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Abstract In response to the liar’s paradox, Kripke developed the fixed-point
semantics for languages expressing their own truth concepts. (Martin and
Woodruff independently developed this semantics, but not to the same extent
as Kripke.) Kripke’s work suggests a number of related fixed-point theories of
truth for such languages. Gupta and Belnap develop their revision theory of
truth in contrast to the fixed-point theories. The current paper considers three
natural ways to compare the various resulting theories of truth, and establishes
the resulting relationships among these theories. The point is to get a sense
of the lay of the land amid a variety of options. Our results will also provide
technical fodder for the methodological remarks of the companion paper to
this one.

Keywords Fixed-point theory · Revision theory · Truth

1 Introduction

Given a first-order language L, a classical model for L is an ordered pair
M = 〈D, I〉, where D, the domain of discourse, is a nonempty set; and where
I is a function assigning to each name of L a member of D, to each n-place
function symbol of L an n-place function on D, and to each n-place relation
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symbol a function from Dn to {t, f}.1 Suppose that L and L+ are first-order
languages, where L+ is L expanded with a distinguished predicate (1-place
relation symbol) T, and where L has a quote name ‘A’ for each sentence A
of L+. Then we say that L and L+ are a corresponding ground language and
truth language. A ground model for L is a classical model M = 〈D, I〉 for L
such that I(‘A’) = A ∈ D for each sentence A of L+.2

Given a ground model M for L, we can think of I(X) as the interpretation
or, to borrow an expression from Gupta and Belnap [3], the signification of X,
where X is a name, function symbol or relation symbol. Gupta and Belnap
characterize an expression’s or concept’s signification in a world w as “an
abstract something that carries all the information about the expression’s [or
concept’s] extensional relations in w.” If we want to interpret Tx as “x is
true”, then, given a ground model M, we would like to find an appropriate
signification, or an appropriate range of significations, for T.

We might try to expand a classical ground model M = 〈D, I〉 for L to a
classical model M′ = 〈D, I′〉 for L+. For T to express truth, M′ should assign
the same truth value to the sentences T‘A’ and A, for every sentence A of
L+. Unfortunately, not every ground model M = 〈D, I〉 can thus be expanded:
if λ is a (nonquote) name of L and if I(λ) = ¬Tλ, then I′(λ) = ¬Tλ, so that
T‘¬Tλ’ and Tλ are assigned the same truth value by M′; so T‘¬Tλ’ and ¬Tλ

are assigned different truth values by M′. This is a formalization of the liar’s
paradox, with the sentence ¬Tλ as the offending liar’s sentence.

In a semantics for languages capable of expression their own truth concepts,
T will not, in general, have a classical signification. Kripke [8] and Martin and
Woodruff [10] present the fixed-point semantics for such languages. Kripke
suggests a whole host of related approaches to the problem of assigning, given
a ground model M, a signification to T. Gupta and Belnap [3] present their
revision theories in contrast to the various fixed-point options presented by
Kripke.

In the current paper, we motivate three different ways of comparing fixed-
point and revision theories of truth, and we establish the various relationships
the theories have to one another in these three different senses. The general
point of this is to help us get the lay of the land amid the variety of choices.

1We will always assume that our first-order languages have countably many variables, the equals
sign, connectives ¬ and &, and the universal quantifier ∀. The other truth-functional connectives
and the existential quantifier are defined in the standard way. Our languages can have any
cardinality of names, function symbols and relation symbols. We take each predicate to be a
1-place relation symbol.
2In various examples, below, we specify only the function symbols, relation symbols and nonquote
names of L: this fully determines both L and L+.
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There is a more specific use we make of the comparisons: in the companion
paper to this one, [7], we use the current results to critique on of Gupta and
Belnap’s motivations for their revision-theoretic approach, i.e., their claim that
the revision theory has the advantage of treating truth like a classical concept
when there is no vicious reference.

In the course of our investigation, we close two problems left open by Gupta
and Belnap [3]. We also give a simplified proof of their “Main Lemma”.

2 Fixed-Point Semantics

The intuition behind the fixed-point semantics is that pathological sentences
such as the liar sentence are neither true nor false.3 In general, a three-valued
model for a first-order language L is just like a classical model, except that
the function I assigns, to each n-place relation symbol, a function from Dn to
{t, f, n}. A classical model is a special case of a three-valued model. Officially
t(rue), f(alse) and n(either) are three truth values, but n can be thought of a the
absence of a truth value.4 We order the truth values as follows: n ≤ n ≤ t ≤ t
and n ≤ n ≤ f ≤ f. We say that M = 〈D, I〉 ≤ M′ = 〈D, I′〉 iff I(X) = I′(X) for
each name or function symbol X, and I(R)(d1, . . . , dn) ≤ I′(R)(d1, . . . , dn) for
each n-place relation symbol R and each d1, . . . , dn ∈ D.

Given a three-valued model M = 〈D, I〉 and an assignment s of values
to the variables, the value ValM,s(t) ∈ D of each term t is defined in the
standard way. The atomic formula Rt1 . . . tn is assigned the truth value
I(R)(ValM,s(t1), . . . , ValM,s(tn)). To evaluate composite formulas, we must
have some evaluation scheme: for example, if A is f(alse) and B is n(either),
then we must decide whether (A & B) is f or n.

For classical models, we will just use the standard classical evaluation
scheme, τ : If M is a classical model for L and A is a sentence of L, then
ValM,τ (A) is simply the standard truth value of A in M. For nonclassical
three-valued models, we will consider the weak Kleene scheme, μ, and the
strong Kleene scheme, κ . The Kleene schemes treat negation identically: ¬t = f,

3We follows the presentation in [3] of the fixed-point semantics and of the revision theory of
truth. Much of this material is culled from [3] and elsewhere. Among the numbered definitions,
theorems, and lemmas, those not explicitly attributed to a source are original to the current
paper.
4We do not consider four-valued models, with the additional truth value b(oth). See Visser [13, 14]
and Woodruff [15].
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¬f = t, and ¬n = n. They differ in their treatment of conjunction as in the
following truth table:

A B A & B, with μ A & B, with κ

t t t t
t f f f
t n n n
f t f f
f f f f
f n n f
n t n n
n f n f
n n n n

If we treat universal quantification analogously to conjunction, then for each
sentence A and for the weak and strong Kleene schemes, μ and κ , we can
define ValM,μ(A) and ValM,κ (A): the truth value of A in M according to μ and
the truth value of A in M according to κ .

We also consider van Fraassen’s supervaluation scheme, σ :

ValM,σ (A) =

⎧
⎪⎨

⎪⎩

t, if ValM′,τ (A) = t for every classical M′ ≥ M
f, if ValM′,τ (A) = f for every classical M′ ≥ M
n, otherwise.

Note: If ValM,μ(A) = ValM,κ (A) = ValM,σ (A) = n, then ValM,μ(A ∨ ¬A) =
ValM,κ (A ∨ ¬A) = n, but ValM,σ (A ∨ ¬A) = t.

For the fixed-point semantics, suppose, as in Section 1, that L and L+
are a corresponding ground language and truth language. And suppose that
M = 〈D, I〉 is a (classical) ground model for L. We want to expand M to
a three-valued model by adding a signification for the predicate T. Let an
hypothesis be a function h : D → {t, f, n}, and a classical hypothesis, a function
h : D → {t, f}. Hypotheses are potential significations of T. Let M + h be the
model M′ = 〈D, I′〉 for L+, where I′ and I agree on the constants of L and
where I′(T) = h. Models of the form M + h are expanded models. If we want
T to express truth, then we want to expand our ground model M to a model
M + h so that ValM+h,ρ(A) = ValM+h,ρ(T‘A’), for every sentence A of L+,
where we are working with some evaluation scheme ρ. This is equivalent to
the condition, ValM+h,ρ(A) = h(A). We will also insist that if d ∈ D is not a
sentence of L+, then I′(T)(d) = h(d) = f.

For ρ = τ , μ, κ , or σ , define the jump operator ρM on the set of hypotheses
as follows, restricting the definition to classical hypotheses where ρ = τ :

ρM(h)(A) = ValM+h,ρ(A), if A ∈ S = the set of sentences of L+

ρM(h)(d) = f, if d ∈ D − S.
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The hypotheses meeting our conditions, above, under which T expresses
truth, are the fixed points of the jump operator ρM: the hypotheses h such
that ρM(h) = h. The fixed points deliver, for the language L+, models M + h
satisfying what M. Kremer [6] calls “the fixed point conception of truth”,
according to which, as Kripke [8] put it, “we are entitled to assert (or deny)
of a sentence that it is true precisely under the circumstances when we can
assert (or deny) the sentence itself.”

Kripke [8] proves that each of μM, κM and σM has a fixed point for every
ground model M. In fact, Kripke’s results are stronger. Say that h ≤ h′ iff
h(d) ≤ h′(d) for every d ∈ D. And say that a function F on hypotheses is
monotone iff, for all hypotheses h and h′, if h ≤ h′ then F(h) ≤ F(h′). The jump
operators μM, κM and σM are monotone, for every ground model M. Kripke
shows that each (total) monotone function F on hypotheses not only has a
fixed point, but a least fixed point, lfp(F). Say that h and h′ are compatible
iff h ≤ h′′ and h′ ≤ h′′ for some hypothesis h′′; and that h is F-intrinsic iff h
is compatible with every fixed point of F . For example, lfp(F) is F-intrinsic.
Each (total) monotone function F not only has a least fixed point, but a greatest
intrinsic fixed point, gifp(F), which is not in general identical to lfp(F).

These results yield a number of plausible significations of T: the fixed points
generated by your favourite evaluation scheme. Many have considered the
proposal that the least fixed point yields the correct signification of T.5 M.
Kremer [6] decisively argues that Kripke [8] does not endorse this proposal,
and that this proposal misinterprets the fixed-point semantics: the fixed-point
conception of truth favours no particular fixed point. Kremer emphasizes a
tension between the fixed-point conception of truth and another intuition, the
“supervenience of semantics”: the intuition that the interpretation of T should
be determined by the interpretation of the nonsemantic names, function
symbols and relation symbols.

The disagreement between a supervenience fixed-point theorist—for speci-
ficity, say a least-fixed-point theorist using the strong Kleene scheme—and
a nonsupervenience fixed-point theorist (using the same evaluation scheme)
can be brought out as follows. Suppose that, other than their use of T, the
discourse of two communities X and Y is represented by the same ground
language L interpreted by the same ground model M, but that X’s use of T is
represented by the least fixed point, hX and Y’s use of T is represented by some
fixed point hY �= hX . Let LX = 〈L+, M + hX, κ〉 and LY = 〈L+, M + hY , κ〉
be the interpreted languages spoken by X and Y. According to the least-fixed-
point theorist, community X uses T to express truth in LX , but community
Y does not use T to express truth in LY—despite the fact that, in LY , the
sentences A and T‘A’ have the same truth value for each sentence A of L+.
According to the nonsupervenience theorist, on the other hand, communities

5See [1, 2, 4, 5, 9, 11, 12].
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X and Y use T to express truth in LX and LY , respectively, because hX and
hY are fixed points: each community’s use of T satisfies the necessary and,
for the nonsupervenientist, sufficient conditions for T to express truth in the
community’s language.

We have on board two proposals for interpreting the fixed-point semantics.
On the supervenience proposal, the language spoken by a community is
determined by its use of nonsemantic vocabulary—represented by a ground
model—and the interpretation of T as truth is given by some particular fixed
point, usually assumed to be the least fixed point. The greatest intrinsic fixed
point might also seem natural: “The largest intrinsic fixed point is the unique
‘largest’ interpretation of Tx which is consistent with our intuitive idea of truth
and makes no arbitrary choices in truth assignments. It is thus an object of
special theoretical interest.” (Kripke [8].) On the nonsupervenience proposal,
the language spoken by the community is not determined by its use of non-
semantic vocabulary: the communities X and Y, in the preceding paragraph,
speak distinct languages in which T expresses truth, despite a shared ground
model. If we fix an evaluation scheme and a ground model, any fixed point
provides an acceptable signification of truth.

We will not adjudicate between these two proposals. Rather, we will in-
troduce a number of supervenience theories of truth, which depend on which
evaluation scheme we use, and on whether we privilege the least fixed point
or the greatest intrinsic fixed point. One reason to restrict ourselves to the
supervenience approach is that Gupta and Belnap’s revision theories depend
on the supervenience of semantics, and so it is the supervenience fixed-point
theories that are most readily comparable to the revision theories.

Definition 2.1 Let ρ = μ, κ or σ . The sentence A of L+ is valid in the ground
model M according to (the theory) Tlfp,ρ iff lfp(ρM)(A) = t. The sentence A
of L+ is valid in the ground model M according to (the theory) Tgifp,ρ iff
gifp(ρM)(A) = t. We define the set of sentences valid in M according to such
and such a theory as follows:

Vlfp,ρ

M =df {A : lfp(A) = t}
= {A : A is valid in M according to Tlfp,ρ}, and

Vgifp,ρ

M =df {A : gifp(A) = t}
= {A : A is valid in M according to Tgifp,ρ}.

Before we consider revision theories, we introduced two variants, defined
by Kripke [8], of the supervaluation jump operator, σM. Say that a hypothesis
h is weakly consistent iff the set {A ∈ S : h(A) = t} is consistent. (Here and
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elsewhere we follow [3] and use S for the set of all sentences of L+.) Say
that h is strongly consistent iff {A ∈ S : h(A) = t} ∪ {¬A : A ∈ S & h(A) = f}
is consistent. Note: a classical hypothesis is strongly consistent iff {A ∈ S :
h(A) = t} is both consistent and complete. The jump operators σ1 and σ2 are
define for weakly and strongly consistent hypotheses, respectively, as follows:

σ1M(h)(A)=

⎧
⎪⎨

⎪⎩

t, if τM(h′)(A) = t for every weakly consistent classical h′ ≥h
f, if τM(h′)(A)= f for every weakly consistent classical h′ ≥h
n, otherwise, for sentences A ∈ S.

σ1M(h)(d) =n, for d ∈ D − S.

σ2M(h)(A)=

⎧
⎪⎨

⎪⎩

t, if τM(h′)(A) = t for every strongly consistent classical h′ ≥h
f, if τM(h′)(A) = f for every strongly consistent classical h′ ≥h
n, otherwise, for sentences A ∈ S.

σ2M(h)(d) =n, for d ∈ D − S.6

The operator σ1M [σ2M] is a monotone operator on the weakly [strongly]
consistent hypotheses. This suffices for σ1M [σ2M] to have both a least fixed
point and a greatest intrinsic fixed point. We will treat σ1 and σ2 as two new
three-valued evaluation schemes. Theories Tlfp,σ1, Tgifp,σ1, Tlfp,σ2, and Tgifp,σ2,
and sets Vlfp,σ1

M , Vgifp,σ1
M , Vlfp,σ2

M , and Vgifp,σ2
M are introduced as in Definition 2.1,

above.
Kripke [8] uses the least fixed point and the greatest intrinsic fixed point

to define certain properties of sentences. Fix an evaluation scheme ρ, a
ground model M = 〈D, I〉 for L, and a sentence A of L+. We say that A is
ρ-grounded in M iff lfp(ρM)(A) �= n, and ρ-intrinsic in M iff gifp(ρM)(A) �= n.
Suppose that a, b and c are names in L, and that I(a) = ¬Ta, I(b) = Tb ,
and I(c) = (Tc ∨ ¬Tc). Thus ¬Ta is a liar and Tb is a truth-teller. The
liar is neither ρ-grounded nor ρ-intrinsic since it gets the value n at every
fixed point h. The truth-teller is neither ρ-grounded nor ρ-intrinsic since it
gets the value t at some fixed points, the value f at others, and the value
n at others. (Tc ∨ ¬Tc) is, for example, μ- and κ-intrinsic and σ -grounded,
but neither μ- nor κ-grounded: gifp(μM)(Tc ∨ ¬Tc) = gifp(κM)(Tc ∨ ¬Tc) =
lfp(σM)(Tc ∨ ¬Tc) = t, while lfp(μM)(Tc ∨ ¬Tc) = lfp(κM)(Tc ∨ ¬Tc) = n.

6An equivalent definition of σ2M(h)(A) is this: σ2M(h)(A) = t [f] iff A is true [false] in all classical
models M′ ≥ M + h such that the extension of T in M′ is complete and consistent. Gupta and
Belnap [3] define a jump operator σ c

M in this way, but for weakly rather than strongly consistent h.
Unfortunately, the weak consistency of h does not guarantee the existence of a model M′ ≥ M + h
such that the extension of T in M′ is complete and consistent. In fact, the existence of such a model
M′ is equivalent to the strong consistency of h. The jump operator σ2M is identical to σ c

M, with the
definition in [3] corrected so that it is restricted to strongly consistent h.
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3 Revision Theories of Truth

Gupta and Belnap’s most interesting objection to the fixed-point semantics
stems from an uncommon take on a common observation: the observation that
there are connectives that fixed-point languages cannot express, for example,
exclusion negation, for which ¬n = t; and the Łukasiewicz biconditional, for
which (n ≡ n) = t.7 Their objection is not that there is a gap between the
resources of the object language and the metalanguage, but that “there is
a gap between the resources of the language that is the original object of
investigation and those of the languages that are amenable to fixed point
theories.” (p. 101) The language that is the original object of investigation
can express genuinely paradoxical sentences, whose behaviour is unstable.
And one source of the language’s ability to express such paradoxicalities is
the fact that it can express, for example, exclusion negation. A fixed point
language cannot, in the end, express genuinely paradoxical sentences: even
the liar behaves stably. So fixed-point theories do not deliver an analysis
of the unstable phenomenon that we are trying to understand: “There are
appearances of the Liar here, but they deceive.” (p. 96)

Working with a purely two-valued object language, Gupta and Belnap
imagine beginning with a classical hypothesis h regarding the extension of T,
and then revising h by using the classical jump operator, the “rule of revision”,
τM. As the revision procedure proceeds (h, τM(h), τ 2

M(h), . . .), a liar sentence
will flip bach and forth between t and f. A truth-teller will keep whatever value
it had to begin with. Other sentences might display unstable behaviour to begin
with, but eventually settle down to a particular value. Some sentenes will be
very well behaved: they will settle down to a truth value that is independent
of the initial hypothesis. Gupta and Belnap formalize the carrying out of such
procedures into the transfinite, with their notion of a revision sequence.

Given any function F on hypotheses, an F-sequence, or a revision sequence
for F , is an ordinal-length sequence S of hypotheses such that Sα+1 = F(Sα),
for every ordinal α; and every limit ordinal λ, every truth value x, and every
d ∈ D, we have

Sλ(d) = x if there is a β < λ such that

Sα(d) = x for every ordinal α with β ≤ α < λ.

This second clause is the limit rule for F-sequences. Note that if S is an
F-sequence, then F is defined on Sα for every ordinal α; so, if S is a τM-
sequence, then Sα is classical for every ordinal α. Any ordinal-length sequence
S of hypotheses culminates in h iff there is an ordinal β such that Sα = h for

7In the strong and weak Kleene schemes, (n ≡ n) = n.
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every ordinal α ≥ β. For the purposes of the revision theory of truth, we are
primarily interested in τM-sequences, but other revision sequences are useful.
Note that if ρ = μ, κ , σ , σ1, or σ2 and if M is a ground model, then there is a
unique ρM-sequence S such that S0(d) = n for every d ∈ D. Furthermore, S
culminates in lfp(ρM).

As mentioned, Gupta and Belnap want to formalize the behaviour of truth,
instabilities and all. Relative to a ground model M, this behaviour is arguably
represented by the class of τM-sequences: this class delivers a verdict on which
sentences are well-behaved or ill-behaved, as well as a representation of how
various sentences are ill-behaved. For this reason, Gupta and Belnap propose
that the signification of truth is the revision rule τM, since this rule arguably fits
the Gupta-Belnap characterization (see Section 1, above) of an expression’s or
concept’s signification.

The most well-behaved sentences are those that are stably t in every τM-
sequence: formally, a sentence A of L+ is stably t [f] in the τM-sequence S
iff there is an ordinal β such that for every γ ≥ β, we have Sγ (A) = t [f].
Accordingly, Gupta and Belnap introduce the revision theory T∗:

Definition 3.1 [3] Suppose that M is a ground model for the ground language
L. The sentence A of L+ is valid in M according to (the theory) T∗ iff A
is stably t in every τM-sequence. V∗

M =df {A ∈ S : A is stably true in every
τM-sequence}.

We might want to weaken this condition on the validity of a sentence A of
L+ in a ground model M. In some ground models, there are sentences that
are nearly stably t in the following sense: they are stably t except possibly at
limit ordinals and for a finite number of steps after limit ordinals.8 Formally,
a sentence A of L+ is nearly stably t [f] in the τM-sequence S iff there is an
ordinal β such that for every γ ≥ β, there is a natural number m such that for
every n ≥ m, we have Sγ+n(A) = t [f]. Gupta and Belnap’s theory T# is based
on near stability:

Definition 3.2 [3] Suppose that M is a ground model for the ground language
L. The sentence A of L+ is valid in M according to (the theory) T# iff A is
nearly stably t in every τM-sequence. V#

M =df {A ∈ S : A is nearly stably true
in every τM-sequence}.

Finally, we might put constraints on which hypotheses are legitimate hy-
potheses concerning the extension of T, and hence on which τM-sequences are
legitimate revision sequences. A natural condition to put on the legitimacy of
a classical hypothesis h is that the resulting extension of T be consistent and

8See Example 5.7, below.
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complete, i.e., that h be strongly consistent. A τM-sequence S is maximally
consistent iff Sα is strongly consistent for every ordinal α. Gupta and Belnap’s
theory Tc is based on maximally consistent τM-sequences.

Definition 3.3 [3] Suppose that M is a ground model for the ground language
L. The sentence A of L+ is valid in M according to (the theory) Tc iff A is stably
t in every maximally consistent τM-sequence. Vc

M =df {A ∈ S : A is stably true
in every maximally consistent τM-sequence}.

All three revision theories are supervenience theories in the sense of
Section 2: the behaviour of truth and the status of various sentences is
determined by the nonsemantic vocabulary, whose use is represented by the
ground model. There is no other way to go in the revision-theoretic setting:
for most ground models M, there is no class H of privileged hypotheses, like
the fixed points, such that for distinct h, h′ ∈ H, we could take the expanded
models M + h and M + h′ to represent distinct languages in which T represents
truth. On the revision theories, each language is represented by a ground
model, and the behaviour of truth is represented by the various ways in which
one hypothesis leads to another as we carry out the revision process.

4 Three Ways to Compare Theories of Truth

(The harder parts of the proofs of the theorems in this section are reserved
for Section 5.) We have on the table thirteen theories of truth: ten fixed-point
theories, Tlfp,μ, Tlfp,κ , Tlfp,σ , Tlfp,σ1, Tlfp,σ2, Tgifp,μ, Tgifp,κ , Tgifp,σ , Tgifp,σ1, Tgifp,σ2;
and three revision theories, T∗, T#, Tc. The first relation we define to compare
these thirteen theories is the most obvious:

Definition 4.1 Given any two theories T and T′ among our thirteen, we say
that T ≤1 T′ iff for every ground language L, every ground model M for L, and
every sentence A of L+, if A is valid in M according to T then A is valid in
M according to T′. We say that T <1 T′ iff T ≤1 T′ and T �= T′. Note that ≤1 is
reflexive and transitive.

Theorem 4.2 <1 behaves as in the following diagram, i.e., it is the smallest
transitive relation satisfying the conditions given in the diagram. Since ≤1 is
reflexive, the diagram completely determines ≤1. The subscripted 1 has been
dropped from the diagram.

T#

∨
T∗ < Tc

∨ ∨
Tlfp,μ < Tlfp,κ < Tlfp,σ < Tlfp,σ1 < Tlfp,σ2

∧ ∧ ∧ ∧ ∧
Tgifp,μ Tgifp,κ Tgifp,σ Tgifp,σ1 Tgifp,σ2
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Proof For Tlfp,μ ≤1 Tlfp,κ ≤1 Tlfp,σ ≤1 Tlfp,σ1 ≤1 Tlfp,σ2, it suffices to show that
lfp(μM) ≤ lfp(κM) ≤ lfp(σM) ≤ lfp(σ1M) ≤ lfp(σ2M), for any ground model
M = 〈D, I〉. For ρ = μ, κ , σ , σ1, or σ2, let S (ρ) be the unique ρM-sequence
such that S (ρ)0(d) = n for every d ∈ D. By transfinite induction, S (μ)α ≤
S (κ)α ≤ S (σ )α ≤ S (σ1)α ≤ S (σ2)α , for every ordinal α. Our desired result
follows from the fact that S (ρ) culminates in lfp(ρM).

For Tlfp,ρ ≤1 Tgifp,ρ (ρ = μ, κ , σ , σ1, or σ2), it suffices to note that lfp(ρM) ≤
gifp(ρM), since lfp(ρM) is intrinsic.

T∗ ≤1 T# and T∗ ≤1 Tc can be proved directly from the definitions.
To see that Tlfp,σ ≤1 T∗, fix a ground model M = 〈D, I〉 and let S be the

unique σM-sequence such that S0(d) = n for every d ∈ D. Then S culminates
in lfp(σM). And let S ′ be any τM-revision sequence. By transfinite induction,
Sα ≤ S ′

α , for every ordinal α. So, if lfp(σM)(A) = t, then A is stably t in S ′.
Since S ′ was arbitrary, if lfp(σM)(A) = t, then A is valid in M according to T∗.
So Tlfp,σ ≤1 T∗.

Similarly, Tlfp,σ2 ≤1 Tc.
This establishes all of the positive claims of the form T ≤1 T′ in Theorem 4.2.

The counterexamples in Section 5, below, establish the negative claims of the
form T �≤1 T′. ��

Of particular interest are ground models in which truth behaves like a
classical concept. Suppose, for example, that one is devising a semantics
for languages that contain their own truth predicates. All else being equal,
one might want a semantics that delivers, whenever possible, something ap-
proaching a classical theory: we know that truth behaves paradoxically, but it
seems an advantage to minimalize this paradoxicality. Consider, for example,
a classical ground model M = 〈D, I〉 that makes no distinctions, other than
with quote names, among the sentences of L+: for an extreme case, suppose
that the ground language L has no nonquote names, no function symbols and
no nonlogical relation symbols. There is no circular reference in the ground
model, and there seems to be no vicious reference of any kind. And yet lfp(μM)

and lfp(κM) are nonclassical (see the proof of Theorem 4.5): this suggests that
truth does not behave like a classical concept in M, at least not according to
the least-fixed-point theories Tlfp,μ and Tlfp,κ . On the other hand, gifp(μM)

and gifp(κM) are both classical, as is lfp(σM) (this follows from Corollary 4.26,
below). So, at least relative to M, the theories Tgifp,μ, Tgifp,κ , and Tlfp,σ have
an advantage over Tlfp,μ and Tlfp,κ . This motivates our definition of ≤2, below
(Definition 4.4).

Definition 4.3 Let ρ = μ, κ , σ , σ1, or σ2. We say that Tlfp,ρ [Tgifp,ρ] dictates
that truth behaves like a classical concept in the ground model M iff A ∈ Vlfp,ρ

M

[Vgifp,ρ

M ] or ¬A ∈ Vlfp,ρ

M [Vgifp,ρ

M ] for every sentence A of L+; equivalently, iff
lfp(ρM) [gifp(ρM)] is classical. Similarly, we say that T∗ [T#, Tc] dictates that
truth behaves like a classical concept in the ground model M iff A ∈ V∗

M [V#
M,

Vc
M] or ¬A ∈ V∗

M [V#
M, Vc

M] for every sentence A of L+.
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Definition 4.4 Given any two theories T and T′ among our thirteen theories,
we say that T ≤2 T′ iff, for every ground language L and every ground model
M for L, if T dictates that truth behaves like a classical concept in M then so
does T′. Note that, among our thirteen theories, T ≤2 T′ iff, for every ground
language L and every ground model M for L, if T dictates that truth behaves
like a classical concept in M, then every sentence valid in M according to T
is also valid in M according to T′. (This follows from Theorems 4.2 and 4.5,
as noted by an anonymous referee.) We say that T ≡2 T′ iff both T ≤2 T′ and
T′ ≤2 T. We say that T <2 T′ iff both T ≤2 T′ and T �≡2 T′. Note that ≤2 is
reflexive and transitive. Note also that if T ≤1 T′ then T ≤2 T′.

Theorem 4.5 <2 behaves as in the following diagram, i.e., it is the smallest
transitive relation satisfying the conditions given in the diagram. Since ≤2 is
reflexive, the diagram completely determines ≤2. The subscripted 2 has been
dropped from the diagram.

T#

∨
T∗ < Tc <Tgifp,σ2<Tgifp,σ1<Tgifp,σ <Tgifp,κ<Tgifp,μ

∨ ∨
Tlfp,μ≡Tlfp,κ<Tlfp,σ <Tlfp,σ1<Tlfp,σ2

Proof The fact that Tlfp,μ ≡2 Tlfp,κ follows from the fact that neither lfp(μM)

nor lfp(κM) is classical in any ground model M. To see that lfp(μM) is nonclassi-
cal, let M be any ground model and let S be the unique μM-sequence such that
S0(d) = n for every d ∈ D. By transfinite induction, Sα(∀x(Tx ∨ ¬Tx)) = n,
for every ordinal α. But then lfp(μM)(∀x(Tx ∨ ¬Tx)) = n, since S culminates
in lfp(μM). Similarly, lfp(κM) is nonclassical.

The following follow from the already proven part of Theorem 4.2: Tlfp,κ ≤2

Tlfp,σ ≤2 Tlfp,σ1 ≤2 Tlfp,σ2 ≤2 Tc and Tlfp,σ ≤2 T∗ ≤2 T# and T∗ ≤2 Tc.
To see that Tc ≤2 Tgifp,σ2, suppose that M is a ground model in which Tc

dictates that truth behaves like a classical concept. So there is a classical
hypothesis h in which all maximally consistent τM-sequences culminate. It
suffices to show that h is the greatest fixed point of σ2M, in which case
gifp(σ2M) = h is classical, in which case Tgifp,σ2 dictates that truth behaves like
a classical concept in M. Let h′ be any fixed point of σ2M. Since h′ is strongly
consistent, we can choose a strongly consistent classical h′′ ≥ h′. Let S be any
maximally consistent τM-sequence with S0 = h′′ ≥ h′. By the monotonicity of
σ2M together with the fact that σ2M agrees with τM on all classical hypotheses,
we can show by transfinite induction that Sα ≥ h′ for every ordinal α. So
h ≥ h′, since S culminates in h. So h is the greatest fixed point of σ2M, as
desired.

To see that Tgifp,σ2 ≤2 Tgifp,σ1 ≤2 Tgifp,σ ≤2 Tgifp,κ ≤2 Tgifp,μ, choose ρ and ρ ′
with ρ to the left of ρ ′ from the list μ, κ , σ , σ1, σ2. It suffices to show that
if gifp(ρ ′

M) is classical, then gifp(ρM) = gifp(ρ ′
M). So suppose that gifp(ρ ′

M) is
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classical. Then it is a fixed point of τM and hence not only of ρ ′
M but also of

ρM. To show that gifp(ρM) = gifp(ρ ′
M), it suffices to show that h ≤ gifp(ρ ′

M) for
every fixed point h of ρM: this would show that gifp(ρ ′

M) is not only a fixed point
of ρM but also the greatest fixed point of ρM, and hence the greatest intrinsic
fixed point of ρM. Choose a fixed point h of ρM. Note that ρ ′

M is defined on
h; in case ρ ′ is σ1 or σ2, h is strongly consistent since h is a fixed point of ρM.
Furthermore, h = ρM(h) ≤ ρ ′

M(h). So there is exactly one ρ ′-sequence S such
that S0 = h; moreover S culminates in some fixed point h′ of ρ ′

M: indeed h′ is
the least fixed point of ρ ′

M with h ≤ h′. Since gifp(ρ ′
M) is classical, gifp(ρ ′

M) is
the greatest fixed point of ρ ′

M. So h ≤ h′ ≤ gifp(ρ ′
M), as desired.

This establishes all of the positive claims of the form T ≤2 T′ in Theorem
4.5. The counterexamples in Section 5, below, establish the negative claims of
the form T �≤2 T′. ��

Remark 4.6 Theorem 4.5 answers a question of Gupta and Belnap’s ([3],
Problem 6B.12): “Does the condition ‘lfp(σ2M) is classical’ imply ‘M is
Thomason’?” (We define Thomason ground models below.) The answer is no,
since Tlfp,σ2 �≤2 T∗ (see Example 5.9, below) and since, by Theorem 4.8, below,
a ground model M is Thomason iff T∗ dictates that truth behaves like a classical
concept in M.

The next comparative relation, ≤3, is trickier to motivate, and is best
understood in the context of investigating whether this or that theory dictates
that truth behaves like a classical concept in this or that ground model M.

For starters, it is not always easy to tell whether some theory dictates that
truth behaves like a classical concept in M. Gupta and Belnap devote some
effort to investigating the circumstances under which, in effect, T∗ dictates that
truth behaves like a classical concept in a ground model, though they do not
put it in these terms. As we shall see, their investigation can be broadened to
theories other than T∗. Gupta and Belnap proceed by introducing the notion
of a Thomason ground model, and by investigating the circumstances under
which a ground model is Thomason.

Definition 4.7 [3] A ground model M is Thomason iff all τM-sequences culmi-
nate in one and the same fixed point.

Theorem 4.8 A ground model M is Thomason iff T∗ dictates that truth behaves
like a classical concept in M.

Proof This follows immediately from the definitions. ��

Gupta and Belnap’s principal results concerning Thomason models all have
the same general form, and all make it relatively easy to show that a wide range
of ground models are, in fact, Thomason. The simplest example concerns any
ground model M for the ground language L described above: a language with
no nonquote names, no function symbols, and no nonlogical relation symbols.
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Any such ground model is Thomason. This might be expected since, other than
with quote names, there is no way to distinguish in L (interpreted by M) among
sentences of L+.

This is a special case of Gupta and Belnap’s result, Theorem 4.11, below.
Essentially, Theorem 4.11 states that any ground model that cannot distinguish
among the sentences of L+, other than with quote names, is Thomason. First
we need to make precise the notion of “distinguishing among the sentences
of L+.”

Definition 4.9 ([3], Definition 2D.2) Suppose that M = 〈D, I〉 is a ground
model for the ground language L and that X ⊆ D.

1. The interpretation of a name c is X-neutral iff I(c) �∈ X.
2. The interpretation of an n-place relation symbol R is X-neutral iff

for all d1, . . . , dn, d′
i ∈ D, if di, d′

i ∈ X then I(R)(d1, . . . , di, . . . , dn) =
I(R)(d1, . . . , d′

i, . . . , dn).
3. The interpretation of an n-place function symbol f is X-neutral iff both

a. the range of I( f ) is disjoint from X; and
b. for all d1, . . . , dn, d′

i ∈ D, if di, d′
i ∈ X then I( f )(d1, . . . , di, . . . , dn) =

I( f )(d1, . . . , d′
i, . . . , dn).

Definition 4.10 ([3], Definition 6A.2) A ground model M = 〈D, I〉 is X-
neutral iff the interpretations in M of all the nonquote names, nonlogical
relation symbols, and function symbols are X-neutral.

Theorem 4.11 ([3], Theorem 6A.5) If the ground model M is S-neutral (where
S is the set of sentences of L+) then M is Thomason.

Proof This is a special case of Corollary 4.26, below. ��

Gupta and Belnap strengthen this theorem: Suppose that the ground model
M can in fact distinguish among sentences of L+, but only among sentences
that are in some sense unproblematic, for example among sentences with
no occurrences of T or among μ-ungrounded sentences. Then M is still
Thomason.

Theorem 4.12 ([3], Theorem 6B.4, Convergence to a fixed point I) If M is X-
neutral then M is Thomason provided that X contains either (i) all sentences
that have occurrences of T, or (ii) all sentences that are μ-ungrounded in M,
or (iii) all sentences that are κ-ungrounded in M, or (iv) all sentences that are
σ -ungrounded in M.

Proof (i) is a special case of Corollary 4.26, below. (ii), (iii) and (iv) are special
cases of Theorem 4.21, below. ��
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Note that (ii), (iii) and (iv) of Theorem 4.12 can be reworded as follows:

Theorem 4.13 Suppose that M is a ground model, that VM = Vlfp,μ

M or Vlfp,κ

M

or Vlfp,σ

M , and that Y ⊆ {A ∈ S : A ∈ VM or ¬A ∈ VM}. Then if M is (S − Y)-
neutral, then M is Thomason.

Gupta and Belnap present the following example as an application of
Theorem 4.12. This shows how easy it can be, equipped with Theorem 4.12
or Theorem 4.13, to show that a ground model is Thomason.

Example 4.14 ([3], Example 6B.6) Suppose that the ground model M = 〈D, I〉
is S-neutral except for the name a. Furthermore suppose that Hb is true in M.
Then M is Thomason if (i) I(a) = Hb , or (ii) I(a) = T‘Hb ’, or (iii) I(a) =
Hb ∨ ¬Ta, or (iv) I(a) = Ta ∨ ¬Ta.

Gupta and Belnap’s other main theorem concerning Thomason models is
as follows:

Theorem 4.15 ([3], Theorem 6B.4, Convergence to a fixed point II) Suppose
that the ground model M is (S − Y)-neutral and that Y ⊆ {A : A ∈ V∗

M or ¬A ∈
V∗

M}. Then M is Thomason.

Proof This is a special case of Theorem 4.21, below. ��

Gupta and Belnap then go on to ask a related question:

Question 4.16 ([3], Problem 6B.15) Suppose that the ground model M is (S −
Y)-neutral and that Y ⊆ {A : A ∈ Vc

M or ¬A ∈ Vc
M}. Is M Thomason?

As pointed out above, an investigation into the conditions under which a
ground model M is Thomason is, in effect, an investigation into the conditions
under which T∗ dictates that truth behaves like a classical concept in M. It turns
out that, for a wide range of our theories T, if M is (S − Y)-neutral where Y ⊆
{A : A ∈ VM or ¬A ∈ VM} and where VM = {A ∈ S : A is valid in the ground
model M according to T}, then T∗ does, in fact, dictate that truth behaves like
a classical concept in M. To help generalize this investigation, we define a third
relation ≤3 between theories.

Definition 4.17 Suppose that T and T′ are among our thirteen theories and
that, for any ground model M, VM = {A ∈ S : A is valid in the ground model
M according to T}. We say that T ≤3 T′ iff for every ground language L, every
ground model M for L, and every Y ⊆ {A : A ∈ VM or ¬A ∈ VM}, if M is
(S − Y)-neutral then T′ dictates that truth behaves like a classical concept in
M. We say that T <3 T′ iff T ≤3 T′ and T′ �≤3 T. We will see that ≤3 is transitive
but not reflexive.
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Remark 4.18 Theorems 4.13 and 4.15 can be summarized as follows: Tlfp,μ ≤3

T∗, Tlfp,κ ≤3 T∗, Tlfp,σ ≤3 T∗, and T∗ ≤3 T∗. Question 4.16 amounts to this:
Tc ≤3 T∗? Theorem 4.21, below, delivers a negative answer to this.

Lemma 4.19 ≤3 is transitive.

Proof Suppose that T ≤3 T′ and T′ ≤3 T′′, and that M is an (S − Y)-neutral
ground model where Y ⊆ {A : A ∈ VM or ¬A ∈ VM} and where VM = {A ∈
S : A is valid in the ground model M according to T}. Let V′

M = {A ∈ S : A is
valid in the ground model M according to T}. Note that S = {A : A ∈ V′

M or
¬A ∈ V′

M}, since T ≤3 T′. So Y ⊆ {A : A ∈ V′
M or ¬A ∈ V′

M}. So T′′ dictates
that truth behaves like a classical concept in M, as desired. ��

Lemma 4.20 (1) If T ≤3 T′ and T′ ≤2 T′′ then T ≤3 T′′. (2) If T ≤3 T′ then
T ≤2 T′. (3) If T ≤1 T′ and T′ ≤3 T′′ then T ≤3 T′′.

Proof (1) follows immediately from the definitions. For (2), suppose that T ≤3

T′ and that T dictates that truth behaves like a classical concept in M. Then M
is (S − S)-neutral where S ⊆ {A : A ∈ VM or ¬A ∈ VM}. So T′ dictates that
truth behaves like a classical concept in M, since T ≤3 T′. For (3), assume that
T ≤1 T′ and T′ ≤3 T′′ and that M is (S − Y)-neutral where Y ⊆ {A : A ∈ VM

or ¬A ∈ VM}. Since T ≤1 T′, M is (S − Y)-neutral where Y ⊆ {A : A ∈ V′
M or

¬A ∈ V′
M}. So, since T′ ≤3 T′′, T′′ dictates that truth behaves like a classical

concept in M, as desired. ��

Theorem 4.21

(1) The relation <3 behaves as in the following diagram, i.e., <3 is the smallest
transitive relation satisfying the conditions given the diagram. Since ≤3 is
not reflexive, we needs parts (2) and (3) to completely determine ≤3. The
subscripted 3 has been dropped from the diagram:

T#

∨
T∗ < Tc <Tgifp,σ2 <Tgifp,σ1 <Tgifp,σ <Tgifp,κ <Tgifp,μ

∨ ∨
Tlfp,κ < Tlfp,σ < Tlfp,σ1 < Tlfp,σ2

∨
Tlfp,μ

(2) (i) T∗ ≤3 T∗, (ii) Tc ≤3 Tc, (iii) Tlfp,σ2 ≤3 Tlfp,σ2, and (iv) Tgifp,ρ ≤3 Tgifp,ρ

for ρ = μ, κ , σ , σ1 or σ2.
(3) T# �≤3 T# and Tlfp,ρ �≤3 Tlfp,ρ for ρ = μ, κ , σ or σ1.

Proof The proofs of (2) and (3) are tricky and left until Section 5. Given
(2) and (3), and Lemma 4.20, much of the information contained in (1) can
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be straightforwardly proved. First, every claim of the form T �≤2 T′ given in
Theorem 4.5 implies, given Lemma 4.20 (2), that T �≤3 T′. Furthermore, the
facts that Tlfp,μ �≤3 Tlfp,κ and that Tlfp,κ �≤3 Tlfp,μ follow from the fact that
neither lfp(μM) nor lfp(κM) is classical in any ground model M, even which
the ground model is S-neutral, as shown in the proof of Theorem 4.5. The
fact that T∗ ≤3 Tc ≤3 Tgifp,σ2 ≤3 Tgifp,σ1 ≤3 Tgifp,σ ≤3 Tgifp,κ ≤3 Tgifp,μ follows
from the fact that T∗ ≤2 Tc ≤2 Tgifp,σ2 ≤2 Tgifp,σ1 ≤2 Tgifp,σ ≤2 Tgifp,κ ≤2 Tgifp,μ

and from Theorem 4.21 (2) and Lemma 4.20 (1). Similarly for the fact that
Tlfp,σ2 ≤3 Tc. The fact that Tlfp,σ1 ≤3 Tlfp,σ2 follows from the fact that Tlfp,σ1 ≤1

Tlfp,σ2 (Theorem 4.5) and that Tlfp,σ2 ≤3 Tlfp,σ2 (Theorem 4.21 (2)) and from
Lemma 4.20 (3).

So, for Theorem 4.21, it remains to show (2) and (3), as well as Tlfp,μ ≤3

Tlfp,σ ≤3 Tlfp,σ1 and Tlfp,κ ≤3 Tlfp,σ . For (2) and (3), see Section 5. For the rest,
see Corollary 4.28. ��

Remark 4.22 The positive part of Theorem 4.21 generalizes Gupta and Bel-
nap’s Theorems 4.12 (ii), (iii) and (iv) and 4.15, stated above. The negative
parts generalize the negative answer to Gupta and Belnap’s Question 4.16,
asked above.

The fact that Tlfp,σ �≤3 Tlfp,σ means that the following conjecture is false:
If the ground model M is (S − Y)-neutral and Y ⊆ {A : lfp(σM)(A) = t or
lfp(σM)(A) = f}, then lfp(σM)(A) is classical. Similarly for σ1. But we have
something almost as good in Theorem 4.24. First, a definition.

Definition 4.23 ([3], Definition 6A.2) The degree of a term or formula X of
L+, denoted deg(X), is defined as follows. (i) If X is a variable or nonquote
name, then deg(X) = 0 = deg(⊥). (ii) If A is a sentence of degree n, then
deg(‘A’) = n + 1. (iii) If t1, . . . , tn are terms of degrees i1, . . . , in, respectively,
and if F is an n-place function symbol or relation symbol, then deg(Ft1 . . . tn) =
max(i1, . . . , in). (iv) If x is a variable, and A and B are formulas of de-
grees m and n respectively, then deg(∀xA) = deg(∃xA) = deg(¬A) = m and
deg(A & B) = deg(A ∨ B) = max(m, n) (and similarly if the language has
other connectives, such as ⊃ or ≡).

Theorem 4.24 (Proviso Theorem) Let ρ = σ or σ1. If the ground model
M is (S − Y)-neutral and Y ⊆ {A : lfp(ρM)(A) = t or lfp(ρM)(A) = f}, then
lfp(ρM)(A) is classical, subject to the following proviso: for every n ≥ 0, the
following two sets have the same cardinality as S:

{B ∈ S − Y : deg(B) > n & lfp(ρM)(B) = t}, and

{B ∈ S − Y : deg(B) > n & lfp(ρM)(B) = f}.

Proof See Section 5, below. ��
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Remark 4.25 If S is countable, then the proviso in Theorem 4.24 is equivalent
to the following: for every n ≥ 0, there is a sentence B ∈ S − Y of degree > n
such that lfp(ρM)(B) = t, and a sentence B ∈ S − Y of degree > n such that
lfp(ρM)(B) = f.

Corollary 4.26 If the ground model M is X-neutral, where X contains all
sentences that have occurrences of T, then the following theories dictate that truth
behaves like a classical concept in M: Tlfp,σ , Tlfp,σ1, Tlfp,σ2, Tgifp,μ, Tgifp,κ , Tgifp,σ ,
Tgifp,σ1, Tgifp,σ2, T∗, T#, Tc. In particular, if the ground model M is S-neutral,
then all those theories dictate that truth behaves like a classical concept in M.

Proof We prove the result for Tlfp,σ . For the other theories Tlfp,σ1, Tlfp,σ2, T∗,
T#, Tc and the Tgifp,ρ , the result follows from this and the positive part of
Theorem 4.5, which we have already proved.

Assume that the ground model M is X-neutral, where X contains all
sentences that have occurrences of T. Let Y = {A ∈ S : T does not occur in
A}. So M is (S − Y)-neutral and Y ⊆ {A : lfp(σM)(A) = t or lfp(σM)(A) = f}.
Also, we claim that the proviso in Theorem 4.24 is satisfied for ρ = σ . In
particular, for any sentence A, define the sentences T0(A) = A and Tn+1(A) =
T‘Tn(A)’. Note that, for any n ≥ 0 and any A ∈ S, we have,

Tn+1(A ∨ ¬A) ∈ {B ∈ S − Y : deg(B) > n & lfp(σM)(B) = t}, and

Tn+1(A & ¬A) ∈ {B ∈ S − Y : deg(B) > n & lfp(σM)(B) = f}.

This suffices for the proviso. ��

Remark 4.27 Theorem 4.24 generalizes Gupta and Belnap’s Theorem 4.13 (i),
stated above.

Corollary 4.28 Tlfp,κ ≤3 Tlfp,σ ≤3 Tlfp,σ1 and Tlfp,μ ≤3 Tlfp,σ .

Proof To see that Tlfp,σ ≤3 Tlfp,σ1, suppose that the ground model M is (S −
Y)-neutral and that Y ⊆ {A ∈ S : lfp(σM)(A) = t or lfp(σM)(A) = f}. If Tlfp,σ

dictates that truth behaves like a classical concept in M, then so does Tlfp,σ1,
since lfp(σM) ≤ lfp(σ1M) (see the proof of Theorem 4.2). So suppose that Tlfp,σ

does not dictate that truth behaves like a classical concept in M. First notice
that Y ⊆ {A ∈ S : lfp(σ1M)(A) = t or lfp(σ1M)(A) = f}.

Also, we claim that the proviso in Theorem 4.24 is satisfied for ρ = σ1.
To see this, choose some sentence C such that lfp(σM)(C) = n. And let C∗
be the sentence (T‘C’ & T‘¬C’). Note that lfp(σM)(¬C) = n. So there are
classical hypotheses h, h′ ≥ lfp(σM) such that h(C) = h(¬C) = t and h′(C) =
h′(¬C) = f. So ValM+h,τ (T‘C’ & T‘¬C’) = t and ValM+h′,τ (T‘C’ & T‘¬C’) = f.
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So lfp(σM)(C∗)=n. So lfp(σM)(¬C∗)=n. So for any n≥0, both
lfp(σM)(Tn(C∗))=n and lfp(σM)(Tn(¬C∗))=n. So for any n ≥ 0 and any
A ∈ S, both

lfp(σM)(Tn(C∗) & ‘A’ = ‘A’) = n and

lfp(σM)(Tn(¬C∗) ∨ ‘A’ �= ‘A’) = n.

So for any n ≥ 0 and any A ∈ S, both

(Tn(C∗) & ‘A’ = ‘A’) ∈ S − Y and

(Tn(¬C∗) ∨ ‘A’ �= ‘A’) ∈ S − Y.

So for any n ≥ 0 and any A ∈ S, both

(Tn(C∗) & ‘A’ = ‘A’) ∈ {B ∈ S − Y : deg(B) > n & lfp(σ1M)(B) = t}, and

(Tn(¬C∗) ∨ ‘A’ �= ‘A’) ∈ {B ∈ S − Y : deg(B) > n & lfp(σ1M)(B) = f}.
This suffices for the proviso.

The proof that Tlfp,κ ≤3 Tlfp,σ is similar. Suppose that the ground model M
is (S − Y)-neutral where Y ⊆ {A ∈ S : lfp(κM)(A) = t or lfp(κM)(A) = f}. First
notice that Y ⊆ {A ∈ S : lfp(σM)(A) = t or lfp(σM)(A) = f}. Also, we claim
that the proviso in Theorem 4.24 is satisfied for ρ = σ . To see this, let C be
the sentence ∀x(Tx ∨ ¬Tx). Note that, for any n ≥ 0 and any A ∈ S, both

lfp(κM)(Tn+1(C) & ‘A’ = ‘A’) = n and

lfp(κM)(Tn+1(¬C) ∨ ‘A’ �= ‘A’) = n.

So, for any n ≥ 0 and any A ∈ S, both

(Tn+1(C) & ‘A’ = ‘A’) ∈ S − Y and

(Tn+1(¬C) ∨ ‘A’ �= ‘A’) ∈ S − Y.

So for any n ≥ 0 and any A ∈ S, both

(Tn+1(C) & ‘A’ = ‘A’) ∈ {B ∈ S − Y : deg(B) > n & lfp(σM)(B) = t}, and

(Tn+1(¬C) ∨ ‘A’ �= ‘A’) ∈ {B ∈ S − Y : deg(B) > n & lfp(σM)(B) = f}.
This suffices for the proviso.

Similarly, Tlfp,μ ≤3 Tlfp,σ . ��

5 Proofs and Counterexamples

Each of our main theorems, Theorems 4.2, 4.5 and 4.21, makes positive claims
of the form T ≤n T′ and negative claims of the form T �≤n T′. We also want to
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show Theorem 4.24 (the Proviso Theorem). Given the work already done in
Section 4, it suffices to show Theorem 4.21 (2) and (3), to show Theorem 4.24,
and to show the negative claims of Theorems 4.2 and 4.5.

We begin with some preliminary notions. Then we prove our Major Lemma
(Lemma 5.4) and Major Corollary (Corollary 5.5), which we will use to
help establish our results from Section 4. Before that we will use the Major
Corollary to give a simplified proof of Gupta and Belnap’s Main Lemma from
[3] (Lemma 5.6), the lemma that they use to study the conditions under which
a model is Thomason: our new proof avoids their double transfinite induction,
and their consideration, at one point, of six cases and subcases.

Definition 5.1 Suppose that M = 〈D, I〉 and M′ = 〈D′, I′〉 are models of a
first-order language L, that N is a set of names of L, and that 
 : D → D′
is a bijection. The bijection 
 is an N-restricted isomorphism from M to M′ iff
I(R)(d1, . . . , dn) = I′(R)(
(d1), . . . , 
(dn)) for every n-place relation symbol
R and every d1, . . . , dn ∈ D; 
(I( f )(d1, . . . , dn)) = I′( f )(
(d1), . . . , 
(dn))

for every n-place function symbols (n ≥ 1) and every d1, . . . , dn ∈ D; and

(I(c)) = I′(c) for every c ∈ N.

Lemma 5.2 Suppose that M and M′ are models of a first-order language L, that
N is a set of names in L, and that 
 is an N-restricted isomorphism from M to
M′. Suppose that ρ = τ , μ, κ or σ . Suppose that every name occurring in the
sentence A is in N. Then ValM,ρ(A) = ValM′,ρ(A).

Definition 5.3 Suppose that M = 〈D, I〉 is a ground model for a ground lan-
guage L, and that Y ⊆ S = the set of sentences of L+. We say that a hypothesis
h is superstrongly consistent if h is strongly consistent and h(d) = f for every
d ∈ D − S. We say that h =Y h′ iff h(A) = h′(A) for every A ∈ Y. If n is a
natural number, we say that h =n h′ iff h(A) = h′(A) for every sentence A
of L+ of degree < n. Note that h =0 h′ for any h and h′. If h is a classical
hypothesis, define τ 0

M(h) = h and τ n+1
0 (h) = τM(τ n

M(h)). Define τω
M(h) : D →

{t, f, n} as follows:

τω
M(h)(d) =

⎧
⎪⎪⎨

⎪⎪⎩

t, if (∃m ≥ 0)(∀n ≥ m)(τ n
M(h)(d) = t)

f, if (∃m ≥ 0)(∀n ≥ m)(τ n
M(h)(d) = f)

n, otherwise.

Note that if h is classical, then τ n
M(h) is always classical, but τω

M(h) might not be.

Lemma 5.4 (Major Lemma) Suppose that M = 〈D, I〉 is a ground model for a
ground language L, and that Y ⊆ S = the set of sentences of L+. Suppose that
M is (S − Y)-neutral, and that h and h′ are superstrongly consistent classical
hypotheses, with h =n h′ and h =Y h′. Then τM(h) =n+1 τM(h′).
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Proof Make the assumptions in the statement of the lemma. Let Y∗ = {A ∈ S :
h(A) = h′(A)}. Note: (1) Y ⊆ Y∗, (2) h =Y∗ h′, (3) if deg(A) < n then A ∈ Y∗,
and (4) M is (S − Y∗)-neutral. Define

U =df {A ∈ S − Y∗ : h(A) = t}
V =df {A ∈ S − Y∗ : h(A) = f}

Note that U ∪ V = S − Y∗. Given the definition of Y∗, if A ∈ S − Y∗, then
h(A) �= h′(A). Thus,

U = {A ∈ S − Y∗ : h′(A) = f}
V = {A ∈ S − Y∗ : h′(A) = t}

Now notice that, for every A ∈ S − Y∗, we have A ∈ U iff ¬A ∈ V and A ∈ V
iff ¬A ∈ U . So U and V have the same cardinality (which might be 0, or some
infinite cardinality).

Let � be a bijection from U onto V. Define a function 
 : D → D as
follows:


(A) =

⎧
⎪⎨

⎪⎩

A, if A ∈ Y∗

�(A), if A ∈ U
�−1(A), if A ∈ V


(d) = d, if d ∈ (D − S)

Note that 
 is an N-restricted isomorphism from M + h to M + h′, where N
is the set of names of degree ≤ n. So ValM+h,τ (A) = ValM+h′,τ (A), for every
sentence A of degree < n + 1. So τM(h) =n+1 τM(h′), as desired. ��

Corollary 5.5 (Major Corollary) Suppose that the ground model M = 〈D, I〉
is (S − Y)-neutral, where Y ⊆ S. Suppose that h and h′ are classical hypothe-
ses such that τ n

M(h) =Y τ n+1
M (h) =Y τ n

M(h′) =Y τ n+1
M (h′), for every n ≥ 0. Then

τω
M(h) = τω

M(h′) is a classical fixed point of τM.

Proof Make the assumptions in the statement of the corollary. Note that,
for n ≥ 0, the hypotheses τ n+1

M (h) and τ n+1
M (h′) are superstrongly consistent.

By induction, we can show that τ n+1
M (h) =n τ n+2

M (h) =n τ n+1
M (h′) =n τ n+2

M (h), for
every n ≥ 0. The base case is vacuously true. The induction step is simply an
application of the Major Lemma. But from this it follows that τω

M(h) = τω
M(h′)

and τω
M(h) is classical.

Note also that τω
M(h) is strongly consistent. To see this, suppose not: suppose

that the set {A ∈ S : τω
M(h)(A) = t} ∪ {¬A ∈ S : τω

M(h)(A) = f} is inconsistent.
Then there are sentence A1, . . . , Ak and B1, . . . , Bm with τω

M(h)(Ai) = t and
τω

M(h)(Bi) = f, and such that {A1, . . . , Ak, ¬B1, . . . , ¬Bm} is inconsistent. Let
n = max(deg(A1), . . . , deg(Ak), deg(B1), . . . , deg(Bm)). Note that τω

M(h) =n+1
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τ n+2
M (h). So τ n+2

M (h)(Ai) = t and τ n+2
M (h)(Bi) = f. So τ n+2

M (h) is not strongly
consistent. But this cannot be, since the application of τM to any classical
hypothesis delivers a strongly consistent, indeed a superstrongly consistent,
classical hypothesis.

Not only is τω
M(h) strongly consistent; it is superstrongly consistent. This

follows from the fact that τ n+1
M (h)(d) = f, for every n ≥ 0 and every d ∈ D − S.

We must still show that τω
M(h) is a fixed point of τM. Note that both

τω
M(h) =Y τ n+1

M (h) and τω
M(h) =n τ n+1

M (h), for every n ≥ 0. So, by the Major
Lemma, τM(τω

M(h)) =n+1 τ n+2
M (h), for every n ≥ 0. So τM(τω

M(h)) =n+1 τω
M(h),

for every n ≥ 0. So τM(τω
M(h)) = τω

M(h), as desired. ��

Lemma 5.6 (Gupta and Belnap’s Main Lemma, [3], Lemma 6A.4) Let M =
〈D, I〉 be X-neutral (X ⊆ D). Let S and S ′ be τM-sequences, and let Y be the
set of those sentences that are either stably t in both S and S ′ or stably f in both.
If (S − Y) ⊆ X, then there is some ordinal α such that for all β ≥ α, Sα = S ′

β .

Proof This proof differs from Gupta and Belnap’s. Choose an ordinal γ such
that, by the γ th stage both in S and S ′, all of the sentences in Y have
stabilized: for every A ∈ Y and every β ≥ γ , we have Sβ(A) = S ′

β(A) =
Sγ (A) = S ′

γ (A). In other words, for every β ≥ γ , we have Sβ =Y S ′
β =Y

Sγ =Y S ′
γ . By our Major Corollary, τω

M(Sγ ) = τω
M(S ′

γ ) is classical and is a
fixed point of τM. But notice that, since τω

M(Sγ ) = τω
M(S ′

γ ) is classical, we have
Sγ+ω = τω

M(Sγ ) and S ′
γ+ω = τω

M(S ′
γ ) by the limit rule for τM-sequences. Let

α = γ + ω. Since Sα = S ′
α is a fixed point of τM, we conclude that Sα = S ′

β

for all β ≥ α, as desired. ��

Now we can prove our positive results from Section 4: these are
Theorem 4.21 (2), and Theorem 4.24.

Proof of Theorem 4.21 (2)

(i) (The proof of (i) is from [3].) Suppose that M is an (S − Y)-neutral
model and that Y ⊆ {A ∈ S : A ∈ V∗

M or ¬A ∈ V∗
M}. We want to show

that T∗ dictates that truth behaves like a classical concept in M. For this
it suffices to show that all τM-sequences culminate in one and the same
fixed point. Choose any two τM-sequences S and S ′. Let X = (S − Y),
and let Y∗ be the set of those sentences that are either stably t in both
S and S ′ or stably f in both. Clearly (S − Y∗) ⊆ X. So, by Gupta and
Belnap’s Main Lemma (our Lemma 5.6, above), there is some ordinal
α such that Sα = S ′

β for all β ≥ α. It follows that Sα is a fixed point in
which both S and S ′ culminate.

(ii) is proved analogously to (i), since it suffices to show that if M is an (S −
Y)-neutral model where Y ⊆ {A ∈ S : A ∈ Vc

M or ¬A ∈ Vc
M}, then all
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maximally consistent τM-sequences culminate in one and the same fixed
point.

(iii) Suppose that M is an (S − Y)-neutral model and that Y ⊆ {A ∈ S :
lfp(σ2M)(A) = t or lfp(σ2M)(A) = f}. To show that h = lfp(σ2) is clas-
sical, suppose not. Let C be a sentence of the least possible degree,
say k, such that h(C) = n. Note that C �∈ Y. We will get a contradiction
by showing that h(C) = t or f. Recall the definition of σ2M(h)(A) for
sentences A:

σ2M(h)(A)=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

t, if τM(h′)(A)= t for every strongly consistent classical
h′ ≥h

f, if τM(h′)(A)= f for every strongly consistent classical
h′ ≥h

n, otherwise, for sentences A ∈ S.

To show that h(C) = t or f, it suffices to show that σ2M(h)(C) = t or
f, since h is a fixed point of σ2M. For this, it suffices to show that
τM(h′)(C) = τM(h′′)(C) for any classical strongly consistent hypotheses
h′, h′′ ≥ h. Choose such hypotheses h′ and h′′. Note that h′ and h′′ are
superstrongly consistent, since h(d) = f for every d ∈ D − S. Note that
h′ =k h′′ since h(A) = t or f, for any sentence A of degree < k. Note
also that h′ =Y h′′. So by our Major Lemma 5.4, τM(h′) =k+1 τM(h′′). So
τM(h′)(C) = τM(h′′)(C), as desired.

(iv) We will show something more general. Fix a ground model M. If F is a
partial function on the set of hypotheses, we say that F is normal iff F
satisfies the following conditions: F is monotone; if h is classical and F is
defined on h then F(h) = τM(h); for every fixed point h of F , there is a
classical hypothesis h′ ≥ h such that F is defined on h′; if F is defined on
the classical hypothesis h, then F is defined on τM(h); and F is defined
on every fixed point of τM. Note that μM, κM, σM, σ1M and σ2M are all
normal.
Suppose that F is a normal partial function on hypotheses, and that i
is an intrinsic fixed point of F . Suppose that M is (S − Y)-neutral where
i(A) = t or i(A) = f for every sentence A ∈ Y. We will show that gifp(F)

is classical. This will suffice for our claim that Tgifp,ρ ≤3 Tgifp,ρ for ρ = μ,
κ , σ , σ1 or σ2.
To show that gifp(F) is classical, it will suffice to show that F has a
greatest fixed point, which is classical: any classical greatest fixed point
is also the greatest intrinsic fixed point. For this, it suffices to show that
for any fixed points f and g, there is a classical fixed point h ≥ f, g. So
choose any fixed points f and g. Since i is intrinsic, there are fixed points
f ′ and g′ such that f, i ≤ f ′ and g, i ≤ g′. Choose classical hypotheses,
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not necessarily fixed points, f ′′ ≥ f ′ and g′′ ≥ g′, so that F is defined on
both f ′′ and g′′. Here is a picture:

f ′′ g′′ classical hypotheses, maybe not fixed points
� �

f ′ g′ fixed points, maybe not classical
� � � �

� i � intrinsic fixed point, maybe not classical
� �

f g fixed points, maybe not classical

Note: τ n
M( f ′′)=Fn( f ′′)≥Fn( f ′)= f ′ ≥ i and τ n

M(g′′) = Fn(g′′) ≥ Fn(g′) =
g′ ≥ i, for every n ≥ 0. Recall that Y ⊆ {A : i(A) = t or i(A) = f}.
So τ n

M( f ′′) =Y i =Y τ n
M(g′′), for every n ≥ 0. So τ n

M( f ′′) =Y τ n+1
M ( f ′′) =Y

τ n
M(g′′) =Y τ n+1

M (g′′), for every n ≥ 0. Let h = τω
M( f ′′). By our Major

Corollary 5.5, h = τω
M( f ′′) = τω

M(g′′) is a classical fixed point of τM. So h is
a classical fixed point of F . In the picture below, the arrow from f ′′ to h
indicates that any revision sequence, indeed the only revision sequence,
that begins with f ′′ culminates in h. Similarly for the arrow from g′′ to h.

f ′′ → h ← g′′
� �

f ′ g′
� � � �

� i �
� �

f g

It now suffices to show that h ≥ f and h ≥ g. For this, it suffices to show
that h ≥ f ′ and h ≥ g′. Note that if f ′(A) = t, then τ n

M( f ′′)(A) = t for
every n ≥ 0, since τ n

M( f ′′) ≥ f ′. So h(A) = τω
M( f ′′)(A) = t. We have just

shown that f ′(A) = t ⇒ h(A) = t, for every A ∈ S. Similarly, f ′(A) = f
⇒ h(A) = f, for every A ∈ S. So h ≥ f ′. Similarly, h ≥ g′, as desired. Our
completed picture is as follows:

f ′′ → h ← g′′
� � � �

f ′ g′
� � � �

� i �
� �

f g
��

Proof of Theorem 4.24 Let ρ = σ or σ1, and make the assumptions in the
statement of Theorem 4.24. In this proof, any parenthetical occurrence of
‘weakly consistent’ should be included if ρ = σ1, and deleted if ρ = σ . For
a reductio, suppose that h0 = lfp(ρM) is not classical.
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Let C be a sentence of the least possible degree, say k, such that h0(C) = n.
We will get a contradiction by showing that h0(C) = t or f. Recall that, for any
sentence A,

ρM(h0)(A)=

⎧
⎪⎨

⎪⎩

t, if τM(h)(A)= t for each (weakly consistent) classical h≥h0

f, if τM(h)(A)= f for each (weakly consistent) classical h≥h0

n, otherwise.

Since h0 = ρM(h0), in order to show that h0(C) = t or f, it will suffice to show
that τM(h)(C) = τM(h′)(C), for any (weakly consistent) classical hypotheses
h, h′ ≥ h0. Choose such hypotheses h and h′. Note that h =k h′, since h0(A) = t
or f, for any sentence A of degree < k. Note also that h =Y h′.

Define six sets:

U0 =df {A ∈ S − Y : deg(A) ≥ k & h0(A) = t}
V0 =df {A ∈ S − Y : deg(A) ≥ k & h0(A) = f}
U =df {A ∈ S − Y : deg(A) ≥ k & h(A) = t}
V =df {A ∈ S − Y : deg(A) ≥ k & h(A) = f}

U ′ =df {A ∈ S − Y : deg(A) ≥ k & h′(A) = t}
V ′ =df {A ∈ S − Y : deg(A) ≥ k & h′(A) = f}

By the proviso, U0 and V0 have the same cardinality as S. Also, note that U0 ⊆
U ⊆ S, so U has the same cardinality as S. Similarly, so do V, U ′ and V ′.

Define a function 
 : D → D by patching together the identity function on
sentences of degree < k, the identity function on Y, the identity function on
D − S, a bijection from U onto U ′, and a bijection from V onto V ′. Note that

 is an N-restricted isomorphism from M + h to M + h′, where N is the set
of names of degree ≤ k. So ValM+h,τ (A) = ValM+h′,τ (A), for every sentence A
of degree < k + 1. In particular, ValM+h,τ (C) = ValM+h′,τ (C). So τM(h)(C) =
τM(h′)(C), as desired. ��

What’s left to prove is Theorem 4.21 (3), and the negative claims in
Theorems 4.2 and 4.5. We do this with a series of counterexamples. We will
bring it all together after presenting the examples.

Example 5.7 ([3], Example 6B.9) This example will show that T# �≤3 T#.
Consider a ground language L with a one-place predicate G, and no other
nonlogical vocabulary besides quote names. Let A = ∃x(Gx & ¬Tx) and let
Y = {Tn A : n ≥ 0}. Let M be the ground model 〈S, I〉 where I(G)(C) = t iff
C ∈ Y, for every C ∈ S. Note that every sentence in Y is nearly stably t in
every τM-sequence, though no sentence in Y is stably t in any τM-sequence.
So C ∈ V#

M, for all C ∈ Y. So M is (S − Y)-neutral where Y ⊆ {C : C ∈ V#
M or

¬C ∈ V#
M}.
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We will now show that there is a τM-sequence S such that the sentence
B = ∃y∃y(Gx & Gy & ¬Tx & ¬Ty & x �= y) is neither nearly stably t in S nor
nearly stably f in S . So T# does not dictate that truth behaves like a classical
concept in M. Incidentally, this falsifies the claim in [3] that “all sentences are
nearly stable in all τ -sequences for M” (p. 214).

Define the sets X0 = Y and Xn+1 = Y − {Tn A} for n ≥ 0. Also define Zn =
Y − {Tn A, Tn+1 A}. Then there is a τM-sequence S such that, for each C ∈ Y,
each limit ordinal λ and each n ≥ 0,

Sn(C)= t iff C ∈ Xn, and
Sλ+ω2+n(C)= t iff C ∈ Zn, and

Sλ+n(C)= t iff C∈ Xn and λ is a limit ordinal not of the form α+ω2.

Note that Sλ+ω2+n+1(B)= t and Sλ+ω+n+1(B) = f, for every limit ordinal λ and
every natural number n. So B is neither nearly stably t, nor nearly stably f,
in S .

Example 5.8 (Gupta) This example will show that T# �≤2 T∗ and that T# �≤2

Tgifp,μ. Modify Example 5.7 as follows: Let Y be the smallest set containing
each Tn A and such that if C ∈ Y then C ∨ C ∈ Y. Note that every sentence in
Y is nearly stably t in every revision sequence, but no sentence in Y is stably
t or stably f in any revision sequence. So τM has no classical fixed point. So
neither T∗ nor Tgifp,μ dictates that truth behaves like a classical concept in M.
But it follows from Claim 2, below, that T# does dictate that truth behaves like
a classical concept in M.

Notice that, for any classical hypothesis h and any n ≥ 0, each of the
following four sets is countably infinite:

{
C ∈ Y : deg(C) ≥ n & τ n+2

M (h)(C) = t
}

{
C ∈ Y : deg(C) ≥ n & τ n+2

M (h)(C) = f
}

{
C �∈ Y : deg(C) ≥ n & τ n+2

M (h)(C) = t
}

{
C �∈ Y : deg(C) ≥ n & τ n+2

M (h)(C) = f
}

Claim 1 For any two classical hypotheses h and h′ and any n ≥ 0, τ n+2
M (h) =n

τ n+2
M (h′). We prove this by induction on n. The base case is vacuously true. For

the inductive step, assume that τ n+2
M (h) =n τ n+2

M (h′). To show that τ n+3
M (h) =n+1

τ n+3
M (h′), we construct an N-restricted isomorphism 
 from M + τ n+2

M (h) to
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M + τ n+2
M (h′), where N = {‘C’ : deg(C) < n}. Define U , U ′, V, V ′, W, W ′, X,

X ′ as follows:

U =df
{
C ∈ Y : deg(C) ≥ n & τ n+2

M (h)(C) = t
}

U ′ =df
{
C ∈ Y : deg(C) ≥ n & τ n+2

M (h′)(C) = t
}

V =df
{
C ∈ Y : deg(C) ≥ n & τ n+2

M (h)(C) = f
}

V ′ =df
{
C ∈ Y : deg(C) ≥ n & τ n+2

M (h′)(C) = f
}

W =df
{
C ∈ S − Y : deg(C) ≥ n & τ n+2

M (h)(C) = t
}

W ′ =df
{
C ∈ S − Y : deg(C) ≥ n & τ n+2

M (h′)(C) = t
}

X =df
{
C ∈ S − Y : deg(C) ≥ n & τ n+2

M (h)(C) = f
}

X ′ =df
{
C ∈ S − Y : deg(C) ≥ n & τ n+2

M (h′)(C) = f
}

Each of these sets is countably infinite. Define 
 by patching together the
identity function on the sentences of degree < n, and bijections from U onto
U ′, from V onto V ′, from W onto W ′, and from X onto X ′.

Claim 2 For any sentence A of degree < n, either (i) τm
M(h)(A) = t for every

classical hypothesis h and every m ≥ n + 2, or (ii) τm
M(h)(A) = f for every

classical hypothesis h and every m ≥ n + 2. To see this, consider any classical
hypotheses h and h′ and any m, m′ ≥ n + 2. Note that if we apply Claim 1 to
τ

m−(n+2)

M (h) and to τ
m′−(n+2)

M (h′), we get τm
M(h) = τm′

M (h′).
From Claim 2, it follows that T# dictates that truth behaves like a clas-

sical concept in M. To see this, suppose that A is a sentence of L+. By
Claim 2, either (i) τm

M(h)(A) = t for every classical hypothesis h and every
m ≥ deg(A) + 3, or (ii) τm

M(h)(A) = f for every classical hypothesis h and
every m ≥ deg(A) + 3. Suppose (i). Note: for every τM-sequence S , for every
ordinal γ ≥ 0, and for every m ≥ deg(A) + 3, Sγ+m(A) = t. So A is nearly
stably t in every τM-sequence S . So A ∈ V#

M. Similarly, if (ii), then ¬A ∈ V#
M.

So, for every A ∈ S, either A ∈ V#
M or ¬A ∈ V#

M. So T# dictates that truth
behaves like a classical concept in M.

Example 5.9 This example presents a ground model M such that lfp(σ1M)

and lfp(σ2M) are classical, and furthermore such that M is (S − Y)-neutral
where Y ⊆ {B : B ∈ Vc

M or ¬B ∈ Vc
M}. On the negative side, we will see that

neither T∗ nor T# dictates that truth behaves like a classical concept in M.
This delivers the following results: Tlfp,σ1 �≤2 T∗, Tlfp,σ1 �≤2 T#, Tlfp,σ2 �≤2 T∗,
Tlfp,σ2 �≤2 T#, Tc �≤3 T∗, Tc �≤3 T#. From these it follows—given Theorem 4.21
and Lemma 4.20—that Tc �≤2 T∗ and Tc �≤2 T#. The fact that Tc �≤3 T∗ gives a
negative answer to Gupta and Belnap’s Question 4.16, above.
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Consider a ground language L with a one-place predicate G, a nonquote
name b , and no other nonlogical vocabulary besides quote names. For any
formula B and n ≥ 0, we define −n B as B when n is even and as ¬B when
n is odd. Let A = T‘Tb ’ & T‘¬Tb ’. Let Z = {Tn A : n ≥ 0}. Let Y = Z ∪
{∃x(Gx & Tx) & ¬Tb}. Let M be the ground model 〈S, I〉, where I(b) =
∃x(Gx & Tx) & ¬Tb and where I(G)(C) = t iff C ∈ Z , for every C ∈ S. Note
that M is (S − Y)-neutral.

Claim 1 Neither T∗ nor T# dictates that truth behaves like a classical concept in
M. Proof: Say that a classical hypothesis h is interesting iff h(∃x(Gx & Tx)) =
h(Tb) = h(¬Tb) = t and h(B) = f for every B ∈ Z . Then, for any interest-
ing classical hypothesis h, if k ≥ 2 then τ k

M(h)(Tk−1 A) = τ k
M(h)(−k−1Tb) =

τ k
M(h)(∃x(Gx & Tx)) = t; and τ k

M(h)(−kTb) = τ k
M(h)(Tn A) = f, where n �=

k − 1. So we can construct a τM-sequence S for M such that Sλ is interesting
for every limit ordinal λ and such that the value of Tb never stabilizes. In fact
we can assure that Tb is not even nearly stable.

Claim 2 For every B ∈ Y, either B ∈ Vc
M or ¬B ∈ Vc

M. Proof: It suffices
to show that every sentence in Y is stably f in every maximally con-
sistent τM-sequence S . So suppose that S is a maximally consistent
τM-sequence. Then Sn+1(A) = f, for each n ≥ 0, by the strong consis-
tency of Sn. So Sk+1(Tn A) = f, for k ≥ 0 and n ≤ k. So Sω(Tn A) = f
for every n ≥ 0. So Sω+1(∃x(Gx & Tx) & ¬Tb) = Sω+1(∃x(Gx & Tx)) =
Sω+1(Tn A) = f, for every n ≥ 0. So Sω+2(Tb)=Sω+2(∃x(Gx & Tx) & ¬Tb) =
Sω+2(∃x(Gx & Tx))=Sω+2(Tn A)= f, for every n ≥ 0. So for every α ≥
ω + 2 and every n ≥ 0, we have Sα(Tb)=Sα(∃x(Gx & Tx) & ¬Tb)=
Sα(∃x(Gx & Tx)) = Sα(Tn A)= f. So every sentence in Y is stably f in S .

Claim 3 lfp(σ1M) is classical. Proof: It suffices, given Theorem 4.24, to
prove that lfp(σ1M)(B) = f for every B ∈ Y. Let S be the σ1M-sequence
that iteratively builds lfp(σ1) from the null hypothesis: i.e., S0(B) = n for
every B ∈ S. Note that Sk+1(A) = f, for k ≥ 0. The reason is that in cal-
culating Sk+1(A), we consider only weakly consistent classical h ≥ Sk. So
Sk+1(Tn A) = f, for k ≥ 0 and n ≤ k. So Sω(Tn A) = f, for every n ≥ 0. So,
as in the proof of Claim 2, for every α ≥ ω + 2 and every n ≥ 0, we have
Sα(Tb) = Sα(∃x(Gx & Tx) & ¬Tb) = Sα(∃x(Gx & Tx)) = Sα(Tn A) = f. So
lfp(σ1M)(B) = f for every B ∈ Y, as desired.

Claim 4 lfp(σ2M) is classical. Proof: Note that lfp(σ1M) ≤ lfp(σ2M). (See the
proof of Theorem 4.2.) So lfp(σ2M) is classical, given Claim 3.

Example 5.10 (Gupta) This example will show that Tlfp,σ �≤3 Tlfp,σ . Consider
a ground language L with a one-place predicate G and no other nonlogical
vocabulary besides quote names. Let D = S ∪ N. For each Y ⊆ S, let Y∗ =
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{A : ¬A ∈ Y}. For each Y ⊆ D, we will use the notation [Y] for the ground
model 〈D, IY〉 where,

IY(G)(d) =
{

t, if d ∈ Y
f, if d �∈ Y.

For nonintersecting U, V ⊆ D, we will use the notation (U, V) for the hypoth-
esis h such that

h(d) =

⎧
⎪⎨

⎪⎩

t, if d ∈ U
f, if d ∈ V
n, otherwise.

We will define a jump operator, φ, not on hypotheses, but rather on subsets
of S. For each Y ⊆ S,

φ(Y) =df {A ∈ S : Val[Y∪N]+(Y,Y∗∪N),σ (A) = t}.
Though φ is not in any sense monotone, it will come in handy, as we shall see.
Let Y0 =df ∅. Let Yn+1 =df φ(Yn). And let Yω =df {A : (∃n ≥ 0)(∀m ≥ n)(A ∈
Ym)} = ⋃

n≥0

⋂
m≥n Ym.

Below we will prove that the hypothesis (Yω, Yω
∗ ∪ N) is not classical, and is

the least fixed point of σ[Yω∪N]. Given this, note that the ground model [Yω ∪ N]
is (S − Yω)-neutral and that lfp(σ[Yω∪N])(B) = t for every B ∈ Yω. So Tlfp,σ �≤3

Tlfp,σ , as desired.
Our argument that (Yω, Yω

∗ ∪ N) is not classical, and is the least fixed point
of σ[Yω∪N], proceeds through numbered claims.

Claim 1 ∀x(Tx ⊃ Gx) �∈ Yn and ¬∀x(Tx ⊃ Gx) �∈ Yn, for each n ≥ 0. Proof:
by induction on n. The base case is vacuously true. For the inductive
step, assume that ∀x(Tx ⊃ Gx) �∈ Yn and ¬∀x(Tx ⊃ Gx) �∈ Yn. To show that
∀x(Tx ⊃ Gx) �∈ Yn+1 and ¬∀x(Tx ⊃ Gx) �∈ Yn+1, it suffices to show that
Val[Yn∪N]+(Yn,Yn

∗∪N),σ (∀x(Tx ⊃ Gx)) = n. Consider the classical hypotheses
h = (Yn, D − Yn) and h′ = (Yn ∪ {∀x(Tx ⊃ Gx)}, D − Yn − {∀x(Tx ⊃ Gx)}).
By the inductive hypothesis, we have (Yn, Yn

∗ ∪ N) ≤ h, h′. Further-
more, Val[Yn∪N]+h,τ (∀x(Tx ⊃ Gx)) = t and Val[Yn∪N]+h′,τ (∀x(Tx ⊃ Gx)) = f.
So Val[Yn∪N]+(Yn,Yn

∗∪N),σ (∀x(Tx ⊃ Gx)) = n, as desired.

Claim 2 (Yω, Yω
∗ ∪ N) is not classical. Proof: Given Claim 1, ∀x(Tx ⊃ Gx) �∈

Yω and ∀x(Tx ⊃ Gx) �∈ Yω
∗.

Before we state Claim 3, we define Xn = S − (Yn ∪ Yn
∗) and Xω = S −

(Yω ∪ Yω
∗).

Claim 3 For each n ≥ 1 and m ≥ 0, there is some sentence of degree m in Yn

and some sentence of degree m in Xn. Proof: Note that (Tm A ∨ ¬Tm A) ∈ Yn

and (Tm A ∨ ¬Tm A) & ∀x(Tx ⊃ Gx) ∈ Xn, for any sentence A.
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Before we state Claim 4, we introduce some notation. For U, V ⊆ S, say that
U =n V iff for every sentence A of degree < n, A ∈ U iff A ∈ V.

Claim 4 For every n ≥ 0, and every m ≥ n + 1, Yn+1 =n Ym. Proof: By induc-
tion on n. The base case is vacuously true. For the inductive step, assume that
Yn+1 =n Ym. We want to show that Yn+2 =n+1 Ym+1. It suffices to construct an
N-restricted isomorphism 
 from [Yn+1 ∪ N] to [Ym ∪ N], where N = {‘A’ :
deg(A) < n}. Define seven subsets of S as follows:

U =df {A ∈ S : deg(A) < n}
V =df {A ∈ S : deg(A) ≥ n & A ∈ Yn+1}
W =df {A ∈ S : deg(A) ≥ n & A ∈ Yn+1

∗}
Z =df {A ∈ S : deg(A) ≥ n & A ∈ Xn+1}
V ′ =df {A ∈ S : deg(A) ≥ n & A ∈ Ym}
W ′ =df {A ∈ S : deg(A) ≥ n & A ∈ Ym

∗}
Z ′ =df {A ∈ S : deg(A) ≥ n & A ∈ Xm}

Note that each of V, W, Z , V ′, W ′, and Z ′ is countably infinite, by Claim 3.
Also note that

S − U = V ∪̇ W ∪̇ Z

S − U = V ′ ∪̇ W ′ ∪̇ Z ′

Yn+1 ∩ U = Ym ∩ U

Yn+1
∗ ∩ U = Ym

∗ ∩ U

Define 
 by patching together the identity function on U ∪ N, and bijections
from V onto V ′, from W onto W ′, and from Z onto Z ′.

Claim 5 (Yω, Yω
∗ ∪ N) is a fixed point of σ[Yω∪N]. Proof: It suffices to show

that Yω is a fixed point of φ. For this, it suffices to show that φ(Yω) =n+1 Yω,
for every n ≥ 0. Given Claim 4, Yω =n+1 Yn+2, for every n ≥ 0. So it suffices
to show that φ(Yω) =n+1 Yn+2, for every n ≥ 0. Choose any n ≥ 0. Note that
Yω =n Yn+1, by Claim 4. To show that φ(Yω) =n+1 Yn+2, it suffices to construct
and N-restricted isomorphism from [Yω ∪ N] to [Yn+1 ∪ N], where N = {‘A’ :
deg(A) < n}. The construction follows the lines of the construction in the proof
of Claim 4.

Claim 6 (Yω, Yω
∗ ∪ N) = lfp(σ[Yω∪N]). Proof: Let (Z , Z ∗ ∪ N) = lfp(σ[Yω∪N]).

For Claim 6, it suffices to show by induction on n that Yω =n Z , for each n ≥ 0.
The base case is vacuously true. For the inductive step, suppose that Yω =n Z .
We want to show that Yω =n+1 Z . Note, incidentally, that Yω

∗ =n Z ∗.
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Z ⊆ Yω, since (Z , Z ∗ ∪ N) = lfp(σ[Yω∪N]) ≤ (Yω, Yω
∗ ∪ N). So it suffices to

show that for every sentence A of degree < n + 1, if A �∈ Z then A �∈ Yω.
So suppose that deg(A) < n + 1 and A �∈ Z . Then there is some classical
hypothesis (X, D − X) ≥ (Z , Z ∗ ∪ N) such that A is false in the classical
model [Yω ∪ N] + (X, D − X). To show that A �∈ Yω, we will construct a
classical hypothesis (W, D − W) ≥ (Yw, Yw

∗ ∪ N) such that A is false in the
classical model [Yω ∪ N] + (W, D − W). First we construct (W, D − W), and
then we construct an N-restricted isomorphism 
 from [Yω ∪ N] + (X, D −
X) to [Yω ∪ N] + (W, D − W), where N = {‘B’ : deg(B) < n}.

Define seven disjoint subsets of S, as follows:

U =df {A ∈ S : deg(A) < n}
V1 =df (X ∩ Yω) − U

V2 =df (X ∩ Yω
∗) − U

V3 =df X − (Yω ∪ Yω
∗ ∪ U)

V ′
1 =df ((S − X) ∩ Yω) − U

V ′
2 =df ((S − X) ∩ Yω

∗) − U

V ′
3 =df (S − X) − (Yω ∪ Yω

∗ ∪ U)

Note the following:

X = V1 ∪̇ V2 ∪̇ V3 ∪̇ (U ∩ X)

S − X = V ′
1 ∪̇ V ′

2 ∪̇ V ′
3 ∪̇ (U ∩ (S − X))

V3 ∪̇ V ′
3 = S − (Yω ∪ Yω

∗ ∪ U)

Yω − U = V1 ∪̇ V ′
1

Yω
∗ − U = V2 ∪̇ V ′

2

Yω ∩ U ⊆ X ∩ U , since Yω =n Z

Yω
∗ ∩ U ⊆ (S − X) ∩ U , since Yω

∗ =n Z ∗

Z − U ⊆ V1

Z ∗ − U ⊆ V ′
2

Note also that each of the following sets contains sentences of arbitrarily large
degree: Z , Z ∗, and S − (Yω ∪ Yω

∗). So each of the following sets is countably
infinite: V1, V ′

2 and V3 ∪̇ V ′
3.

Choose P ⊆ V3 and Q ⊆ V ′
3, so that P ∪̇ Q has the same cardinality as

V2 ∪̇ V3. And let P1 = V3 − P and Q1 = V ′
3 − Q. Finally, let J be a set of even

numbers of the same cardinality as V ′
1. And let K = N − J. K is countably

infinite.
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Let W = (X ∩ U) ∪̇ V1 ∪̇ V ′
1 ∪̇ P ∪̇ Q. Then

S − W = ((S − X) ∩ U) ∪̇ V2 ∪̇ V ′
2 ∪̇ P1 ∪̇ Q1.

So, Yω = (Yω ∩ U) ∪̇ V1 ∪̇ V ′
1 ⊆ W,

and Yω
∗ = ((S − X) ∩ U) ∪̇ V2 ∪̇ V ′

2 ⊆ S − W.

So, (W, D − W) ≥ (Yω, Yω
∗ ∪ N).

Construct an N-restricted isomorphism from MX = [Yω ∪ N] + (X, D − X) to
MW = [Yω ∪ N] + (W, D − W) by patching together

the identity function on U ,
a bijection from V1 onto Yω − U = V1 ∪̇ V ′

1,
a bijection from V2 ∪̇ V3 onto P ∪̇ Q,
a bijection from V ′

2 ∪̇ P1 ∪̇ Q1 onto V2 ∪̇ V ′
2 ∪̇ P1 ∪̇ Q1,

a bijection from V ′
1 onto J, and

a bijection from N = J ∪̇ K onto K.

To see that 
 is an N-restricted isomorphism from MX to MW , first note
that 
 maps the extension of G in MX one-one onto the extension of G in
MW . The reason is that Yω ∪ N = (U ∩ Yω) ∪̇ V1 ∪̇ V ′

1 ∪̇ J ∪̇ K and 
 maps
V1 one-one onto V1 ∪̇ V ′

1, and V ′
1 one-one onto J, and J ∪̇ K one-one onto

K. Also, 
 maps X = (U ∩ X) ∪̇ V1 ∪̇ V2 ∪̇ V3 one-one onto W = (U ∩ X) ∪̇
V1 ∪̇ V ′

1 ∪̇ P ∪̇ Q, since 
 maps V1 one-one onto V1 ∪̇ V ′
1, and V2 ∪̇ V3 one-one

onto P ∪̇ Q. So 
 maps the extension of T in MX one-one onto the extension
of T in MW . Finally, note that for every name ‘B’ in N, 
 maps the denotation
of ‘B’ in MX to the denotation of ‘B’ in MW , since, 
(B) = B for every B ∈ U .

Example 5.11 (Gupta) Here we modify Example 5.10 to get a proof that
Tlfp,σ1 �≤3 Tlfp,σ1. As we shall see, our modified example will also show that
Tlfp,σ2 �≤2 Tlfp,σ1. The current example starts like Example 5.10, except that the
jump operator φ must now be defined for Y ⊆ S as follows:

φ(Y) =df {A ∈ S : Val[Y∪N]+(Y,Y∗∪N),σ1(A) = t}.
As in Example 5.10, Y0 =df ∅, Yn+1 =df φ(Yn), and Yω =df

⋃
n≥0

⋂
m≥n Ym.

Below, we state six claims analogous to the claims made in Example 5.10.
Except where indicated, their proofs are exactly as in Example 5.10, except
that occurrences of “σ” must be replaced by “σ1”. Before we state our new
Claims 1-6, we state a Claim 0.

Claim 0 Yn ∪ {∀x(Tx ⊃ Gx)} is consistent for every n ≥ 0. Proof: by induction
on n ≥ 0. The base case is trivially true. For the inductive step, suppose
that Yn ∪ {∀x(Tx ⊃ Gx)} is consistent. Note that every sentence in Yn+1 ∪
{∀x(Tx ⊃ Gx)} is true in the classical model [Yn ∪ N] + (Yn, D − Yn). So
Yn+1 ∪ {∀x(Tx ⊃ Gx)} is consistent.
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Claim 1 ∀x(Tx ⊃ Gx) �∈ Yn and ¬∀x(Tx ⊃ Gx) �∈ Yn, for each n ≥ 0. The
proof proceeds exactly as in Example 5.4, except that after introducing h =
(Yn, D − Yn) and h′ = (Yn ∪ {∀x(Tx ⊃ Gx)}, D − Yn − {∀x(Tx ⊃ Gx)}), we
have to verify that h and h′ are not only classical but also weakly consistent.
But this follows from Claim 0.

Claim 2 (Yω, Yω
∗ ∪ N) is not classical.

Claim 3 For each n ≥ 1 and m ≥ 0, there is some sentence of degree m in Yn

and some sentence of degree m in Xn.

Claim 4 For every n ≥ 0, and every m ≥ n + 1, Yn+1 =n Ym.

Claim 5 (Yω, Yω
∗ ∪ N) is a fixed point of σ1[Yω∪N].

Proof of Claims 2–5 Exactly as in Example 5.10. ��

Claim 6 (Yω, Yω
∗ ∪ N) = lfp(σ1[Yω∪N]). Proof: we must modify the construc-

tion in the proof of Example 5.10, Claim 6, as follows. First, replace the fourth
and fifth sentences of the second paragraph of the proof of Claim 6 in Example
5.10 with the following:

Then there is some weakly consistent classical hypothesis (X, D − X) ≥
(Z , Z ∗ ∪ N) such that A is false in the classical model [Yω ∪ N] +
(X, D − X). To show that A �∈ Yω, we will construct a weakly consistent
classical hypothesis (W, D − W) ≥ (Yw, Yw

∗ ∪ N) such that A is false in
the classical model [Yω ∪ N] + (W, D − W).

Then, up until the choice of P ⊆ V3 and Q ⊆ V ′
3, the construction proceeds

exactly as in Example 5.10. But before we choose P and Q, we must first prove
that (X ∩ U) ∪ Yω = (X ∩ U) ∪̇ V1 ∪̇ V ′

1 is consistent. Suppose not. Then, by
compactness, Yω ∪ {B1, . . . , Bk} is inconsistent for some B1, . . . , Bk ∈ (X ∩
U). So Yω logically implies B =df ¬(B1 & . . . & Bk). So B ∈ Y. Note that
deg(B) < n, since each Bi ∈ U . So B ∈ Z , since Yω =n Z . But Z ⊆ X and
B1, . . . , Bk ∈ X. So X is inconsistent. So (X, D − X) is not weakly consistent,
a reductio. So (X ∩ U) ∪ Yω is consistent, as desired.

Now we will choose P ⊆ V3 and Q ⊆ V ′
3, but more carefully than in

Example 5.10. Note that V3 ∪̇ V ′
3 contains countably infinitely many sentences

and is closed under negation. Also, (X ∩ U) ∪ Yω is consistent. So there
are countably infinitely many sentences in V3 ∪̇ V ′

3 that are consistent with
(X ∩ U) ∪ Yω. So we can choose P ⊆ V3 and Q ⊆ V ′

3 so that (X ∩ U) ∪̇ V1 ∪̇
V ′

1 ∪̇ P ∪̇ Q = (X ∩ U) ∪̇ Yω ∪̇ P ∪̇ Q is consistent and so that P ∪̇ Q has the
same cardinality as V2 ∪̇ V3.

Let W = (X ∩ U) ∪̇ V1 ∪̇ V ′
1 ∪̇ P ∪̇ Q, as in Example 5.10. W is consistent.

So the hypothesis (W, D − W) is weakly consistent. The construction of the
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restricted isomorphism 
 goes through as in Example 5.10. So A is false in the
classical model [Yω ∪ N] + (W, D − W), as desired.

So (Yω, Yω
∗ ∪ N) is not classical, and is the least fixed point of

σ1[Yω∪N]. But note that the ground model [Yω ∪ N] is (S − Yω)-neutral, and
lfp(σ1[Yω∪N])(B) = t for every B ∈ Yω. So Tlfp,σ1 �≤3 Tlfp,σ1, as desired.

We furthermore claim that lfp(σ2[Yω∪N]) is classical. Firstly, lfp(σ1[Yω∪N]) ≤
lfp(σ2[Yω∪N]). So the ground model [Yω ∪ N] is (S − Yω)-neutral, and
lfp(σ2[Yω∪N])(B) = t for every B ∈ Yω. So lfp(σ2[Yω∪N]) is classical, since
Tlfp,σ2 ≤3 Tlfp,σ2 by Theorem 4.21 (2), proved above. So Tlfp,σ2 �≤2 Tlfp,σ1.

Example 5.12 This example will show that Tgifp,μ �≤2 Tgifp,κ . Consider a ground
language L with exactly two nonquote names, b and c, and no other nonlogical
vocabulary besides quote names. Let M be the ground model 〈S, I〉 with
I(b) = B = Tb & Tc and I(c) = C = Tb ∨ ¬Tc. The facts in the following
table can be easily established by calculating:

If 〈h(B), h(C)〉 = tt tf tn ft ff fn nt nf nn
then 〈μM(h)(B), μM(h)(C)〉 = tt ft nn ff ft nn nn nn nn
and 〈κM(h)(B), κM(h)(C)〉 = tt ft nt ff ft fn nn ft nn

Given this table, we can argue as in Gupta and Belnap’s Transfer Theorem
([3], Theorem 2D.4) to the following conclusion: μM has three fixed points,
which are completely determined by the ordered triple 〈h(B), h(C), h(∀x(Tx ∨
¬Tx))〉; and κM has three fixed points, which are completely determined by the
ordered triple 〈h(B), h(C), h(∀x(Tx ∨ ¬Tx))〉. Furthermore τM has exactly one
fixed point, in which both B and C are t. Finally, that unique fixed point of τM

is also a fixed point of μM and of κM. The fixed points of μM and κM line up as
follows:

fixed points of μM

ttt
|

ttn
|

nnn

fixed points of κM

ttt
|

fnn ttn
� �

nnn

Thus gifp(μM) is classical but gifp(κM) is not.

Example 5.13 This example will show that Tgifp,κ �≤2 Tgifp,σ . Consider a ground
language L with exactly two nonquote names, b and c, and no other nonlogical
vocabulary besides quote names. Let M be the ground model 〈S, I〉 with

I(b) = B = Tb ∨ (Tc & ¬Tc), and

I(c) = C = (Tb & (Tc ∨ ¬Tc)) ∨ (¬Tb & ¬Tc).
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The facts in the following table can be easily established by calculating:

If 〈h(B), h(C)〉 = tt tf tn ft ff fn nt nf nn
then 〈κM(h)(B), κM(h)(C)〉 = tt tt tn ff ft nn nn nn nn
and 〈σM(h)(B), σM(h)(C)〉 = tt tt tt ff ft fn nn nt nn

Given this table, we can argue as in Gupta and Belnap’s Transfer Theorem
([3], Theorem 2D.4) to the following conclusion: κM has three fixed points,
which are completely determined by the ordered triple 〈h(B), h(C), h(∀x(Tx ∨
¬Tx))〉; and σM has three fixed points, which are completely determined by
the ordered pair 〈h(B), h(C)〉. (The reason we only need look at these pairs of
truth values is that the proviso in the Transfer Theorem can be dropped for
σ .) Furthermore τM has exactly one fixed point, in which both B and C are t.
Finally, that unique fixed point of τM is also a fixed point of κM and of σM. The
fixed points of κM and σM line up as follows:

fixed points of κM

ttt
|

ttn
|

tnn
|

nnn

fixed points of σM

fn tt
� �

nn

Thus gifp(κM) is classical but gifp(σM) is not.

Example 5.14 This example will show that Tgifp,σ �≤2 Tgifp,σ1. Consider a
ground language L with exactly four nonquote names, b , c, d and e, and no
other nonlogical vocabulary besides quote names. Let M be the ground model
〈S, I〉 with

I(b) = B = Tb ∨ (Td & Te)
I(c) = C = Tb ∨ ¬Tc
I(d) = D = Tc
I(e) = E = ¬Tc

The facts in the following table can be established by calculating. The asterisks
are classical wildcards, either t or f and the question marks can vary with the
wildcards:

If 〈h(B), h(C), h(D), h(E)〉 = tt∗∗ ft∗∗ ∗f∗∗
then 〈τM(h)(B), τM(h)(C), τM(h)(D), τM(h)(E)〉 = tttf ?ftf ?tft
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From Gupta and Belnap’s Transfer Theorem, we conclude that τM has a
unique fixed point, say h0, where h0(B) = h0(C) = h0(D) = t and h0(E) = f.
Since h0 is a fixed point of τM, it is also a fixed point of σM and of σ1M.

Furthermore, by an argument similar to that given for the Transfer Theo-
rem, we can conclude that the fixed points of σM are completely determined
by the values 〈h(B), h(C), h(D), h(E)〉. (The reason we only need look at these
quartuples of truth values is that the proviso in the Transfer Theorem can be
dropped for σ .) Thus, h0 is the only classical fixed point of σM, and the only
fixed point of σM in which B, C and D are t and E is f. In fact, h0 is the only
fixed point of σM in which B and C are t, since in any such fixed point D is t
and E is f.

Claim 1 σM has no fixed point h where h(C) = f. Proof: Suppose that h is a
fixed point of σM with h(C) = f. Then, since h is a fixed point of σM, h(Tc) =
h(T‘C’) = h(C) = f. So h(C) = h(Tb ∨ ¬Tc) = ValM+h,σ (Tb ∨ ¬Tc) = t, a
contradiction.

Claim 2 σM has no fixed point h where h(B)= f. Proof: Suppose that h is
a fixed point of σM with h(B)= f. By Claim 1, h(C)= t or n. If h(C)= t
then, since h is a fixed point of σM, h(Tc) = t, so that h(C)=h(Tb ∨ ¬Tc) =
ValM+h,σ (Tb ∨ ¬Tc)= f, a contradiction. So h(C)=n. So h(D)=h(Tc)=n=
h(¬Tc)=h(E). Let h′ ≥ h be a classical hypothesis with h′(Tc)=h′(¬Tc)= t,
and let h′′ ≥h be a classical hypothesis with h′′(Tc)=h′′(¬Tc)= f. Then
ValM+h′,τ (Td)=ValM+h′′,τ (Te)= t and ValM+h′′,τ (Td)=ValM+h′,τ (Te)= f. So
τM(h′)(B)=ValM+h′,τ (Tb ∨ (Td & Te))= t and τM(h′′)(B)=ValM+h′′,τ (Tb ∨
(Td & Te))= f. So σM(h)(B)=n. This contradicts h’s being a fixed point of
σM with h(B)= f.

Given Claims 1 and 2, σM has no fixed points that are incompatible with h0.
So h0 is a σM-intrinsic fixed point. So h0 = gifp(σM), since h0 is classical.

As for σ1, let g be the (weakly consistent) hypothesis with g(B) = f, and
g(A) = n for every A ∈ S − {B}. Note that σ1M(g)(B) = f. So g ≤ σ1M(g).
By the monotony of σ1M, there is a unique σ1M-sequence S with S0 = g.
Furthermore, S is (nonstrictly) increasing, and culminates in a fixed point
of σ1M, say h1. Note that h1(B) = f. But h0 is also a fixed point of σ1M, and
h0(B) = t. So gifp(σ1M) is not classical.

Example 5.15 This example will show that Tgifp,σ1 �≤2 Tgifp,σ2. Consider a
ground language L with exactly four nonquote names, b , c, d and e, and no
other nonlogical vocabulary besides quote names. Let M be the ground model
〈S, I〉 with

I(b) = B = Tb ∨ (¬Td & ¬Te)
I(c) = C = Tb ∨ ¬Tc
I(d) = D = Tc
I(e) = E = ¬Tc
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The facts in the following table can be established by calculating. The asterisks
are classical wildcards, either t or f and the question marks can vary with the
wildcards:

If 〈h(B), h(C), h(D), h(E)〉 = tt∗∗ ft∗∗ ∗f∗∗
then 〈τM(h)(B), τM(h)(C), τM(h)(D), τM(h)(E)〉 = tttf ?ftf ?tft

From Gupta and Belnap’s Transfer Theorem, we conclude that τM has a
unique fixed point, say h0, where h0(B) = h0(C) = h0(D) = t and h0(E) = f.
Since h0 is a fixed point of τM, it is also a fixed point of σ1M and of σ2M.

Furthermore, by an argument similar to that given for the Transfer
Theorem, we can conclude that the fixed points of σ are completely deter-
mined by the values 〈h(B), h(C), h(D), h(E)〉. Thus, h0 is the only classical
fixed point of σ1M, and the only fixed point of σ1M in which B, C and D are
t and E is f. In fact, h0 is the only fixed point of σ1M in which B and C are t,
since in any such fixed point D is t and E is f.

Claim 1 σ1M has no fixed point h where h(C) = f. Proof: Suppose that h is a
fixed point of σ1M with h(C) = f. Then, since h is a fixed point of σ1M, h(Tc) =
h(T‘C’) = h(C) = f. So h(C) = h(Tb ∨ ¬Tc) = ValM+h,σ (Tb ∨ ¬Tc) = t, a
contradiction.

Claim 2 σ1M has no fixed point h where h(B) = f. Proof: Suppose that h is
a fixed point of σ1M with h(B) = f. By Claim 1, h(C) = t or n. If h(C) =
t then, since h is a fixed point of σ1M, h(Tc) = t, so that h(C) = h(Tb ∨
¬Tc) = ValM+h,σ (Tb ∨ ¬Tc) = f, a contradiction. So h(C) = n. So h(T‘C’) =
h(Tc) = n = h(¬Tc), since h is a fixed point. Consider the classical hypothesis
h′ such that, for every A ∈ S, h′(A) = t iff h(A) = t. The hypothesis h′ is
weakly consistent, since the set {A ∈ S : h(A) = t} is consistent, h being a fixed
point of σ1. Also note that h′(Tc) = h′(¬Tc) = h′(B) = f. So ValM+h′,τ (Td) =
ValM+h′,τ (T‘Tc’) = f = ValM+h′,τ (T‘¬Tc’) = ValM+h′,τ (Te). So ValM+h′,τ (B) =
ValM+h′,τ (Tb ∨ (¬Td & ¬Te)) = t. So σ1M(h)(B) �= f = h(B). But this contra-
dicts h’s being a fixed point of σ1.

So for every fixed point h of σ1, the possible values for the quartuple
〈h(B), h(C), h(D), h(E)〉 are tttf, tnnn, nttf, and nnnn. As already pointed out,
each fixed point h of σ1 is uniquely determined by 〈h(B), h(C), h(D), h(E)〉;
moreover the ordering on them is isomorphic to the ordering induced on the
four quartuples tttf, tnnn, nttf, and nnnn:

tttf
� �

tnnn nttf
� �

nnnn

So h0 is the greatest fixed point of σ1M. So h0 = gifp(σ1M), which is classical.
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As for σ2, let g be the (weakly consistent) hypothesis with g(B) = f, and
g(A) = n for every A ∈ S − {B}. Note that σ2M(g)(B) = f. So g ≤ σ2M(g).
By the monotony of σ2M, there is a unique σ2M-sequence S with S0 = g.
Furthermore, S is (nonstrictly) increasing, and culminates in a fixed point
of σ2M, say h1. Note that h1(B) = f. But h0 is also a fixed point of σ2M, and
h0(B) = t. So gifp(σ2M) is not classical.

Example 5.16 This example will show that Tgifp,σ2 �≤2 Tc. Consider a ground
language L with exactly two nonquote names, b and c, and no other nonlogical
vocabulary besides quote names. Let M be the ground model 〈S, I〉 with
I(b) = B = Tc and I(c) = C = Tb & ¬Tc. The facts in the following table
can be easily established by calculating:

If 〈h(B), h(C)〉 = tt tf tn ft ff fn nt nf nn
then 〈σ2M(h)(B), σ2M(h)(C)〉 = tf ft tf ff

We have not filled in all the spaces in the table. These are not trivial: in
order to calculate these values, we must know which classical h′ ≥ h are
strongly consistent. Right away we know that there are no strongly consistent
hypotheses h with h(B) = h(C) = t. So we can fill in the third column with ft.
For our purposes, we do not need all the other columns. All we need is the
following:

If 〈h(B), h(C)〉 = tt tf tn ft ff fn nt nf nn
then 〈σ2M(h)(B), σ2M(h)(C)〉 = tf ft ft tf ff ?f tf ?? ??

By an argument similar to that given for the Transfer Theorem, the fixed
points of σ2M are completely determined by the values 〈h(B), h(C)〉; and the
fixed point h0 determined by the values ff is classical. Furthermore, the only
other potential fixed points are determined by the values nf and nn. If such
fixed points exist, they are both ≤ h0. So, whatever other fixed points there
might be, h0 = gifp(σ2M). So gifp(σ2M) is classical.

Now we will show that Tc does not dictate that truth behaves like a classical
concept in M. Choose any strongly consistent hypothesis h with h(B) = t and
h(C) = f. This can be done since (B & ¬C) is consistent. Note that if n is
even then τ n

M(h)(B) = t and τ n
M(C) = f; and if n is odd then τ n

M(h)(B) = f and
τ n

M(C) = t. So there is some maximally consistent τM-sequence S such that
neither B nor C is stable in S .

Example 5.17 This example will show that (1) Tlfp,κ �≤1 Tlfp,μ and (2)
Tlfp,ρ ′ �≤1 Tgifp,ρ , where ρ and ρ ′ are chosen with ρ strictly to the left
of ρ ′ from the list μ, κ , σ , σ1, σ2. Consider a ground language L with
exactly one nonquote name, b , and no other nonlogical vocabulary besides
quote names. Let M be the ground model 〈S, I〉 with I(b) = ¬Tb . Let



Comparing Fixed-Point and Revision Theories of Truth 401

C = ∃x(x = x). Note that h(B) = n for any fixed point h of μM, κM, σM,
σ1M or σ2M. So lfp(κM)(B ∨ C) = lfp(σM)(B ∨ ¬B) = lfp(σ1M)(¬T‘B’ ∨
¬T‘¬B’) = lfp(σ2M)(T‘B’ ∨ T‘¬B’) = t. Meanwhile lfp(μM)(B ∨ C) =
gifp(μM)(B ∨ C) = gifp(κM)(B ∨ ¬B) = gifp(σM)(¬T‘B’ ∨ ¬T‘¬B’) =
gifp(σ1M)(T‘B’ ∨ T‘¬B’) = n.

Example 5.18 This example will show that T∗ �≤1 Tgifp,ρ , for ρ = σ , σ1, σ2.
Consider a ground language L with countably many nonquote names,
b 0, b 1, . . . , b n, . . .; a one-place predicate G; and no other nonlogical vocab-
ulary besides quote names. Let M be the ground model 〈S, I〉 with

I(b 0) = B0 = ∃x∃y(Gx & Gy & Tx & Ty & x �= y)

∨ ∀x(Gx ⊃ ¬Tx) ∨ Tb 0,

I(bi) = Bi = ∀x(Gx ⊃ (Tx ≡ x = bi)), for i ≥ 1, and

and I(G)(A) = t iff A ∈ Y = {B0, B1, . . .}. Note that M is (S − Y)-neutral.
Let C be the sentence ∃x(Gx & Tx). It will suffice to show that C is stably t in

every τM-sequence, but that gifp(σ2M)(C)=gifp(σ1M)(C)=gifp(σM)(C)=n.
For each n ≥ 0, define a set Hn of hypotheses, and a set Sn of τM-sequences:

Hn =df {h : h is a classical hypothesis,

and h(Bn) = t and h(Bm) = f for m �= n}, and

Sn =df {S : S is a τM-sequence and S1 ∈ Hn}

First note that, for any hypothesis h, if h ∈ Hn then τM(h) ∈ Hn and if h �∈
∪n Hn then τM(h) ∈ H0. Thus, for any τM-sequence S , if S0 ∈ Hn then S1 ∈
Hn and if S0 �∈ ∪n Hn then S1 ∈ H0. Thus, for every τM-sequence S , there is
a unique n ≥ 0 such that S ∈ Sn.

Claim 1 If S , S ′ ∈ Sn, then S and S ′ culminate in the same fixed point,
which is itself in Hn. Choose S , S ′ ∈ Sn. Note that not only S1, S

′
1 ∈ Hn, but

also Sm, S ′
m ∈ Hn for every m ≥ 1. Thus Sm =Y Sk for any m, k ≥ 1. Thus,

by Corollary 5.5, Sω = S ′
ω is a fixed point of τM. And note that Sω ∈ Hn.

So τM has a unique fixed point hn ∈ Hn, for each n ≥ 0; and every τM-
sequence culminates in one of the hn. Note that hn(C) = t, for each n ≥ 0. So
C is stably t in every τM-sequence.

It remains to show that gifp(σ2M)(C) = gifp(σ1M)(C) = gifp(σM)(C) = n.
We will only give the argument for gifp(σ2M)(C); the other arguments are
similar.
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Define hypotheses h∗ and h′ as follows:

h∗(A) =

⎧
⎪⎨

⎪⎩

t, if A ∈ V∗
M

f, if ¬A ∈ V∗
M

n, otherwise.

h′(A) =

⎧
⎪⎨

⎪⎩

t, if A ∈ V∗
M

f, if ¬A ∈ V∗
M or A ∈ Y

n, otherwise.

Then h∗ is the greatest lower bound of the hn, and is strongly consistent. Also,
h∗ ≤ h′: shortly, we will see that h′ is also strongly consistent. Any intrinsic fixed
point of σ2M must be ≤ any classical fixed point of τM. So gifp(σ2M) ≤ hn, for
each n ≥ 0. So gifp(σ2M) ≤ h∗.

Now notice that, for any n ≥ 0, the set V∗
M ∪ {¬B0, ¬B1, . . . ,¬Bn} is

a consistent set of sentences since V∗
M ∪ {¬B0, ¬B1, . . . , ¬Bn} ⊆ {A ∈ S :

hn+1(A) = t}. So, by compactness, V∗
M ∪ {¬B0, ¬B1, . . . , ¬Bn, . . .} is consis-

tent. So h′ is strongly consistent, as recently claimed.
Since h′ is strongly consistent, there is a classical strongly consis-

tent h′′ ≥ h′. Thus h′′ ≥ h′ ≥ h∗ ≥ gifp(σ2M). Note that h′′(A) = f for each
A ∈ Y. So τM(h′′)(C) = f. So gifp(σ2M)(C) = σ2M(gifp(σ2M))(C) �= t. Also
gifp(σ2M)(C) �= f, since gifp(σ2M) ≤ h0 and h0(C) = t. So gifp(σ2M)(C) = n,
as desired.

6 Wrapping Up

So far we have the following results:

• Positive results proved in Section 4:

– Tlfp,μ ≤1 Tlfp,κ ≤1 Tlfp,σ ≤1 Tlfp,σ1 ≤1 Tlfp,σ2.
– Tlfp,ρ ≤1 Tgifp,ρ , for ρ = μ, κ, σ, σ1 or σ2.
– Tlfp,σ ≤1 T∗ ≤1 T#. T∗ ≤1 Tc. Tlfp,σ2 ≤1 Tc.
– Tlfp,μ ≡2 Tlfp,κ ≤2 Tlfp,σ ≤2 Tlfp,σ1 ≤2 Tlfp,σ2 ≤2 Tc.
– Tlfp,σ ≤2 T∗ ≤2 T#.
– T∗ ≤2 Tc ≤2 Tgifp,σ2 ≤2 Tgifp,σ1 ≤2 Tgifp,σ ≤2 Tgifp,κ ≤2 Tgifp,μ.
– T∗ ≤3 Tc ≤3 Tgifp,σ2 ≤3 Tgifp,σ1 ≤3 Tgifp,σ ≤3 Tgifp,κ ≤3 Tgifp,μ.
– Tlfp,μ ≤3 Tlfp,σ ≤3 Tlfp,σ1 ≤3 Tlfp,σ2 ≤3 Tc. Tlfp,κ ≤3 Tlfp,σ .

• Positive results proved in Section 5:

– T∗ ≤3 T∗. Tc ≤3 Tc. Tlfp,σ2 ≤3 Tlfp,σ2.
– Tgifp,ρ ≤3 Tgifp,ρ , for ρ = μ, κ, σ, σ1 or σ2.

• Negative results from the examples in Section 5:

– T# �≤3 T#. T# �≤2 T∗. T# �≤2 Tgifp,μ.
– Tlfp,σ1 �≤2 T∗. Tlfp,σ1 �≤2 T#. Tlfp,σ2 �≤2 T∗. Tlfp,σ2 �≤2 T#.
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– Tc �≤3 T∗. Tc �≤3 T#. Tc �≤2 T∗. Tc �≤2 T#.
– Tlfp,σ �≤3 Tlfp,σ . Tlfp,σ1 �≤3 Tlfp,σ1. Tlfp,σ2 �≤2 Tlfp,σ1.
– Tgifp,μ �≤2 Tgifp,κ �≤2 Tgifp,σ �≤2 Tgifp,σ1 �≤2 Tgifp,σ2 �≤2 Tc.
– Tlfp,κ �≤1 Tlfp,μ. Tlfp,ρ ′ �≤1 Tgifp,ρ , where ρ and ρ ′ are chosen with ρ

strictly to the left of ρ ′ from the list μ, κ , σ , σ1, σ2.
– T∗ �≤1 Tgifp,σ . T∗ �≤1 Tgifp,σ1. T∗ �≤1 Tgifp,σ2.

We add the following three negative results:

• T∗ �≤2 Tlfp,σ . See [3], Example 6B.7.
• T∗ �≤2 Tlfp,σ2. See [3], Example 6B.13.
• Tlfp,σ �≤2 Tlfp,κ . Choose any S-neutral ground model. By Corollary 4.26,

lfpσM is classical. But lfpκM is not classical, by the proof of Theorem 4.5.

The negative parts of Theorems 4.2, 4.5 and 4.21 follow from these results,
together with (1) Lemma 4.20, (2) the fact that if T ≤1 T′ then T ≤2 T′, (3) the
fact that ≤1 and ≤2 are reflexive and transitive, (4) the fact that ≤3 is transitive,
and (5) the positive parts of Theorems 4.2, 4.5 and 4.21.
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