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Bilateral vestibulopathy (BVP) is defined as the impairment or loss of function of either

the labyrinths or the eighth nerves. Patients with total BVP due to bilateral vestibular

nerve section exhibit difficulties in spatial memory and navigation and show a loss of

hippocampal volume. In clinical practice, most patients do not have a complete loss of

function but rather an asymmetrical residual functioning of the vestibular system. The

purpose of the current study was to investigate navigational ability and hippocampal

atrophy in BVP patients with residual vestibular function. Fifteen patients with BVP and

a group of age- and gender- matched healthy controls were examined. Self-reported

questionnaires on spatial anxiety and wayfinding were used to assess the applied

strategy of wayfinding and quality of life. Spatial memory and navigation were tested

directly using a virtual Morris Water Maze Task. The hippocampal volume of these two

groups was evaluated by voxel-based morphometry. In the patients, the questionnaire

showed a higher spatial anxiety and theMorrisWater Maze Task a delayed spatial learning

performance. MRI revealed a significant decrease in the gray matter mid-hippocampal

volume (Left: p = 0.006, Z = 4.58, Right: p < 0.001, Z = 3.63) and posterior

parahippocampal volume (Right: p = 0.005, Z = 4.65, Left: p < 0.001, Z = 3.87)

compared to those of healthy controls. In addition, a decrease in hippocampal formation

volume correlated with a more dominant route-finding strategy. Our current findings

demonstrate that even partial bilateral vestibular loss leads to anatomical and functional

changes in the hippocampal formation and objective and subjective behavioral deficits.

Keywords: hippocampal atrophy, loss of vestibular function, navigation strategies, spatial anxiety, spatial

orientation

INTRODUCTION

Bilateralvestibulopathy (BVP) is characterized by impairment or complete loss of function of
either the peripheral labyrinths or the eighth nerves (Baloh et al., 1989). The deficits can include
both the semicircular canals and the otolith organs (Wiest et al., 2001).The most distressing
symptom is unsteadiness of gait, which worsens in darkness and on uneven ground when vision

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://dx.doi.org/10.3389/fnhum.2016.00139
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2016.00139&domain=pdf&date_stamp=2016-03-31
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:olympia.kremmyda@med.uni-muenchen.de
mailto:olympia.kremmyda@med.uni-muenchen.de
http://dx.doi.org/10.3389/fnhum.2016.00139
http://journal.frontiersin.org/article/10.3389/fnhum.2016.00139/abstract
http://loop.frontiersin.org/people/61650/overview
http://loop.frontiersin.org/people/36757/overview
http://loop.frontiersin.org/people/29709/overview
http://loop.frontiersin.org/people/124121/overview
http://loop.frontiersin.org/people/13360/overview
http://loop.frontiersin.org/people/15430/overview


Kremmyda et al. Beyond Dizziness

and proprioception cannot substitute for the missing vestibular
input (Crawford, 1952). About one half of patients also suffer
from apparent motion of the visual scene (oscillopsia) during
head movements or locomotion (Zingler et al., 2007), which
is caused by involuntary retinal slip due to the deficient
vestibulo-ocular reflex. With absence of motion, the patients are
asymptomatic. BVP patients have a reduced quality of life with
impaired social functioning (Guinand et al., 2012).

BVP is most commonly an adverse effect of aminoglycoside
therapy or is caused byMeniere’s disease or meningoencephalitis.
However, in many patients, especially the elderly, the etiology
remains unknown (Zingler et al., 2007). In the vast majority
of these patients vestibular loss is incomplete and asymmetric.
Electrophysiological testing, such as caloric irrigation and
vestibular-evoked potentials, reveal that most patients have some
residual vestibular function. For example, only 60% of the BVP
patients with pathological canal function also had pathological
otolith function (Agrawal et al., 2013). Total loss of peripheral
vestibular function is very rare; it typically results from bilateral
nerve surgical section in patients with Neurofibromatosis type II.

The human hippocampal formation (HF), i.e., the
hippocampus (HC) and parahippocampus (PHC), is known
to have functional importance in various aspects of memory
(Scoville and Milner, 2000; Manns et al., 2003a,b) and to play an
essential role in spatial memory and navigation (Maguire et al.,
1996; Kessels et al., 2001; Spiers et al., 2001; Astur et al., 2002).
Extensive navigational training (e.g., in taxi drivers) can lead to
changes in HF volumes with smaller volumes in the anterior HF
and larger volumes in the posterior HF (Maguire et al., 2000).
Patients with vestibular nerve sections as well as those with
extensive vestibular training display altered HF volumes (Brandt
et al., 2005; Hufner et al., 2007, 2011a). Patients recovering from
vestibular neuritis, which leads to an acute unilateral vestibular
deficit, also show volume changes in the HF (zu Eulenburg et al.,
2010).

In an earlier study in patients with bilateral vestibular nerve
section we found deficits in spatial memory and navigation as
well as hippocampal atrophy (Brandt et al., 2005). This suggests
that a functioning vestibular system is important for spatial
memory and navigation. A unilateral vestibular loss, however, did
not greatly affect spatial memory or navigational performance,
probably because sufficient information flows from the healthy
side (Hufner et al., 2007). It remains to be seen if reduced and
probably faulty input on both sides leads to such deficits, despite
the same residual function.

In this study we assessed the navigational difficulties of
patients with severe, but incomplete bilateral vestibulopathy,
and possibly accompanying structural changes in the brain. In
particular spatial memory and navigation performance were
quantitatively evaluated with the virtual Morris water maze. Self-
report questionnaires on spatial anxiety and spatial strategy were
administered to investigate navigational problems in daily life.

Abbreviations: ANOVA, analysis of variance; BVP, bilateral vestibulopathy

patients; CON, control patients; GM, gray matter; HC, hippocampus; HF,

hippocampal formation; PHC, parahippocampus; ROI, region of interest; vMWT,

virtual Morris water task.

Finally, to examine structural changes in brain regions relating
to navigation the hippocampal and parahippocampal gray matter
volumes of patients and healthy controls were compared using
voxel-based morphometry.

Our aim is to precisely characterize functional and structural
changes in spatial memory and navigation in BVP in order to help
physicians and physiotherapists recognize and treat these deficits.

MATERIALS AND METHODS

Patient Characteristics
Fifteen patients with BVP (9 males, mean age 63.6 ± 11.5 years)
with unsteadiness of gait were recruited from the German Centre
for Vertigo and Balance Disorders, Munich. BVP was defined
as (1) a bilateral pathological head-impulse test established by
at least two experienced clinicians (O.K. and K.H.) and (2)
a bilaterally reduced (mean peak slow phase velocity ≤6◦/s)
or absent responsiveness to bithermal (44 and 30◦) caloric
irrigation. Mean peak slow phase velocity (SPV) was calculated
as the average of the peak slow velocities of the bithermal caloric-
induced nystagmus on both sides. The cut-off of 6◦/s refers to
internal laboratory values, also in accordance with the literature
(Vesterhauge and Kildegaard Larsen, 1977). Disease duration
was 13.6 ± 17.4 years. Patients with clinical signs indicating
dementia or mild cognitive impairment, cerebellar involvement
or other neurological diseases were excluded from the study.
Fifteen age- and sex-matched control subjects (CON) (mean age
63.6 ± 10.02 years), without a history of neurological diseases,
vertigo or dizziness, and with a normal clinical head-impulse test
and basic neurological clinical examination were also assessed.
None of the subjects of the two groups were taking medication
that directly affected cognitive function, e.g., antidepressants or
antipsychotic drugs.

MRI scanning was not possible in two BVP patients and two
CON due to contraindications for scanning. Handedness was
determined according to the Edinburgh handedness inventory
(Oldfield, 1971). Current clinical symptoms (only applicable to
patients), including oscillopsia and ability to read signs while
moving, as well as daily physical activities were assessed using
a standardized questionnaire. The BVP and CON groups were
also asked about the frequency of computer use (daily vs.
2–5 days/week vs. seldom/never). Questionnaire results were
compared using Chi-Square (χ2) test.

The study was approved by the local ethics committee of the
Ludwig-Maximilians University and conducted in accordance
with the principles described in the Declaration of Helsinki. All
subjects gave their written informed consent prior to the study.

Spatial Navigation and Spatial Anxiety
To quantify the patients’ self-evaluation of their spatial
performance two clinical scales were used: the Wayfinding Scale
and the Spatial Anxiety Scale (Lawton, 1994). The Wayfinding
Scale measures the degree to which participants use either a
route (self-based position, Cronbach alpha = 0.73 for internal
consistency) or an orientation strategy (environment-based,
Cronbach alpha = 0.65) for navigation. The higher the value,
the more the subjects employed the strategy being assessed.
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Persons with a high route strategy value tend to focus on
specific instructions on how to get from place to place based on
landmarks in the environment without a larger understanding of
the environment (Lawton, 1994). A high score on the orientation
strategy means that persons tend to develop a map-like or survey
understanding of the environment and can update their own
position within this environment (Lawton, 1994). Previous work
showed that only a fraction of the population is able to develop
this type of survey knowledge (Ishikawa and Montello, 2006),
which is thought to depend on the hippocampus (Rodgers et al.,
2012; Wiener et al., 2013). BVP patients were therefore expected
to have a lower orientation score and higher route score, and
the orientation strategy was expected to positively correlate with
hippocampus gray matter volume, whereas the route strategy
was expected to negatively correlate with the volume of the
hippocampus.

The Spatial Anxiety Scale (Cronbach alpha= 0.80) is a 5-point
Likert-type scale that assesses the anxiety participants have in
eight daily life situations requiring spatial or navigational skills.
The higher the value, the more strenuous the spatial tasks are
for the subject. Both tests are indirect measures of spatial ability
(Lawton, 1994). Results were weighted according to Lawton
(1994), and group comparisons were performed using Student’s
t-test. The results of theWayfinding scale and the Spatial Anxiety
Scale were correlated using Pearson’s correlation, according to
Lawton (1994). P < 0.05 was considered significant for these
analyses.

Memory Assessment
All tests were administered to all participants (BVP and CON).
A German-language adaptation of the national adult reading
test of Nelson was selected to estimate premorbid intelligence
(MWI-B Test) (Lehrl, 2005). The following subtests of the
Wechsler Memory Scale-Revised were administered to measure
general memory performance (Härting et al., 2000): Mini Mental
Test, Visual Reproduction I and II, Logical Memory I and
II, Figural memory and Digit Span. Raw test values were
transformed into percent ranges according to the age norms
of the respective task (subjects >75 years were included in the
eldest age group of 65–74). The Doors sub-test of the Doors
and People Test (Baddeley et al., 1994) was used as a measure
of long-term visual recognition memory. The normative results
were compared using Student’s t-test in all memory tests. P <

0.05 was considered significant for these analyses.

Virtual Morris Water Task (vMWT)
The Morris water task is considered the gold standard for testing
spatial learning, spatial memory, and navigation in rodents
(Morris, 1984). The virtual version of this test and its validation
for determining human spatial learning, spatial memory, and
navigation abilities are described in detail elsewhere (Hamilton
et al., 2002; Driscoll et al., 2003). The test has been shown
to effectively detect deficits in spatial memory in an elderly
population (Driscoll et al., 2005) and in patients with bilateral
vestibular failure (Brandt et al., 2005). Here a version of the
virtual test adapted for elderly subjects was used: hidden and

visible platform trials were applied before each testing phase.
The subjects were given written instructions prior to testing, the
testing procedures were explained in detail, and subjects had
ample time to ask their questions of the investigator. A training
phase with one or more test trials before the experimental
trials allowed the subject to familiarize herself/himself with the
required task. During the trial no assistance or verbal clues were
given. Both groups received the same protocol.

In brief, the basic features of the environment consisted of a
circular pool located in the center of a room with a square floor
plan (Figure 1). Four conspicuous cues of equal size were placed
around the distal walls. The cues were positioned so that one
cue was on each of the four distal room walls, and the platform
could not be encountered by simply moving toward a single cue
from any release point. The platform was positioned in the center
of one quadrant (N/E) and occupied 2% of the pool area. A
first-person view of the virtual environment was displayed. The
observer’s position was always slightly above the surface of the
water, and forward movement was controlled by the UP (:) arrow
key on the keyboard. Rotation was controlled by the LEFT (/)
and RIGHT (?) arrow keys. Backward navigation or up-down
movement within the pool was not possible. A full 360◦ rotation
in the absence of forward movement required 2.5 s to complete,
and the direct path from a release point to the opposite side of the
pool tool 4 s.

Three phase trials were performed:

1) Phase I consisted of 10 blocks with 2 visible platform trials
each (i.e., a total of 20 trials)

2) Phase II consisted of finding a hidden platform that was always
in the same position starting from different points and

3) Phase III consisted of a single, 45-s-long probe trial during
which the platform was removed from the environment.

The exact duration of the whole task depended on how fast the
subjects found the platform. The time limit for trials I and II was
60 s.

Three measures were computed for each training trial: latency
and path length to the platform in each trial and the heading
error (deviation from a direct trajectory to the platformmeasured
when the subject had traveled 25% of the pool diameter from
the release point in degrees). Group comparisons (BVP and
CON) were conducted with separate repeated measures analyses
of covariance (RM ANCOVAs) with sex and group as between-
subjects factors, trial block as a within-subjects factor and age
as a covariate. To provide an additional qualitative assessment
for hidden platform training trials three raters blind to group
membership classified each participant as either (1) learning to
execute direct trajectories to the platform from each release point
or (2) using a strategy that did not result in execution of direct
trajectories. These values were compared between BVP patients
and CON using separate, repeated measures ANCOVA analyses
of covariance with sex as between-subjects factors and with trial
block as a within-subjects factor, and age as a covariate.

For the probe trial (Phase III) the time and distance spent in
the platform quadrant were additionally assessed. A multivariate
ANCOVA (MANCOVA) was performed, since the measures are

Frontiers in Human Neuroscience | www.frontiersin.org 3 March 2016 | Volume 10 | Article 139

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Kremmyda et al. Beyond Dizziness

FIGURE 1 | (A) Example of a visual cue as seen from the subject’s perspective, while navigating in the platform. (B) Floor plan of the virtual room, indicating the

position of the cues and the platform (black square).

all inherently correlated, with percent time and path length in the
platform quadrant, latency and path length to enter the platform
quadrant as dependent measures, and subject group and sex as
between-subjects factors with age as a covariate.

Data of one BVP patient and one control could not be
analyzed for technical reasons.

There were significant negative relationships between age and
all dependent measures reported here (p < 0.001); therefore, age
was included as a covariate for all analyses of the data from the
vMWT.

Brain MRI Analysis
Acquisition protocol: Acquisitions were done with a 3-T GE
Signa HDx scanner using an eight-channel head coil. A 3-D
gradient-echo sequence (FSPGR fast spoiled gradient recalled),
with a voxel size of 0.86 × 0.86 × 1.4 mm with 0.7 mm
oversampling in the z direction was used to acquire T1-weighted
brain images from all subjects (TE: 3.2 ms, TR: 7.9 ms, Ti: 500 ms,
flip angle: 15◦).

Voxel-Based Morphometry (VBM)
VBM was used to analyze the 3-D FSPGR data sets. Data
were processed using SPM8 (Wellcome Department of Cognitive
Neurology, London, UK, http://www.fil.ion.ucl.ac.uk/spm) with
the integrated VBM toolbox (VBM8, http://dbm.neuro.uni-jena.
de/vbm/) and Matlab (MathWorks, Natick, MA, USA). Data
sets of left-handed subjects (75–100% left handedness on the
Edinburgh handedness inventory (Oldfield, 1971): three in the
BVP group and one in the CON group) were flipped and then
analyzed together with right-handed data sets. This step was
applied since a lateralization of the cortical representation (right
hemisphere dominance for right-handers and left hemisphere for
left-handers) of the vestibular system was described previously
(Dieterich et al., 2003). The following preprocessing steps
of the VBM toolbox were applied: spatial normalization to
the space defined by the MNI template, tissue classification,
and registration using linear and non-linear transformations
(warping) within the same generative model (Ashburner and

Friston, 2005). Analysis was performed on modulated gray
matter (GM) segments. They were multiplied by the non-linear
components derived from the normalization matrix to preserve
actual GM volumes locally, and then smoothed with an 8-mm
isotropic Gaussian kernel. The confounding effects of individual
differences in brain orientation, alignment, and different brain
sizes were accounted for by applying modulation for non-linear
warping only (Luders et al., 2009).

Voxel-wise GM differences between BVP patients and
controls were compared using statistical parametric mapping
software (SPM8) and a general linear model with one dependent
variable (the voxel-wise GM volume changes) and multiple
independent variables (univariate multiple linear regression,
where all of the factors were considered simultaneously). The
following independent variables were included in the analysis:
results of the Doors Test, Wayfinding Score Route Strategy
and Orientation Strategy, premorbid intelligence (MWT-B),
Spatial Anxiety Scores, vMWT data “percent time in target
quadrant” and “latency to target quadrant,” gender and age.
Care was taken to select the independent variables, so as to
exclude their correlation. Parameters were estimated using a
least-squares approach; the t-statistic is a valid statistic for testing
whether the slope of the relationship between the dependent
variable and a linear combination of the independent variables
is greater than zero. Grubb’s test was used to identify potential
outliers. Only clusters of 20 voxels or more were included
in the analysis. Voxel-wise statistical parametric maps were
created, which identified brain regions containing significant
differences of local GM volume for the contrasts of interest;
familywise error correction (FWE) was applied (Wright et al.,
1995; Ashburner and Friston, 1997). A region of interest (ROI)
was created for the hippocampus (HC), the parahippocampus
(PHC), grouped together as the hippocampal formation (HF)
and the caudate nucleus using the WFU-Pickatlas (ANSIR,
Wake Forest University; Maldjian et al., 2003). Anatomical
structures were named according to the Automated Anatomical
Labeling Atlas (Tzourio-Mazoyer et al., 2002). The results for
the hippocampus were described as located in the “anterior,”
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TABLE 1 | Clinical data of patients with bilateral vestibulopathy.

Patient Age (y) Sex Disease

duration (y)

Etiology Mean SPV (◦/s) Oscillopsia Other diseases Hobbies

BVP1 79 m 10 Aminoglycosides 0.9 No Atrial fibrillation,

hypertension

None reported

BVP2 86 f 69 Inflammatory 0 Yes Hearing loss, atrial

fibrillation,

diabetes

None reported

BVP3 58 m 8 Idiopathic 1.5 Yes Tinnitus Nordic walking

BVP4 58 m 5 Idiopathic 0 Yes Dyslipidemia Cycling, skating

BVP5 67 f 15 Inflammatory 1.2 Yes Chronic back pain,

hypertension

Hiking

BVP6 58 m 15 Traumatic 4.5 Yes Chronic back pain Computer games

BVP7 68 f 12 Inflammatory 1.6 Yes Sjögren’s

syndrome

Self-help group leader

BVP8 65 m 35 Inflammatory 0 Yes None Computer games

BVP9 63 m 2 Idiopathic 1.8 No Hypertension Cycling, skiing, nordic walking

BVP10 44 f 10 Idiopathic 0 No Hearing loss Skiing, swimming

BVP11 45 m 4 Idiopathic 1 No Asthma Cycling

BVP12 61 m 2 Idiopathic 0 Yes Prostate

hyperplasia

Swimming, reading

BVP13 66 f 12 Menière’s disease 6 No Hypertension Reading

BVP14 59 f 2 Idiopathic 5.3 No Diabetes Horse back riding

BVP15 78 m 4 Idiopathic 2 No Hypertension Cycling, ping pong

SPV, Slow phase velocity; HIT, head impulse test (Halmagyi and Curthoys, 1988).

“middle,” or “posterior” hippocampus depending on the y
coordinates obtained, since different hippocampal regions are
implicated in distinct cognitive processes (Fanselow and Dong,
2010; Hufner et al., 2011a). This distinction was made by dividing
the hippocampus into three regions along the Y-axis as described
by Greicius et al. (2003). The MNI space was used in the current
study.

RESULTS

Patient Characteristics
The clinical characteristics and findings for the BVP patients are
given in Table 1. All patients hat a clinically pathological head-
impulse test (Halmagyi and Curthoys, 1988). BVP and CON did
not differ in frequency of computer use and daily level of physical
activity (Chi-Square, p > 0.05).

Neuropsychological Assessment
All patients and normal subjects completed all cognitive tasks
and questionnaires (except for BVP 1 who did not complete the
MWI-B Test and BVP 10 that left out a part of the Wayfinding
scale). Subjects of the BVP group had significantly higher scores
in the Spatial Anxiety Scale compared to controls [t-test, t(28) =
2.4, p= 0.023, r= 0.46;Table 2]. No significant group differences
were observed in navigational strategies (orientation vs. route
strategy) as measured by the Wayfinding Scale [Orientation
strategy: t(27) = 1.7, p = 0.25, t(27) = 1.7, p = 0.15, Table 2]. No
significant correlation between scores on the Wayfinding Scale
and Spatial Anxiety Score was observed (Pearson correlation,

TABLE 2 | Results of Wayfinding Scale (orientation and route strategies)

and Spatial Anxiety Scale.

Group Orientation strategy Route strategy Spatial anxiety

BVP Mean 13.86 8.49 14.96*

Std. 3.17 4.08 5.13

CON Mean 15.53 10.54 11.00*

Std. 4.33 3.42 3.77

p-value 0.246 0.156 0.023

Higher values indicate increased use of the respective navigational strategy or increased

prevalence of spatial anxiety. The asterisk indicates statistical significance between the

BVP and CPN group. For exact statistical values see text. Bold indicates p value below

0.05.

p > 0.05). No differences in intelligence as measured by the
reading test [MWI-B Test, t(27) = −0, 0.170, p = 0.87], in
visual recognition memory as measured by the Doors test [t(28)
= −0.43, p = 0.67] or in general memory as evaluated by the
Wechsler Memory Scale Revised, [Mini Mental Test (t(28) =

−0.46, p = 0.65), Visual Reproduction I (t(28) = −1.9, p = 0.7)
and II (t(28) = −0.7, p = 0.49), Logical Memory I (t(28) = 0.1,
p = 0.92) and II (t(28) = −1.05, p = 0.3), Figural memory (t(28)
= −0.41, p = 0.69) and Digit Span (t(28) = 0.2, p = 0.67) were
detected between groups].

Spatial Memory and Navigation
Visible Platform Navigation (Phase I)
No significant effects or interactions involving the group and
trial block factors on latency, path length or heading error
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FIGURE 2 | Mean (+SEM) measures during the hidden platform training (Phase II) for the control (CON) and bilateral vestibulopathy (BVP) groups; (A)

Latency to navigate to the platform, (B) Path length to the platform, expressed as Path Length/Pool Diameter, (C) Heading error. (D–F)represent the

same measures averaged over the first 5 and last 5 training blocks. *significant group effect at p < 0.05.

were found (ANCOVA for latency, path, length and heading
error, p > 0.10 in all tests). Males were significantly faster
than females [latency in males < females; F(1, 23) = 8.108, p
= 0.009], and more precise [heading error males < females;
F(1, 23) = 11.142, p = 0.003, r2 = 0.326], as shown in
previous studies (Hufner et al., 2007); however, there were no
other significant main effects or interactions involving gender
(p > 0.08; Data not shown).

Hidden Platform Navigation (Phase II)
No significant effects or interactions involving the factors of
interest were detected (ANCOVA; Figures 2A–C). Comparison
of mean values for each dependent measure during the first 5
(1–5) and last 5 (6–10) trial blocks revealed that controls were
finding the platform faster than the patients during the last 5
blocks of training [latency BVP>CTR, F(1, 23) = 4.46, p= 0.046,
r2 = 0.163] [Figures 2D–F). All other effects and interactions
were not significant (p > 0.05)].

Probe Trial (Phase III)
As mentioned before, multiple ANCOVA was used for statistical
analysis. Results are shown in Figure 3. There was a significant
multivariate effect of group [Wilks’ 3: 0.485; F(4, 20) = 5.30, p
= 0.004]. The main effect of gender and of group × gender
interaction was not significant (p > 0.10). The standardized
discriminate function coefficients for the multivariate group

effect were ordered as follows: percent path length to platform
quadrant (3.06), latency to enter the platform quadrant (−2.67),
percent path length in the platform quadrant (1.48) and
percent time in the platform quadrant (−0.56), indicating
that the groups were best discriminated by variables related
to navigating quickly and directly to the platform quadrant.
Variables related to persistence in searching were somewhat
less discriminating. It is important to note that the greater
path length to navigate to the platform quadrant in controls
compared to BVP patients was largely due to the two significant
outliers (>2 standard deviations). When removed, the mean
path length for group CON dropped significantly (26%) to 0.55
(SEM = 0.9). However, because of the high variability in the
individual measures, none of the direct comparisons among
groups for the individual dependent measures were significant
(p > 0.30).

MRI Analysis
Voxel-Based Morphometry of Gray Matter Volumes
Gray matter brain volumes of BVP patients were compared
to those of matched controls using voxel-based morphometry
(Wright et al., 1995; Ashburner and Friston, 1997; Critchley
et al., 2003). Whole brain analysis did not reveal any areas of
gray matter change (p > 0.05, FWE corr.) for both contrasts
(BVP > CON and CON>BVP). A ROI analysis of the HC
and PHC detected no gray matter changes for the contrast

Frontiers in Human Neuroscience | www.frontiersin.org 6 March 2016 | Volume 10 | Article 139

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Kremmyda et al. Beyond Dizziness

FIGURE 3 | Mean (+SEM) measures during the no-platform probe trial (Phase III) for the control (CON) and bilateral vestibulopathy (BVP) groups; (A)

Latency to enter the platform quadrant, (B) Path length to the platform quadrant, expressed as Path Length/Pool Diameter, (C) Percent time spent in

the platform quadrant, and (D) Percent path length spent in the platform quadrant.

TABLE 3 | GM coordinates and cluster sizes of areas of the hippocampal

formation with larger GM volume in healthy controls compared to BVP

patients.

P-value FWE corr. T Z Cluster size Coordinates Label

CONTRAST: COP>BVP PATIENTS

0.005 6.95 4.65 211 22 −37 −12 R PHC

0.006 6.75 4.58 155 −28 −25 −17 L HC

0.000* 5.09 3.87 20 −20 −37 −12 L PHC

0.000* 4.63 3.63 28 28 −22 −9 R HC

The asterisk indicates a threshold of p < 0.001 uncorrected for multiple comparisons.

Statistical values are from ROI analysis including the hippocampus and parahippocampus.

ROI, Region of Interest; GM, Gray Matter; R, Right; L, Left; PHC, Parahippocampus; HC,

Hippocampus.

BVP > CON (p > 0.05 FWE corr. or 0.001 uncorr.). For the
contrast CON > BVP loss of gray matter was found in the HC
and PHC bilaterally (Table 3, Figure 4). This included the mid-
hippocampus bilaterally with a maximum at y = −22 right and
at y = −25 left, reaching into the posterior HC on the left
side, as well as the posterior PHC bilaterally (y = −37). No
differences were observed in the caudate nucleus between the two
groups.

Relationship between HF Volume and Spatial

Performance
Correlation analyses were performed to test for an effect of
the covariates on regional GM brain volumes in the HF

and caudate nucleus in patients and controls, separately and
grouped together. For the results of the Doors Test, Wayfinding
Score orientation strategy, premorbid intelligence (MWT-B),
vMWT data “percent time in target quadrant” and “latency to
target quadrant” and gender no significant effect was found
(p > 0.001 uncorrected). However, results of the Wayfinding
Score route strategy showed an inverse effect on HF volume:
a maximum occurred at −28 −25 −17 (left middle HC
reaching into the posterior HC), at 28 −24 −9 (right middle
HC reaching into posterior HC), and at 22 −36 −11 (right
posterior PHC) for the entire cohort (Table 4; Figure 5). The
caudate nucleus data showed a positive correlation with the
route strategy only at −6 10 −0 (T = 3.77, Z = 3.17, p =

0.001).

DISCUSSION

In the present study we demonstrate subtle deficits in spatial
memory and navigation as well as atrophy of the mid-
hippocampus and the posterior parahippocampus and increased
spatial anxiety, all of which were detected in an unselected patient
population with severe but incomplete BVP. The patients did
not differ from controls in general memory or whole brain
gray matter volume. The specific impairment of spatial memory
and navigation detected in these patients together with the
increased spatial anxiety contributes to a reduced quality of
life as described earlier (Guinand et al., 2012; Agrawal et al.,
2013).
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Increased Spatial Anxiety in Patients with
BVP
The Spatial Anxiety Scale was developed to quantify anxiety
about environmental navigation (Lawton, 1994). This scale
provides an objective measure of the difficulties that these
patients face and takes into account daily situations requiring
spatial navigation abilities, such as finding one’s car in a parking
lot or finding one’s way in a supermarket. Patients showed on
average higher scores than their matched controls. This result
provides evidence that the spatial deficits in BVP, as shown in the
current and previous studies (Brandt et al., 2005; Hufner et al.,
2007) are not limited to laboratory test conditions. These deficits
have been neglected so far in the clinical routine, partly because
they are not captured by the standard Dizziness Handicap
Inventory (DHI) score (Jacobson and Newman, 1990; Guinand
et al., 2012). They are, however, clinically relevant since increased
levels of anxiety can lead to an increase in secondary somatoform
vertigo (Tschan et al., 2011) and further reduce the quality of life.

Spatial Memory and Navigation Are
Impaired in BVP
The increased spatial anxiety in BVP was associated with an
objectively impaired spatial memory and navigation (measured
by the virtual version of the Morris water task). The patients’
impairment was most evident in the parameters measuring direct
and rapid navigation to the platform quadrant in the probe
trial, particularly during the late phase of learning. Furthermore,
patients required more time for the less direct trajectories
to the platform during the training phase than controls.
These impairments were not as pronounced as those observed
in patients with complete bilateral vestibular deafferentation
(Brandt et al., 2005), most likely due to our patients’ residual
vestibular input. Such a pattern in the vMWT suggests that
the degree of vestibular damage and the degree of impairment
in place learning and memory are related. Mild impairments
indicated in the vWMT were accordingly detected in patients
with only right vestibular lesions (Hufner et al., 2007).

Impairments of performance in the vMWT have been
reported for elderly subjects. They were particularly evident in
subjects within the age ranges used in the present study (Driscoll
et al., 2005). However, all patients and controls sampled here
were matched for age. Because there were significant negative
relationships between age and all dependent measures reported,
age was included as a covariate for all analyses. Therefore, the
observed impairments in spatial learning memory in the VMWT
related to vestibular input represent effects above and beyond
those attributable to normal age-related decline.

BVP Leads to Atrophy of the Hippocampal
Formation
It is well recognized that the vestibular system is relevant for
human spatial memory and navigation as well as for the integrity
of the hippocampal formation (HF), i.e., the parahippocampal
region and the hippocampus proper. Several studies in humans
have shown that there is an intimate interaction between the
vestibular system and the HF, for example, the use of vestibular

FIGURE 4 | Areas of higher GM volume in healthy controls compared to

BVP patients. (A) Clusters of GM differences between the two groups are

shown on sagittal and coronal planes through the maximum cluster in the right

hemisphere at 28 −22 −9 at p < 0.001 uncorr. and (B) left hemisphere at −28

−25 −17 p < 0.05 FWE corr. Clusters and significance values are from an ROI

analysis of the HC and PHC bilaterally and are projected onto a mean image of

the included subjects. Color bars indicate the range of t-values. The threshold

for statistical significance was 3.69.

stimulation provided evidence of HF activation with functional
imaging (Vitte et al., 1996; Suzuki et al., 2001; Dieterich et al.,
2003) as well as neuropsychological changes in spatial memory
(Bachtold et al., 2001). Human lesion studies showed that the
abolition of vestibular input causes significant deficits in spatial
memory as well as hippocampal volume changes (Schautzer et al.,
2003; Brandt et al., 2005; zu Eulenburg et al., 2010; Alessandrini
et al., 2013).

The present VBM analysis showed atrophy of the mid-
hippocampus and the posterior parahippocampus bilaterally in
patients with chronic, bilaterally reduced vestibular function. On
the other hand, neither generalized brain atrophy nor atrophy of
the caudate nucleus was noted. Patients with unilateral vestibular
deafferentation after acoustic neurinoma removal did not show
significant atrophy of the HF, probably because the unilateral
vestibular input was preserved in the HF (Hufner et al., 2007). An
fMRI study of subjects with bilateral vestibular deafferentation
and blind subjects proposed that vestibular input enters the
hippocampal formation at its anterior aspect, i.e., the entorhinal
cortex, while the processing of visual information takes place in
the more posterior aspects (Jahn et al., 2009). A meta-analysis
supports this view of a spatial visual-vestibular separation of
information processing in the hippocampal formation (Hufner
et al., 2011b). In our meta-analysis the maxima of vestibular
signals were located in the anterior and middle HC.

The maximum of HC atrophy was also located within this
range but extended slightly more posteriorly on the left side
(maxima at y = −25 left and −22 right). This is similar to
the region (y = −23) found in a recent study on patients after
unilateral vestibular neuritis; atrophy was only found on the left
side of the HC irrespective of the side of vestibular failure (zu
Eulenburg et al., 2010).
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In the PHC, vestibular-related information was likely to be
located more anteriorly and visual information more posteriorly,
although this separation was less evident than in the HC (Hufner
et al., 2011b). In the current analysis the volume changes in
the PHC were located in the posterior aspects bilaterally, which,
according to the model described, cannot directly be attributed to
the loss of vestibular input. This suggests that a complex network
for multisensory information processing is present in the HF.

Measures of Hippocampal Volume and
Spatial Performance
The relevance of the HF, the right side in particular, for spatial
orientation and navigation has been revealed in both animal and
human studies (Moser et al., 1993; Ghaem et al., 1997; Maguire
et al., 1997; Gron et al., 2000; Astur et al., 2002; Hartley et al.,
2003; Zhang et al., 2004). The patients in the present study
did not differ from controls in their self-reported navigation
strategies (route vs. orientation strategy), both of which were
measured by the Wayfinding Scale; however, their performance
in the vMWT was reduced. The GM volume of the HF did
not correlate with any quantitative performance scores. Thus,
there is no proof of a direct relationship between disease-related
hippocampal volume changes and spatial navigation deficits.
The only correlation between performance and GM volume was
found for the middle-to-posterior hippocampus, including the
right posterior parahippocampus. This volume also correlated
negatively with the route strategy in our entire subject cohort.
Therefore, with smaller the hippocampal size, the route strategy
became more dominant.

The Wayfinding Scale consists of a set of questions weighted
according to two different navigation strategies: orientation and
route. The orientation strategy can be thought of as monitoring
self-position information rather than external environmental
cues (Lawton, 1994). Questions that are weighted toward this
strategy include, but are not limited to, orientation or place
strategies and the development of a cognitive map, which are
known to be dependent on the hippocampus (Tolman, 1948;
Cheung et al., 2012), particularly the posterior hippocampus
(Janzen and van Turennout, 2004). It is strange that the
orientation strategy showed no positive correlation with the
hippocampus. However, previous studies showed that values
from the route strategy are more sensitive to differences of
gender (Lawton, 1994) and culture (Lawton and Kallai, 2002).
Questions that are weighted toward the route strategy primarily
rely on directions (Lawton, 1994), e.g., turn right at the next
intersection. The elderly (Rodgers et al., 2012; Wiener et al.,
2013) and women (Lawton, 1994) prefer such route-, response-
based strategies. The negative correlation between route-based
navigation and posterior hippocampal volume could reflect this
higher sensitivity.

On the other hand, caudate nucleus showed only a weak
correlation at −6 10 −0 with the route strategy, which on the
whole is consistent with navigation strategies that do not depend
on environmental clues (Bohbot et al., 2007). Nevertheless, it is
difficult to draw any further conclusions based on this result.

TABLE 4 | GM coordinates and cluster sizes of areas that correlate

negatively with the route strategy score of the Wayfinding scale.

P (uncorr) T Z Cluster size Coordinates Label

WAYFINDING SCALE ROUTE STRATEGY

0.000 −5.21 −3.93 68 −28 −25 −17 L HC

0.000 −4.84 −3.74 44 28 −24 −9 R HC

0.000 −4.70 −3.67 75 22 −36 −11 R PHC

Statistical values are from ROI analysis including the hippocampus and parahippocampus.

ROI, Region of Interest; GM, Gray Matter; R, Right; L, Left; PHC, Parahippocampus; HC,

Hippocampus.

FIGURE 5 | The Wayfinding Scale route strategy scores correlate

negatively with GM hippocampal volume bilaterally. Results are shown in

a sagittal and coronal plane through the peak voxel at −28 −25 −17 and with

the PHC GM volume on the right (not visible here). (p < 0.001 uncorr., ROI

analysis of the HC and PHC bilaterally). Color bars indicate the range of

t-values. The threshold for statistical significance was 3.69. PHC,

Parahippocampus; GM, Gray Matter; ROI, Region of Interest; HC,

Hippocampus.

Although the orientation strategy may be based more on
self-position monitoring, both strategies have sensorimotor
components that require accurate vestibular information for
successful navigation. Indeed this may partially explain why no
behavioral differences were found between our groups. However,
it is still possible that given lower between-subject variability and
a larger sample size, differences in behavior and the resulting
reduction in hippocampal volume may become apparent.

Effects of Stress on Hippocampal Volumes
In light of the increased spatial anxiety scores of BVP patients, it
is of interest that deficits of spatial memory and navigation have
also been reported to occur in children with anxiety disorders
(Mueller et al., 2009). Furthermore, adults with social phobias
show higher cerebral blood flow in the anterior and middle
hippocampal regions (y = −13) when anticipating speaking in
public (Tillfors et al., 2002); this area includes the region showing
GM atrophy in our patients. These findings point to a two-
way interaction between anxiety and hippocampal volume which
involves spatial memory and navigation. Fanselow and Dong
(2010) proposed that the dorsal HC is involved in information
processing (spatial orientation predominantly on the right side),
and the ventral HC correlates with emotion and stress. This
theory derived from evaluation of the expression of genetic
markers as well as functional lesion studies. Their theory also
supports the notion of an interaction between spatial memory
and anxiety within the hippocampus.
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A stress effect could be responsible for the discrepancies
between human and animal studies. Animal studies have not so
far shown hippocampal atrophy after bilateral vestibular damage
(Besnard et al., 2012; Zheng et al., 2012). One contributing factor
that should be taken into consideration (besides loss of vestibular
input) is the higher anxiety levels described in patients with
BVP (Guinand et al., 2012; Saman et al., 2012), partly due to
social difficulties (Agrawal et al., 2013). Laboratory animals, on
the other hand, are rather hyperactive after labyrinthectomy,
which may help maintain hippocampal volumes (Zheng et al.,
2012) and contrary to humans (Horii et al., 2007), they do not
show higher levels of circulating corticosteroids after vestibular
deafferentation (Lindsay et al., 2005; Russell et al., 2006).

CONCLUSIONS

Our current findings demonstrate that partial bilateral vestibular
loss also leads to anatomical and functional changes in the
hippocampal formation, which are reflected in subjective and
objective behavioral deficits. These deficits should be directly
addressed by the attending physicians, when evaluating daily life
challenges in those patients.
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