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Abstract. In responseto the liar's paradox,Kripke developedthe fixed point semanticsfor
languagesxpressingheir own truth concepts. (Martin and Woodruff independentlydeveloped
this semanticsbut not to the sameextentasKripke.) Kripke's work suggestsa numberof related
theoriesof truth for suchlanguages.Guptaand Belnapdeveloptheir revision theory of truth in
contrasto thefixed pointtheories. The currentpaperconsiderghreenaturalwaysto comparethe
variousresultingtheoriesof truth, andestablisheshe resultingrelationshipsamongthesetheories.
The pointis to get a senseof the lay of the land amid a variety of options. Our resultswill also
provide technicalfodderfor the methodologicatemarksof the companionpaperto this one.

81. Introduction. Givenafirst orderlanguage., a classical model for L is anorderedpair M

= [D, IL] where D, the domain of discourse, is a nonemptyset; and where | is a function
assigningto eachnameof L a memberof D, to eachn-placefunction symbolof L an n-place
function on D, andto eachn-placerelation symbola function from D" to {t, f}. Supposehat
L andL" arefirst orderlanguageswherelL" is L expandedvith a distinguishedpredicateT, and
whereL hasa quotename*‘A’ for eachsentenceA of L*. A ground mode for L is classical
modelM = [D, |Ofor L suchthatl(* A") = A 0 D for eachsentenceA of L".

Givena groundmodelM for L, we canthink of I(X) asthe interpretation or, to borrow an
expressiorfrom GuptaandBelnap[3], the signification of X whereX is aname functionsymbol
or relationsymbol. GuptaandBelnapcharacterizean expression’r concept’ssignification in
aworld w as"an abstracsomethinghat carriesall theinformationaboutall the expression’gor
concept’s]extensionakelationsin w". If we wantto interpretTx as"x is true", then, givena
ground model, we would like to find an appropriatesignification, or an appropriaterange of
significations,for T.

We might try to expandM to a classicalmodelM' = [D, I'Cfor L*. For T to meantruth, M’
should assignthe sametruth value to the sentenced*A’ and A, for every sentenceA of L".
Unfortunately,not every groundmodelM = [D, |I0canthusbe expanded:if A is a nameof L
andif I(A) = =TA, thenl’(A) = I'('=TA") sothatT'=TA’ andTA areassignedhe sametruth value
by M’; thusT'=TA’ and-TA areassignedifferenttruth valuesby M'. This is a formalization

of the liar's paradox,with the sentence-TA asthe offendingliar’s sentence.
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In a semanticdor languagesapableof expressingheir own truth concepts,T will not, in
generalhaveaclassicakignification. Kripke [8] andMartin andWoodruff[10] presenthefixed
point semanticdor suchlanguages.Kripke suggests whole hostof relatedapproacheso the
problem of assigning,given a ground model M, a significationto T. Guptaand Belnap[3]
presentheir revision theories in contrastto the variousoptionspresentedy Kripke.

In the currentpaper,we motivatethreedifferentwaysof comparingfixed point andrevision
theoriesof truth, and we establishthe variousrelationshipshe theorieshaveto one anotherin
thesethreedifferent senses.The generalpoint of this is to help us getthe lay of the land amid
the variety of choices. Thereis a more specific use we make of thesecomparisons:in the
companiorpaperto this one,Kremer[7], we usethe currentresultsto critique oneof Guptaand
Belnap’s motivationsfor theirrevisiontheoreticapproachi.e. their claim thattherevisiontheory
hasthe advantageof treatingtruth like a classicalconceptwhenthereis no vicious reference.

In the courseof our investigationwe closetwo problemdeft openby GuptaandBelnap([3].
We alsogive a simplified proof of their "Main Lemma".

§2. Fixed point semantics! The intuition behind the fixed point semanticsis that
pathologicalsentencesuchasthe liar sentenceare neithertrue nor false. In generala three-
valued model for a languagel is just like a classicalmodel, exceptthat the function | assigns,
to eachn-placepredicatea functionfrom D" to {t, f, n}. A classicalmodelis a specialcaseof
athree-valuednodel. Officially t(rue),f(alse)andn(either)arethreetruth values,butn canbe
thoughtof asthe absencef a truth value? We orderthe truth valuesasfollows: n<n<t <

tandn<n<f<f WesaythatM = [D, I0< M’ = D, I'Oiff I(X) = I'(X) for eachnameor

‘We will follow GuptaandBelnap’spresentatiomf the fixed point semanticeandof the revisiontheoryof truth.
Much of this materialis culled from [3] andelsewhere. Among the numbereddefinitions,theoremsandlemmas,
thosenot explicitly attributedto a sourceare original to the currentpaper.

2We will not considerfour-valuedmodels,with the additionaltruth valueb(oth). SeeVisser[13] and[14] and
Woodruff [15].
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functionsymbolX, andl(G)(d,, ..., d,) < I'(G)(d,, ..., d,) for eachn-placepredicatesymbolG and
eachd,, ...,d, O D.

Given a three-valuednodelM = [D, I0and an assignmens of valuesto the variables,the
value,Valy, (t) O D of eachtermt is definedin the standardvay. The atomicformula Gt,...t,
is assignedhevaluel(G)(Valy, (t), ..., Valy, (t,)). To evaluatecompositeexpressionsye must
havesomeevaluation scheme: for example,if A is f(alse)andB is n(either), we mustdecide
whether (A & B) is f or n. For classicalmodels,we will just use the standardclassical
evaluationschemer. Fornonclassicamodelswe will considerthe weak Kleene scheme, |, and
the strong Kleene scheme, K. Theseboth agreewith T on classicaltruth values. Accordingto
bothp andk, -n = n. Accordingto g, t & n)=n&t)=Ff&n)=(n& f)=n And
accordingtok, t & n)=n& t)y=nand(f & n) = (n & f) = f. If we treatuniversal
guantificationanalogouslyto conjunction,thenfor eachsentenceA andeachevaluationscheme
p =T, Y, or K, we candefineValy, ,(A): thetruth valueof Ain M accordingto p. (Valy .(A) is
defined only when M is classical.) We also consider a fourth scheme,van Fraassen’s
supervaluation schemeg:

Valy o(A) =4 t [f], if Valy. (A) =t [f] for everyclassicalM’' = M.
n, otherwise.
Note: if Valy ,(A) =n, thenVal, (A 0O-A)=nif p=kory,andVval, ,(AO-A)=tif p=
o.

For the fixed point semanticssupposeasin 81, thatL and L are first order languages,
whereL" is L expandedvith a distinguishedoredicateT, andwhereL hasa quotename’A’ for
eachsentenceA of L*. And supposethat M = [D, I0is a (classical)ground model for L, as
definedin 81. We wantto expandM to a three-valuednodelby addinga significationfor the
predicateT. Let an hypothesis be a function h:D - {t, f, n}, and a classical hypothesisa
functionh:D - {t, f}. Hypothesesre potentialsignificationsof T. Let M + h be the model

M' = [D, I'Ofor L*, wherel' and| agreeon the constantf L andwherel’'(T) = h. Models of
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the form M + h are expanded models. If we want Tx to mean"x is true", then we want to
expanda groundmodelM to a modelM + h sothatValy, , , ,(A) = Valy ., (T'A) for every
sentenceA of L*, wherewe areworking with someevaluationschemep. This is equivalentto
the condition,Valy, . , ,(A) = h(A). We will alsoinsistthatif d 0 D is nota sentencef L*, then
I'(T)(d) = h(d) =f. Forp =T, WY, K, or g, definethe jump operator p,, on the setof hypotheses
asfollows, restrictingthis definition to classicalhypothesegor p = 1:
pu(N)(A) = Valy, ., (A), if ADS={A Aisasentencef L'}
pu(h)(d)=fif dOD - S.

The hypothesesneetingour conditions,above,underwhich Tx means'x is true", are the fixed
points of p,,: the hypothese$ suchthatp,,(h) = h. Thefixed pointsdeliver, for the language
L*, modelsM + h satisfyingwhat M. Kremer [6] calls "the fixed point conceptionof truth”,
accordingto which, asKripke [8] putsit, "we are entitledto assert{or deny) of a sentencehat
it is true preciselyunderthe circumstancesvhenwe canassert(or deny)the sentencatself."

Kripke [8] provesthat b, [K,, Oy] hasa fixed point, for everygroundmodel M. In fact,
Kripke’s resultsare stronger. Saythath < h' iff h(d) < h'(d) for everyd O D. And saythata
function p on hypothesess monotone iff, for all hypothese$ andh', if h < h' thenp(h) < p(h').
My, Ky, @and o, aremonotonefor everygroundmodelM. Eachmonotonefunction p not only
hasa fixed point, but a least fixed point, Ifp(p). Saythath andh’ arecompatible iff h < h" and
h' < h" for somehypothesidh”, andthath is intrinsic iff h is compatiblewith everyfixed point.
For example lfp(p) is intrinsic. Eachmonotonefunction p not only hasa least fixed point, but
a greatest intrinsic fixed point, gifp(p), which is not in generalidenticalto Ifp(p). Saythata
sentencé is p-grounded iff Ifp(p) =t or f, andp-intrinsic iff gifp(p) =t or f. Theliar sentence
is neitherk-groundednor k-intrinsic sinceit getsthe valuen at everyfixed pointh. The truth-
teller is neitherk-groundednor k-intrinsic sinceit getsthe valuet at somefixed pointsandthe
valuef at others. If I(b) = Tb O =Th, thenTb O -Tb is k-intrinsic and o-grounded but not
K-grounded: gifp(k,,)(Tb O =Tb) = Ifp(o,,)(Tb O -Tb) = t, while Ifp(k,,)(Tb O =Tb) = n.
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Thefixed point semanticg/ields a numberof plausiblesignificationsof T: the fixed points
generatedby your favouriteevaluationscheme.Many haveconsideredhe proposathattheleast
fixed point yields the correctsignificationof T.> M. Kremer[6] decisivelyarguesthat Kripke
[8] doesnot endorsehis proposalandthatthis proposalmisinterpretghe fixed point semantics:
the fixed point conceptionof truth, mentionedabove,favours no particularfixed point. M.
Kremeremphasizes tensionbetweenthe fixed point conceptionof truth andanotherintuition,
the"superveniencef semantics":theintuition thatthe interpretatiorof T shouldbe determined
by the interpretationof the nonsemantimames function symbolsand predicates.

Fix someevaluationscheme.The disputebetweena superveniencéxed point theorist—for
specificity, say a leastfixed point theorist—anda nonsupervenienctxed point theoristcanbe
broughtout as follows. Fix someuninterpretedanguagel, andlet L™ be L expandedwith a
privilegedpredicatel. Supposédhat, otherthantheiruseof T, the discourseof two communities
X andY is representedby the samegroundmodelM, while X’'s useof T is representedby the
least fixed point hy, andY’s useof T is representedby the fixed pointh, # h,. LetL, = [,
M + h,dandL, = ", M + h,Obetheinterpretedanguagespokenby X andY. Accordingto
the leastfixed point theorist,X usesT to expresstruth in L, but Y doesnot useT to express
truthin L, despitethe fact that,in L,, A andT‘A’ havethe sametruth valuefor eachsentence
A. Accordingto the nonsuperviencgheorist,on the otherhand,the fact that X andY useT to
expresdruth in L, andL,, respectivelyjs givenby thefactthath, andh, arefixed points: each
community’suseof T satisfiesthe necessarynd, for the nonsupervenienctheorist,sufficient
conditionsfor T to expresdruth in the community’slanguage.

We have on board two proposalsfor interpreting the fixed point semantics. On the
supervenience proposal,the languagespokenby a community is determinedby its use of
nonsemanticzocabulary—representdaly a groundmodel—andthe interpretationof T astruth

is givenby someparticularfixed point, usuallyassumedo betheleastfixed point. The greatest

3SeeHaack[4], Grover[2], Davis[1], Kroon [9], Parsond11], Kirkham [5], and Read[12].
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intrinsic fixed point might also seemnatural: "The largestintrinsic fixed point is the unique
‘largest’ interpretationof Tx which is consistentwith our intuitive idea of truth and makesno
arbitrary choicesin truth assignments. It is thus an object of special theoreticalinterest."
(Kripke [8].) On the nonsupervenience proposal,the languagespokenby the communityis not
determinedby its useof nonsemanticvocabulary: the communitiesX andY, in the preceding
paragraphspeakdistinct languagesn which T expressesruth, despitea sharedgroundmodel.
If we fix an evaluationschemeand a ground model, all the fixed points provide acceptable
significationsof truth.

We will not adjudicatebetweenthesetwo proposals. Rather,we will introducea numberof
supervenience theoriesof truth, which dependon which evaluationschemewe use, and on
whetherwe privilege the leastfixed point or the greatestintrinsic fixed point. Onereasongo
restrict ourselvesto the superveniencepproachis that Guptaand Belnap’srevision theories
dependon thesuperveniencef semanticsandsoit is the superveniencéxed pointtheoriesthat
are mostreadily comparableo the revisiontheories.

Definition 2.1. Let p = W, K, or 0. The sentenceA of L* is valid in the ground model M
according to (the theory) T™ * iff Ifp(p,)(A) =t. The sentenceA of L* is valid in the ground
model M according to T9™ ? iff gifp(p,)(A) = t.* We define the set of sentencewalid in M
accordingto suchandsucha theoryasfollows:

viee = LA Ifp(py)(A) =t} ={A: Aisvalid in M accordingto T ¢}, and
varee = LA gifp(py)(A) =t} = {A: Aisvalid in M accordingto T9 ¢},

Before we considerrevisiontheories,we definetwo variants,definedby Kripke [8], of the
supervaluationump operatorg,,. Saythath is weakly consistent iff the setof sentence§A [

S: h(A) =t} is consistent. Saythath is strongly consistent iff {A O S: h(A) =t} O {=A: A

“Note that we havenot defined the theoriesof truth, T™ ? and such: we havespecifiedeachtheory’s verdict
regardingwhich sentencesrevalid in which groundmodelsbut not, for example eachtheory’sverdictregarding
whatthe valid inferencesare.
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0 Sandh(A) = f} is consistent. Note: a classicalhypothesish is strongly consisteniff {A O
S: h(A) =t} is completeandconsistent.al,,(h) [02,,(h)] is definedonly for weakly [strongly]

consistenth, asfollows:

ol,(h)(A) = t[f]iff t,(h")(A) =t [f] for all weakly consistentlassicalh’ = h.
n, otherwise for sentence#\ [ S.

ol,(h)d) = f,fordO (D - S).

a2,(h)(A) = t[f] iff t,(h")(A) =t [f] for all stronglyconsistentlassicalh’ > h.

n, otherwise for sentenced\ O S.
02,(h)(d) = f,fordd (D -S)?
0l,, [02,] is a monotoneoperatoron the weakly [strongly] consistenhypotheses.This suffices
for 0l,, [02,] to haveboth a leastfixed point anda greatesintrinsic fixed point. We will treat
ol and a2 astwo new three-valuecevaluationschemes. TheoriesT"™ o, T9™ 92 etc, andsets
Vib-ol ydip 02 “atc, areintroducedasin Definition 2.1, above.

83. Revision theories of truth. GuptaandBelnap’smostinterestingobjectionto the fixed
point semanticsstemsfrom an uncommontake on a commonobservation: the observatiorthat
thereareconnectiveghatfixed pointlanguagesannotexpressfor example gxclusion negation,
-n = t; andthe Lukasiewiczbiconditional,(n = n) =t. Their objectionis not thatthereis a gap
betweertheresource®f objectlanguageandmetalanguagequt that"thereis a gapbetweenthe
resource®f the languagethatis the original objectof investigationandthoseof the languages
that are amenablédo fixed point theories".(p. 101) The languagethatis the original object of
investigationcanexpresgyenuinelyparadoxicakentencesyhosebehaviouiis unstable.And one

source of the language’sability to expresssuch paradoxicalitieds the fact thatit can express

°An equivaleniefinition of 62,,(h)(A) is 62,,(h)(A) =t [f] iff Aistrue[false]in all classicaimodelsM'>M + h
suchthatthe extensionof T in M' is completeand consistent. GuptaandBelnap[3] definea jump operatoroy;(h)
in this way, but for weakly ratherthan strongly consistenth. Unfortunately,the weak consistencyof h doesnot
guarantedhe existenceof a modelM’ = M + h suchthatthe extensionof T in M’ is completeand consistent. In
fact, the existenceof sucha modelM' is equivalentto the strongconsistencyf h. ¢2,, is identicalto Guptaand
Belnap’sa,;, with the definition in [3] correctedso thatit is restrictedto strongly consistent.
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exclusionnegation. A fixed point languagecannot,in the end, expressgenuinelyparadoxical
sentenceseventheliar behavestably. Sofixed pointtheoriesdo not deliverananalysisof the
unstablephenomenothatwe aretrying to understand."Thereareappearancesf the Liar here,
but they deceive."(p. 96)

Workingwith apurelytwo-valuedobjectlanguageGuptaandBelnapimaginebeginningwith
a classicalhypothesish regardingthe extensionof T, andthenrevising h by usingthe jump
operator,or rule of revision, T,,. As the revisionprocedureproceedgh, 1,,(h), t5(h), ...) aliar
sentencewill flip backandforth betweentrue andfalse. A truth-tellerwill keepwhatevervalue
it had to begin with. Other sentencesnight display unstablebehaviourto begin with, but
eventuallysettledown to a particulartruth value. Somesentencesvill be very well behaved:
theywill settledownto a truth valuethatis independenbf the initial hypothesish. Guptaand
Belnapformalize the carrying out of suchproceduresnto the transfinitewith their notion of a
revision sequence.

Given any function p on hypothesesa p-sequence, or a revision sequence for p, is an
ordinal-lengthsequences of hypothesesuchthatS, . ; = p(S,) for everyordinal a; andsuch
that for everylimit ordinal A, everytruth valuex andeveryd 0 D, S,(d) = x if thereis a3 <
A suchthat S (d) = x for everyordinal a between andA. This secondclauseis the limit rule
for p-sequencesNote thatif Sis a p-sequencehenp is definedon S, for everyordinal a; so,
if Sis aty,-sequencehensS, is classicalfor everyordinala. S culminatesin h iff thereis a3
suchthat S, = h for everya > B. For the purposesof the revision theory of truth, we are
primarily interestedn T1,,-sequencedyut otherrevision sequencesre of interest. Note that if
p =W, K, 0,orcoloro2andif M = [D, ICis agroundmodel,thenthereis a uniquep,,-sequence
S suchthat S,(d) = n for everyd 0O D. Furthermorethat p,,-sequenceulminatesin Ifp(p,,)-

As mentioned Guptaand Belnapwant to formalize the behaviourof truth, instabilitiesand
all. Relativeto a ground model M, this behaviouris arguably representedy the class of

T,-SequencesGivenagroundmodelM, theclassof 1,,-sequencedeliversaverdictaboutwhich



9
sentencesre well-behavedor ill-behaved,aswell asa representatiof how varioussentences
areill-behaved. For this reason Guptaand Belnapproposethat the significationof truth is the
revisionrule 1,,, sincethis rule arguablyfits the Gupta-Belnapcharacterizatiorfsee81, above)
of anexpression’®r concept’ssignification. The most well-behavedsentencearethosethatare
stablyt in everyT,,-sequence Accordingly, Guptaand Belnapintroducethe revisiontheory T".

Definition 3.1. ([3]) The sentenceéA of L* is valid in M according to (the theory) T™ iff A
is stablyt in all T,,-sequencesV,, =, {A: A is stablyt in everyt,-sequence}.

We might wantto weakenthis conditionon the validity of a sentenceA in a groundmodel
M. In somegroundmodels,thereare sentenceshat are nearly stablyt in the following sense:
they are stablytrue exceptpossiblyat limit ordinalsandfor a finite numberof stepsafter limit
ordinals. Formally, a sentenceA of L* is nearly stably t [f] in the T,,-revision sequenceS iff
thereis anordinal  suchthatfor all y = 3, thereis a naturalnumberm suchthatfor all n > m,
S, n(A) =t [f]. GuptaandBelnap’stheoryT* is basedon nearstability.

Definition 3.2. ([3]) The sentenceA of L* is valid in M according to (the theory) T* iff A
is nearly stablyt in all T,,-sequencesV;, =, {A: A is nearlystablyt in everyT,,-sequence}.

Finally, we might put constraintson which hypothesesrelegitimatehypothesegoncerning
the extensionof T, and henceon which t1,,-sequencesre legitimate revision sequences.A
natural condition to put on the legitimacy of a classicalhypothesish is that the resulting
extensionof T be consistentandcomplete,i.e. that h be strongly consistent. A 1,,-sequences
is maximally consistent iff S, is strongly consistent for every ordinal a. Guptaand Belnap’s
theory T is basedon maximally consistentr,,-sequences.

Definition 3.3. ([3]) The sentenceéA of L* is valid in M according to (the theory) T€ iff A
is stablyt in all maximally consistent,,-sequencesV,; =4 {A: Ais stablyt in everymaximally
consistentr,,-sequence}.

All threerevisiontheoriesare supervenience theoriesin the senseof 82: the behaviourof

truth andthe statusof varioussentencess determinedy the nonsemantizocabularywhoseuse
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is representetly the groundmodel. Thereis no otherway to goin therevision-theoretisetting:
for mostgroundmodelsM thereis no classH of privileged hypotheseslike the fixed points,
such that for distinct h, h" 0 H we could take the expandedmodelsM + h and M + h' to
representistinctlanguages in which T representsruth. Ontherevisiontheoriesgachlanguage
is representedby a groundmodel,andthe behaviourof truth is representedby the variousways
in which one hypothesideadsto anotheraswe carry out the revision process.

84. Three ways to compare theories of truth. The harderpartsof the proofs of the
theoremsin this sectionare reservedfor 85. The first relation that we define, to compare
theoriesof truth, is the mostobvious.

Definition 4.1. Givenanytwo superveniencéheoriesT andT’, we saythatT <, T' iff for
everylanguagd. everygroundmodelM andeverysentence of L*, if Ais validin M according
to T thenAis valid in M accordingto T'. We saythatT <, T'iff T <, T" andT «, T'. Note
that<, is reflexive andtransitive.

Theorem 4.2. <, behavessin thefollowing diagram|.e. it is the smallestransitiverelation
satisfyingthe conditionsgiven in the diagram. Sinces; is reflexive, the diagramcompletely

determiness;. The subscriptedl hasbeendroppedfrom the diagram.

T#
0
T < TC
0 i
Tlfp, u < Tlfp, K < Tlfp, o < Tlfp, ol < Tlfp, a2
i i i i i
Tgifp, u Tgifp, K Tgifp, o Tgifp, ol Tgifp, a2

Proof. For Tk g Thx < To g Thol < T o2 jt sufficesto show that Ifp(u,,) <
Ifp(ky,) < Ifp(oy,) < Ifp(oly,) < Ifp(02,) for any groundmodelM. Forp = Y, K, 0, 01, ando2,
let S(p) be the unique p,,-sequencesuchthat S(p),(d) = n for everyd 00 D. By transfinite
induction, (), < S(K), < §(0), < 01), < §02), for everyordinala. Solfp(u,) < Ifp(ky) <
Ifp(o,,) < Ifp(ol,) < lfp(02,), sinceeachS(p) culminatesin Ifp(py,)-
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For T™° < T9% P (p =, K, 0, 01, or 62), note that Ifp(p,,) < gifp(p,) sincelfp(p,,) is
intrinsic.

T <, T*andT’ <, T¢ canbe proveddirectly from the definitions.

To seethatT"™ ° <, T7, fix a groundmodelM = [, |0andlet S be the uniqueao,,-sequence
suchthatS,(d) = n for everyd 0 D. ThenS culminatesn Ifp(c). And let S be anyTt,,-revision
sequence.By transfiniteinduction, it canbe provedthat S, < S, for everyordinal a. So if
Ifp(0)(A) =t, thenAis stablyt in S. SinceS wasarbitrary,if Ifp(o)(A) =t thenA is valid in
M accordingto T". ThusT™ <, T". Similarly T™ 2 <, T

This establishesall of the positive claims of the form T <; T' in Theorem4.2. The
counterexamples 85, below, establishthe negativeclaimsof theform T «, T'. -

Of particularinterestare ground modelsin which truth behavedike a classicalconcept.
Supposefor example thatoneis devisinga semanticgor languageshat containtheir own truth
predicates. All elsebeingequal,one might want a semanticghat delivers,wheneverpossible,
somethingapproaching classicatheory: we know thattruth behavegaradoxicallyputit seems
anadvantageo minimalizethis paradoxicality. Consider for example a classicalgroundmodel
M = [D, ICthat makesno distinctions,otherthanwith quotenamesamongthe sentencesf L*:
for an extremecase,supposethat L has no nonguotenames,no function symbolsand no
nonlogicalpredicates.Thereis no circular referencen the groundmodel,andthereseemsgo be
no viciousreferenceof anykind. And yet Ifp(u,,) andlfp(k,,) arenonclassica(seethe proof of
Theorem4.5): this suggestshattruth doesnot behavdike a classicalconceptin M, at leastnot
accordingto the leastfixed point theoriesT"™ " and T ¥, On the other hand, gifp(y,) and
gifp(k,,) areboth classicalasis Ifp(o,,) (this follows from Corollary 4.24,below). So, at least
relative to this particulargroundmodel, the theoriesT9™ ¥, T9™ € gnd T"™ ° havean advantage
over T™ ¥ and T™ %, This motivatesour definition of <,, below (Definition 4.4).

Definition 4.3. Letp = W, K, 0, or o1 or g2. T"™ P [T9™ ] dictates that truth behaves like

a classical concept in the ground model M iff A O VI®- P [vaP.-f] or -A O VIP: P V8P P] for every
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sentenceéA of L*. Similarly, T" [T* T¢] dictates that truth behaves like a classical concept in
the ground model M iff A O V,, [V}, V5] or ~A O V,, [V, VS] for everysentenceA of L.

Definition 4.4. Given any two superveniencéixed point or revisiontheoriesT andT', we
saythatT <, T' iff for everylanguagelL and every groundmodel M, if T dictatesthat truth
behavedike a classicalconceptin M thensodoesT'. NotethatT <, T' iff, for everylanguage
L andeverygroundmodelM, if T dictatesthattruth behavedike a classicalconceptin M, then
everysentencevalid in M accordingto T is alsovalid in M accordingto T'. We saythatT =,
Tiff TS, T"andT' <, T. WesaythatT <, T'iff T <, T"andT =, T'. Notethats<, is
reflexive andtransitive. Note alsothatif T <, T' thenT <, T'.

Theorem 4.5. <, behavessin thefollowing diagram|i.e. it is the smallestransitiverelation
satisfyingthe conditionsgiven in the diagram. Sinces, is reflexive, the diagramcompletely

determiness,. The subscripted? hasbeendroppedfrom the diagram.

T#
i

T* < Tc < Tgifp, a2 < Tgifp, ol < Tgifp, 0« Tgifp, K < Tgifp, u
i N

Tlfp, M= Tlfp, K < Tlfp, 0« Tlfp, ol < Tlfp, a2

Proof. ThefactthatT"™ ¥ =, T™  follows from the factthat,in no groundmodeldoesT "™ *
or T'™ ¥ dictatethat truth behavedike a classicalconcept. To seethis, choosea groundmodel
M = [D, I0and let S be the unique y,-sequencesuchthat Sy(d) = n for everyd 0 D. By
transfiniteinduction,it canbe shownthat S (Ox(Tx O =Tx)) = n for everyordinala. But then
Ifp(L,)(OX(Tx 0 =Tx)) = n sinceS culminatesn Ifp(y,,). Similarly Ifp(k,,)(Ox(Tx O =Tx)) = n.

The following follow from the alreadyprovenpositive partof Theorem4.2: T * <, T 0
<, Tl T2 TeandT™ <, T's, T"andT's, TS

To seethat T® <, T9" %2 supposehat M is a groundmodelin which T¢ dictatesthat truth
behavedike a classicalconcept. So thereis a classicalhypothesish in which all maximally
consistentr,,-sequencesulminate. It sufficesto showthath is the greatesfixed point of 02,,,

in which casegifp(c2,,) = h is classical,in which caseT?" 2 dictatesthat truth behavedike a
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classicalconceptn M. Let h' beanyfixed pointof 02,,. Sinceh' is stronglyconsistentye can
choosea strongly consistentlassicalh” > h'. Let S be any maximally consistentr,,-sequence
with S, = h" > h'. By the monotonicityof 02,, togetherwith the fact that 02,, agreeswith t,,
on all classicalhypotheseswe canshowby transfiniteinductionthat S, = h' for everyordinal
a. Soh = h', sinceS culminatesin h. Thus,h is the greatesffixed point of 02,,, asdesired.

To seethat T9 92 <, TP 0l < Tofb.0 o TPk < T 1 order the evaluationschemes
transitivelyasfollows, u < K £ 0 < 01 < 02; andchoosep andp’ wherep < p’. It sufficesto
showthatif gifp(p’,,) is classicathengifp(p,,) = gifp(p'y). Sosupposehatgifp(p’,,) is classical.
Thenit is afixed point of 1,,, andhenceof bothp,, andp’,,. To showthatgifp(p,,) = gifp(p’\).
it sufficesto showthath < gifp(p’y) for everyfixed point h of p,,. Choosea fixed point h of
pu- P'v is definedon h—in casep’,, is 0l or 62, h is stronglyconsistensinceh is afixed point
of py. Furthermoreh = p,,(h) < p'y(h). Thusthereis exactlyonep’,,-sequencé suchthat S,
= h, and S culminatesin somefixed point h' of p'y,, in factin the leastfixed point of p’,, such
thath < h'. Sincegifp(p'y) is classical gifp(p’,,) is the greatesfixed point of p’,,. Thush<h
< gifp(p'y,) asdesired.

This establishesall of the positive claims of the form T <, T' in Theorem4.5. The
counterexamples 85, below, establishthe negativeclaimsof theform T «, T"'. ~

Remark 4.6. Theorem4.5 answersa questionof Guptaand Belnap[3] (Problem6B.12):
"Doesthe condition‘lfp( 02,,) is classicalimply ‘M is Thomasonlwe define Thomason models
below]?" Theansweris no, sinceT™ %% ¢, T" (seeExample5.11,below)andsince,by Theorem
4.8, below,agroundmodelis Thomasoriff T dictatesthattruth behavedike a classicalconcept
in it.

Thenextcomparativaelation,<,, is trickier to motivate,andis bestunderstoodn the context
of investigatingwhetherthis or thattheorydictatesthat truth behavedike a classicalconceptin

M.
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For startersijt is not alwayseasyto tell whethersometheorydictatesthat truth behavedike
aclassicalconceptin M. GuptaandBelnapdevotesometime to investigatingthe circumstances
underwhich, in effect, T dictatesthattruth behavedike a classicalconceptin a groundmodel,
thoughthey do not put it in theseterms. As we shall see,their investigationcanbe broadened
to theoriesotherthanT". Guptaand Belnapproceedby introducingthe notion of a Thomason
groundmodel,andby investigatingthe circumstancesinderwhich a groundmodelis Thomason.

Definition 4.7. ([3]) A groundmodelM is Thomason iff all T,,-sequencesulminatein one
andthe samefixed point.

Theorem 4.8. A groundmodelis Thomasoriff T dictatesthattruth behavesike a classical
conceptin it.

Proof. This follows immediatelyfrom the definitions. -

GuptaandBelnap’sprincipalresultsconcerningThomasormodelsall havethe samegeneral
characterandall makeit relatively easyto showthata wide rangeof groundmodelsare,in fact,
Thomason. The simplestexampleconcernsany groundmodel M for the languagel. described
above: a languagewith no nonquotenamesno function symbolsandno nonlogicalpredicates.
Any suchmodelis Thomason.This might be expectedsince,otherthanwith quotenamesthere
is no way to distinguishin the languageamongthe sentence®f the language.

This is a specialcaseof Guptaand Belnap’s result, Theorem4.11, below. Essentially,
Theorem4.11 statesthat any ground model that cannotdistinguishamongthe sentencespther
thanwith quotenamesjs Thomason.Firstwe needto makethe notion of "distinguishingamong
sentencesprecise.

Definition 4.9. ([3], Definitions 2D.2) SupposehatM = [D, I0is a modelfor L and X [

® The interpretationof a namec is X-neutral in M iff I(c) O X.
(i) The interpretationof an n-placepredicateF is X-neutral in M, iff for all d,, ...,

d, d OD,if d,d OX thenl(F)(d,, .., d; ..., d) = I(F)(dy, ..., d, ..., d.).
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(i)  Theinterpretationof an n-placefunction symbolf is X-neutral in M, iff boththe

rangeof I(f) is disjoint from X andfor all d,, ..., d,d O D, if d, d O X then
I(f)(d,, ..., d, ..., d) =1(f)d, ..., d;, ..., dy.

Definition 4.10. ([3], Definition 6A.2) A model M = [D, I0is X-neutral iff the
interpretationsn M of all the nonquotenamesnonlogicalpredicatesandfunction symbolsare
X-neutral.

Theorem 4.11. ([3], Theorem6A.5) If the ground model M is S-neutralthen M is
Thomason.

Proof. Thisis a specialcaseof Corollary 4.24,below. -

Gupta and Belnap strengthenthis theorem: Supposethat the ground model can in fact
distinguishamongsentenceshut only amongsentenceshat are in somesenseunproblematic,
for exampleamongsentencesvith no occurrence®f T or amongu-groundedsentences.Then
M is still Thomason.

Theorem 4.12. ([3], Theorem6B.4, Convergencédo a fixed pointl) If M is X-neutralthen
M is Thomasonprovidedthat X containseither(i) all sentenceshathaveoccurrencesf T, or
(i) all sentenceshatarep-ungroundedn M, or (iii) all sentenceshatarek-ungroundedn M,
or (iv) all sentenceshatare o-ungroundedn M.

Proof. (i) is a specialcaseof Corollary 4.24,below. (ii), (iii) and(iv) arespecialcasesof
Theorem4.21, below. .

Note that (i), (iii) and(iv) of Theorem4.12 canbe rewordedas follows.

Theorem 4.13. LetV,, = VPt or v« or VP ° andsupposahatY O {A: AOV,, or -A
0 Vy}. Thenif the groundmodelM is (S - Y)-neutralthenM is Thomason.

Guptaand Belnappresentthe following exampleas an applicationof Theorem4.12. This
showshow easyit canbe, equippedwith Theorem4.12 or 4.13,to showthat a groundmodel

is Thomason.
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Example 4.14. ([3], Example6B.6) Supposedhatthe groundmodelM = [D, ICis S-neutral
exceptfor the namea. FurthermoresupposdhatHb is truein M. ThenM is Thomasonif (i)
I(a) = Hb, (i) I(a) = T'Hb’, (iii) I(a) = Hb O -Ta, or (iv) I(a) = Ta O -Ta.

Guptaand Belnap’sother main theoremconcerningThomasommodelsis asfollows.

Theorem 4.15. ([3], Theorem6B.8, Convergenceo a fixed point1l) SupposehatM is an
(S - Y)-neutralmodelandthatY O {A: AOV,, or-AOV,}. ThenM is Thomason.

Proof. Thisis a specialcaseof Theorem4.21, below. -

GuptaandBelnapthengo on to aska relatedquestion.

Question 4.16. ([3], Problem6B.15) SupposehatM is (S - Y)-neutralandthatY O {A:
A0V, or-A0OVg} IsM Thomason?

As pointedout above,an investigationinto the conditionsunderwhich a groundmodel M
is Thomasoris, in effect, aninvestigationinto the conditionsunderwhich T* dictatesthat truth
behavedike a classicalconceptin M. It turnsout that,for a wide rangeof our theoriesT, if M
is (S - Y)-neutralwhereY O {A: AOV,, or-A0V,} andwhereV,, = {A: Aisvalidin the
groundmodelM accordingto T}, thenT" does,in fact, dictatethattruth behavesike aclassical
conceptin M. To help generalizethis investigation,we define a third relation <; between
theories.

Definition 4.17. SupposehatT andT' aresuperveniencéheoriesandthat, for any ground
modelM, V,, = {A: Aisvalid in the groundmodelM accordingto T}. We saythatT <, T’
iff for everylanguagel everygroundmodelM andeveryY 0O {A: A0V, or-A0V,} if
M is (S - Y)-neutralthenT' dictatesthat truth behavedike a classicalconceptin M. We say
thatT <, T'iff T <, T"andT £, T'. We will seethat<; is transitivebut not reflexive.

Remark 4.18. Theorem4.13 (i), (iii) and(iv) and Theorem4.15 can be summarizedas
follows: TP H<, T", TP X <, T", T™ o<, T  andT" <, T". Question4.16 amountsto this: T°
<, T'? Theorem4.21, below, deliversa negativeanswerto this question.

Lemma 4.19. <, is transitive.
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Proof. SupposahatT <, T' andT' <; T", andthatM is an (S - Y)-neutralgroundmodel
whereY O {A: AOV,, or-A0V,} andwhereV,, = {A: Ais valid in the groundmodelM
accordingto T}. LetV,, ={A: Ais valid in the groundmodelM accordingto T'}. Note that
S={A AOV,,or-A0Vy}, sinceT <, T'. SoYO{A AOV,or-A0V,}. SoT"
dictatesthat truth behavedike a classicalconceptin M, asdesired. -
Lemma4.20. (1) f T<, T andT' <, T"thenT <, T". (2) If T<, T thenT <, T'. (3)

If T<, T andT' <, T" thenT <, T".
Proof. (1) follows immediatelyfrom the definitions. For (2) SupposehatT <, T' andthat
T dictatesthat truth behavedike a classicalconceptin M. ThenM is (S - S)-neutralwhereS
O{A: AOV,or-A0V,} SoT dictatesthattruth behavedike a classicalconceptin M,
sinceT <; T'. For (3), assumeahatT <; T' andT' <, T" andthatM is (S - Y)-neutralwhere
YO{A AOV,or-A0V,} SinceT <, T', M is (S- Y)-neutralwhereY O {A: ADOV,,
or-A 0O V,}. So,sinceT’ <, T", T" dictatesthattruth behavedike a classicalconceptin M,
asdesired. .
Theorem 4.21. (1) <, behavesasin thefollowing diagramii.e. it is the smallesttransitive
relationsatisfyingthe conditionsgivenin the diagram. Sinces; is not reflexive, we needparts

(2) and(3) to completelydetermine<,. The subscripted3 hasbeendroppedfrom the diagram.

T#
0
T* < Tc < Tgifp, a2 < Tgifp, ol < Tgifp, 0« Tgifp, K < Tgifp, u
0 l
Tlfp, K < Tlfp, 0« Tlfp, ol < Tlfp, 02
0
TP u

(2) T'<, T andT<, TCandT™ 2 <, T 92 gnd T P <, T9™ P for p =y, K, 0, 01 or 2.

(3) T* ¢, T*andT"™ P ¢, T™ P for p =y, K, 0 or al.

Proof. Theproofsof (2) and(3) aretricky andleft until 85. Given(2) and(3), andLemma
4.20, and Theorems 4.2 and 4.5, much of the information contained in (1) can be

straightforwardlyproved. First, everyclaim of theform T «, T' givenin Theorem4.5implies,
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given Lemma4.20 (2), that T ¢, T'. Furthermorethe factsthat T"™ * «, T™ * andthat T" «
£, T"™ * follow from the fact that neither T * nor T" * ever dictatesthat truth behavedike a
classicalconcept,evenwhenthe groundmodelis S-neutral,as shownin the proof of Theorem
4.5. ThefactthatT" <, T¢ <, T9™ 02 <, TP 01 < TOf. 0 < T K < T 1 follows from the fact
thatT" <, T <, TIP 92 g, TOf. 0L ¢ TP 0 o TOP.K < TP M gndfrom (2) andLemma4.20(1).
Similarly for the factthat T 2 <, T, Thefactthat T"™ °* <, T™ 2 follows from the fact that
T 0l < T 92 (Theoremd.2) andthat T"™ 2 <, T 92 (Theorem4.21(2)) andfrom Lemma4.20
(3).

So, for Theorem4.21,it sufficesto show(2) and(3), aswell asT™* <, T™ ° <, T 1 gnd
T *x <, T™ 9 For (2) and(3) see85. For therest,seeCorollary 4.26. 4

Remark 4.22. Thepositivepartof Theorem4.21generalizessuptaandBelnap’sTheorems
4.13(ii), (iii) and(iv), and4.15,statedabove. The negativepartsgeneralizeéhe negativeanswer
to Guptaand Belnap’sQuestionl7, askedabove.

Thefactthat T™ ¢ ¢, T"™ ° meanghatthefollowing conjecturds false: If thegroundmodel
M is (S- Y)-neutralandY O {A: Ifp(o,)(A) =t or Ifp(oy)(A) = f}, thenlfp(o,,) is classical.
Similarly for 1. But we havesomethingalmostas good.

Theorem 4.23. (The ProvisoTheorem) Let p = o or gl. If thegroundmodelM is (S - Y)-
neutralandY O {A: Ifp(p,)(A) =t or Ifp(py)(A) = f}, thenlfp(p,,) is classical,subjectto the
following proviso: for everyn, thereis a sentenceB [J Y of degree> n suchthatIfp(p,,)(B) =
t, anda sentenceB [ Y of degree> n suchthatIfp(p,)(B) = f.

Proof. See§5, below. -

Corollary 4.24. If the groundmodelM is X-neutral,where X containsall sentenceshat
have occurrence®f T, then the following theoriesdictate that truth behavedike a classical
conceptin M: T o Theol Tle.o2 T* T4 Tc¢ and T9" P for p = y, K, 0, ol, or 62. In
particular,if the groundmodelM is S-neutral thenthosetheoriesdictatethattruth behavedike

a classicalconceptin M.
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Proof. Herewe rely on the positive part of Theorem4.5, which we havealreadyproved.
Assumethat the groundmodel M is M is X-neutral, where X containsall sentenceshat have
occurrence®f T. LetY ={A: Ais asentencen which T doesnot occur}. SoM is (S - Y)-
neutralandY 0O {A: Ifp(oy)(A) =t or Ifp(o,)(A) = f}. Also, we claim that the proviso in
Theoremd.23is satisfiedfor p = 0. In particular,for any sentence, definethe sentencé®(A)
=AandT""}(A) = T'T"(A)’. Then,for everyn, the sentencd™(Ox(Tx 00 -TX)) is a sentenceB
Y of degree> n suchthatlfp(o,,)(B) =t andthe sentenceT"(=[Ox(Tx [0 =Tx)) is a sentence
B O Y of degree> n suchthat Ifp(o,,)(B) = f. So, by Theorem4.23, T"™ ¢ dictatesthat truth
behavedike a classicalconceptin M. For the othertheoriesT"™ °* T"™ 92 T* T# T¢ andthe
T9"?, the resultfollows from this and Theorem4.5, above. 4

Remark 4.25. Theorem4.24generalize&uptaandBelnap’sTheoremd.13(i), statedabove.

Corollary 4.26. TP *x <, T0 <, T 0L gnd T H <, TMP 0,

Proof. To seethat T™ ¢ <, T"™ 91 supposethat M is (S - Y)-neutralandthat Y O {A:
Ifp(o,)(A) =t or Ifp(a,,)(A) = f}. If T"™ ° dictatesthattruth behavedike a classicalconceptin
M, thensodoesT"™ °1, Sosupposehat T"™ ° doesnot dictatethattruth behavedike a classical
conceptin M. FirstnoticethatY 0O {A: Ifp(ol,,)(A) =t or Ifp(ol,)(A) = f}. Also, we claim
thatthe provisoin Theorem4.23is satisfiedfor p = g1. In particular,choosesomesentenceC
suchthatIfp(o,,)(C) = n. Then,for everyn, the sentencel"(=(T'C'& T‘=C’)) is a sentenceB
Y of degree> n suchthatlfp(cl,,)(B) =t andthe sentenceT(T'C'& T'-C’) is a sentence
B O Y of degree> n suchthatlfp(ol,,)(B) = f. Thuslfp(cl,,) is classical,asdesired.

The proof that T™ * <, T™ ¢ js similar. If M is (S- Y)-neutralandY O {A: Ifp(k)(A) =
t or Ifp(k,)(A) = f}, then M is (S - Y)-neutralwhereY 0O {A: Ifp(o,)(A) =t or Ifp(c)(A) =
f}. Furthermorethe proviso in Theorem4.23 is satisfiedfor p = o, since for every n, the
sentencel"(Ox(Tx 0 -Tx)) is a sentenceB [ Y of degree> n suchthatIfp(o,,)(B) =t andthe
sentenceT"(-Ox(Tx O -Tx)) is asentenceB [ Y of degree> n suchthatlfp(o,,)(B) =f. This

suffices. Similarly, T™* <, T"©, ]
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5. Proofs and counterexamples. Eachof our maintheorems,Theoremst.2,4.5and4.21,
makespositive claimsof theform T <, T' andnegativeclaimsof theform T «, T', for n = 1,
2 or 3. We alsowantto show Theorem4.23 (the Proviso Theorem). Given the work already
donein 84, it sufficesto show Theorem4.21 (2) and (3); to show Theorem4.23 (the Proviso
Theorem);andto showthe negativeclaimsof Theorems4.2 and4.5.

We beginwith somepreliminary notions. Thenwe prove our Major Lemma (Lemmab.5)
andMajor Corollary (Corollary 5.6), which we will useto help establishour resultsfrom §4.
Before that we will usethe Major Corollary to give a simplified proof of GuptaandBelnap’s
Main Lemma (Lemmab.7), the lemmathey useto studythe conditionsunderwhich a modelis
Thomason: our new proof avoidstheir doubletransfiniteinduction,andtheir considerationat
onepoint, of six casesand subcases.

Definition 5.1. Supposethat M = [D, I0and M’ = [D', I'Oare modelsof a first order
languageL, that N is a set of nhamesfrom L, and that W:D - D' is a bijection. W is an
N-restricted isomorphism from M to M' iff I(H)(d,, ..., d.) = I'(H)(¥(d), ..., ¥(d,)) for every
n-placepredicatdetterH andeveryn-tupleld,, ..., d,Gl W((h)(d,, ...,d,)) = I'(h)(¥(d)), ..., ¥(d,)
for everyn-placefunction symbolh (n > 0) andeveryn-tuple(d,, ..., d,i;and¥(I(c)) = I'(c) for
everyc [ N.

Lemma 5.2. SupposdhatM andM’' are modelsof a first orderlanguage., thatN is a set
of namesfrom L, andthat W is an N-restrictedisomorphismfrom M to M'. Supposehatp =
T, W, K or 0. Supposehat every nameoccurringin the sentencéA is in N. ThenValy, ,(A) =
Valy. (A).

Definition 5.3. ([3], Definition 6A.2) The degree of a term or formula X of L*, denoted
degX), is definedasfollows. (i) If X is avariableor nonquotenamethendeg(X) = 0 = deg(d).
(ii) If Alis asentencef degreen, thenthedeg(’A’) =n + 1. (iii) If t,, ..., t, aretermsof degrees

i, ..., 1, respectively,andif f [F] is an n-placefunction symbol [predicate],then degft;...t,)
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[deg(Ft,..t)] = max(i, ...,i,). (iv) If xis avariable,A andB areformulas,anddeg@®) = m and
deg@) = n, thendeg(JxA) = deg(-A) = m anddeg@ & B) = deg@ U B) = max(m,n).

Definition 5.4. SupposdhatM = [D, I10is a groundmodelandthatY O S. Saythath =,

h iff h(A) = h'(A) for everyA 0O Y. If nis a naturalnumber,saythath =, h' iff h(A) = h'(A)

for every sentenceA of degree< n. Note thath =, h' for any h andh'. If h is a classical

hypothesisdefinetj(h) = h, andt,}* *(h) = 1,,(t3(h)). Finally, definet(h):D - D asfollows:

Ti(h)(d) = t, if, for somem, 1;(h)(d) = t for everyn = m.
T(h)(d) = f, if, for somem, 1y;(h)(d) = f for everyn > m.
T(h)(d) = n otherwise.

Note thatif h is classicalthenty;(h) is alwaysclassicalbut ty;(h) might not be.

Lemma 5.5. (The Major Lemma) Supposehat the groundmodelM = [D, Idis (S - Y)-
neutral,whereY [0 S. Supposehath andh' are strongly consistentlassicalhypotheseswith
h=,h" andh =, h'. Thent,(h) =,,; T,(h").

Proof. LetY' ={A: h(A) =h(A)}. NotethatY [0 Y', andthath =, h'. Also notethatA
gv'iff .AOY'"iff --AOY'iff ==-A 0 Y’, etc.,sinceh andh’ arestronglyconsistent. Thus
we have

* (AOY" andh(A) =t) iff (-A 0 Y" andh(=A) =f) iff (==A 0 Y' andh(--A) =

t) iff (==-A O Y' andh(---A) = f), etc.

LetU = {A: Ais of degree= nandA O Y andh(A) =t} andV = {A: Ais of degree= n and
AOY andh(A) =f}. Similarly, let U' = {A: Ais of degree= nandA O Y andh'(A) =t} and
V' ={A: Ais of degree= nandA 0 Y andh'(A) = f}. NotethatU OV =U' O V',

If (UDOV)n (S-Y')=0,theneverysentencef degree2 nisin Y'. In thatcaseh =h
andwe aredone. Soassumehat(U O V) n (S-Y")# 0. Given(*), AOUn (S-Y")iff A
OVn ((S-Y)iff -—AOUn (S-Y")iff -=-A OV n (S-Y'), etc.,for every sentenceA.

SoU andV arecountablyinfinite (we areassuminghatthe languages countable). Similarly,
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U' andV' arecountablyinfinite. Let ® beabijectionfrom U O V to U’ OO V' suchthat® maps
U ontoU" andV onto V'.
Define a function W:D — D asfollows:

If Ais asentenceof degree<nor A Y, thenW(A) = A

If Ais asentenceof degree= n, thenW(A) = ®(A).

If d O (D - S),thenW¥(d) = d.
Note thatW is an N-restrictedisomorphismfrom M + hto M + h', whereN is the setof names
of degree< n. SoValy, ., (A) = Val, . (A), for everysentence\ of degree< n + 1. Soty,(h)
=n+1 Tw(h). .

Coroallary 5.6. (The Major Corollary) Supposédhatthe groundmodelM = [D, Iis (S - Y)-
neutral,whereY O S. Supposeéhath andh' are strongly consistentclassicalhypothesesuch
thatt),(h) =, 1" 1(h) =, (") =, 1" (') for everyn. Thenty(h) = t3(h') is classicalandis
a fixed point of T1y,.

Proof. By induction,we canshowthatt(h) =, t;" }(h) =, 1;;(h") =, 15" }() for everyn.
The basecaseis vacuouslytrue. The induction stepis simply an applicationof the Major
Lemma. But from this it follows thatty,(h) = t(h") andty(h) is classical. It remainsto show
thatty(h) is afixed point of t,,. Notethatty,(h) =, t,;(h) for everyn. So,by the Major Lemma,
Ty (ta(h)) =, , T4 (h) for everyn. Sot,,(t8(h)) =, ., T9(h) for everyn. Sot,(ta(h)) = ta(h),
asdesired. .

Lemma 5.7. (Guptaand Belnap’s Main Lemma, [3], Lemma6A.4) Let M = [D, Ibe
X-neutral(X 0 D). Let SandS beT,-sequencesandlet Y be the setof thosesentenceshat
areeitherstablyt in bothSandS or stablyf in both. If (S-Y) O X, thenthereis someordinal
a suchthatforall B> a, S, = S,.

Proof. This proof differs from GuptaandBelnap’s. Choosean ordinal y suchthat, by the
yth stagebothin Sandin S, all of the sentencesn Y havestabilized:i.e., for everyA 0 Y and

everyB 2y, §(A) = Sy(A) = S(A) = S(A). In otherwords,for everyB>y, §;=, S; =, §, =y
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S, Y canbe chosento be a successoordinal. So S, and S|, are strongly consistent. By our
Major Corollary, 7y(S) = Tw(S) is classicalandis a fixed point of 1,,. But noticethat, since
™(S) = (S, is classical,we have S, , = Ty(S) andS, ., = Ty(S,) by the limit rule for
Ty-Sequencesleta =y + w. SinceS, = S, is afixed point of t,,, we concludethatfor all 8
>a, S, = S, asdesired. .

Now we canstart proving our positive resultsfrom 84.

Theorem 4.21 (2). (i) T" <, T'. (i) T <, TS (iii) T™ %2 <, T™ 92, (iv) TP <, TP for
p =W K, g, al or o2.

Proof. (i) (The proofof (i) is from [3].) SupposéhatM is an (S - Y)-neutralmodeland
thatY O {A: AOV,, or-A0V,}. Toshowthatall 1,-sequencesulminatein oneandthe
samefixed point, chooseanytwo T,-sequencess andS. Let X = (S-Y), andlet Y' bethe set
of thosesentenceshat are eitherstablyt in both S andS' or stablyf in both. Clearly (S- Y')
0 X. So,by GuptaandBelnap’sMain Lemma(Lemmal0.5),thereis someordinala suchthat
forallB=a, S, =S;. It followsthatS, = S| is afixed pointin which bothSandS' culminate.

(ii) is provedanalogouslyto (i), sinceit sufficesto showthat if M is an (S - Y)-neutral
modelwhereY O {A: A 0O Vg or -A O Vg}, then all maximally consistentrt,,-sequences
culminatein one andthe samefixed point.

(iif) SupposehatM is (S - Y)-neutralfor someY O {A: Ifp(c2,)(A) =t or Ifp(02,)(A) =
f}. Toshowthath =Ifp(02,) is classical supposeiot. Let C bea sentencef theleastpossible
degreesayk, suchthath(C) = n. NotethatC 0 Y. We will geta contradictionby showing
thath(C) =t or f. Recallthe definition of 02,,(A) for sentenceg\:

o2, (h)(A) = t [f] iff t,(h")(A) =t [f] for all classicaland strongly consistent’ > h.
n, otherwise.
To showthath(C) =t or f it sufficesto showthat c2,,(h)(C) =t or f, sinceh is a fixed point
of 02,,. For the latter, it sufficesto show that t,,(h")(C) = 1,,(h")(C) for any classicaland

stronglyconsistenhypothese$’ > h andh” = h. Choosesuchhypothese$’ andh”. Note that
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h' = h" sinceh(A) =t or f, for any sentenceA of degree< k. Notealsothath' =, h". Soby
our Major Lemma5.5, t,,(h') =, ; Ty(h"). Thust,,(h")(C) = 1,,(h")(C), asdesired.

(iv) We will showsomethingmoregeneral. Fix agroundmodelM. If p is a partialfunction
on the setof hypotheseswe saythat p is normal iff p satisfiesthe following conditions: p is
monotone;if h is classicalandp is definedon h, thenp(h) = t,,(h); for everyfixed point h of
p, thereis a classicalhypothesidt' suchthath < h' andp is definedon h'; if p is definedon the
classicalhypothesish, thenp is alsodefinedon t,,(h); andp is definedon everyfixed point of
Ty. Notethatp,, Ky, oy, 01, andc2,, areall normal.

Supposehat p is a normal operatoron hypothesesandthati is anintrinsic fixed point of
p. SupposdhatM is (S - Y)-neutralwherei(A) =t or i(A) = f for everysentencéA O Y. We
will showthat gifp(p) is classical. This will suffice for our claim that T9: P <, T9%° for p =
U, K, g, 0l or a2.

To show that gifp(p) is classical,it will suffice to showthat p hasa greatestfixed point
whichis classical: any classicalgreatesfixed pointis alsothe greatesintrinsic fixed point. For
this it sufficesto showthat for any fixed pointsf andg, thereis a classicalfixed point h such
thatf < h andg < h. Sochooseany fixed pointsf andg. Sincei is intrinsic, thereexist fixed
pointsf’ andg' suchthatf < f' andi < f' andg < ¢ andi < ¢'. Chooseclassicalhypothesesnot

necessarilyfixed points,f” > f' andg” = ¢, sothat p is definedon bothf" andg”. Hereis a

picture.
fr g"” classicalhypothesesmaybenot fixed points
\f ' g/’ fixed points, maybenot classical
// \ [ / \\ intrinsic fixed point, maybenot classical
f/ \ g fixed points, maybenot classical

Observe: 1, (f") = p"(f") = p"(f") = ' =i andt(g") = p"(9") = p"(g') =f' =i for everyn. Recall
thatY O {A: i(A) =tori(A) =1} Soty(f") =, i =, Ty(g") for everyn. ThusTty(f") =,

i) =, 10" = 10" X(g"), for everyn. Let h = 13(f"). By our Major Corollary 5.6, h =
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(f") = 14(g") is classicalandis a fixed point of 1,, and henceof p. It now sufficesto show
thath > f andh = g. For thisit sufficesto showthath = f' andh > ¢'. Notethatif f'(A) =t
thenty(f")(A) =t for everyn, sincety(f") = f'. Soh(A) = t1y(f")(A) = t. Similarly, if f'(A) =
f thenh(A) =f. Soh=>f'. Similarly, h= ¢, asdesired. In the picturebelow, the arrow pointing
from " to h indicatesthat any revisionsequencehat beginswith f” culminatesin h. Similarly
for the arrow pointing from g" to h.

f"~ h «g"

\ /N
fl gl

Theorem4.23will be a corollaryto Lemmab.8, a reworking of the Major Lemma.

Lemma 5.8. Supposehat the groundmodelM = [D, I0is (S - Y)-neutral,whereY O S.
Supposehath andh' are classicalhypotheseswith h =, h" andh =, h'. Supposdurthermore
thatall four of thefollowing setsU, U', V, andV' arecountablyinfinite: U = {A: Ais of degree
>nandA Y andh(A) =t} andV = {A: Ais of degree= nandA 0O Y andh(A) = f} andU’
={A: Ais of degreex nandA 0 Y andh'(A) =t} andV' = {A: Ais of degree=nandA Y
andh'(A) = f}. ThenTty,(h) =,.,; Tu(h).

Proof. The proof follows the proof of Lemmab.5, with a simplification: thereis no need
to defineY' or to mentionits propertiessincethereis no needto provethatU, U', V andV' are
countablyinfinite, sincethatis given by hypothesis. -

Theorem 4.23. Let p = 0 or o1. If the groundmodelM is (S - Y)-neutralandY O {A:
Ifp(py)(A) =t or Ifp(py)(A) = f}, thenlfp(p,,) is classical subjectto the following proviso: for
everyn, thereis a sentenceB J Y of degree> n suchthatIfp(p,,)(B) = t, anda sentenceB [
Y of degree> n suchthatIfp(p,,)(B) = f.

Proof. We will run the proof for p = 0. The proof is exactlythe samefor p = c1. The

proof closelyfollows the proof of Theorem4.21 (2)(iii), with h = Ifp(o,,). Sosupposdhatthe
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groundmodelM is (S - Y)-neutral;thatY O {A: Ifp(oy,)(A) =t or Ifp(o,)(A) = f}; andthat,for
everyn, thereis a sentenceB [J Y of degree> n suchthatIfp(p,,)(B) = t, anda sentenceB [
Y of degree> n suchthat Ifp(p,,)(B) = f. For a reductio, supposethat h = Ifp(g,,) is not
classical.

Let C be a sentenceof the leastpossibledegree sayk, suchthath(C) = n. NotethatC [
Y. We will geta contradictionby showingthath(C) =t or f. Recallthat, for any sentence?,

oy(h)(A) = t[f]iff t,(h")(A) =t [f] for all classicalh’ = h; and
n, otherwise.
To showthath(C) =t or f it sufficesto showthat g,,(h)(C) =t or f, sinceh is a fixed point.
For the latter, it sufficesto showthatt,,(h")(C) = 1,,(h")(C) for any classicalhypothese$' > h
andh” = h. Choosesuchhypothesed$’ andh”. Notethath’ =, h" sinceh(A) =t or f, for any
sentenceéA of degree< k. Note alsothath' =, h".

Define four setsU’, U", V', andV" asfollows: U’ = {A: Ais of degree= k andA O Y and
h'(A) =t} andV' = {A: Alis of degree= k andA O Y andh'(A) = f} andU"” = {A: A is of
degree= k andA 0 Y andh”(A) =t} andV" = {A: Ais of degreex k andA 0 Y andh"(A) =
f}. We claimthatU' is countablyinfinite (assuminghe languagés countable). Recallthat for
everyn, thereis asentenceé8 0 Y of degree> n suchthatlfp(p,)(B) =t. Sofor everyn, there
isasentencdB [0 Y of degree> n suchthath(B) =t. SoU’ is countablyinfinite. Similarly, U",
V' and V" are countablyinfinite. So t,,(h') =, tyw(h"), by Lemma5.8. Thusrt,,(h)(C) =
T4(h")(C), asdesired. -

It remainsto prove Theorem4.21(3), andthe negativeclaimsin Theoremst.2 and4.5. We
do this with a seriesof counterexamples.We will bring it all togetherafter presentingthe
examples.

Example 5.9. ([3], Example6B.9) This examplewill showthat T* ¢, T”. Considera
languagd. with no nonquotenameswith no functionsymbols with a one-placeredicateG, and

no othernonlogicalpredicates.Let L™ be L extendedvith a newone-placepredicateT. We will
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alsosupposehat L hasa quotename'C’ for everysentenceC of L*. Let A = [X(Gx & —TX)
andletY ={T"A: n=>0}. LetM = [D, I0bethe groundmodelwhereD is the setof sentences
of L* andwherel(G)(d) =t iff d 0 Y. Notethateverysentencen Y is nearlystablyt in every
T,-sequencethoughno sentencen Y is stablyt in any 1,,-sequence.So C O V}, for all C [
Y. SoM is (S- Y)-neutralwhereY O {A: A V), or-A0V/}. Wewil now showthat
thereis a 1,,-sequence$ suchthatthe sentenceB = [(X[(}(Gx & Gy & -Tx & -Ty & X ZYy) is
neithernearlystablyt in S nor nearlystablyf in S. ThusT* doesnot dictatethat truth behaves
like a classicalconceptin M. Incidentally,this falsifies the claim in [3] that"all sentencesre
nearly stablein all T-sequencefor M" (p. 214).

DefinesetsX, =Y andX,,, =Y - {T"A} for n> 0. Also definez, =Y - {T"A, T"*'A}.

Thereis a 1,,-sequence suchthat, for eachC 0 Y, eachlimit ordinal A andeachn = 0,

S(C) =t iff C O X,
S . 2+n(C) =t iff coz,
S .,(C) =t iff C O X,, if A is alimit ordinal not of the form a +

NotethatS,, .,.:(B) =t andS, ., ,.,..(B) = f, for everylimit ordinal A and every natural
numbern. SoB is not nearlystablein S. -

Example 5.10. (Gupta) This examplewill showthatT* %, T" andthatT* «, T9" ¥ Modify
Example5.9 asfollows. LetY bethe smallestsetcontainingeachT"A, andsuchthatif C O'Y
thenC O C O Y. Notethateverysentencean Y is nearly stablet in everyrevisionsequence,
butno sentencén Y is stablyt or stablyf in anyrevisionsequence Sot,, hasno classicalfixed
point. SoneitherT" nor T9™ * dictatesthat truth behavedike a classicalconceptin M. But it
follows from Claim 2, below, that T* doesdictatethat truth behavedike a classicalconceptin
M.

Notice that, for any classicalhypothesish and any n = 0, we have the following: for

countablymanyC 0O Y of degree= n, 1);(h)(C) = t andfor countablymanyC O Y of degree>
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n, 14(h)(C) = f. Similarly, for countablymany C O Y of degree= n, t3(h)(C) = t and for
countablymanyC O Y of degree> n, 13(h)(C) = f.

Claim 1. Foranytwo classicalhypothese$ andh’ andanyn = 0, 1), 4(h) =, 13" %(h'). Fix

h andh'. Our resultis provedby inductionon n. The basecaseis vacuouslytrue. For the

inductive step,assumethat 1), 4(h) =, 15" ?(’). To showthat )" 3(h) =,,, T3 3(h"), we will

constructan N-restrictedisomorphism® from M + 1" %(h) to M + 1),* %), whereN = { A’:

deg@) < n}. DefineU, U, V, V', W, W', X and X' asfollows:

u =y {A deg@) =nandA Y andty"?h) =t}
U’ =y {A deg@) =nandA0Y andt," %h) =t}
\Y =« {A deg@) =nandAOY andt,, *h)=f}
A =« {A deg@) =nandA Y andt,, *h) = f}

W =y {A deg@) =nandA Y andty"?h) =t}
W =, {A deg@)=nandAOY andt)*4h) =t}
X =« {A deg@) =nandAOY andt,, *h)=f}
X' =« {A deg@) =nandAOY andt,, %) = f}.
Eachof thesesetsis countablyinfinite. Define W by patchingtogetherthe identity function on
the sentence®f degree< n, andbijectionsfrom U to U’, V to V', W to W’ and X to X'.
Claim 2. For any sentenceA of degree< n, either (i) t;;(h)(A) = t for every classical
hypothesish andeverym > n + 2; or (ii) ty,(h)(A) = f for everyclassicalhypothesih andevery
m=n + 2. To seethis, considerany classicalhypotheses andh’ andanym, m’ > n + 2. Note
that if we apply Claim 1 to i~ ®*2(h) and 1y - " *2(h"), we get 1i(h)(A) = 10 (h)(A). This
suffices. .
Example 5.11. This examplewill be of a groundmodelM suchthatlfp(cl,,) andlfp(c2,,)
are classical,and furthermoresuchthat M is (S - Y)-neutralwhereY [0 {B: B O V|, or -B [
VSl Onthe negativeside,neitherT™ nor T* dictatesthat truth behavedike a classicalconcept

in M. Thus, T™ ¢, T" andT"™ % ¢, T# T"™ %2 ¢, T andT™ %2 ¢, T# andT® ¢, T" andT°®
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£, T7, from which it follows—given Theorem4.21 (2) andLemma4.20—thatT® ¢, T andT®
£, T". ThefactthatT® «, T  negativelyanswersGuptaand Belnap’sQuestion4.16, above.

Consideralanguagd. with exactlyonenonquotenameb, with no functionsymbols,andwith
a one-placepredicateG, andno othernonlogicalpredicates.Let L* be L extendedwith a new
one-placepredicateT. We will alsosupposéhatL hasa quotename’'B’ for everysentenced
of L*. ForanysentenceB of L*, we defineT"B asfollows: T°B=BandT"*'B=T'T"B. For
anyformulaB of L, we define="B asB whenn is evenandas-B whenn is odd. Let A bethe
sentencel'Th’ & T'-Tb'. LetZ={T"A: n>0}. LetY =Z [0 {[X(Gx & TX) & -Th}. Let
M = [D, I0be a groundmodel,whereD is the setof sentencesf L*, andwherel(b) = [X(Gx
& TX) & =Th, andl(G)(d) =t iff d O Z. NotethatM is (S - Y)-neutral.

Claim 1. NeitherT" nor T* dictatesthattruth behavedike a classicalconceptin M. Proof:
Saythat the classicalhypothesish is interesting iff h(Cx(Gx & Tx)) = h(Tb) = h(=Tb) =t and
h(B) = f, for everyB O Z. Then,for any interestinghypothesich, if k > 2 thent/(h)(T* *A) =
5 (h) (= Th) = T (h)(X(Gx & Tx)) =t andty(h)(=Tb) = t/(h)(T"A) = f, wheren 2 k - 1. So
we canconstructa T-sequence for M suchthat S, is interestingfor everylimit ordinal A and
suchthat the value of Tb neverstabilizes. In fact, we can assurethat Tb is not evennearly
stable.

Claim 2. ForeveryB 00 Y, eitherB 0 V, or =B O V5. Proof: It sufficesto show that
everysentencén thesetY is stablyf in anymaximally consistent-sequencé. Sosupposéhat
S is a maximally consistentt-sequence.Then S (A) = f, for eachn, by the strongconsistency
of S. S0OS(T'A) =ffork=>0andn<k. SoS,(T"A) =f for everyn. SoS,, ;(IX(Gx & Tx)
& -Th) =S, , (IX(Gx & TX)) =S, . (T"A) =1, for everyn. So0S,, ,(Th) =S, . ,((X(Gx & TX)
& —Th) =S, (IX(GCx & TX)) = S,,, (T"A) =f, for everyn. Sofor everya = w + 2 andevery
N, S,(Th) = S,(IX(Gx & Tx) & =Th) = S,((X(Gx & Tx)) = S,(T"A) =f. Soeverysentencen Y

is stablyf in S.
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Claim 3. Ifp(ol,) is classical. Proof: It suffices, given Theorem4.23, to prove that
Ifp(0l,,)(B) = f for everysentenceB [0 Y. Let S be the 0l,,-sequencehat iteratively builds
Ifp(0l,,) from the null hypothesis: Sy(d) = n for eachd [0 D. NotethatS, . ,(A) = f, for natural
numbersk. The reasonis thatin calculatingS, , ;(A), we considerweakly consistentclassical
h>S. SoS., (T"A) =ffork=0andn<k. SoS,(T"A) =f for everyn. Thus,asin the proof
of Claim 2, for everya = w + 2, S (Th) = S,((X(Gx & TX) & =Th) = S, ((X(Gx & TxX)) = S,(T"A)
= f, for everyn. Thus,lfp(cl,,)(B) = f for everysentenceB [ Y, asdesired.
Claim 4. Ifp(o2,) is classical. Proof: Notethatol,,(h) < 02,,(h) for anystronglyconsistent
hypothesish. Solfp(ol,) < Ifp(02,). Solfp(c2,) is classical,given Claim 3. -
Example 5.12. (Gupta) This examplewill showthat T™ ¢ ¢, T"™°  Considera language
L with no nonquotenameswith no function symbols,with a one-placepredicateG andno other
nonlogicalpredicates. Let L be L extendedwith a new one-placepredicateT. We will also
supposehat L hasa quotename‘B’ for everysentenceB of L*. Let D = S0 N. For eachY
0S,letY* ={A: -A0Y}. ForeachY O D, we will usethe notation[Y] for the ground
model D, I,[Jwhere
I,(G)(d)=tifdO Y, and
L,(G)d)y=fifdO.
For nonintersectindJ, V O D, we will usethe notation(U, V) for the hypothesish suchthat
h(dy=tif dO U,
h(dy=fifdOV,
h(d) = n otherwise.
We define a jump operator,@, not on hypothesedut ratheron subsetof S. For eachY O S,
AY) = {A: Valy 55+ v 0w, o(A) =t}. Thoughgis notin any sensemonotonejt will come
in handy,aswe shallsee. LetY,=0. LetY,,,=@Y,). LetY,={A: thereis ann suchthat

AOY, foreverym=n} =0, Y.

n"'mz=n
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Below, we will provethatthehypothesigY, Y * O N) is notclassicalandis theleastfixed
point of Oy on- But note that the ground model [Y, O N] is (S-Y,)-neutral and
Ifp(Opy o w)(A) =t for everyA O Y, ThusT™° £, T °, asdesired.

Our argumentthat (Y, Y * O N) = pr(o[YwD n) Proceedsn numberedclaims.

Claim 1. Ox(Tx 0O Gx) O Y, and-0Ox(Tx O Gx) O Y,. The proof is by induction. It is
vacuouslytrue for n = 0. For the inductive step, assumethat Ox(Tx 0 Gx) O Y, and
=Ox(Tx 0 Gx) O Y,. ToshowthatOx(Tx O Gx) O Y, ,,and-0Ox(Tx O Gx) OY,, ,, it suffices
to showthatValy . v om,o(BX(TX O GX) = n. Considerthe classicalhypothesesh =
(Y, D-Y)andh = (Y, O{Ox(Tx O Gx)}, (D-Y,)-{Ox(Tx O GX)}). By the inductive
hypothesiswe have(Y,, Y, * O N) < h, h'. Furthermore,\/aI[YnD N+ (OX(Tx O Gx)) =t and
Valy oy, (OX(TX O GX)) =f. SoValy 1. vron,o(0X(TX O Gx) = n, asdesired.

Claim 2. (Y., Y, * O N) is not classical. Proof: GivenClaim 1, Ox(Tx 00 Gx) O Y and
Ox(Tx O Gx) O Y *.

Beforewe stateClaim 3, we defineX, =4 S- (Y, O Y.*) and X, =4 (S- (Y, O Y *).

Claim 3. Foreachn =1 andfor eachm, thereis somesentencef degreem in Y, andsome
sentenceof degreem in X,. Proof: Notethat(T"A O -T"A) O Y, andthat (T"A 00 -T"A) &
Ox(Tx O Gx) O X,, for any sentenceA.

Beforewe stateClaim 4, we introducesomenotation. ForU, V OO S, saythatU =, V iff for
everyA of degree<n, AO U iff AOV.

Claim 4. Foreverynandeverym=n+1,Y,,; =, Y, Theproofis by inductiononn.
It is vacuouslytruefor n = 0. FortheinductionstepassumehatY, ., =,Y, Wewantto show
thatY,,,=,.,; Y. It sufficesto constructan N-restrictedisomorphismW¥ from [Y ., 0 N]
to[Y,, O N], whereN = {* A= deg@) < n}. Define sevensubsetof S asfollows.

U =4t {A: deg@®) <n}
Vv =4t {A: deg®)=n& AOY,,}
w =4t {A: deg®) =2n& AOY,,,*}
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Z =4t {A: degP®)=n& A X,,}
\A =4t {A: deg®) =2n& AOY,}
w' =4t {A: degP®)=n& ADO Y, *}
Z' =4t {A: degP) =n& A0 X,}.

Note that eachof V, W, Z, V', W' andZ' is countablyinfinite, by Claim 3. Also notethat

(S-V) = vowgdz=v Ow 0OZz,
Y.nU = Y,,n U, and
Yo nU = Y. n U

Let W:D - D be a bijection suchthat W(d) = d for everyd [0 D - SandW¥(A) = A for everyA
00 U; andsuchthat¥ mapsV ontoV' andW ontoW' andZ ontoZ'. ThenW is anN-restricted
isomorphismasdesired.

Claim 5. (Y,, Y,* O N) is afixed pointof oy, . Forthis, it sufficesto showthatY,
is a fixed point of @. For this, it sufficesto showthatg(Y,) =,., Y, for everyn. GivenClaim
4,Y,=,+1 Y., for everyn. Soit sufficesto showthate(Y ) =,.,Y,., for everyn. Choose
any n. NotethatY, =, Y,., by Claim 4. To showthat @Y,) =,,; Y,., it sufficesto
constructan N-restrictedisomorphismfrom [Y , O N] to [Y,,,; O N], whereN = {f A: deg@®)
< n}. The constructionfollows the lines of the constructionin the proof of Claim 4.

Clam 6. (Y, Y, ON) = pr(o[YwD n)- Let(Z,zx ON) = pr(o[YwD ). For Claim 6, it
sufficesto show by inductionon n thatY, =, Z, for eachn. The basecaseis obvious. So
supposedhatY , =, Z. We wantto showthatY  =,,, Z. Note,incidentally,thatY * =, Z*.

Z0OY,since(Z, Z* O N) = pr(o[YwD n) < (Yo Yo" ON). Soit sufficesto showthat for
everysentence of degree<n + 1,if A ZthenAO Y, Sosupposdhatdeg®) <n + 1and
A O Z. Thenthereis someclassicalhypothesigX, D - X) = (Z, Z* O N) suchthatA is false
in the classicalmodel [Y, O N] + (X, D - X). To showthat A 0O Y, we will constructa
classicalhypothesis(wW, D - W) = (Y, Y, * O N) suchthat A is false in the classicalmodel
[Y,ON] + (W, D-W). After we construc{W, D - W), it will sufficeto defineanN-restricted
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isomorphismW¥ from [Y,O N + (X, D-X) to [Y,O N] + (W, D-W), whereN = {" B

deg@B) < n}.

Define sevendisjoint subsetf S, asfollows:

U

® T O W >

H

Note the following:

X
(S-X)
COH
Y,-U
Yr-U
Y,Nn U
Y>XnU
Z-U
z* - U

U
U
U

O

{A: deg@) < n}
XnYy-U

X NnYy-U

X -(Y,OY.x OU)
(S-X)nYy-U
(S-X) nY, -U
(S-X)-(Y,OY.*OU)

AOBOCO (MU n X)
FOGOHDO WM n (S-X))
S-(Y,OY.x OU)

AOF

BOG

X n U, sinceY,=,Z
(S-X) n U, sinceY * =, Z*
A

G

Note alsothat eachof the following setscontainssentence®f arbitrarily large degree: Z, Z*,

andS- (Y, O Y. Soeachof thefollowing setsis countablyinfinite: A, G, andC 0O H.

ChooseP 0 C andQ 0O H sothat P [0 Q is of the samecardinalityasB [0 C. And let R;

= C-PandR, =H - Q. Finally, let J be a setof evennumbersof the samecardinalityasF.

And let K = N - J. K is countablyinfinite.
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LetW=(XnU)OAOFOPOQ. ThenS-W=(S-X)nU)OBOGOR,OR,
SoY, = (Y,nUDOADOFDOW, andYy = (S-X)nU)OBOG O S-W. So
(W, D -W) = (Y, Y, ON).

Constructan N-restricted isomorphismW¥ from M = [Y, O N] +(X,D-X) to M' =
[Y, O N] + (W, D - W) by patchingtogether

the identity functionon U,

a bijectionfrom A ontoY,_,- U =A 0O F,

a bijectionfrom B [0 C ontoP [0 Q,
abijectionfromG O R, 0 R,ontoB 0 GO R, O R,,
a bijection from F onto J, and

a bijectionfrom N = J [0 K ontoK.

To seethat W is an N-restrictedisomorphismfrom M to M’, first note that ¥ mapsthe
extensionof G in M onto the extensionof G in M'. The reasonis that Y, O N =
UnY)OAOFDOJOK andW mapsAtoA [0F,andF toJ,andJ [0 K to K. Also, ¥
mapsX =(Un X) OAOBOCtoW=(Un X) OADOFOPOAQ, since® mapsA onto
A 0OF,andB 0 ContoP [0 Q. SoW mapsthe extensionof T in M onto the extensionof T
in M'. Finally note that for everyname‘A’ in N, ¥ mapsthe denotationof ‘A’ in M to the
denotatiorof ‘A’ in M, sinceW(B) =B if B O U. ThusW is anN-restrictedhomomorphisnmand
Claim 6 is proved. -

Example 5.13. (Gupta)Herewe modify Example5.12to geta proof that T ot &, T' o2,
As we shall see,our modified examplewill alsoshowthat T %2 &, T' 92,

Example5.13is like Example5.12, exceptthat the definition of the jump operatorg must
nowbe @(Y) =4 {A: Valy o+ v 0w (A =t} Fortheproof of Claim 1, we haveto check
that the two hypotheses, h = (Y, D-Y,) and h = (Y,DO{Ox(Tx O Gx)},
(D -Y,) - {Ox(Tx O Gx)}), arenotonly classicabutalsoweaklyconsistent.lt sufficesto check

thatY, O {Ox(Tx O Gx)} is consistenffor everyn. If n =0, thenit is obvious. If n=k + 1,
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then note that every sentencein Y, O {Ox(Tx O Gx)} is true in the classical model
Y. ON+(Y,,D-Y). SoY, O {Ox(Tx O Gx)}. The proofsof the analoguelaims2, 3, 4
and5 go throughunmodified,sothat (Y, Y * O N) is a nonclassicafixed point of oly ow-

We haveto modify the constructionin the proof of the analogueof Claim 6 asfollows. In
the fourth sentenceof the secondparagraphwe start with someweakly consistent classical
hypothesis (X, D - X) = (Z,Z* O N) such that A is false in the classical model
[Y,ON] + (X, D-X). ToshowthatA [0 Y, we will constructa weakly consistent classical
hypothesis (W, D - W) > (Y, Y, ON) such that A is false in the classical model
[Y, O N+ (W, D - W).

Up until thechoiceof P O C andQ O H, the constructionproceedexactlyasabove. Before
we chooseP and Q, we will provethat (X n U) O Y, = (X n U)OA 0O F is consistent.
Supposenot. Then,by compactnessy, 0 {B,, ..., B} is inconsistenfor someB,, ..., B, [ (X
n U). SoY, logically impliesB =4 -(B, & ... & B,). SoB O Y,. B is of degree<n, since
eachB, 0O U. SoB 0O Z, sinceY,=,Z. ButZz O X and{B,, ...,B} O X. SoX is inconsistent.
So (X, D - X) is not weakly consistenta reductio. So(X n U) O Y, is consistent.

Now we will choose P [0 C andQ 0O H, but more carefully thanabove. Note that C [0 H
containsinfinitely many sentencesand is closed under negation. Also (X n U) O Y, is
consistent. So thereare countablyinfinitely manysentencesn C [0 H that are consistentwith
X nU)DOY, SowecanchooseP [ CandQ O HsothatX nUYOAOFOPOQ=(X
n U)0OY,OPOAQis consistenandso that P [0 Q hasthe samecardinalityasB [0 C.

Let W=(Xn UOAOFOPDOAQ, as above. W is consistent. So the hypothesis
(W, D - W) is weakly consistent. The constructionof the restrictedisomorphismgoesthrough
asabove. So A is falsein the classicalmodel[Y , O N] + (W, D - W), asdesired.

Thus(Y, Y, ON) = pr(cl[YwD n) andis nonclassical. But note that the ground model
[Y, O N is (S- Y,)-neutralandlfp(cly ;n)(A) =t for everyA DY, ThusT™ o £, T,

asdesired.
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We furthermoreclaim that pr(oZ[YwD n) Is classical. Firstly, pr(ol[Yw o) < pr(oZ[Yw oN)-

Sothe groundmodel[Y , O N] is (S - Y)-neutraland pr(oZ[YwD n)(A) =t for everyAO Y,

So Ifp(02y_nw)(A) is classical,since T'™ ° <, T™ %, as proved above. Thus T'™ % £,

TP o1, ~

Example 5.14. This examplewill showthat T9"* ¢, T9™ ¥ Considera languagel with

exactlytwo nonquotenamesp andc, no function symbolsandno nonlogicalpredicates.Let M

= [, I0bethatgroundmodelsuchthatl(b) =B = Tb & Tc, andl(c) = C=Tb O~Tc. Thefacts

in the following table can easily be establishedy calculating:

If (B), h(C)d = tt tf tn ft ff fn nt nf nn

then Oy, ()(B), by (h)(C)0

and [k, (h)(B), ky(h)(C)U

tt ft nnff ft nn nn nn nn

tt ft nt ff ft fn nn ft nn

Giventhis table,we canargueasin GuptaandBelnap’sTransferTheorem([3], Theorem2D.4)
to the following conclusion: y,, hasthreefixed points,which are completelydeterminedy the
orderedtriple (h(B), h(C), h(Ox(Tx O -Tx))Candk,, hasthreefixed points,which arecompletely
determinedby the orderedtriple (B), h(C), h(Ox(Tx 0 -Tx))[J Furthermorer,, hasexactlyone
fixed point, andin thatfixed point B andC arebotht. Also, thatuniquefixed point of T, is also

a fixed point of y, andk,,. The fixed pointsof y, andk,, line up asfollows:

fixed pointsof W, fixed pointsof k,,
ttt ttt
I I
ttn fnn ttn
| \ /
nnn nnn
Thusgifp(l,) is classicalbut gifp(k,,) is not. -

Example 5.15. This examplewill showthat T9™ ¢ ¢, T9% ¢ Considera languagel with
exactlytwo nonquotenamesp andc, no function symbolsandno nonlogicalpredicates.Let M

= [8, IObe thatgroundmodelsuchthatl(b) = B = Tb O (Tc & —-Tc), andl(c) =C = (Tb & (Tc
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0 =Tc)) 0 (-Tb & =Tc). The facts in the following table can easily be establishedby
calculating:
If (B), H(C)O = tt tf tn ft ff fn nt nf nn
then [k,,(h)(B), k(h)(C)T

tt tt th ff ft nn nn nn nn

and &y, (h)(B), o,(h)(C)D

tt tt tt ff ft fn nn nt nn

Giventhis table,we canargueasin GuptaandBelnap’sTransferTheorem([3], Theorem2D.4)
to the following conclusion: k,, hasfour fixed points,which are completelydeterminedoy the
orderedtriple (h(B), h(C), h(Ox(Tx O -Tx))Cando,, hasthreefixed points,which arecompletely
determinedby the orderedpair h(B), h(C)LI (The reasonwe only needlook at thesepairs of
truth valuesis thatthe provisoin GuptaandBelnap’sTransferTheoremcanbe droppedfor .)
Furthermoret,, hasexactly onefixed point, andin that fixed point B andC arebotht. Also,
thatuniquefixed point of 1,, is alsoa fixed point of k,, ando,,. Thefixed pointsof k,, andg,,
line up asfollows:

fixed pointsof k,, fixed pointsof g,
ttt fn tt

| v
ttn nn

tnn

nnn
Thusgifp(k,,) is classical,but gifp(o,,) is not. -
Example 5.16. This examplewill showthat T9™ ¢ ¢, T9™ 91 Considera languagel with
exactlyfour nonquotenames)b, c, d ande, no function symbolsand no nonlogicalpredicates.
Let M = [$, I0bethatgroundmodelsuchthatl(b) =B =Tb O (Td & Te), I(c) = C =Tb O~Tgc,
I(d) = D =Tc andl(e) = E = =Tc. The factsin the following table can be establishedoy
calculating. The asterisksare classicalwildcards,eithert or f, andthe questionmarkscanvary

with the wildcards:
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If h(B), h(C), h(D), h(E)T =t ft** *frx
then [1,,(h)(B), T,,(h)(C), T, (h)(B), Tyw(h)(C)O = tttf ?ftf 2tft
From GuptaandBelnap’sTransferTheoremwe canconcludethat t,, hasa uniquefixed point,
sayh,, whereh,(B) = h,(C) = hy(D) =t andh,(E) = f. Sinceh, is afixed point of 1,,, it is also
a fixed point of o,, andof ol,,.

Furthermorepy anargumensimilar to thatgivenfor the TransferTheoremwe canconclude
thatthe fixed pointsof ¢ arecompletelydeterminedy the valuesh(B), h(C), h(D), h(E)lI (The
reasonwe only needlook at thesequartuplesof truth valuesis that the provisoin Guptaand
Belnap’sTransferTheoremcanbe droppedfor 0.) Thus,we canconcludethat h, is the only
classicalfixed point of g,,, andthe only fixed point h of g,, for which h(B) = h(C) = h(D) =t
andh(E) = f. In fact, h, is the only fixed point h of o suchthath(B) = h(C) = t, sinceany fixed
point satisfyingthis also satisfiesh(D) =t andh(E) = f.

Claim 1. o hasno fixed pointsh suchthath(B) = f or h(C) = f. To seethis, let h be any
fixed point of 0. Supposehath(C) = f. Then,sinceh is a fixed point of o,,, h(Tc) = h(T'C’)
= h(C) =f, sothath(C) = h(Tb 0 -Tc) = Val ., ,(Tb 0 -Tc) = t, acontradiction. On the other
hand,supposehath(B) = f. Thenh(C) =t or n. If h(C) =t then,sinceh is a fixed point of
Oy, h(Tc) = h(T'C’) = h(C) =t, sothat h(C) = h(Tb O -Tc) = Valy,,,, ((Tbh O -Tc) =f, a
contradiction. So h(C) = n. Soh(D) = h(Tc) = n = h(=Tc) = h(E). Let h' be a classical
hypothesissuchthath’ = h andh'(Tc) = h'(=Tc) = t, andlet h" be a classicalhypothesissuch
thath” > handh"(Tc) = h"(-Tc) =f. ThenVal . (Td) = Valy, . (Te) =tandValy, . (Td)
= Valy .,y (Te) = f. Thus 1y,(h)(B) = Valy ., (Tb O (Td & Te)) = t and t,(h")(B) =
Valy . (Tb O(Td & Te)) = f. Sooy(h)(B) = n. This contradictsh’s beinga fixed point of
oy. This provesClaim 1.

Given Claim 1, o hasno fixed point that are incompatiblewith h,. Thush, is o-intrinsic.

Thus, sinceh, is classicalh, = gifp(oy).



39

As for 01, let g be the (weakly classical)hypothesissuchthatg(B) = f andg(A) = n if A #
B. Note that 01,,(g)(B) = f. Sog < ol,,(g). By the monotonyof ol, thereis a unique
ol-sequencé suchthat S, = g. FurthermoreS is increasing(not strictly) and culminatesin a
fixed point, sayh;. Notethath,(B) = f. But h, is alsoa fixed point of g1, andhy(B) =t. So
gifp(ol,,) is not classical. -

Example 5.17. This examplewill showthat T9" o1 ¢, T9% 92 Considera languagel with
exactlyfour nonquotenames)b, c, d and e, no function symbolsand no nonlogicalpredicates.
Let M =[5, |0be that groundmodelsuchthatl(b) = B = Tb 00 (=Td & =Te), I(c) =C=Tb O
-Tc, I(d) = D = Tc andl(e) = E = =Tc. Thefactsin the following table canbe establishedy
calculating. The asterisksare wildcards,andthe questionmarkscanvary with the wildcards:

If h(B), h(C), h(D), h(E)O =t ft** *frx

then [1,,(h)(B), T,,(h)(C), T,,(h)(C), T,(h)(E)D = tttf ?ftf 2tft
From GuptaandBelnap’sTransferTheoremwe canconcludethat t,, hasa uniquefixed point,
sayh,, whereh,(B) = h,(C) = hy(D) =t andh,(E) = f. Sinceh, is afixed point of 1,,, it is also
a fixed point of al,, andof 02,,.

Furthermorepy anargumensimilar to thatgivenfor the TransferTheoremwe canconclude
that the fixed points of gl are completelydeterminedby the valuesi(B), h(C), h(D), h(E)L
Thus,we canconcludethat h, is the only classicalfixed point of 01,,, andthe only fixed point
h of 01,, for which h(B) = h(C) = h(D) =t andh(E) = f. In fact, h, is the only fixed point h of
ol suchthath(B) = h(C) =t, sinceanyfixed point satisfyingthis alsosatisfiesh(D) =t andh(E)
= f.

Now we will showthatol hasno fixed pointsh suchthath(B) = f. For a reductio,suppose
thath is a fixed point of o1 with h(B) = f. h(C) cannotbet, otherwisewe would haveh(C) =
0l,,(h)(C) =f. Similarly h(C) cannotbef, otherwisewe would haveh(C) = 01,,(h)(C) =t. So
h(C) =n. Thush(T'C’) = h(Tc) = n = h(=Tc), sinceh is afixed point. Considerthe classical

hypothesidh' suchthath'(A) =t iff h(A) =t for everyA O S. h' is weakly consistentsincethe
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set{A: h(A) =t} is consistenth beinga fixed point. Also notethath’'(Tc) = h'(=Tc) = f, and
h(B) =f. ThusVvaly ., (Td) = Val, ., (T'Tc) =f =Val,,, (T'-Tc) = Valy ., (Te). So
Valy , . (B) =Valy .,y (Tb O(-Td & -Te)) = t. Soby thedefinition of the jump operatorol,,,
0l,,(h)(B) # f = h(B), which contradictsh’s beinga fixed point of ol.

Furthermoregl hasno fixed pointsh suchthath(C) = f. For a reductio,supposehath is
afixed pointof ol with h(C) = f. Soh(Tc) =f, sinceh is afixed point. Soh(C) = h(Tb O-Tc)
= t, a contradiction.

Sofor everyfixed point h of 01, the possiblevaluesfor the quartuple(B), h(C), h(D), h(E)O
are tttf, tnnn, nttf, and nnnn. As already pointed out, eachfixed point h of ol is uniquely
determinedoy M(B), h(C), h(D), h(E)C] andthe orderingon themis isomorphicto the ordering
inducedon the four quartupledttf, tnnn, nttf, and nnnn:

tttf
/ \
t nnn nttf

\ /
nnnn

Thush, is the greatesfixed point of 1. Thush, = gifp(ol,,), which is classical.
As for 02, let g be the (strongly consistenthypothesissuchthatg(B) = f andg(A) = n if A
# B. Note that 02,,(g)(B) = f. Sog < 02,(g). By the monotonyof 02, thereis a unique
02-sequencé suchthat S, = g. Furthermore S is increasing(not strictly) and culminatesin a
fixed point, sayh;. Notethath,(B) = f. But h, is alsoa fixed point of 62, andhy(B) =t. So
gifp(o2,,) is not classical. -
Example5.18. Thisexamplewill showthatT9" °2 ¢, T¢. Consideralanguagd. with exactly
two nongquotenamesp andc, no function symbolsandno nonlogicalpredicates.Let M = [, |
be that ground model suchthat I(b) = B = Tc, andI(c) = C = Tb & —=Tc. The factsin the
following table can easily be establishedy calculating:
If (B), h(C)d = tt tf tn ft ff fn nt nf nn
thenl@2,(h)(B), 02,(h)(C)0 = tf ft tf ff



41

Note that we havenot filled in all the spacesn the table. Theseare not trivial: in orderto
calculatethesevalues,we mustknow which classicalh’ = h arestrongly consistent. Right away
we know thatthereareno stronglyconsistenhypotheses suchthat[h(B), h(C)[= [, tL] sothat
we canfill in the third column of the table with "ft". For our purposeswe do not really need
all the othercolumns. All we needis the following:

If (B), h(C)d = tt tf tn ft ff fn nt nf nn

thenl@2,(h)B), 02,(h)(C)0 = tf ft ft tf ff 2f tf 2?2 27
Giventhis, by an argumentsimilar to Guptaand Belnap’sargumentfor the TransferTheorem,
we can concludethat eachfixed point h of 02,, is uniquely determinedby the valuesh(B),
h(C)[Jandthatthefixed point h, determineddy the values(d, f(is classical. We canfurthermore
concludethatthe only otherpotentialfixed pointsaredeterminedy the valuesin, flandnh, n[]
If suchfixed pointsexist,theyareboth< h,. So,whateverotherfixed pointstheremight be, h,
= gifp(o2,). Sogifp(c2,) is classical.

Now we will showthat T® doesnot dictatethat truth behavedike a classicalconceptin M.
Chooseany strongly consistentiypothesish suchthath(B) =t andh(C) = f. This canbedone
since(B & -C) is consistent. Note thatif n is eventhenty(h)(B) = t andt,;(h)(C) = f, andif
nis oddthenty,(h)(B) = f andt,;(h)(C) =t. Sothereis somemaximally consistent,,-sequence
S suchthat neitherB nor C is stablein S. This suffices. ~

Example 5.19. Thisexamplewill show that(1) T"™* ¢, T™ " and(2) T"™ * ¢, T9™° where
p andp’ are chosenfrom the list |, kK, 0, 01, 02, with p strictly to the left of p’ on this list.
Considera languagel. with exactlytwo nonquotenamesp andc, no function symbolsand no
nonlogicalpredicates.Let M = [, Ibe that groundmodelsuchthatl(b) = B = -Th. LetC =
[X(x = x). Notethatfor anyfixed point h of y, K, o, 1, or 62, h(B) = f. Thuslfp(k,,)(B O C)
= Ifp(o)(B O -B) = Ifp(ol,)(-T'B" O -T=B’) = Ifp(02,)(T'B" O T'-B’) =t. Meanwhile,
fp(uy)(B O C) = gifp(uy)(B O C) = gifp(ky)(B O -B) = gifp(o,)(-T'B" U -T=B) =
gifp(01,)(T'B’ O T'=B’) =n. -
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Example 5.20. This examplewill showthatT" ¢, T9"? for p = g, 01 or 62. Considera
languagd. with countablyinfinitely manynonquotenamesp,, b,, ..., b,, ..., nofunctionsymbols
and exactly one non-logical predicate the unary predicateG. Let M = [$, I0be that classical
groundmodelsuchthatl(b,) =B, = Th, O [(X(W}(CXx & Gy & Tx & Ty & x#y) OOxX(Gx 0 =Tx),
andl(b) =B =0Ox(Gx O (Tx=x=1Db)) fori =1, andI(G)(A) =t iff ADY ={B, B, ..., B,
...}. Foreachn >0, let H, = {h: his aclassicalhypothesisandh(B,) =t andh(B,) = f for m
# n}. Let H; = {h: his aclassicalhypothesisandh(B,) = f for everym} andlet H, = {h: his
a classicalhypothesisandh(B,) =t for everym}. Note the following:
if hO H, thent,(h) OH,;
if h O H; thenty,(h) O H,,
if h O H, thenty,(h) O H,, and
if h O OH, O H, OH, thent,(h) O H,.
Thus,for any1,,-sequencé, we haveS, O 0, ,H,. We alsohave,for everym=>1,S =, S, .
Thus by the Major Corollary (Corollary 5.6), S, O 0, H, is a fixed point. Thus,not only does
every 1,-sequenceculminatein somefixed point in O H,, but t,, hasinfinitely many fixed
points,exactlyonein eachH,. Let h, bethe uniquefixed point of 1, in H,. NotethatV, = {A:
h,(A) =t for eachn}. So[X(Gx & Tx) O V,,. Furthermoresupposeve definethe hypothesis
h' asfollows: h'(A) =tif AOV,,; h'(A) =fif -A O V,; h'(A) =n otherwise. Thenh’ is the
greatesiower boundof the h,. Also notethath’ is strongly consistent.
We will now arguethatgifp(02,,)((X(Gx & Tx)) = gifp(o1,)((X(Gx & TX)) = gifp(o,,)((X(Gx
& Tx)) =n. We will only give the argumentfor gifp(02,,)((X(Gx & Tx)); the otherarguments
aresimilar.
Any intrinsic point of 02, mustbe < any classicalfixed point of 1,,. Thusgifp(c2,) < h,,
for eachn. Thus gifp(c2,) < h". Now we claim that V,, O {=B,, -B,, ..., -B,, ...} is a
consistenset. To seethis, notethatV,, O {-B,, -B,, ..., -B,} is a consistentet,sinceV,, 0

{-By, -B,, ...,7B} O{A: h,,,(A) =t}. GiventhatV,, O {-~B,, -B,, ..., "B, ...} is consistent,
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the following hypothesish’ > h' is strongly consistent: h'(A) =t if A O V,,; h(A) = f if A [
Vy, or A OY; h'(A) = n otherwise. Sinceh' is strongly consistentjt can be extendedto a
classical strongly consistentypothesish” > h' > h" > gifp(c2,,). Notethath”(A) = f for each
ADOY. Sot,(h")(IXGx & Tx)) =f. Thusgifp(c2,)((X(GCx & TX)) = 02,,(gifp(02,,))((X(CX &
TX)) # t, by the definition of 02,,. Also, gifp(c2,,)(CX(Gx & Tx)) # f, sincegifp(c2,,) < h, and
ho((X(GX & Tx)) = t. Thusgifp(c2,,)((X(Gx & Tx)) = n, asdesired. -

So far, we havethe following results.

Positiveresultsprovedin 84. Tt g T x g T o< Thol g The02 Tl < TP for
P=WK,0,0L0r02 T < T T TS TPOg T, T2 T TPH, TRK TPeg,
Thog, Tholg T2 T TP, T's, T T'g, TS TCg, TOP02 T 02 ¢ To ol o
T 0 g, TP g TPU TH g, TO g, TOP 02 g TOM o1 TO 0 < TOP K < TofPU TP 022 Te
Tl g T2 Tihig Thog Tl T g T

Positiveresultsprovedin 85. T <, T". T¢g, T T™ o2 g, T 02 Tofp o TI® Pfor p =
U, K, g, 0l or a2.

Negativeresultsfrom the examplesin 85. T* «, T%. T# ¢, T". T% ¢, TO 1 TP ol o T,
T ol g, T# TP 02 ¢, T7, TP 02 ¢, T TC g, T T, T TO ¢, T TC g, T TP O ¢, TP O,
Tl ol g Tl ol Tl 02 o Tl ol oo w4 Toie.x  Tolb.x o TOfp.0 Tolb.0 4 Tolb 0l oMol o
TofP. 02 Tofp.02 4 Te, Thek g The b T e ¢ TO® P wherep andp' arechoserfrom thelist y,
K, 0, 01, 02, sothatp is strictly to the left of p’ onthislist. T" ¢, T for p = g, 01 or 02.

We addthe following threenegativeresults. (i) T «, T™° See[3], Example6B.7. (ii)
T ¢, T™ 9 See[3], Example6B.13. (iii) T"™° ¢, T™* Chooseany S-neutralgroundmodel.
By Corollary 4.24,1fp(0) is classical. But, by the proof of Theorem4.5, Ifp(k) is not classical.

The negativeparts of Theorems4.2 and 4.5 follow from theseresults,togetherwith (1)
Lemma4.20; (2) the fact thatif T <, T' thenT <, T'; (3) the fact that <, and<, arereflexive
andtransitive;(4) thefactthat<,, <, and<; aretransitive;and(5) the positive partsof Theorems

4.2 and4.5.
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