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Abstract

Paraconsistent logics are logics that can be used to base inconsistent
but non-trivial systems. In paraconsistent set theories, we can quan-
tify over sets that in standard set theories (that are based on classical
logic), if consistent, would lead to contradictions, such as the Russell set,
R = {z:z ¢ z}. Quasi-set theories are mathematical systems built for
dealing with collections of indiscernible elements. The basic motivation
for the development of quasi-set theories came from quantum physics,
where indiscernible entities need to be considered (in most interpreta-
tions). Usually, the way of dealing with indiscernible objects within clas-
sical logic and mathematics is by restricting them to certain structures,
in a way so that the relations and functions of the structure are not suf-
ficient to individuate the objects; in other words, such structures are not
rigid. In quantum physics, this idea appears when symmetry conditions
are introduced, say by choosing symmetric and anti-symmetric functions
(or vectors) in the relevant Hilbert spaces. But in standard mathematics,
such as that built in Zermelo-Fraenkel set theory (ZF), any structure can
be extended to a rigid structure. That means that, although we can deal
with certain objects as they were indiscernible, we realize that from out-
side of these structures these objects are no more indiscernible, for they
can be individualized in the extended rigid structures: ZF is a theory
of individuals, distinguishable objects. In quasi-set theory, it seems that
there are structures that cannot be extended to rigid ones, so it seems that
they provide a natural mathematical framework for expressing quantum
facts without certain symmetry suppositions. There may be situations,
however, in which we may need to deal with inconsistent bits of infor-
mation in a quantum context, even if these informations are concerned
with ways of speech. Furthermore, some authors think that superposi-
tions may be understood in terms of paraconsistent logics, and even the
notion of complementarity was already treated by such a means. This is,
apparently, a nice motivation to try to merge these two frameworks. In
this work, we develop the technical details, by basing our quasi-set theory
in the paraconsistent system %;. We also elaborate a new hierarchy of



paraconsistent calculi, the paraconsistent calculi with indiscernibility. For
the finalities of this work, some philosophical questions are outlined, but
this topic is left to a future work.

Keywords: paraconsistent logic, quasi-set theory, indistinguishable quanta,
quantum physics.

1 Introduction: motivation

It is well known that quantum objects are strange and that quantum physics
presents lots of puzzles to the philosophical reflection on the nature of these
entities. One of the most debated aspects of quantum objects that has been
presented to the literature concerns a possible reading of their ontological sta-
tus; can quantum objects be regarded as individuals on a pair with their “clas-
sical” counterparts, or would them be considered as non-individuals, as it has
been suggested by various specialists, among them some of the forerunners of
quantum, theory such as Heisenberg, Schrodinger, Born, and Weyl? (the whole
history can be found in [9]). It is quite obvious that in order to address these
and other related questions, one needs to precise some involved concepts, as
for instance; (1) what should we understand by “quantum objects”?;(2) what
shold we understand by an ”individual”?; (3) are there conditions to individ-
uate quantum objects in whatever situation? Quantum theory, or quantum
physics, as we use these words, refer a cluster of theories that cover a certain
domain of knowledge. So we can distinguish among the “old” quantum mechan-
ics of Planck, Einstein and Bohr, from the “orthodox” quantum mechanics, or
“quantum mechanics” tout court, developed by Heinsenberg, Born, Jordan and
Schrodinger (although in distinct fashions), and also from quantum field theory
(QFT), started by Dirac and up today forming the core of present day standard
model of particle physics.

All these theories refer to quantum objects in one way or another, usually
termed "quantum particles”, or “elementary particles” for short. Despite the
common name, elementary particles are different kinds of entities in all these
theories (for a panorama of these differences, see [8, chap.6]). We will not revise
all these distinctions here, for they do not import for our discussion. We will
assume that there is a discourse about quantum objects in all these theories;
the apparently most problematic case is of course concerning QFT, for the most
basic entities dealt with by the theory are quantum fields, and “particles” arise
from quantum fields as certain field excitations. Anyway, physicists still speak
of protons, electrons, photons and so on, for instance as they being accelerated,
so it is licit (so we think) to discuss about their ontological status, and even to
look whether quantum theory itself (in whatever form we consider) entails that
they would obey some “logic” other than classical logic.

In particular, quantum particles are considered as indistinguishable in some
situations, in a way that nothing in the theory can distinguish them [19, chap.11

IThus, we are asking for a different type of “quantum logic” than those of standard liter-
ature.



and 12] (or, as some say, not even in mente Dei they can be distinguished, as
said Dalla Chiara and Toraldo di Francia [5]). Indistinguishability, as is well
known, is a characteristic trait of quantum physics, without which there would
be no quantum physics at all. But there is a puzzle here: quantum physics is
described by using standard mathematics, encompassing classical logic, and in
such a framework there are no indistinguishable objects. Classical mathematical
framework is Leibnizian in the sense that some form of Leibniz famous Principle
of the Identity of Indiscernibles is a theorem of classical logic. The standard
way to deal with indiscernible objects within such a logical basis is by the intro-
duction of symmetry conditions. Really, indistinguishability, or indiscernibility,
usually means invariance by permutations. Thus, being F' an n-ary predicate,
then F(zy,...,x,) means the same as F(rry,... 7ac7r(n)) for any permutation
mof {1,...,n}. But in order to express that, it is necessary to label the particles
first; that is, to begin by supposing that they were named, hence individualized,
by x1, x2 etc., and then we postulate that permutations among these particles
do not conduce to distinct physical situations. Of course this works quite well
both from the physical and from the mathematical point of view, but from a
philosophical perspective, it seems that there is something lacking here.

Years ago (in 1963), Heinz Post guessed that quantum indiscernibility should
not be “made” this way, starting with individuals (entities in principle always
individuated as being that individual) and going entities devoid of individuality
by weakening the identity conditions; he suggested that the indiscernibility of
quantum objects should be taken right at the start (for a detailed discussion
on all these historical points, see [9]). The direction according to which the
indiscernibility is “made from the top down” (taking the “top” as designating
standard objects of our surroundings) is encapsulated in the discourse of those
above mentioned forerunners, who spoke in the lost of individuality (or even
in the lost of identity) of quantum objects. That means that, at the bottom
level, in the quantum realm, physical objects behave differently, obeying other
kinds of “statistics”, which make them non-individuals. But Post is suggest-
ing something different, by positing that we should begin with indiscernibility.
His ideas had an independent echo in the first mathematical problem posed by
Yuri Manin to a new List of Mathematical Problems presented at the American
Mathematical Association, as a continuation of the celebrated list of Mathe-
matical Problems advanced by Hilbert in 1900 (see [2]; Manin’s problem is at
page 36). There, Manin asked for the development of a theory of “sets” (his
emphasis) which would enable us to deal with collections of indiscernible ob-
jects, which obvioulsy do not obey the standard postulates of set theory; for
instance, they do not obey extensionality, so as they, in general, would not have
an associated ordinal, and so on. More recently, the same issue was considered
by John Stachel in two papers [16] and [17]. There Stachel introduced the idea
used above of the top to down look, where the identity is lost (according to the
standards), so as the view from the bottom to the top, which we understand
as equivalent to Post’s and Manin’s suggestions, that is, when we begin with
quantum entities properly.

The distinctive fact is that Stachel makes explicit reference to QFT, where



there are not “particles” in the standard (“classical”) sense. But for sure we can
say that, yet in QFT there are not “classical” particles, but this does not entails
that there are not “particles” at all. But let us see Stachel himself, noting that
he speaks of indiscernibility even within the context of QFT:

Looking upward from the perspective of relativistic field theory [QFT],
classically there is no particle concept associated with a field. In
relativistic quantum field theory, the closest analog to the particle
concept is that of 'field quantum’, and one is struck by the limited
range of applicability of this concept: only certain states of a quan-
tum field diagonalize the occupation number operator for the field;
and, even if the system is in such a state, one cannot attribute indi-
viduality to units that are truly field quanta. They come in different
kinds; but within a kind they manifest no inherent individuality. As
noted above, they possess quiddity but not haecceity. [16, p.210]

What can we learn from these remarks? Firstly, that even in the quantum
field approach, that entities which are called ‘particles’, the epiphenomena of
fields, present indiscernibility, having not individuality in the standard sense.
But if this is so, we have a blatant contradiction with the underlying mathemat-
ics which describes them! Quantum fields, from the mathematical perspective,
are “classical mathematical objects”, hence they are individuals for they obey
the rules of standard theory of identity which, as we have said, is Leibnizian.
As we said above, the standard trick is to keep “confined” to a certain mathe-
matical structure, characterized by some chosen relations under which the con-
sidered objects are permutational invariant. In some sense, this is equivalent
to that schema advanced by Quine in using just few predicates and relations
and so defining identity (so he thinks) by agreement with respect to all these
predicates and relations [14]. Thus, standard frameworks (read: standard set
theories like ZF) enable us to deal with indistinguishable objects, but at the
price of restricting the considered predicates/relations, that is, at the price of
being confined to a certain structure. In other words, all we have is indiscerni-
bility with respect to a structure [12]. Can we deal (mathematically) with truly
indiscernible objects, assuming that they exist?

Thus, we think that the restriction to a certain structure, albeit it satisfies
the physics, does not resolves the philosophical problem, because it corresponds
to a restriction to a certain relational structure, built as above within standard
set theories. But in a set theory like ZF (which we can suppose underlies our
discussion), every structure can be extended to a rigid structure, that is, to a
structure that has the identity function as the only automorphism (while Quine’s
approach seem to permit other as well). In short, in the whole universe of sets,
any entity is an individual, and really and trully non-individuals (yet objects of
some kind) cannot exist.

But there is a second remark. The talk of quiddities and haecceities concerns
Stachel’s claim that quantum objects have the first but not the latter, which is
in agreement with Dalla Chiara and Toraldo di Francia’s concept of nomological



objects, namely, objects given by physical law [5]. The fact that some quantum
objects of a same kind may be absolutely indistinguishable brings interesting
problems regarding logical foundations. Let us give an example. Simon Saun-
ders has sustained that although indiscernible, fermions obey Pauli’s principle,
being distinguished by an irreflexive relation, say, “having opposite direction of
spin” (see for instance [13] for an updated approach). French and Rickles think
that such an hypothesis put the data (quantum objects) as having ontological
priority over relations, in the sense that “the former can be said to ’bear’ the
latter” [10]. Thus, they say, this is to be questioned under their preference for
the “ontological structural approach”, which intends to see the structures as
having ontological priority over anything. But, in standard extensional set the-
ories (with the foundation axiom), any relation is built out of the relata; thus,
in order to have, say, a binary relation involving the objects a and b, we need to
begin with a and b, then going to {a} and {a,b} (which can be done by the pair
axiom), then to (a,b) = {{a},{a,b}} (again by the pair axiom) and finally to
collections of such pairs. One way to cope with this problem within the scope
of set theories would be to look for an intensional set theory suited to cope with
quantum physics, still to be developed; another one would be to look for non-
well-founded sets, or try to develop a notion of structure using, for instance,
Tarski’s logic of relations and the corresponding set theory without variables
[18]. But our logic of indistinguishability may offer an alternative route, quite
closer to the intuitions regarding physics itself, so out of these rather artificial
set theoretical constructs. Let us sketch the basic idea.

Take for instance a molecule of water, HoO. It does not matter what are
the particular Hidrogen and Oxigen atoms that enter in the formation of a
particular molecule; its physical properties are independent of what particular
atoms are enrolled. If we look at them as individuals, then there would be a
difference between two molecules of water.? This situation is quite different
from a rugby team, where the exchange of one player by another may cause
an immense difference to the final result. Once we fix the structural aspect of
the molecule, which import due to the existence of isomers, the individuality
of the components does not matter. Of course the same happens with most
basic entities, like electrons and so on. Thus, even eventually being discerned
by irreflexive relations, they cannot be regarded as individuals in the standard
sense, despite they are “objects” of some kind (can be values of variables of
some adequate language), and hence they are suitable to be mapped on some
metaphysics.

The true talk of non-individuals, here understood as entities that do not obey
the standard theory of identity, can be done only outside of classical framework.
We guess that this might be a real situation where a quantum logic (in the sense
of the logic of quantum objects) might be vindicated. Quasi-set theory is one
of the possibilities. In this paper, we develop a paraconsistent version of this
theory, hoping that it can be useful for further discussions not only about in-

2The talk that the spatio-temporal location distinguishes them —as it was said by Kant
himself in a well known passage— but it does not change the quantum mechanical fact that
whatever permutation of the two molecules keep the physical result absolutely the same.



discernibility, but also in those situations which involve possible contradictions,
if there are some. Of course we should advance some of the applications we
envisage of such a theory, but we shall leave this task for a forthcoming paper.
In this one, we just sketch the theory. Anyway, something on this respect can
be seen at chapter 9 of [9], and in [7].

2 The postulates of the theory Qp

Let us call £ the language of the theory Qp, the paraconsistent quasi-set theory.
It encompasses a list if individual variables (a denumerable one), standard logic
connectives (-, A, V, —, while < is defined as usual), quantifiers (¥ and 3), and
auxiliary symbols of pontuation. The specific symbols of £ are: four unary pred-
icates m, M, Z, and C, two binary predicates = and € and an unary functional
symbol gc. The terms of £ are the individual variables and the expressions of the
form gc(x), where z is an individual variable. Intuitively speaking, gc(z) stands
for “the quasi-cardinal of z”. Formulas are defined as usual; informally speak-
ing, m(x) says that x is an m-atom (in the intended interpretation, a quantum
object), M (x) means that x is an M-atom (these objects act as the ur-elements
in the theory ZFU-Zermelo-Fraenkel with Urelemente), which in the intended
interpretation stands for a “macroscopic atom”, and Z(x) says that x is a set
(a copy of a set of ZFU). Finally, z = y says that x is indistinguishable (or
indiscernible) from y and x € y says that x is an element of y.
Some definitions are in order.

Definition 2.1 The following concepts are useful:
1. a® := =(a A —a) We say that o is well-beaved; otherwise, it is ill-behaved.

2. =*a := =a A a® This is the strong negation. It will have all the properties
of standard negation.

3.0 =y:=[Q)AQ(y) AVz(2 €z« z € y)] V [(M(x) A M(y) AVgz(z €
x < z € y)] This is the strong equality, or identity. It will have all the
properties of classical equality. For simplicity, we shall write x = y, and read
it as “x is certainly identical to y”.

4. ¢ #£y:=—-*(x =y) Weread “z is certainly distinct from y”.
5. Q(z) := -m(x) A-M(x) (xis a quasi-set, or gset for short).

6. E(z) :=Q(z) ANVy(ly € x — Q(y)) (z is a gset whose elements are also
gsets, or z as no atoms as elements)

7. x Cy:=Vz(z € x — z € y) (subgset) Remark: since the notion of
identity (é does not hold for m-atoms, in general we don’t have effective
means to know either a certain m-atom belongs of does not belong to a
certain gset. But the definition works in the conditional form.)



8. D(x):= M(z)V Z(x) (xis a Ding, a” classical object” in the sense of
Zermelo’s set theory, namely, either a set or a macro-ur-element).

The underlying logic of Qp is da Costa’s paraconsistent calculus €7 (see
[4]). Thus, we have the following categories of postulates for Qp:

2.1 First group of postulates—the underlying logic
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where the variables x and y and the formulas o and ( satisfy the usual re-
strictions. As we see, from postulate (°3), only the formulas M (z) and Z(x)
are well-behaved, but not m(z), x = y and = € y. This will enable us to find
interesting applications, as we shall show soon.



2.2 The second group of postulates—indiscernibility

The following postulates govern the relation of indiscernibility; the last one, plus
axiom (€3) below, provide that extensional equality has all the characteristics
of first-order identity.

=) Va(z =)
=) VaVy(z =y —y=2)

(

(

(=3) VaVyVe(z=yAy=z—x = 2)

(=4) VaVy(x =y — (a(xz) — a(y))), with the standard restrictions (recall
t

hat = = y means = = y).

3 The new hierarchy ¢-, 0 < n < w of paracon-
sistent calculi with indiscernibility

The above postulates enable us to extend the usual procedures used to char-
acterize da Costa’s @-systems to introduce a new hierarchy of paraconsistent
calculi, the hierarchy €., 1 < n < w of paraconsistent calculi with indiscerni-
bility, as follows. We shall not develop these systems here, but just to mention
the propositional hierarchy. Of course the first calculus %7 is subsumed in the
above axiomatics, but the whole hierarchy is mentioned here just to emphasize
this new category of paraconsistent logics. Let us begin with ¢=. Its language
is obtained from the language of the predicate calculus 67 by adding a primitive
binary symbol = of indistinguishability, subjected to the following postulates:

(
(=2) VaVy(r=y —y=ux)

1) Vz(z =2)

(=3) VaVyVz(z=yAy=2z >z =2)

These postulates intuitively say that = has the properties of an equivalence
relation. But we do not postulate that substitutivity holds, that is, it is not
the case that VaVy(z = y — (a(z) — a(y))) (with the standard restrictions).
The motive is that with this property plus (=), the indistinguishability relation
would collapse into identity, and no formal distinction between them both would
exist. Anyway, from the intuitive physical point of view, it seems that if x and
y stand for indistinguishable micro-objects, their substitution from one another
in any context would be accepted. In order to achieve this desired result, we
use a roundabout way, namely, the theorem (5.1) presented below. Thus, we
reach to the intended result without keeping indistinguishability and identity
the same formal concept.

It is of course easy to reach to a new hierarchy of paraconsistent calculi

¢y ,Co,Cr,....Co, ..., C. (1)

r¥n w



by the same procedures that conduce to other hierarchies of paraconsistent cal-
culi (see [4]). Here, Cy- might be understood as the classical first order calculus
without equality but with a binary primitive predicate symbol = of indistin-
guishability, subjected to the postulates (=1) to (=3).

4 Axioms for quasi-set

Starting with the system Q of quasi-set theory, we can introduce a new hierarchy
of paraconsistent quasi-set theories 9, 0 < n < w. The quasi-set theory Q will
be called here Q. The language L of Qi is that described in section 2. The
syntactic notions of L are obvious adaptations of those of €7~

In the theory 9, we had a postulate saying that no x can be an m and
an M atom simultaneously, that is, Va(—m(z) V =M (x)). Here, due to the ill
behaviour of the predicate m, we drop this axiom but introduce another one,
specific to the new predicate C (for “crisp”, or “sharp”):

(C) Va(m(z) — (C(x) — M(z)))

This postulate may sound strange, but it has a strong motivation. A certain
m-object may, by some process, described case-by-case by a device described
by the predicate C, becomes a M-object, say when a quantum entity becomes
‘classical’, making a click in an experimental device. Thus, C stands for ‘crisp”,
in opposition to ‘blurring’. Intuitively speaking, C' so to say eliminates the
quantum behaviour of z. It expresses a kind of ‘collapse’ of something related
to the quantum entity.?> The way something becomes crisp of course depends
on physics, and it not a matter of logic.

Definition 4.1 (Well-Behaved Membership) = €* y := (x € y)°

When x €* y, we may say that “x certainly belongs to y”. Important to
realize that - €* y is not equivalent to -z € y (that is, to = ¢ y). Really, we
have -z €* y — —z € y, but not conversely.

Other postulates are the following ones:

(€1) YaVy(zr € y — Q(y)) If something has an element, then it is a gset;
in oter words, the atoms have no elements (in terms of the membership
relation).

(€2) VpaVpy(r = y — = = y) Indistinguishable Dinge are extensionally
identical. This makes = and = coincide for this kind of entities.

(€3) Vavy[(m(z) Ne =y — m(y) AN (M(z) Az =y — M(y)) A(Z(z) Ao =
y— Z(y))l

3In quantum physics, of course that what collapses is the wave function, which describes
the state of the system. But we are here working in close analogy to that.




(€4) FyVz(—*x € y) This gset will be proved to be a set (in the sense
of obeying the predicate Z), and it is unique, as it follows from the weak
extensionality (below). Thus, from now own we shall denote it, as usual, by

t@ﬂ'

(€5) Yoz (Vy(y € © — D(y)) <> Z(z)) This postulate grants that something
is a set (obeys Z) iff its transitive closure does not contain m-atoms. That
is, sets in £ are those entities obtained in the ‘classical’ part of the theory
(see figure 1).

(€6) VaVyIgz(z € z Ay € 2)

Postulate (€¢) must be explained, and we shall do it below. The other ones
are intuitive. The quasi-set universe can be seen in the following figure:

pure gsets

T=y

indiscernible gsgts @

m-~atoms

Figure 1: The Quasi-Set Universe: On is the class of ordinals, defined in the
‘classical’ part of the theory.

(€7) If a(x) is a formula in which x appears free, then
VozdoyVe(r € y < x € z A a(z)).

The gset y of the schema (€7), the Separation Schema, is denoted by [z €
z : ax)]. When this gset is a set, we write, as usual, {z € z : a(x)}.

(€8) YVou(E(z) — qy(Vz(z € y <> Jw(z € w Aw € x))). The union of z,
writen Uz. Usual notation is used in particular cases.

Remark on (€g) As we see, it says that given z and y, there is a gset z
which contains both of them, although z may have other elements as well. But,
from the separation schema, using the formula a(w) < w =2V w = y, we get
a subgset of z which we denote [z,y],, the gset of the indiscernibles of either x
or y that belong to z. When = = y, this gset reduces to [z]., called the weak
singleton of x. Later, with the postulates of quasi-cardinal, we will be able to
prove that this gset has a subgset with quasi-cardinal equals to 1 (really, the
theory is compatible with the existence of more than one of such sets), which

10



we call a strong singleton of x (in z), written [[z]], (sometimes the sub-indice
will be left implicit). A counter-intuitive fact is that, since the relation = is
reflexive and the strong singleton of x (really, a strong singleton, for we cannot
grant that it is unique) has just one element, we can think that this element
is x. But this cannot be proven in the theory, for such a proof would demand
the identity relation, which cannot be applied to m-atoms. Anyway, we can
informally reason as if the element of the strong singleton [[z]], is =, although
this must be understood as a way of speech. Perhaps the better way to refer to
this situation is (informally) to say that the element of [[x]], is an object of the
kind x.

Remark on the extensional identity Some remarks are in order at this
point. We are using just one sort of variables, for we think we can circumvent
some of the problems that may appear due to this option. For instance, although
we have originally motivated quasi-set theory with the claim that the standard
concept of identity would not apply to quantum entities (here represented by the
m-atoms), definition 2.1(3) makes things a little bit different from the formal
point of view. Really, since we are using a monosorted language, if m(x), then
by the definition, we get —(x = y) for any y. In particular, =(z = ) for any
m~object x. The same happens if x is a gset having m-atoms in its transitive
closure, that is, being x a gset which is not a set (in the sense of the predicate
Z). That is, if Q(z) and —Z(x), then —(x = y) for any y, and in particular
—(x = x). Anyway, there are no (as far as we know) formal problems concerning
these facts, for we have only “deduced”, say, that =(z = ) for an m-object z,
but we can’t go to its identity. Although the third excluded law holds, even
being =(z = y) V (v = y) a theorem of Qp, we never get x = z in the case of
m-objects. Intuitively, perhaps we can say that, since the concept of identity
should make no sense to m-objects, it would be quite natural that they cannot
be identical to themselves. But the above theorem would not occur if we have
used a many-sorted language.
But let us go back to the postulates of Qp.

(€9) YorIguyVz(z € y < w C x), the power gset of =, denoted P(x).
(€10) Voz(D € 2 AVy(y € x — y U [y], € x)), the infinity axiom.

(e11) Voz(E(x) Az # 0 — Jgy(y € zAyNax = 0)), the axiom of foundation,
where x Ny is defined as usual.

Interesting to note that in Q, so as in Qp, we cannot do the simple exercise
of obtaining the power gset of a given gset z, say one which has quasi-cardinal 2
and its elements are indistinguishable from either = or y, supposed indiscernible.
In other words, we cannot write something like P(2) = [0, [[z]], [[¥]], z], for to
do that we need the identity relation. This is due to the fact that [[z]] = [[y]],
as it result from the postulates, and we cannot discern between these two gsets
for any tools provided by the theory. Nevertheless, it seems intuitive that such
a z should have 4 subgsets. This fact shall be grant by a suitable postulate to

11



be presented later. So, the theory is compatible with the hypothesis that z has
4 subgsets, yet we cannot exemplify this fact by samples, but only from the
postulates (which, by the way, is that what imports). The same can be said
concerning the axiom of foundation.

Definition 4.2 (Weak ordered pair) Being z a gset to which both x and y
belong, we pose

(@) = [[z]s [z, 9]]- (2)

Then, (z,y). takes all indiscernible from either z or y that belong to z, and
it is called the “weak” ordered pair, for it may have more than two elements.
Sometimes the sub-indice z will be left implicit.

Definition 4.3 (Cartesian Product) Let z and w be two gsets. We define
the cartesian product z X w as follows:

zxXw:=[,Y)ow: T € 2AY E W (3)

Functions and relations cannot also be defined as usual, for when there
are m-atoms involved, a mapping may not distinguish between arguments and
values. Thus we provide a wider definition for both concepts, which reduce to
the standard ones when restricted to classical entities. Thus,

Definition 4.4 (Quasi-relation) A gset R is a binary quasi-relation between
to gsets z and w if its elements are weak ordered pairs of the form (x,y).0w,
with x € z and y € w.

More general quasi-relations (n-ary) can be defined easily. Thus, a quasi-
function (mapping) between z and w is a binary quasi-relation f between them
such that if (x,y) € f and (z',y') € f and if x = 2/, then y = ¢'. In other words,
a quasi-function maps indistinguishable elements indistinguishable elements. It
is easy to define the corresponding concepts of injective, surjective, and bijective
quasi-functions.

Here we can see a distinctive characteristics of m-objects. Suppose we have
a set with 5 “classical” elements, ordered as aq,...,a5. Of course a permu-
tation between two of them, say the permutation w3 which exchange a; and
a3 leads to a different arrangement. But this would not happen if they were
indistinguishable m-atoms, for no permutation would distinguish them. Taking
an analogy, a queue with John, Mary, and Tom in this order (say, to buy tickets
to the best places in a theatre) is different from another with Mary, Tom, and
John.

Concerning quantum objects, physicists have used certain “queues” of Cal-
cium ions to transmit information, and of course the information is indepen-
dent of the position of the particular Calcium ions (which is different of some
information—say a social fact involving personalities—transmitted among peo-
ple, women, say, which can reach to the end of the row differently depending
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on the order of the involved people—pace, girls).* Quantum objects, as far as
we know, are exactly the same in these aspects too; their permutations do not
change the relevant physical facts, say the relevant probabilities (or informa-
tion).

The last part of the theory we need to explain before going to its paracon-
sistent aspects deals with the concept of quasi-cardinal.

5 Postulates for quasi-cardinals

In standard approaches to set theory, as it is well known, a cardinal is a partic-
ular ordinal. Hence, we must have the ordinal concept defined first in order to
go to cardinals. This is not absolutely necessary, but it is the standard way of
using these concepts. In our case, the idea is that a pure gset of indiscernible
objects may have a cardinal (its quasi-cardinal), but not an associated ordi-
nal. Hence, we have chosen to take the concept of quasi-cardinal as primitive,
subjected to adequate postulates that grant the operational character of the
concept. In the first versions of £, we have said that every gset has a cardinal.
But Domenech and Holik [6], and independently Arenhart [1], have argued that
when we consider relativistic quantum physics, sometime we can’t associate a
cardinal to any collection. They are right, so we have changed axiom 5 below,
just by enabling that some gsets may have not an associated cardinal. The
postulates are as follows, where we use «, (3, etc, for naming representing;:

(gc1) Yoz(3zy(y = qe(z)) — y(Cd(y) Ay = qe(z) AN(Z(z) — y = card(z)))
If the gset x has a quasi-cardinal, then its (unique) quasi-cardinal is a car-
dinal (defined in the ‘classical’ part of the theory) and coincides with the
cardinal of x stricto sensu if z is a set.

(ge2) Vox(x # 0 — ge(z) # 0). Every non-empty gset has a non-null quasi-
cardinal.

(ge3) Vou(3za(a = qe(x)) — VB(B < a — Jgz(z C w Aqe(z) = B))) If =
has quasi-cardinal «, then for any cardinal 8 < «, there is a sub-gset of x
with that quasi-cardinal.

In the remaining axioms, for simplicity, we shall write Vgg4e2 (or Igqez) to
mean that the gset x has a quasi-cardinal.

(qca) YQqetVqqeey(y € x — qe(y) < qe(x))
(qc5) qucvaqcy(Fin(x) Nz C Yy — qC(l‘) < qc(y))

It can be proven that if both = and y have a quasi-cardinal, then x Uy has
a quasi-cardinal. Then,

(qc5) YQqerVoqey(Vw(w ¢ vV w ¢ y) — qe(z Uy) = ge(x) + qe(y))

4Concerning the experiments with Calcium ions, see the Scientific American, March 2006.
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In the next axiom, 29¢(*) denotes (intuitively) the quantity of subquasi-sets
of z. Then,

(acs) Yqqer(ge(P(z)) = 29°%))

This last axiom is precisely that one which enables us to think that, given
a gset with cardinality, say, equal to 4, then it has 16 subgsets. Some of them,
as we shall say with the last axiom below, cannot be discerned from one each
other, but they do not count as one!. This is important for expressing an
ontology of quantum theory; suppose an Helium atom in its fundamental state.
There are two electrons being considered, so we can represented them by a gset
of indiscernible m-atoms with quasi-cardinal 2. The subgsets containing just
one electron cannot be discerned from one another, but they of course count as
two. Of course the electrons have not all their quantum numbers in common,
due to Pauli’s Principle, but this does not matter: the important thing is that
we cannot (even in principle!) to say which is which (see the next section), and
in 9, the same happens with their unitary gsets.

The last postulate of Qp is the Weak Extensionality Axiom,® which in-
tuitively says that gsets with ”the same quantity” (expressed in terms of the
quasi-cardinals) of elements of “the same kind” (related by =) are indistin-
guishable (are themselves in the relation =). In the statement of the postulate
below, Qsim(z,t) means that the elements of z and ¢ are indiscernible and that
they have the same quasi-cardinal; /= stands for the quotient gset of by the
relation =. In symbols,

(=5) VorVoy((Vz(z € /= — 3t(t € y/= A NAQSIm(z,1)))) AVt € y/= —
Fz2(z € x/=AANQSim(t, 2))) = x =y)

The following theorem express the invariance by permutations in Qp, and
with this result we finish our revision:

Theorem 5.1 Let x be a finite gset such that —=*(x = [z]) and let z be an
m-atom such that z € x. If w =z and w ¢ x, then there exists [[w]] such that

(z-[Fhu(w] ==
Proof: Case 1: t € [[z]] does not belong to x. In this case, z — [[z]] = x and so
we may admit the existence of [[w]] such that its unique element s does belong
to z (for instance, s may be z itself); then (x — [[2]]) U [[w]] = z. Case 2:

t € [[z]] does belong to x. Then ge(x — [[2]]) = ge(x) — 1 (by a result not proven
here).® We then take [[w]] such that its element is w itself, and so it follows
that (z — [[2]]) N [[w]] = 0. Hence, by (gcs), ge((x — [[2]]) U [w]]) = ge(x). This
intuitively says that both (z — [[2]]) U [[w]] and z have the same quantity of
indistinguishable elements. So, by applying the week extensionality axiom, we
obtain the result. 1

5We shall not list there the Replacement Axioms and the gset version of the Axiom of
Choice—which intuitively says that from a gset with gsets as elements and 2x2 disjoints,
there is a gset having just one (expressed by the quasi-cardinal) element of each one of the

elements of the given gset.
6But see [9, p.293].
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6 Paraconsistency

There are certain aspects of the behaviour of quantum objects that defy our
standards, which usually are grounded on classical logic, classical mathematics,
and classical physics. In a certain sense, all these marvelous fields were built
taking into account the way we understand (or understood) our environment
(at our scale). To simplify, we can say that our immediate world is a world of
individuals, of well defined and distinct objects, each one having its identity,
having properties and being in relations. But quantum objects are different.”
For instance, sometimes we can distinguish between two quantum objects, say
two fermions, for they obey an irreflexive and symmetric relation, as the two
electrons of an Helium atom in the fundamental state, which have all the same
quantum numbers, except the spin: one of them is UP, while the another one
is DOWN. The problem is that (as far as we believe in quantum mechanics) we
never can say which is which. If they were classical objects, we would be able,
at least in principle, to identify them, and even name them Peter and Paul,
as we do with two identical twins. Furthermore, the physical situation changes
when two macroscopic objects are permuted, even if they are ‘indiscernible’: one
thing to say that Peter is in the kitchen and Paul is in the garden and another
situation is the opposite one. But, concerning fermions, since the irreflexive
relation “... has spin in the opposite direction to ...” is also symmetric, it
is indifferent which has spin UP and which has spin DOWN. Technically, the
join system is described by an anti-symmetric function 15 which changes sign
when the objects are permuted (getting w91), but their square, which gives the
relevant probability, lead to the same value (|th12|> = |h21|?).

In short, we can say that quantum objects have, for instance, the following
characteristics, some of them partaken with standard objects:

1. They can be collected into amounts. We can say that we can form
collections with quantum objects having certain cardinalities (which we can
suppose are finite cardinals). But contrariwise to standard sets (sets of
standard set theories have most of the properties we ascribe to collections
of macro-objects), two collections of such entities may be indiscernible from
one another, as two molecules of a composite, or then like to protons, which
are composed by quarks.

2. Yet sometimes quantum objects can be distinguished by a quantum num-
ber, as the two electrons just mentioned, they do not have individuality, in
the sense that, say, any permutation of them does not entail to any physi-
cal difference, contrariwise to the case of the two identical twins Peter and
Paul of the preceding example. By the way, we should not confuse distin-
guishability, which is something an object may have with other objects, and
individuality, which seems to be something of its own, as we have learnt ever
since the Scholastics (see [9]).

"We shall just emphasize some of these differences, for most of them are discussed in the
literature.
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3. As our theorem 5.1 has expressed, if we have a certain collection of
quantum objects and by some device we exchange one of the collection with
another one from the outside which is indistinguishable from that one (in
the sense of being an entity of the same kind, say two protons, or electrons,
or even atoms and certain molecules), nothing detectable is achieved. Some
examples can be given with ionization processes and with some chemical
reactions. In ionization, for instance, a certain neutral atom can lose one
electron, turning to a negative ion, and then this ion can absorb an electron,
in order to turn again a neutral atom. As far as we know, there are no
differences between the two permuted electrons, although we cannot say
neither that they are different nor that they are identical (yet we can express
that in the language), nor between the first and the second neutral atoms.
Of course these collections should be not modeled by sets of standard set
theories.

We could continue to list the main characteristics of quantum objects in
distinction to ‘classical’ ones, but we think that perhaps these few ones suffice.

In the theory presented above, there are no distinctions between m-atoms
and M-atoms, except that no object can be both at the same time.® Further-
more, if m-objects are intended to represent quantum objects in some sense, it
would be interesting to distinguish at least between two basic categories, which
by resemblance to the physical case we can call fermions and bosons. Here we
shall introduce a definition inspired in Muller & Saunders [13], which helps us to
distinguish fermions as those m-objects that obey an irreflexive but symmetric
relation (these authors call these objects weakly discernible). Thus,

Definition 6.1 (Fermions) Let z be an m-atom. We say that © is a fermion
iff there exists an m-atom y and an irreflevive and symmetric relation R such
that R(x,y) holds.

Of course the name fermions does not intend to provide a definition of the
physical objects in quantum theory. It is here just a name used in resemblance
with the physical situation.

It results from the symmetry of the relation that y is also a fermion. In set
theoretical terms, that is, within the framework of standard (extensional) set
theory, if we say that there is an irreflexive and symmetric relation on a set
A and nothing else, the only think we can deduce is that A has at least two
elements. Thus, the existence of such a relation is a way to say that there are
more than one element in A, although they are not being individualized in the
structure (A, R), being R as above. The problem with regard quantum physics
is that, as we have said, it is not possible, even in mente Dei, to distinguish
between the two fermions of the He atom, but the god of standard mathematics
is more complacent, and in a set theory like ZF we can always extend the

8In our opinion, we need to add to the axioms of quasi-set theory some kind of mereology
linking the atoms, as we did in [11]. But there are some problems to be overcome, as we have
mentioned in that paper.
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considered structure (A, R) to a rigid one where the individuality of the elements
is enlighten. This apparently poses a strong evidence for the fact that if we
want to work with legitimate (whatever sense we give to this word) quantum
objects, we must leave the classical standards. If not, the only thing we can
achieve is indiscernibility relative to certain properties/relations we consider in
our relevant structures. In other words, if we are not satisfied with the rather
artificial mathematical trick of simply ignoring that there are rigid structures
playing the same role than our chosen structures and wish to work with quantum
objects as they are to be sometimes, namely, absolutely indistinguishable and,
in the case of fermions, weakly discernible only, we see no way other than to
consider something like quasi-set theory.

We emphasize that this conclusion is not a simple desire to go against clas-
sical logic, which we consider fundamental and always ‘true’ in its particular
domain of application, but as a fact. An analogy may help here. It is well known
that in informal set theory, with the full Principle of Abstraction, we can easily
derive the existence of the so-called Russell set, namely, R = {z : = ¢ x}, which
conduces to a contradiction. In the axiomatic versions, like ZF, this ‘set’ cannot
even more be obtained, due to the restrictions imposed to abstraction. But we
may wish to study mathematical objects like R, and of course this cannot be
done within ZF (supposed consistent). But we can do that for instance in some
paraconsistent set theories [4]. The same seems to happen here. If we wish to
study absolute indiscernible objects, or weakly discernible objects without ad-
mitting that can be shown to be individuals by some additional (hidden) relation
or property, classical logic and set theory again seem to need re-analyses.

Let us go back to the two electrons example to see some possible paracon-
sistent analogies. We can say that they are distinguishable by the irreflexive
relation: “X has opposite direction of spin to Y”. This relation distinguishes
the two fermions, so, —=(z = y) in Qp. But Qp has all theorems of the para-
consistent calculus %7, in particular, 8°,a — 8 + -8 — -« [4, Th.2.1.8].
Furthermore, axiom (€2) states that x = y — x = y, so, since x = y is not
well-behaved,

Qp ¥F=(z=y) — —(z=1y). (4)

This result may be interpreted as follows. The fact that two fermions are
weakly discernible does not entail that they are distinct individuals. So, al-
though counting as more than one, they may continue to be indiscernible in a
sense, the sense according to which we don’t have any criterion to say which
is which. Really, since = y is ill-behaved, and since — is the paraconsistent
negation, the formula (z = y) A ~(z = y), being a theorem of Qp, does not
trivialize the system, and seems to be in complete agreement with some claims
posed by quantum physics, namely, that the two electrons of an He atom in its
fundamental state are discernible for there exists such an irreflexive and sym-
metric relation, but continue to be indiscernible for they cannot be identified
as individuals (in the standard sense). Furthermore, since in Qp the notion
of identity lacks sense for m-atoms, we cannot extend the relational structure
(A, R) (let us take a minimal one, composed by a gset A with the two electrons
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and the irreflexive and symmetric relation R) to a rigid one encompassing the
identity predicates “to be identical to ...”. In this sense, the theory Qp seems
to serve to express some traits in quantum physics.

A second way to relate quasi-sets and paraconsistency may be the following
one. Recall that the formula m(z) is ill-behaved, thus, we can have m(z)A—m(x)
without trivialization (where — is the paraconsistent negation). How can a
certain object x be ‘at the same time’ an m-object and a ‘non’-m-object? Of
course this does not make sense for standard objects of our surroundings, but
some experiments made with certain physical substances near to macroscopic
scale, such as fullerene Cgp and Crg, fluorinated fullerene molecules CgoFys,
and arobenzenes, show that these “macro molecules” present typical quantum
behaviour, namely, interference in two-slit type experiments [?]. It should be
not so strange that the near future shows the same with still most massive and
large substances. Thus, the fact that our theory enables both m(z) and —m(x)
(being — the paraconsistent negation), it is not so extraordinary even from the
point of view of empirical sciences.

The last example makes reference to the axiom (C). In says that in the pres-
ence of some device expressed by the predicate C' (which of course may be the
conjunction of several other predicates, depending on the particular model being
considered), an m-object may turn to me an M-object. The action of C impedes
that an m-object may have a blur behavious. This is again not so strange if we
give it an adequate interpretation, say by considering collections of m-objects
and the phenomenon of decoherence (but this is far from our intentions here).

When a micro-object becomes a macro-object? A quick answer is: in the
collapse, in our formalism, when it satisfies the predicate C'. The wave func-
tion describing a quantum system, say a system of indiscernible (“identical”
in the physicists’ jargon) quantum particles is a linear combination of a ba-
sis of eingenvectors of some Hermitian operator on the relevant Hilbert space.
When a measurement is made, the wave function immediately collapses to one
of the eingenvectors of the basis. Experimentally, we observe a “click” in the
apparatus. This is a distinctive signal, a macroscopic signal that indicates that
the quantum system does not exist any more and that we have now something
“classical”.

Of course these examples are put here as pure expeculations, but we hope
some other interested people can help us in making the connections between
quantum physics and paraconsistency.
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