity. Moreover, Mes1(3) = Th(µ•<3 >©λω).

Proof. We have seen that the set of splitting frames is an infinite antichain and hence
Mes1(3) is not fnitely axiomatisable. Yet for any proper extension Mes1(3) ( Λ we must
have M < Fr(Λ) for some finite one-mesonic string M; moreover, M is not thick. But
then since M = (µ•<3 >© )Λ for some leptonic string Λ, M is an extract of almost all thick
frames. Hence Mes1(3)/M is finitely axiomatisable. Any extension of Λ is characterized
by non-thick frames and by Lemma 19 fnitely axiomatisable over Λ. �

The logic Mes1(3) nevertheless has fmp and from that it follows that it is -reducible in
the lattice of normal modal logics. This refutes a plausible conjecture that logics bounding
certain properties invariably are -irreducible.

8. Logics bounding fmp and other types of completeness. The logic Ref was not only
pre-finitely axiomatisable but also pre-fmp whereas our example of a pre-fmp logic still
has fmp essentially. If we want to find a logic bounding fmp we have to descend further
in the lattice of intermediate logics. It turns out that logics of frames β >©µω fail to have
fmp if β is not mesonic. There is an easy way to show this using an idea that goes back to
[Fine, 1972]. Consider the following frame.
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Let A be an axiom saying that whenever the subframe of blobs is embeddable, so is the
frame with the circled points added. If our logic contains such an axiom and moreover if
the frame of the blobs can be embedded, the logic fails to have fmp because the construc-
tion ensures that it is continuously reproduced and we end up with a frame at least con-
taining wd(2) >©µω. Abstractly, this situation is characterized as a map idρ >© ι : ρ >©σ

⊂
→

ρ >© τ where ι : σ
⊂
→ τ is an embedding. There is a requirement that the points of τ that

are new (i. e. not in ι[σ]) should be definable in terms of what old points they can see. If
that is so then such a map corresponds to an axiom saying that any embedding ρ >©σ

⊂
→ g

factors through idρ >© ι. Such a map as well the frame it generates are called a monkey
ladder. (Observe that failure of fmp for the logic Ref can also be attested with a monkey
ladder.) The frames β >©µω >©Λ all satisfy a monkey ladder axiom analoguous to the one
depicted above. Hence in order to find a frame whose logic bounds fmp we just have to
find frames that are minimal with respect to allowing such a monkey ladder. It turns out
that Λ = • and β = wd(2), ti(3), p2

2 all are possible choices. β = wd(2) is best suited for
our purposes.

Theorem 22 Th(wd(2) >©µω >©•) bounds fmp.

Proof. Define Mon(1, 0) = Grz{wd(3), • >©wd(2), ti(3), p2
2}/{• >© • >©µ

◦<
2 >©•,wd(1)}/M

where M is the set of the following ten frames. (Not all of them are necessary in this
context, but we will need the set as it is later. Observe that the frames of M collect all
convergent frames with a 2-slice following or being followed by a 3-slice.)
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Let then f be a Mon(1, 0)-frame; it can be assumed to be a one-generated street. Con-
sider the case where wd(2) >©µ◦<2 is embeddable. Then the embdding is first of all such
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that wd(2) is initial in the frame by exclusion of • >©wd(2); moreover, the frames of M
forbid that this antichain of three points is immediately followed by two points. Thus
f is decomposable into wd(2) >© g >©• where g is one-generated and of width 2. It fol-
lows that g is one-mesonic by splitting of • >© • >©µ◦<2 >©•. Moreover, g can, by the
same splitting frame, not be finite since it is not a leptonic string. Thus by familiar ar-
guments Th(g >©•) = Th(µω >©•) and that had to be proved. Now consider the case
when wd(2) >©µ◦<2 is not embeddable. Then either f is of width 2 in which case it is
one-mesonic and so an extract of wd(2) >©µω >©• by which Th( f ) has fmp; or it is not of
width 2. In that case we cannot embed ti(2) and so f is completely decomposable and
f = wd(2) >©Λ where Λ is a leptonic string. Finally, the frames of M have excluded that
Λ is two-generated. Thus f is again an extract of wd(2) >©µω >©• and Th( f ) has fmp. All
this together yields the proof. �

Now that we have shown that there is a logic bounding fmp there still remains the
question of how big models must be; up to now, models of galactic depth 2 were sufficient.
Now call a logic (k, `)-complete if is complete with respect to models of depth ≤ k×ω+`.
Then we know that all logics of finite width and finite tightness are (ω, 0)-complete so one
does not need to go higher. But the next theorem shows that one cannot do better. Proofs
from now on are only sketched since they use similar arguments to the ones we have used
quite often now.

Theorem 23 Mon(ω, 0) = Grz{wd(3), ti(3), p2
2}/{wd(1)}/M is complete with respect to

extracts of iterated monkey ladders >© i∈nξ. >© .•, ξ = wd(2) >©µω. Moreover, Mon(ω, 0)
bounds (ω, 0)-completeness.

Proof. By the splitting axioms of M, if a Mon(ω, 0)-frame contains an anti-chains with
three points then it must be a segment separated by a buffer segment of type • from the
other segments. Prove that finite segments are leptonic strings and that only the galactic
meson µω is allowed as a segment. This shows the completeness part. Consider now the
formula saying that there exist a point seeing n different monkey ladders; for this formula
a model must have at least galactic depth n. On the other hand, any proper extension must
contain an axiom that forbids than there can be more than a given number n of monkey
ladders. But any such axiom forces that any model can be reduced to a model of galactic
depth ≤ n + 1. �

We can fine-tune this method. First observe the following.
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Lemma 24 The logics Mon(0, `) = Grz.3{φ`+1} bound (0, `)-completeness. �

Lemma 25 The logics Mon(k, `+1) = Mon(ω, 0){φ`+1. >© . >© i∈kξ} bound (k, `)-complete-
ness for ` > 0. The logics Mon(k, 0) = Mon(k, 1) = Mon(ω, 0){ >© i∈k+1ξ} bound (k, 0)- as
well as (k, 1)-completeness.

Proof. Consider formulas stating that ` steps ahead from here we can still see k different
monkey ladders. Such formulas can only be realized on a model with depth at least
k × ω + `. For the lemma it is enough to show that such a formula is satisfiable on a
frame f iff f is modally equivalent to the frame φ`. >© . >© i∈kξ; and if this formula is not
satisfiable on f then f is modally equivalent to a frame of lesser depth. �

Theorem 26 The logics Mon(k, `) bound (k, `)-completeness. �
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