
A Reply to “Parallel Computation and the Mind-Body Problem”

Published as Krellenstein, M. (1987). A reply to "Parallel Computation and the Mind-
Body Problem", Cognitive Science, 11, 155-157.

Marc Krellenstein

New School for Social Research

Access Technology

The following is in reply to some points made in Paul Thagard’s “Parallel Computation
and the Mind-Body Problem” (1986).

(1) Thagard argues that increased speed has metaphysical importance because only
intelligent creatures (or machines) quick enough to adequately deal with the demands of
their environment will survive. Thus, the best possible serial simulation of a parallel
algorithm, while strictly possible, may be hopelessly slow. Lest we consider this
conceptually irrelevant, Thagard admonishes us not to ignore such real-world
limitations, observing that our theories relating matter and intelligence need no more
account for the merely conceivable than Newtonian mechanics need explain worlds with
negative gravitation.

But this still shows only that the hardware must be able to run the software fast enough
to be useful/survive. A program running on a parallel machine that produced some sort
of intelligence will also run on a serial machine, and this is enough to show the
hardware irrelevant for explaining the nature, if not the evolution, of that particular
intelligence. If the program runs too slowly on the serial machine to be useful we would
not say that it no longer demonstrates intelligence but only that it is too slow, or that the
particular approach, though successful, is impractical. (Some kind of practicality test is
relevant to determining whether we have produced an intelligence that works in the
same way as, as opposed to being functionally equivalent to, some aspect of human
intelligence, but Thagard does not so constrain his position).

The analogy to negative gravitation is to instruct us not to muddy our thinking or burden
any non-functionalist position with a purely theoretical multiple instantiation hypothesis
and speculation about exotic serial machines. But the serial simulation of parallel
processes and the portability of software are computational principles and everyday
empirical realities, and they are deducible from, rather than premises of or motivation
for, the computational paradigm embraced both by Thagard and the functionalists he
attacks. These principles may prove less interesting if we find it impossible for
intelligence to exist without massively parallel architectures very similar to the brain, but
that will hardly make them less true or confer more than contingent importance on the
particular hardware needed to achieve the requisite level of computational power.

(2) Thagard contrasts the functionalist’s “sharp distinction between hardware and
software” with the fuzzier separation of the two in current computers as evidenced by
special-purpose computers with hard-wired software, or general-purpose computers
with microprogrammed hardware. But functionalism is not concerned as much with
different means of physical encoding as with the distinction between (virtual) machine
and program, between interpretive mechanism and symbolic codes that are interpreted-
for which “hardware” and “software” are a convenient shorthand. A given system may
be viewed as consisting of multiple such virtual machines, and the point (if any) at which
there is sufficient “hardness” as to render one essentially unmodifiable is rightly
regarded as arbitrary.

At any given level, however, the line between virtual machine and program in a
computer system is quite clear; it is what allows us to discuss the algorithms “followed”
by a hard-wired chess machine, or to view the microprogramming level as part of the
hardware virtual machine. What is important for the functionalist position is the
equivalence between cognition and a program executed by some virtual machine.

(3) Thagard attempts to show that parallel hardware architectures offer not merely
increased speed of processing but suggest qualitatively different programming
approaches. One approach cited is being able to pursue multiple, sometimes
improbable hypotheses simultaneously, causing Thagard to say that parallelism “lends
itself to audacity.”

But the position is overstated. A program running on a serial architecture limited to a set
of heuristics for solving a problem might well adopt such an “audacious” approach given
sufficient time to solve the problem relative to pursuing any one path. More likely,
several paths might be pursued at different points in the process, foregoing the need
and inefficiency (due to commonalities in approach) to pursue every approach from start
to finish. Any of these paths might themselves represent improbable hypotheses if there
is time to pursue all of the probable ones. This is a limitation shared by the parallel
architecture: The ability to pursue the improbable is there only if there is sufficient
processing power (sufficient processors) to pursue the probable.

Such an approach may in fact be more natural on a parallel architecture -- but probably
because it is a simple answer to the difficult question of how to take advantage of
multiple processors given an essentially serial approach to a problem for which there is
not, or is not time for, a single algorithm certain of success. If such an approach turns
out to be inadequate (perhaps because of number of likely and unlikely hypotheses) or
if the goal is to harness the power of multiple processors to execute a complex
algorithm guaranteed to produce the answer then there will be a need to more subtly
distribute processing; and this is far more difficult.

Nor is it the case that pursuing multiple hypotheses is just a poor example of the extent
of the differences suggested by parallel hardware. Rather, algorithms for parallel
machines are often modified versions of (and more similar in essentials to than different
from) serial algorithms, or directly exploit the presence of certain order-independent

steps in such algorithms, performing in parallel several steps that would otherwise be
arbitrarily performed serially (see, for example, the discussion of algorithms for the
radically parallel “connection machine” in Hillis, 1985). Conversely, traditional serial
programs (e.g., compilers) are increasingly realized to contain sections that are perhaps
most naturally implemented as parallel communicating tasks, perhaps in one of the
several programming languages running on serial machines that support such
concurrency. Such reformulations are only loosely (if at all) tied to the current or future
existence of parallel architectures for running them.

References

Churchland, P. (1984). Matter and consciousness. Cambridge, MA: Bradford Books/MIT
Press.

Hillis, D. (1985). The connection machine. Cambridge, MA: MIT Press.

Pylyshyn, Z. (1984). Computation and cognition. Cambridge, MA: Bradford Books/MIT
Press.

Tanenbaum, A. (1976). Structured computer organization. Englewood Cliffs, NJ:
Prentice-Hall.

Thagard, P. (1986). Parallel computation and the mind-body problem. Cognitive
Science, 10, 301-318.

