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Abstract

Sentences containing definite descriptions, expressions of the form ‘The F’,
can be formalised using a binary quantifier ι that forms a formula out of
two predicates, where ιxrF,Gs is read as ‘The F is G’. This is an innovation
over the usual formalisation of definite descriptions with a term forming
operator. The present paper compares the two approaches. After a brief
overview of the system INFι of intuitionist negative free logic extended
by such a quantifier, which was presented in (Kürbis, 2019), INFι is first
compared to a system of Tennant’s and an axiomatic treatment of a term
forming ι operator within intuitionist negative free logic. Both systems are
shown to be equivalent to the subsystem of INFι in which the G of ιxrF,Gs

is restricted to identity. INFι is then compared to an intuitionist version of
a system of Lambert’s which in addition to the term forming operator has
an operator for predicate abstraction for indicating scope distinctions. The
two systems will be shown to be equivalent through a translation between
their respective languages. Advantages of the present approach over the
alternatives are indicated in the discussion.

Keywords: definite descriptions, binary quantifier, term forming operator, Lam-
bert’s Law, intuitionist negative free logic, natural deduction.

1 Introduction

Sentences of the form ‘The F is G’ can be formalised by using a binary quantifier
ι that forms a formula out of two predicates as ιxrF,Gs. This provides an
alternative to the usual way of formalising definite descriptions by means of
an operator ι that forms a term out of a predicate, where ιxF is read as ‘The F’.
This paper is a comparison of the two approaches. The use of the same symbol
ι for the binary quantifier and the term-forming operator should not lead to
confusion, as context will make clear which one is meant. In (Kürbis, 2019), I
presented the system INFι of natural deduction for intuitionist negative free
logic extended by the binary quantifier ι and proved a normalisation theorem
for it.1 The present paper begins with a brief overview of INFι, so that it can be

1For the proof-theory of term forming ι operators in the context of sequent calculi for classical
logic, see Indrzejczak (2018b) and Indrzejczak (2018a).
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read independently of the previous one. I will then compare INFι to a system of
Tennant’s sketched in (Tennant, 2004) and (Tennant, 1978). Tennant provides
rules of natural deduction for a term-forming ι operator within the version of
intuitionist negative free logic used here. After some clarifications related to
scope distinctions, it will be shown that Tennant’s system is equivalent to the
subsystem of INFι in which the G of ιxrF,Gs is restricted to identity. Both systems
are also shown to be equivalent to an axiomatic treatment of a term forming
ι operator within intuitionist negative free logic. I then compare INFι to an
intuitionist version of a system proposed by Lambert in (Lambert, 2001), which
in addition to the term forming operator has an operator for predicate abstraction
for indicating scope distinctions. Both systems are shown to be equivalent by
means of a translation between their respective languages. As we go along
proving these equivalences, the present paper will also illustrate the workings
of the rules for the binary quantifier ι with numerous examples of deductions in
INFι, and advantages of the present approach over the usual one will become
apparent. In particular, in the formalisation of definite descriptions it is desirable
to have a device for scope distinctions. The sole purpose of the abstraction
operator in Lambert’s system is as an indicator of scope. The formalism of the
present system, by contrast, incorporates scope distinctions directly. Thus the
formal treatment of definite descriptions with a binary quantifier is in this sense
more economical than the approach using a term forming operator.2

2 INFι

Let’s begin with a review of intuitionist negative free logic INF. The rules for
the propositional connectives are just those of intuitionist logic:

A B
^I: A^ B

A^ B
^E: A

A^ B
B

i
A
Π
B

Ñ I: i
A Ñ B

A Ñ B A
Ñ E: B

A
_I: A_ B

B
A_ B A_ B

i
A
Π
C

i
B
Σ
C

_E: i
C

K
KE: B

where the conclusion of KE is restricted to atomic formulas.
The rules for the quantifiers are relativised to an existence predicate:

i
D!y
Π
Ax

y
@I : i

@xA

@xA D!t
@E : Ax

t

2I would like to thank a referee for the Bulletin for the careful and helpful comments.
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where in @I, y is not free in any undischarged assumption of Π except D!y, and
either y is the same as x or y is not free in A; and in @E, t is free for x in A.

Ax
t D!t

DI :
DxA

DxA

Ax
y

i
, D!y

i

loooomoooon

Π
C

DE : i
C

where in DI, t is free for x in A; and in DE, y is not free in C nor in any undischarged
assumption of Π except Ax

y and D!y, and either y is the same as x or y is not free
in A.

The existence predicate also appears in the premise of the introduction rule
for identity; the elimination rule for “ is Leibniz’ Law:

D!t
“ In : t “ t

t1 “ t2 Ax
t1

“ E: Ax
t2

where A is an atomic formula and, to exclude vacuous applications of “ E, we
can require that x occurs in A and that t1 and t2 are different.

Finally, there is the rule of atomic denotation:

At1 . . . tnAD :
D!ti

where A is an n-place predicate letter (including identity) and 1 ď i ď n. AD
captures the semantic intuition that an atomic sentence can only be true if the
terms that occur in it refer.

INFι has in addition the binary quantifier ι with the following rules:

Fx
t Gx

t D!t

Fx
z

i
, D!z

i
loooomoooon

Π
z “ t

ιI : i
ιxrF,Gs

where t is free for x in F and in G, and z is different from x, not free in t and does
not occur free in any undischarged assumption in Π except Fx

z and D!z.

ιxrF,Gs

Fx
z

i
, Gx

z
i
, D!z

i
looooooooomooooooooon

Π
C

ιE1 : i
C

where z is not free in C nor in any undischarged assumption of Π except Fx
z , Gx

z
and D!z, and either z is the same as x or it is not free in F nor in G.

ιxrF,Gs D!t1 D!t2 Fx
t1

Fx
t2

ιE2 : t1 “ t2

where t1 and t2 are free for x in F.
INFι formalises a Russellian theory of definite descriptions, as ιxrF,Gs and

DxpF^ @ypFx
y Ñ x “ yq ^ Gq are interderivable.
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3 Comparison of INFι with Tennant’s System

To formalise definite descriptions using a term forming ι operator within
intuitionist negative free logic, Tennant adds introduction and elimination rules
for formulas of the form ιxF “ t to INF:

D!t

iz “ t
Ξ
Fx

z

Fx
z

i
, D!z

i
loooomoooon

Π
z “ t

ιIT : i
ιxF “ t

where in Ξ, z does not occur in any undischarged assumption except z “ t, and
either z is the same as x or it is not free in F; and in Π, z does not occur in any
undischarged assumption except Fx

z and D!z.

ιxF “ t u “ t
ιE1T : Fx

u

ιxF “ t Fx
u D!u

ιE2T : u “ t

ιxF “ t
ιE3T :

D!t

where u is free for x in F.
It is fairly evident that there are reduction procedures for removing maximal

formulas of the form ιxF “ t from deductions. ιE3T is a special case of the rule
of atomic denotation AD. Notice however that it is more properly regarded as
an elimination rule for ι, as there is a reduction procedure for maximal formulas
of the form ιxF “ t that have been concluded by ιIT and are premise of ιE3T.

When negation is applied to GpιxFq, an ambiguity arises: is  an internal
negation, so that  GpιxFqmeans ‘The F is not G’, or is it an external negation,
so that the formula means ‘It is not the case that the F is G’? Conventions or a
syntactic device are needed to disambiguate. The language of Tennant’s system
makes no provision for distinguishing different scopes of negation. For this
reason, in this section I shall restrict consideration to cases in which terms of the
form ιxF occur to the left or right of “. I will consider a more complete system
after the comparison of a restricted version of INFι with Tennant’s system.

It might be worth noting that there is a sense in which it suffices to consider
occurrences of ι terms to the left or right of identity. Whenever we are tempted
to use a formula GpιxFq, we can introduce a new individual constant c and use
Gpcq and ιxF “ c instead. Furthermore, in negative free logic, if G is a predicate
letter, then GpιxFq can be interpreted as DypGpyq ^ ιxF “ yq, and instead of the
former, we can use the latter.3 There is also no need to apply the existence
predicate to ι terms, as instead of D!ιxA we can use Dy ιxA “ y.

It is generally agreed that the minimal condition on a formalisation of a term
forming ι operator is that it should obey Lambert’s Law:

(LL) @ypιxF “ y Ø @xpF Ø x “ yqq

3In positive free logic, only half of the insinuated equivalence holds, if predicates are allowed to
form sentences from ι terms: then DypGpyq ^ ιxF “ yq implies GpιxFq, but not conversely.
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Tennant’s rules for ι are Lambert’s Law cast in the form of natural deduction.
Call INF with its language modified to contain a term forming ι operator

restricted to occurrences to the left or right of “ and augmented by Tennant’s
rules INFT. Call the same modified system augmented by Lambert’s Law as an
axiom INFLL.

Under the current proposal of treating ι as a binary quantifier, where ‘The
F is G’ is formalised as ιxrF,Gs, formulas of the form ιxF “ t employing the
term forming ι operator, which intuitively mean ‘The F is identical to t’, can be
rendered as ιxrF, x “ ts. Treating ιxrF, x “ ts and ιxF “ t as notational variants, it
is not difficult to show that INFT is equivalent to the fragment of INFι where
the G of ιxrF,Gs is restricted to identity. Call the latter system INFιR. For clarity,
I will refer to the rules for the binary quantifier ι restricted to suit INFιR by ιIR,
ιE1R and ιE2R.

It is now convenient to have rules for the biconditionalØ:

i
A
Π
B

i
B
Π
A

Ø I : i
A Ø B

A Ø B A
Ø E1 : B

A Ø B B
Ø E2 : A

For perspicuity, we will mark applications of the rules for the biconditional, of
Tennant’s rules for ι, and of ιIR, ιE1R and ιE2R in the deductions to follow in the
next paragraphs; unmarked inferences are by the more familiar rules of INF.

To show that INFT is a subsystem of INFLL, we observe that, treating formulas
of the form ιxF “ t as atomic, ιE3T is a special case of AD, and that ιE1T and ιE2T

are derivable from (LL) byØ E1. The following construction shows that ιIT is
also a derived rule of INFLL:

1z “ t
Ξ
Fx

z

Fx
z

1
, D!z

2
looooomooooon

Π
z “ t

1 ØI
Fx

z Ø z “ t
2

@xpF Ø x “ tq
pLLq D!t

ιxF “ t Ø @xpF Ø x “ tq
ØE2

ιxF “ t

Hence INFT is a subsystem of INFLL.
The next three paragraphs show that, if we write ιxF “ t for ιxrF, x “ ts, the

rules ιIR, ιE1R and ιE2R of INFιR are derived rules of INFT.

1. Due to the restriction on INFιR, applications of ιIR are those cases of ιI in
which Gx

t is an identity. So it can be any identity in which x is replaced by t and
the other term is arbitrary, i.e. any identity px “ uqxt or t “ u for short:

Fx
t t “ u D!t

Fx
z

i
, D!z

i
loooomoooon

Π
z “ t

i ιIR

ιxrF, x “ ts
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To derive the rule it suffices to change notation and write ιxF “ t instead of
ιxrF, x “ ts, and to observe that Fx

t , z “ t $ Fx
z by Leibniz’ Law and apply ιIT:

D!t
Fx

t
iz “ t

Fx
z

Fx
z

i
, D!z

i
loooomoooon

Π
z “ t

i ιIT

ιxF “ t

The premise t “ u of ιIR is redundant: a suitable identity can always be provided
by deriving px “ tqxt , i.e. t “ t, from the first premise D!t by “ In.

2. ιE1R is derivable by changing notation and applying DE with the major
premise DxpFx ^ x “ tq derived from ιxF “ t by ιE1T, multiple applications of
“ In and ιET3, and DI:

ιxF “ t

ιxF “ t
D!t

t “ t
ιE1T

Ft

ιxF “ t
D!t

t “ t
Ft^ t “ t

ιxF “ t
D!t

DxpFx^ x “ tq

For a more elegant deduction that does not make the detour through introducing
and eliminating DxpFx ^ x “ tq, given a deduction Π of C from Fz

x, z “ t and
D!z, replace z with t throughout Π, and add deductions of ιxF “ t $ Ft,
ιxF “ t $ t “ t and ιxF “ t $ D!t to derive the three open premises.

3. Change of notation and two applications of ιE2T and one of Leibniz’ Law
derive ιE2R:

ιxF “ t D!t1 Fx
t1

ιE2T

t “ t1

ιxF “ t D!t2 Fx
t2

ιE2T

t “ t2

t1 “ t2

Thus INFιR is a subsystem of INFT.
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Finally, we derive (LL) in the version appropriate to INFιR, i.e. with ιxA “ y replaced by ιxrA, x “ ys:

(LL1) Lambert’s Law: @ypιxrA, x “ ys Ø @xpA Ø x “ yqq

1. ιxrA, x “ ys $ @xpA Ø x “ yq

ιxrA, x “ ys

ιxrA, x “ ys
3

D!x

4
D!z 4z “ y

D!y

4
Ax

z
4z “ y

Ax
y

2
A

ιE2R
x “ y

ιxrA, x “ ys

1
Ax

z
1z “ y

Ax
y

2x “ y

A
1 ιE1R

A
2 ØI

A Ø x “ y
3

@xpA Ø x “ yq
4 ιE1R

@xpA Ø x “ yq

2. @xpA Ø x “ yq, D!y $ ιxrA, x “ ys

@xpA Ø x “ yq D!y
Ax

y Ø y “ y
D!y

y “ y

Ax
y

D!y
y “ y D!y

@xpA Ø x “ yq
1

D!z
Ax

z Ø z “ y
1

Ax
z

z “ y
1 ιIR

ιxrA, x “ ys

Now from 1 and 2 byØ I, we have D!y $ ιxrA, x “ ys Ø @xpA Ø x “ yq, and so by @I, $ @ypιxrA, x “ ys Ø @xpA Ø x “ yqq.

Hence INFLL is a subsystem of INFιR. This completes the circle, and we have shown:

Theorem 1 INFT, INFLL and INFιR are equivalent.
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4 Comparison of INFι with an Intuitionist Version
of a System of Lambert’s

As noted towards the beginning of the previous section, in the absence of a
formal device or a convention for distinguishing two ways of applying negation
to GpιxFq,  GpιxFq is ambiguous:  can either be internal or external negation.
To eliminate ambiguity, Lambert introduces an abstraction operator ∆ that forms
complex predicate terms ∆xB from open formulas B, and with the formation rule
that if ∆xB is a predicate term and t an individual term, then ∆xB, t is a formula.
Semantically, ∆xB, t is interpreted as true just in case t exists and Bt is true.4 In
this section I will compare INFι to an intuitionist version of Lambert’s system.
Like Lambert, I will only consider unary predicates and keep the discussion
fairly informal.5

In Lambert’s system, ∆ is governed by a principle regarded either as an
axiom or as a contextual definition:

(∆t) ∆xB, t Ø pD!t^ Bx
t q (t free for x in B and x not free in t)

To formalise a free Russellian theory of definite descriptions, Lambert adds
Lambert’s Law and the following principle to negative free logic, also regarded
either as an axiom or as a contextual definition:

(∆ι) ∆xB, ιxA Ø DzpιxA “ z^ Bx
zq

Lambert uses a classical negative free logic, but in this section I will consider
adding (LL), (∆t) and (∆ι) to INF. Call the resulting system INFLL∆. In this
system, what we may call the primary occurrences of ι terms are those to the left
or right of identity and which are governed by Lambert’s Law. What we may
call the secondary occurrences of ι terms are those introduced on the basis of the
primary ones by the contextual definition (∆ι).

Lambert notes three characteristically Russellian theorems that are conse-
quences of (LL), (∆t) and (∆ι):

(R1) D!ιxA Ø Dy@xpA Ø x “ yq

(R2) ∆xB, ιyA Ø Dzp@ypA Ø y “ zq ^ Bx
zq

(R3) ιxA “ t Ñ Ax
t (t free for x in A and x not free in t)

A further characteristically Russellian thesis mentioned by Morscher and Simons
(Morscher and Simons, 2001, 19) is worth listing:

(R4) D!ιxA Ñ ApιxAq

We will show that INFLL∆ and INFι are equivalent, and then, to take a convenient
opportunity to illustrate the workings of the latter system, derive formulas
corresponding to (R1) to (R4) in INFι.

4For this and the following, see (Lambert, 2001, 39ff).
5Lambert provides a more general treatment of an abstraction operator in classical positive

free logic, but without a description operator, in (Lambert, 1986). A more complete and precise
comparison of my treatment of definite description with Lambert’s is reserved for sequels to this
paper on the binary quantifier ι in intuitionist positive free logic and in negative and positive classical
free logic. Fitting and Mendelsohn also employ predicate abstraction as a device for distinguishing
scope within modal logic (Fitting and Mendelsohn, 1998, Ch 12).
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In the present formalisation of ι as a binary quantifier, no conventions
or syntactic devices are needed for the disambiguation of complex formulas
involving ι. Ambiguity is avoided by the notation for the operator itself,
which incorporates the relevant scope distinction. In this sense, the current
formalisation of definite descriptions is more versatile than a formalisation using
a term forming operator: it does the work of both, the term forming ι operator
and the abstraction operator.

There is a certain redundancy in Lambert’s axioms. D!t^ Bx
t is equivalent to

Dzpt “ z^ Bx
zq:6

D!t^ Bx
t

D!t
t “ t

D!t^ Bx
t

Bx
t

t “ t^ Bx
t

D!t^ Bx
t

D!t
Dzpt “ z^ Bx

zq

Dzpt “ z^ Bx
zq

1
t “ z^ Bx

z
t “ z

1
D!z

D!t

1
t “ z^ Bx

z
t “ z

1
t “ z^ Bx

z

Bx
z

Bx
t

D!t^ Bx
t

1
D!t^ Bx

t

This means that there is a uniform treatment of the ∆ operator, irrespective of
whether the term a predicate abstract is applied to is an ι term or not, and one
axiom suffices to replace (∆t) and (∆ι):

(∆t1) ∆xB, t Ø Dzpt “ z^ Bx
zq (t free for z in B and z not free in t)

This works only for a Russellian theory of definite descriptions, however: an
alternative theory of definite descriptions within positive free logic may be
intended to provide room for the option that ∆xB, ιxA is true even though there
is no unique A: such a theory may contain (∆t) but not (∆ι).

Furthermore, ∆xB, t is equivalent to ∆xB, ιxpx “ tq, both being equivalent to
Dzpt “ z ^ Bx

zq. Thus there is a sense in which nothing is lost from Lambert’s
system if the formation rules for the abstraction operator were reformulated
so as to require a predicate and an ι term to form a formula out of them. The
ι symbol, being embedded within the ∆ operator, could then just as well be
omitted, so that ∆ forms a formula out of two predicates, which is exactly how
the ι operator works in INFι. Of course what is crucial for Lambert’s system
is Lambert’s Law, and in his formulation of it ∆ does not occur. The present
system is thus in a sense more economical than Lambert’s.

We can emulate Lambert’s use of both, the abstraction operator and the term
forming ι operator, in the present system: ∆xG, ιxF is translated as ιxrF,Gs, and
where t is not an ι term, ∆xA, t is translated as ιxrt “ x,As: instead of naming an
object and applying a predicate to it, we pick out the object by a predicate that
is true at most of it. Then what is expressed by ιxA “ y in Lambert’s system is

6The second deduction is constructed so as not to appeal to any rules of INF that are not also
rules of the system IPF of (Kürbis, 2019, Sec 3). The first deduction can be adjusted to IPF by
deducing t “ t from no premises by “ I.
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expressed in INFι by ιxrA, x “ ys, and what is expressed by D!ιxA is expressed
by ιxrA, D!xs.

A little more precisely, to show that INFLL∆ and INFι are equivalent, observe
that their languages differ only in that the former has ∆ and the term forming ι,
which the latter lacks, and in that the latter has the binary quantifier ι, which
the former lacks. We construct a translation τ from the language of INFLL∆ to
the language of INFι. Atomic sentences and those containing operators other
than ∆ and ι are translated homophonically:

(a) if A is atomic formula not containing any ι terms, then τpAq “ A,
(b) if the main operator of A is a unary operator ˚ (i.e. ˚ is  , D or @), then

τp˚Bq “ ˚τpBq,
(c) if ˚ is a binary sentential operator, then τpA ˚ Bq “ τpAq ˚ τpBq.

Next, the primary occurrences of ι terms:

(d.i) τpιxA “ tq “ ιxrτpAq, x “ ts; similarly for t “ ιxA (i.e. τpιxA “ ιyBq “
ιxrτpAq, ιyrτpBq, x “ yss).

For formulas containing ∆ and the secondary occurrences of ι terms, we need a
distinction:

(e.i) if t is not an ι term, then τp∆xB, tq “ ιxrt “ x, τpBqs,
(e.ii) if t is an ι term ιxA, then τp∆xB, tq “ ιxrτpAq, τpBqs.

To construct a translation υ from the language of INFι to the language of INFLL∆,
we recycle clauses (a) to (c) of τ and add only υpιxrA,Bsq “ ∆xυpBq, ιxυpAq,
letting the contextual definitions (∆t) and (∆ι) do the rest.

Let τpΓq, υpΓq be the set of formulas in Γ translated by τ, υ. We have:

Theorem 2 INFι is equivalent to INFLL∆: (a) if Γ $ A in INFι, then υpΓq $ υpAq in
INFLL∆; (b) if Γ $ A in INFLL∆, then τpΓq $ τpAq in INFι.

Proof. (a) It suffices to observe that the introduction and elimination rules for ι of
INFι remain valid under the translation υ, due to the equivalence of ιxrF,Gswith
DxpF^ @ypFx

y Ñ y “ xq ^ Gq and (R2). (b) It suffices to prove the translations of
(LL), (∆t) and (∆ι) under τ in INFι:

(LLτ) @ypιxrτpAq, x “ ys Ø @xpτpAq Ø x “ yqq

(∆tτ) ιxrx “ t, τpAqs Ø pD!t^ τpAqxt q (t free for x in τpAq and x not free in
t)

(∆ιτ) ιxrτpAq, τpBqs Ø DzpιxrτpAq, x “ zs ^ τpBqxzq

For readability I will prove these equivalences ‘schematically’, it being under-
stood that the formulas A and B in the deductions to follow are translations
under τ.7 Then (LLτ) is (LL1), which we proved earlier. The other two we prove
next.

(∆tτ) ιxrx “ t,As Ø pD!t^ Ax
t q (t free for x in A and x not free in t)

1. ιxrx “ t,As $ D!t^ Ax
t

7From an alternative perspective, the provability of these equivalences shows that adding (LL),
(∆t) and (∆ι) to INFι does not increase its expressive power, as for each formula containing the term
forming ι operator and ∆, there is a provably equivalent one containing only the binary quantifier ι.
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ιxrt “ x,As

1
D!x 1t “ x

D!t

1
A 1t “ x

Ax
t

D!t^ Ax
t

1 ιE1

D!t^ Ax
t

2. D!t^ Ax
t $ ιxrx “ t,As

D!t^ Ax
t

D!t
t “ t

D!t^ Ax
t

Ax
t

D!t^ Ax
t

D!t 1z “ t
1 ιI

ιxrx “ t,As

This is a correct application of ιI: Fx
t is px “ tqxt , i.e. t “ t, and Fx

z is px “ tqxz , i.e.
z “ t. D!z is discharged vacuously.
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(∆ιτ) ιxrA,Bs Ø DzpιxrA, x “ zs ^ Bx
zq

1. ιxrA,Bs $ DzpιxrA, x “ zs ^ Bx
zq

ιxrA,Bs

2
Ax

z

2
D!z

z “ z
2

D!z
ιxrA,Bs

1
D!x

2
D!z

1
A

2
Ax

z
ιE2

x “ z
1 ιI

ιxrA, x “ zs
2

Bx
z

ιxrA, x “ zs ^ Bx
z

2
D!z

DzpιxrA, x “ zs ^ Bx
zq

2 ιE1

DzpιxrA, x “ zs ^ Bx
zq

2. DzpιxrA, x “ zs ^ Bx
zq $ ιxrA,Bs

First, ιxrA, x “ zs,Bx
z $ ιxrA,Bs:

ιxrA, x “ zs

2
A 2x “ z

Ax
z Bx

z
2

D!z
ιxrA, x “ zs

1
D!y

2
D!z

1
Ax

y

2
A 2x “ z

Ax
z

ιE2
y “ z

1 ιI
ιxrA,Bs

2 ιE1

ιxrA,Bs

Thus ιxrA, x “ zs ^ Bx
z $ ιxrA,Bs, and so DzpιxrA, x “ zs ^ Bx

zq $ ιxrA,Bs. In this last application of DE, D!z is discharged vacuously. Notice
that it would have been possible to discharge only one (or indeed none) of the D!z by ιE2, and the discharge the other (or both) by the
application of DE.

This completes the proof of Theorem 2.
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Under translation τ, (R1), (R2), (R3) and (R4) become:

(R1τ) ιxrτpAq, D!xs Ø Dy@xpτpAq Ø x “ yq

(R2τ) ιxrτpAq, τpBqs Ø Dzp@ypτpAq Ø y “ zq ^ τpBqxzq

(R3τ) ιxrτpAq, x “ ts Ñ τpAqxt (t free for x in τpAq and x not free in t)

(R4τ) ιxrτpAq, D!xs Ñ ιxrτpAq, τpAqs

(R2τ) follows from the interderivability of DxpA ^ @ypAx
y Ñ x “ yq ^ Bq with

ιxrA,Bs (see (Kürbis, 2019, 90f)). The rest are proved on the following pages,
once more ‘schematically’ and with τ suppressed for readability. The proofs
presuppose a judicious choice of variables.
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(R1τ) ιxrA, D!xs Ø Dy@xpA Ø x “ yq

1. ιxrA, D!xs $ Dy@xpA Ø x “ yq

ιxrA, D!xs

ιxrA, D!xs
2

D!x
3

D!y
1

A
3

Ax
y

ιE2
x “ y

3
Ax

y
1x “ y

A
1 ØI

A Ø x “ y
2

@xpA Ø x “ yq
3

D!y
Dy@xpA Ø x “ yq

3 ιE1

Dy@xpA Ø x “ yq

2. Dy@xpA Ø x “ yq $ ιxrA, D!xs

Dy@xpA Ø x “ yq

2
@xpA Ø x “ yq

2
D!y

Ax
y Ø y “ y

2
D!y

y “ y
ØE2

Ax
y

2
D!xy

2
D!y

2
@xpA Ø x “ yq

1
D!v

Ax
v Ø v “ y

1
Ax

v
ØE1

v “ y
1 ιI

ιxrA, D!xs
2

ιxrA, D!xs
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(R3τ) ιxrA, x “ ts Ñ Ax
t (t free for x in A and x not free in t)

ιxrA, x “ ts

1
A 1x “ t

Ax
t

1 ιE1

Ax
t

We also have ιxrA, x “ ts Ñ D!t (x not free in t):

ιxrA, x “ ts

1
D!x 1x “ t

D!t
1 ιE1

D!t

Hence ιxrA, x “ ts Ñ pD!t^Ax
t q, and so by (∆tτ), ιxrA, x “ ts Ñ ιxrx “ t,As. We do not, however, have the converse. pD!t^Ax

t q Ñ ιxrA, x “ ts
is not true. ιxrA, x “ tsmeans ‘The A is identical to t’, and this does not follow from the existence of a t which is A, i.e. D!t^ Ax

t .

(R4τ) ιxrA, D!xs $ ιxrA,As

ιxrA, D!xs

2
Ax

z
2

Ax
z

2
D!z

ιxrA, D!xs
1

D!v
2

D!z
1

Ax
v

2
Ax

z
ιE2

v “ z
1 ιI

ιxrA,As
2 ιE1

ιxrA,As
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To close this section, a few words about @E, DI and “ E. In systems where ι is a term forming operator, ι terms can be used as terms
instantiating universal generalisations, as terms over which to generalise existentially, and as terms to the left or right of identity in
Leibniz’s Law. To establish that the current system is as versatile as a system in which this is possible, it remains to be shown that these
uses of ι terms can be reconstructed in the present formalism. In other words, we need to show:

(@ι) @xB, ιxrA, D!xs $ ιxrA,Bs

(Dι) ιxrA,Bs, ιxrA, D!xs $ DxB

(“ ι) Bx
t , ιxrA, x “ ts $ ιxrA,Bs

An inference concluding the existence of an ι term by AD is a special case of ιxrF,Gs $ ιxrF, D!xs, which holds by (R2τ), (R1τ) and general
logic. I will only show that (@ι) and (“ ι) hold, the proof of (Dι) being similar.

(@ι) @xB, ιxrA, D!xs $ ιxrA,Bs

ιxrA, D!xs

2
Ax

z

@xB
2

D!z
Bx

z
2

D!z
ιxrA, D!xs

1
D!y

2
D!z

1
Ax

y
2

Ax
z

ιE2
y “ z

1 ιI
ιxrA,Bs

2 ιE1

ιxrA,Bs

(“ ι) Bx
t , ιxrA, x “ ts $ ιxrA,Bs

ιxrA, x “ ts

2
x “ t

2
A

Ax
t Bx

t

2
D!x

2
x “ t

D!t
ιxrA, x “ ts

1
D!v

2x “ t
2

D!x
D!t

1
Ax

v

2x “ t
2

A
Ax

t
ιE2

v “ t
1 ιI

ιxrA,Bs
2 ιE1

ιxrA,Bs
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5 Conclusion and Further Work

The present formalism has certain advantages over the use of ι as a term forming
operator. It incorporates scope distinctions within the notation, without the
need for an abstraction operator or other syntactic devices or conventions.
It provides a natural formalisation of a theory of definite descriptions, here
developed within intuitionist negative free logic. The resulting system has
desirable proof-theoretic properties, as deductions in it normalise, and it is
equivalent to well known axiomatic theories of definite descriptions.

Scope distinctions are of particular interest to the development of a theory of
definite descriptions within modal logic. Fitting and Mendelsohn, for instance,
provide a detailed account of definite descriptions within quantified modal
logic (Fitting and Mendelsohn, 1998, Ch 12), which uses an abstraction operator
for scope distinction. They observe that scope distinctions are already needed
for formulas containing individual constants, if they are not interpreted rigidly,
and so they introduce predicate abstraction well before definite descriptions.
However, in their system, as in Lambert’s, predicate abstraction does not appear
to play any further role than marking scope distinctions. The present notation
provides a perspicuous way of distinguishing the scope of modal operators that
is independent of abstraction operators:

It is possible that the F is G: ^ιxrF,Gs
The F is possibly G: ιxrF,^Gs.
The possible F is G: ιxr^F,Gs

For scope distinctions with regard to non-rigidly interpreted individual constants,
we can use the technique of simulating the use of a constant t by a predicate
x “ t introduced earlier. It would be worth comparing the approach proposed
here with Fitting’s and Mendelsohn’s, but this must wait for another occasion.
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