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Abstract. In responseto the liar’s paradox,Kripke developedthe fixed point semanticsfor
languagesexpressingtheir own truth concepts. (Martin andWoodruff independentlydeveloped
this semantics,but not to thesameextentasKripke.) Kripke’s work suggestsa numberof related
theoriesof truth for suchlanguages.GuptaandBelnapdeveloptheir revision theory of truth in
contrastto thefixed point theories.Thecurrentpaperconsidersthreenaturalwaysto comparethe
variousresultingtheoriesof truth,andestablishestheresultingrelationshipsamongthesetheories.
The point is to get a senseof the lay of the land amid a variety of options. Our resultswill also
providetechnicalfodder for the methodologicalremarksof the companionpaperto this one.

§1. Introduction. Givena first orderlanguageL, a classical model for L is anorderedpair M

= 〈D, I〉, where D, the domain of discourse, is a nonemptyset; and where I is a function

assigningto eachnameof L a memberof D, to eachn-placefunction symbolof L an n-place

function on D, andto eachn-placerelationsymbola function from Dn to { t, f}. Supposethat

L andL+ arefirst orderlanguages,whereL+ is L expandedwith a distinguishedpredicateT, and

whereL hasa quotename‘A’ for eachsentenceA of L+. A ground model for L is classical

modelM = 〈D, I〉 for L suchthat I(‘ A’) = A ∈ D for eachsentenceA of L+.

Given a groundmodelM for L, we canthink of I(X) asthe interpretation or, to borrow an

expressionfrom GuptaandBelnap[3], thesignification of X whereX is a name,functionsymbol

or relationsymbol. GuptaandBelnapcharacterizean expression’sor concept’ssignification in

a world w as"an abstractsomethingthatcarriesall theinformationaboutall theexpression’s[or

concept’s]extensionalrelationsin w". If we want to interpretTx as "x is true", then,given a

groundmodel, we would like to find an appropriatesignification, or an appropriaterangeof

significations,for T.

We might try to expandM to a classicalmodelM′ = 〈D, I′〉 for L+. For T to meantruth, M′

shouldassignthe sametruth value to the sentencesT‘A’ and A, for every sentenceA of L+.

Unfortunately,not everygroundmodelM = 〈D, I〉 canthusbe expanded: if λ is a nameof L

andif I(λ) = ¬Tλ, thenI′(λ) = I′(‘¬Tλ’) sothatT‘¬Tλ’ andTλ areassignedthesametruth value

by M′; thusT‘¬Tλ’ and¬Tλ areassigneddifferent truth valuesby M′. This is a formalization

of the liar’s paradox,with the sentence¬Tλ asthe offendingliar’s sentence.
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In a semanticsfor languagescapableof expressingtheir own truth concepts,T will not, in

general,haveaclassicalsignification. Kripke [8] andMartin andWoodruff [10] presentthefixed

point semanticsfor suchlanguages.Kripke suggestsa whole hostof relatedapproachesto the

problem of assigning,given a groundmodel M, a signification to T. Guptaand Belnap [3]

presenttheir revision theories in contrastto the variousoptionspresentedby Kripke.

In thecurrentpaper,we motivatethreedifferentwaysof comparingfixed point andrevision

theoriesof truth, andwe establishthe variousrelationshipsthe theorieshaveto oneanotherin

thesethreedifferent senses.The generalpoint of this is to help us get the lay of the land amid

the variety of choices. There is a more specific usewe makeof thesecomparisons: in the

companionpaperto this one,Kremer[7], we usethecurrentresultsto critiqueoneof Guptaand

Belnap’s motivationsfor their revisiontheoreticapproach,i.e. their claimthattherevisiontheory

hasthe advantageof treatingtruth like a classicalconceptwhenthereis no vicious reference.

In thecourseof our investigation,we closetwo problemsleft openby GuptaandBelnap[3].

We alsogive a simplified proof of their "Main Lemma".

§2. Fixed point semantics.1 The intuition behind the fixed point semanticsis that

pathologicalsentencessuchas the liar sentenceare neithertrue nor false. In generala three-

valued model for a languageL is just like a classicalmodel,exceptthat the function I assigns,

to eachn-placepredicate,a function from Dn to { t, f, n}. A classicalmodelis a specialcaseof

a three-valuedmodel. Officially t(rue), f(alse)andn(either)arethreetruth values,but n canbe

thoughtof asthe absenceof a truth value.2 We order the truth valuesasfollows: n ≤ n ≤ t ≤

t and n ≤ n ≤ f ≤ f. We say that M = 〈D, I〉 ≤ M′ = 〈D, I′〉 iff I(X) = I′(X) for eachnameor

1We will follow GuptaandBelnap’spresentationof thefixed point semanticsandof therevisiontheoryof truth.
Much of this materialis culled from [3] andelsewhere.Among the numbereddefinitions,theorems,andlemmas,
thosenot explicitly attributedto a sourceareoriginal to the currentpaper.

2We will not considerfour-valuedmodels,with theadditionaltruth valueb(oth). SeeVisser[13] and[14] and
Woodruff [15].
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functionsymbolX, andI(G)(d1, ..., dn) ≤ I′(G)(d1, ..., dn) for eachn-placepredicatesymbolG and

eachd1, ..., dn ∈ D.

Given a three-valuedmodelM = 〈D, I〉 andan assignments of valuesto the variables,the

value,ValM, s(t) ∈ D of eachterm t is definedin the standardway. The atomicformula Gt1...tn

is assignedthevalueI(G)(ValM, s(t1), ..., ValM, s(tn)). To evaluatecompositeexpressions,we must

havesomeevaluation scheme: for example,if A is f(alse)and B is n(either),we mustdecide

whether (A & B) is f or n. For classicalmodels,we will just use the standardclassical

evaluationscheme,τ. For nonclassicalmodels,we will considertheweak Kleene scheme, µ, and

the strong Kleene scheme, κ. Theseboth agreewith τ on classicaltruth values. According to

both µ and κ, ¬n = n. According to µ, (t & n) = (n & t) = (f & n) = (n & f) = n. And

accordingto κ, (t & n) = (n & t) = n and (f & n) = (n & f) = f. If we treat universal

quantificationanalogouslyto conjunction,thenfor eachsentenceA andeachevaluationscheme

ρ = τ, µ, or κ, we candefineValM, ρ(A): the truth valueof A in M accordingto ρ. (ValM, τ(A) is

defined only when M is classical.) We also consider a fourth scheme,van Fraassen’s

supervaluation scheme,σ:

ValM, σ(A) =df t [f], if ValM′, τ(A) = t [f] for everyclassicalM′ ≥ M.

n, otherwise.

Note: if ValM, ρ(A) = n, thenValM, ρ(A ∨ ¬A) = n if ρ = κ or µ, andValM, ρ(A ∨ ¬A) = t if ρ =

σ.

For the fixed point semantics,suppose,as in §1, that L and L+ are first order languages,

whereL+ is L expandedwith a distinguishedpredicateT, andwhereL hasa quotename‘A’ for

eachsentenceA of L+. And supposethat M = 〈D, I〉 is a (classical)groundmodel for L, as

definedin §1. We want to expandM to a three-valuedmodelby addinga significationfor the

predicateT. Let an hypothesis be a function h:D → { t, f, n}, and a classical hypothesis,a

function h:D → { t, f}. Hypothesesarepotentialsignificationsof T. Let M + h be the model

M′ = 〈D, I′〉 for L+, whereI′ andI agreeon the constantsof L andwhereI′(T) = h. Modelsof
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the form M + h are expanded models. If we want Tx to mean"x is true", then we want to

expanda groundmodel M to a model M + h so that ValM + h, ρ(A) = ValM + h, ρ(T‘A’) for every

sentenceA of L+, wherewe areworking with someevaluationschemeρ. This is equivalentto

thecondition,ValM + h, ρ(A) = h(A). We will alsoinsist that if d ∈ D is not a sentenceof L+, then

I′(T)(d) = h(d) = f. For ρ = τ, µ, κ, or σ, definethe jump operator ρM on the setof hypotheses

asfollows, restrictingthis definition to classicalhypothesesfor ρ = τ:

ρM(h)(A) = ValM + h, ρ(A), if A ∈ S = { A: A is a sentenceof L+}

ρM(h)(d) = f if d ∈ D - S.

The hypothesesmeetingour conditions,above,underwhich Tx means"x is true", arethe fixed

points of ρM: the hypothesesh suchthat ρM(h) = h. The fixed pointsdeliver, for the language

L+, modelsM + h satisfyingwhat M. Kremer [6] calls "the fixed point conceptionof truth",

accordingto which, asKripke [8] putsit, "we areentitledto assert(or deny)of a sentencethat

it is true preciselyunderthe circumstanceswhenwe canassert(or deny) the sentenceitself."

Kripke [8] provesthat µM, [κM, σM] hasa fixed point, for everygroundmodelM. In fact,

Kripke’s resultsarestronger. Saythat h ≤ h′ iff h(d) ≤ h′(d) for everyd ∈ D. And saythat a

functionρ on hypothesesis monotone iff, for all hypothesesh andh′, if h ≤ h′ thenρ(h) ≤ ρ(h′).

µM, κM, andσM aremonotone,for everygroundmodelM. Eachmonotonefunction ρ not only

hasa fixed point, but a least fixed point, lfp(ρ). Saythath andh′ arecompatible iff h ≤ h″ and

h′ ≤ h″ for somehypothesish″, andthath is intrinsic iff h is compatiblewith everyfixed point.

For example,lfp(ρ) is intrinsic. Eachmonotonefunction ρ not only hasa least fixed point, but

a greatest intrinsic fixed point, gifp(ρ), which is not in generalidentical to lfp(ρ). Say that a

sentenceA is ρ-grounded iff lfp(ρ) = t or f, andρ-intrinsic iff gifp(ρ) = t or f. Theliar sentence

is neitherκ-groundednor κ-intrinsic sinceit getsthe valuen at everyfixed point h. The truth-

teller is neitherκ-groundednor κ-intrinsic sinceit getsthe valuet at somefixed pointsandthe

value f at others. If I(b) = Tb ∨ ¬Tb, then Tb ∨ ¬Tb is κ-intrinsic and σ-grounded,but not

κ-grounded: gifp(κM)(Tb ∨ ¬Tb) = lfp(σM)(Tb ∨ ¬Tb) = t, while lfp(κM)(Tb ∨ ¬Tb) = n.
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The fixed point semanticsyields a numberof plausiblesignificationsof T: the fixed points

generatedby your favouriteevaluationscheme.Manyhaveconsideredtheproposalthattheleast

fixed point yields the correctsignificationof T.3 M. Kremer [6] decisivelyarguesthat Kripke

[8] doesnot endorsethis proposal,andthat this proposalmisinterpretsthefixed point semantics:

the fixed point conceptionof truth, mentionedabove,favours no particular fixed point. M.

Kremeremphasizesa tensionbetweenthe fixed point conceptionof truth andanotherintuition,

the"supervenienceof semantics":the intuition that the interpretationof T shouldbedetermined

by the interpretationof the nonsemanticnames,function symbolsandpredicates.

Fix someevaluationscheme.Thedisputebetweena superveniencefixed point theorist—for

specificity, saya leastfixed point theorist—anda nonsuperveniencefixed point theoristcanbe

broughtout as follows. Fix someuninterpretedlanguageL, and let L+ be L expandedwith a

privilegedpredicateT. Supposethat,otherthantheir useof T, thediscourseof two communities

X andY is representedby the samegroundmodelM, while X’s useof T is representedby the

least fixed point hX andY’s useof T is representedby the fixed point hY ≠ hX . Let LX = 〈L+,

M + hX〉 andLY = 〈L+, M + hY〉 be the interpretedlanguagesspokenby X andY. Accordingto

the leastfixed point theorist,X usesT to expresstruth in LX but Y doesnot useT to express

truth in LY, despitethe fact that, in LY, A andT‘A’ havethe sametruth valuefor eachsentence

A. Accordingto the nonsuperviencetheorist,on the otherhand,the fact that X andY useT to

expresstruth in LX andLY, respectively,is givenby thefact thathX andhY arefixed points: each

community’suseof T satisfiesthe necessaryand,for the nonsuperveniencetheorist,sufficient

conditionsfor T to expresstruth in the community’slanguage.

We have on board two proposalsfor interpreting the fixed point semantics. On the

supervenience proposal,the languagespokenby a community is determinedby its use of

nonsemanticvocabulary—representedby a groundmodel—andthe interpretationof T as truth

is givenby someparticularfixed point, usuallyassumedto betheleastfixed point. Thegreatest

3SeeHaack[4], Grover [2], Davis [1], Kroon [9], Parsons[11], Kirkham [5], andRead[12].
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intrinsic fixed point might also seemnatural: "The largestintrinsic fixed point is the unique

‘largest’ interpretationof Tx which is consistentwith our intuitive idea of truth and makesno

arbitrary choices in truth assignments. It is thus an object of special theoretical interest."

(Kripke [8].) On the nonsupervenience proposal,the languagespokenby the communityis not

determinedby its useof nonsemanticvocabulary: the communitiesX andY, in the preceding

paragraph,speakdistinct languagesin which T expressestruth, despitea sharedgroundmodel.

If we fix an evaluationschemeand a ground model, all the fixed points provide acceptable

significationsof truth.

We will not adjudicatebetweenthesetwo proposals.Rather,we will introducea numberof

supervenience theoriesof truth, which dependon which evaluationschemewe use, and on

whetherwe privilege the leastfixed point or the greatestintrinsic fixed point. Onereasonsto

restrict ourselvesto the supervenienceapproachis that Gupta and Belnap’s revision theories

dependon thesupervenienceof semantics,andsoit is thesuperveniencefixed point theoriesthat

aremost readily comparableto the revisiontheories.

Definition 2.1. Let ρ = µ, κ, or σ. The sentenceA of L+ is valid in the ground model M

according to (the theory)Tlfp, ρ iff lfp(ρM)(A) = t. The sentenceA of L+ is valid in the ground

model M according to Tgifp, ρ iff gifp(ρM)(A) = t.4 We define the set of sentencesvalid in M

accordingto suchandsucha theoryasfollows:

VM
lfp, ρ =df { A: lfp(ρM)(A) = t} = { A: A is valid in M accordingto Tlfp, ρ}, and

VM
gifp, ρ =df { A: gifp(ρM)(A) = t} = { A: A is valid in M accordingto Tgifp, ρ}.

Beforewe considerrevisiontheories,we definetwo variants,definedby Kripke [8], of the

supervaluationjump operatorσM. Saythat h is weakly consistent iff the setof sentences{ A ∈

S: h(A) = t} is consistent. Say that h is strongly consistent iff { A ∈ S: h(A) = t} ∪ {¬A: A

4Note that we havenot defined the theoriesof truth, Tlfp, ρ andsuch: we havespecifiedeachtheory’sverdict
regardingwhich sentencesarevalid in which groundmodelsbut not, for example,eachtheory’sverdict regarding
what the valid inferencesare.
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∈ S andh(A) = f} is consistent. Note: a classicalhypothesish is stronglyconsistentiff { A ∈

S: h(A) = t} is completeandconsistent.σ1M(h) [σ2M(h)] is definedonly for weakly [strongly]

consistenth, asfollows:

σ1M(h)(A) = t [f] iff τM(h′)(A) = t [f] for all weakly consistentclassicalh′ ≥ h.

n, otherwise,for sentencesA ∈ S.

σ1M(h)(d) = f, for d ∈ (D - S).

σ2M(h)(A) = t [f] iff τM(h′)(A) = t [f] for all stronglyconsistentclassicalh′ ≥ h.

n, otherwise,for sentencesA ∈ S.

σ2M(h)(d) = f, for d ∈ (D - S).5

σ1M [σ2M] is a monotoneoperatoron theweakly [strongly] consistenthypotheses.This suffices

for σ1M [σ2M] to havebotha leastfixed point anda greatestintrinsic fixed point. We will treat

σ1 andσ2 astwo new three-valuedevaluationschemes.TheoriesTlfp, σ1, Tgifp, σ2, etc.,andsets

VM
lfp, σ1, VM

gifp, σ2, etc. are introducedasin Definition 2.1, above.

§3. Revision theories of truth. GuptaandBelnap’smostinterestingobjectionto the fixed

point semanticsstemsfrom an uncommontakeon a commonobservation: the observationthat

thereareconnectivesthatfixed point languagescannotexpress,for example,exclusion negation,

¬n = t; andtheLukasiewiczbiconditional,(n ≡ n) = t. Their objectionis not that thereis a gap

betweentheresourcesof objectlanguageandmetalanguage,but that "thereis a gapbetweenthe

resourcesof the languagethat is the original objectof investigationandthoseof the languages

that areamenableto fixed point theories".(p. 101) The languagethat is the original objectof

investigationcanexpressgenuinelyparadoxicalsentences,whosebehaviouris unstable.And one

source of the language’sability to expresssuchparadoxicalitiesis the fact that it can express

5An equivalentdefinitionof σ2M(h)(A) is σ2M(h)(A) = t [f] iff A is true[false] in all classicalmodelsM′ ≥ M + h
suchthat the extensionof T in M′ is completeandconsistent.GuptaandBelnap[3] definea jump operatorσ c

M(h)
in this way, but for weakly ratherthan strongly consistenth. Unfortunately,the weak consistencyof h doesnot
guaranteethe existenceof a modelM′ ≥ M + h suchthat the extensionof T in M′ is completeandconsistent. In
fact, the existenceof sucha modelM′ is equivalentto the strongconsistencyof h. σ2M is identical to Guptaand
Belnap’sσ c

M, with the definition in [3] correctedso that it is restrictedto stronglyconsistenth.
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exclusionnegation. A fixed point languagecannot,in the end,expressgenuinelyparadoxical

sentences:eventheliar behavesstably. Sofixed point theoriesdo not deliverananalysisof the

unstablephenomenonthatwe aretrying to understand."Thereareappearancesof theLiar here,

but they deceive."(p. 96)

Workingwith apurelytwo-valuedobjectlanguage,GuptaandBelnapimaginebeginningwith

a classicalhypothesish regardingthe extensionof T, and then revising h by using the jump

operator,or rule of revision, τM. As the revisionprocedureproceeds(h, τM(h), τ 2
M(h), ...) a liar

sentencewill flip backandforth betweentrueandfalse. A truth-tellerwill keepwhatevervalue

it had to begin with. Other sentencesmight display unstablebehaviourto begin with, but

eventuallysettledown to a particulartruth value. Somesentenceswill be very well behaved:

they will settledown to a truth valuethat is independentof the initial hypothesish. Guptaand

Belnapformalize the carryingout of suchproceduresinto the transfinitewith their notion of a

revision sequence.

Given any function ρ on hypotheses,a ρ-sequence, or a revision sequence for ρ, is an

ordinal-lengthsequenceS of hypothesessuchthat Sα + 1 = ρ(Sα) for every ordinal α; andsuch

that for every limit ordinal λ, every truth valuex andeveryd ∈ D, Sλ(d) = x if thereis a β <

λ suchthat Sα(d) = x for everyordinal α betweenβ andλ. This secondclauseis the limit rule

for ρ-sequences.Note that if S is a ρ-sequencethenρ is definedon Sα for everyordinal α; so,

if S is a τM-sequencethenSα is classicalfor everyordinal α. S culminates in h iff thereis a β

such that Sα = h for every α ≥ β. For the purposesof the revision theory of truth, we are

primarily interestedin τM-sequences,but other revision sequencesare of interest. Note that if

ρ = µ, κ, σ, or σ1 or σ2 andif M = 〈D, I〉 is a groundmodel,thenthereis a uniqueρM-sequence

S suchthat S0(d) = n for everyd ∈ D. Furthermore,that ρM-sequenceculminatesin lfp(ρM).

As mentioned,GuptaandBelnapwant to formalizethe behaviourof truth, instabilitiesand

all. Relative to a ground model M, this behaviouris arguably representedby the classof

τM-sequences.GivenagroundmodelM, theclassof τM-sequencesdeliversaverdictaboutwhich
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sentencesarewell-behavedor ill-behaved,aswell asa representationof how varioussentences

areill-behaved. For this reason,GuptaandBelnapproposethat the significationof truth is the

revisionrule τM, sincethis rule arguablyfits the Gupta-Belnapcharacterization(see§1, above)

of anexpression’sor concept’ssignification. Themost well-behavedsentencesarethosethatare

stablyt in everyτM-sequence.Accordingly,GuptaandBelnapintroducetherevisiontheoryT*.

Definition 3.1. ([3]) The sentenceA of L+ is valid in M according to (the theory)T* iff A

is stably t in all τM-sequences.V *
M =df { A: A is stably t in everyτM-sequence}.

We might want to weakenthis conditionon the validity of a sentenceA in a groundmodel

M. In somegroundmodels,therearesentencesthat arenearly stably t in the following sense:

they arestablytrue exceptpossiblyat limit ordinalsandfor a finite numberof stepsafter limit

ordinals. Formally, a sentenceA of L+ is nearly stably t [f] in the τM-revision sequenceS iff

thereis an ordinal β suchthat for all γ ≥ β, thereis a naturalnumberm suchthat for all n ≥ m,

Sγ + n(A) = t [f]. GuptaandBelnap’stheoryT# is basedon nearstability.

Definition 3.2. ([3]) The sentenceA of L+ is valid in M according to (the theory)T# iff A

is nearlystably t in all τM-sequences.V #
M =df { A: A is nearlystably t in everyτM-sequence}.

Finally, we might put constraintson which hypothesesarelegitimatehypothesesconcerning

the extensionof T, and henceon which τM-sequencesare legitimate revision sequences.A

natural condition to put on the legitimacy of a classicalhypothesish is that the resulting

extensionof T be consistentandcomplete,i.e. that h be stronglyconsistent. A τM-sequenceS

is maximally consistent iff Sα is strongly consistent for every ordinal α. Guptaand Belnap’s

theoryTc is basedon maximally consistentτM-sequences.

Definition 3.3. ([3]) The sentenceA of L+ is valid in M according to (the theory)Tc iff A

is stablyt in all maximallyconsistentτM-sequences.V c
M =df { A: A is stablyt in everymaximally

consistentτM-sequence}.

All threerevision theoriesare supervenience theoriesin the senseof §2: the behaviourof

truth andthestatusof varioussentencesis determinedby thenonsemanticvocabulary,whoseuse
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is representedby thegroundmodel. Thereis no otherway to go in therevision-theoreticsetting:

for most groundmodelsM thereis no classH of privileged hypotheses,like the fixed points,

such that for distinct h, h′ ∈ H we could take the expandedmodelsM + h and M + h′ to

representdistinct languages in which T representstruth. On therevisiontheories,eachlanguage

is representedby a groundmodel,andthebehaviourof truth is representedby thevariousways

in which onehypothesisleadsto anotheraswe carry out the revisionprocess.

§4. Three ways to compare theories of truth. The harderparts of the proofs of the

theoremsin this sectionare reservedfor §5. The first relation that we define, to compare

theoriesof truth, is the mostobvious.

Definition 4.1. Given any two superveniencetheoriesT andT′, we saythat T ≤1 T′ iff for

everylanguageL everygroundmodelM andeverysentenceA of L+, if A is valid in M according

to T thenA is valid in M accordingto T′. We saythat T <1 T′ iff T ≤1 T′ andT 1 T′. Note

that ≤1 is reflexive andtransitive.

Theorem 4.2. <1 behavesasin thefollowing diagram,i.e. it is thesmallesttransitiverelation

satisfyingthe conditionsgiven in the diagram. Since≤1 is reflexive, the diagramcompletely

determines≤1. The subscripted1 hasbeendroppedfrom the diagram.

T#

∨
T* < Tc

∨ ∨
Tlfp, µ < Tlfp, κ < Tlfp, σ < Tlfp, σ1 < Tlfp, σ2

∧ ∧ ∧ ∧ ∧
Tgifp, µ Tgifp, κ Tgifp, σ Tgifp, σ1 Tgifp, σ2

Proof. For Tlfp, µ ≤1 Tlfp, κ ≤1 Tlfp, σ ≤1 Tlfp, σ1 ≤1 Tlfp, σ2, it suffices to show that lfp(µM) ≤

lfp(κM) ≤ lfp(σM) ≤ lfp(σ1M) ≤ lfp(σ2M) for any groundmodelM. For ρ = µ, κ, σ, σ1, andσ2,

let S(ρ) be the unique ρM-sequencesuch that S(ρ)0(d) = n for every d ∈ D. By transfinite

induction,S(µ)α ≤ S(κ)α ≤ S(σ)α ≤ S(σ1)α ≤ S(σ2)α for everyordinal α. So lfp(µM) ≤ lfp(κM) ≤

lfp(σM) ≤ lfp(σ1M) ≤ lfp(σ2M), sinceeachS(ρ) culminatesin lfp(ρM).
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For Tlfp, ρ ≤1 Tgifp, ρ (ρ = µ, κ, σ, σ1, or σ2), note that lfp(ρM) ≤ gifp(ρM) since lfp(ρM) is

intrinsic.

T* ≤1 T# andT* ≤1 Tc canbe proveddirectly from the definitions.

To seethat Tlfp, σ ≤1 T*, fix a groundmodelM = 〈D, I〉 andlet S be the uniqueσM-sequence

suchthatS0(d) = n for everyd ∈ D. ThenS culminatesin lfp(σ). And let S′ beanyτM-revision

sequence.By transfinite induction, it can be provedthat Sα ≤ S′α for every ordinal α. So if

lfp(σ)(A) = t, thenA is stablyt in S′. SinceS′ wasarbitrary,if lfp(σ)(A) = t thenA is valid in

M accordingto T*. ThusTlfp, σ ≤1 T*. Similarly Tlfp, σ2 ≤1 Tc.

This establishesall of the positive claims of the form T ≤1 T′ in Theorem4.2. The

counterexamplesin §5, below,establishthe negativeclaimsof the form T 1 T′.

Of particular interestare ground models in which truth behaveslike a classicalconcept.

Suppose,for example,thatoneis devisinga semanticsfor languagesthatcontaintheir own truth

predicates.All elsebeingequal,onemight want a semanticsthat delivers,wheneverpossible,

somethingapproachingaclassicaltheory: weknowthattruthbehavesparadoxically,but it seems

anadvantageto minimalizethis paradoxicality.Consider,for example,a classicalgroundmodel

M = 〈D, I〉 that makesno distinctions,otherthanwith quotenames,amongthe sentencesof L+:

for an extremecase,supposethat L has no nonquotenames,no function symbols and no

nonlogicalpredicates.Thereis no circular referencein thegroundmodel,andthereseemsto be

no vicious referenceof anykind. And yet lfp(µM) andlfp(κM) arenonclassical(seetheproof of

Theorem4.5): this suggeststhat truth doesnot behavelike a classicalconceptin M, at leastnot

accordingto the least fixed point theoriesTlfp, µ and Tlfp, κ. On the other hand,gifp(µM) and

gifp(κM) areboth classical,asis lfp(σM) (this follows from Corollary 4.24,below). So,at least

relative to this particulargroundmodel,the theoriesTgifp, µ, Tgifp, κ andTlfp, σ havean advantage

over Tlfp, µ andTlfp, κ. This motivatesour definition of ≤2, below (Definition 4.4).

Definition 4.3. Let ρ = µ, κ, σ, or σ1 or σ2. Tlfp, ρ [Tgifp, ρ] dictates that truth behaves like

a classical concept in the ground model M iff A ∈ VM
lfp, ρ [VM

gifp, ρ] or ¬A ∈ VM
lfp, ρ [VM

gifp, ρ] for every
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sentenceA of L+. Similarly, T* [T#, Tc] dictates that truth behaves like a classical concept in

the ground model M iff A ∈ V *
M [V #

M, V c
M] or ¬A ∈ V *

M [V #
M, V c

M] for everysentenceA of L+.

Definition 4.4. Given any two superveniencefixed point or revisiontheoriesT andT′, we

say that T ≤2 T′ iff for every languageL and every groundmodel M, if T dictatesthat truth

behaveslike a classicalconceptin M thensodoesT′. Note that T ≤2 T′ iff, for everylanguage

L andeverygroundmodelM, if T dictatesthat truth behaveslike a classicalconceptin M, then

everysentencevalid in M accordingto T is alsovalid in M accordingto T′. We saythat T ≡2

T′ iff T ≤2 T′ and T′ ≤2 T. We say that T <2 T′ iff T ≤2 T′ and T 2 T′. Note that ≤2 is

reflexive andtransitive. Note alsothat if T ≤1 T′ thenT ≤2 T′.

Theorem 4.5. <2 behavesasin thefollowing diagram,i.e. it is thesmallesttransitiverelation

satisfyingthe conditionsgiven in the diagram. Since≤2 is reflexive, the diagramcompletely

determines≤2. The subscripted2 hasbeendroppedfrom the diagram.

T#

∨
T* < Tc < Tgifp, σ2 < Tgifp, σ1 < Tgifp, σ < Tgifp, κ < Tgifp, µ

∨ ∨
Tlfp, µ ≡ Tlfp, κ < Tlfp, σ < Tlfp, σ1 < Tlfp, σ2

Proof. Thefact thatTlfp, µ ≡2 Tlfp, κ follows from thefact that, in no groundmodeldoesTlfp, µ

or Tlfp, κ dictatethat truth behaveslike a classicalconcept. To seethis, choosea groundmodel

M = 〈D, I〉 and let S be the unique µM-sequencesuch that S0(d) = n for every d ∈ D. By

transfiniteinduction,it canbe shownthat Sα(∀x(Tx ∨ ¬Tx)) = n for everyordinal α. But then

lfp(µM)(∀x(Tx ∨ ¬Tx)) = n sinceS culminatesin lfp(µM). Similarly lfp(κM)(∀x(Tx ∨ ¬Tx)) = n.

The following follow from the alreadyprovenpositivepart of Theorem4.2: Tlfp, κ ≤2 Tlfp, σ

≤2 Tlfp, σ1 ≤2 Tlfp, σ2 ≤2 Tc andTlfp, σ ≤2 T*≤2 T# andT*≤2 Tc.

To seethat Tc ≤2 Tgifp, σ2, supposethat M is a groundmodel in which Tc dictatesthat truth

behaveslike a classicalconcept. So there is a classicalhypothesish in which all maximally

consistentτM-sequencesculminate. It sufficesto showthat h is the greatestfixed point of σ2M,

in which casegifp(σ2M) = h is classical,in which caseTgifp, σ2 dictatesthat truth behaveslike a
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classicalconceptin M. Let h′ beanyfixed point of σ2M. Sinceh′ is stronglyconsistent,we can

choosea stronglyconsistentclassicalh″ ≥ h′. Let S be any maximally consistentτM-sequence

with S0 = h″ ≥ h′. By the monotonicityof σ2M togetherwith the fact that σ2M agreeswith τM

on all classicalhypotheses,we canshowby transfiniteinductionthat Sα ≥ h′ for everyordinal

α. So h ≥ h′, sinceS culminatesin h. Thus,h is the greatestfixed point of σ2M, asdesired.

To seethat Tgifp, σ2 ≤2 Tgifp, σ1 ≤2 Tgifp, σ ≤2 Tgifp, κ ≤2 Tgifp, µ, order the evaluationschemes

transitivelyasfollows, µ ≤ κ ≤ σ ≤ σ1 ≤ σ2; andchooseρ andρ′ whereρ ≤ ρ′. It sufficesto

showthatif gifp(ρ′M) is classicalthengifp(ρM) = gifp(ρ′M). Sosupposethatgifp(ρ′M) is classical.

Thenit is a fixed point of τM, andhenceof bothρM andρ′M. To showthatgifp(ρM) = gifp(ρ′M),

it sufficesto showthat h ≤ gifp(ρ′M) for every fixed point h of ρM. Choosea fixed point h of

ρM. ρ′M is definedon h—in caseρ′M is σ1 or σ2, h is stronglyconsistentsinceh is a fixed point

of ρM. Furthermore,h = ρM(h) ≤ ρ′M(h). Thusthereis exactlyoneρ′M-sequenceS suchthat S0

= h, andS culminatesin somefixed point h′ of ρ′M, in fact in the leastfixed point of ρ′M such

thath ≤ h′. Sincegifp(ρ′M) is classical,gifp(ρ′M) is thegreatestfixed point of ρ′M. Thush ≤ h′

≤ gifp(ρ′M) asdesired.

This establishesall of the positive claims of the form T ≤2 T′ in Theorem4.5. The

counterexamplesin §5, below,establishthe negativeclaimsof the form T 2 T′.

Remark 4.6. Theorem4.5 answersa questionof Guptaand Belnap[3] (Problem6B.12):

"Doesthecondition‘lfp( σ2M) is classical’imply ‘M is Thomason’[we defineThomason models

below]?" Theansweris no,sinceTlfp, σ2
2 T* (seeExample5.11,below)andsince,by Theorem

4.8,below,a groundmodelis Thomasoniff T* dictatesthattruth behaveslike a classicalconcept

in it.

Thenextcomparativerelation,≤3, is trickier to motivate,andis bestunderstoodin thecontext

of investigatingwhetherthis or that theorydictatesthat truth behaveslike a classicalconceptin

M.
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For starters,it is not alwayseasyto tell whethersometheorydictatesthat truth behaveslike

a classicalconceptin M. GuptaandBelnapdevotesometime to investigatingthecircumstances

underwhich, in effect,T* dictatesthat truth behaveslike a classicalconceptin a groundmodel,

thoughthey do not put it in theseterms. As we shall see,their investigationcanbe broadened

to theoriesother thanT*. GuptaandBelnapproceedby introducingthe notion of a Thomason

groundmodel,andby investigatingthecircumstancesunderwhich agroundmodelis Thomason.

Definition 4.7. ([3]) A groundmodelM is Thomason iff all τM-sequencesculminatein one

andthe samefixed point.

Theorem 4.8. A groundmodelis Thomasoniff T* dictatesthattruth behaveslike a classical

conceptin it.

Proof. This follows immediatelyfrom the definitions.

GuptaandBelnap’sprincipalresultsconcerningThomasonmodelsall havethesamegeneral

character,andall makeit relativelyeasyto showthata wide rangeof groundmodelsare,in fact,

Thomason.The simplestexampleconcernsany groundmodelM for the languageL described

above: a languagewith no nonquotenames,no function symbolsandno nonlogicalpredicates.

Any suchmodelis Thomason.This might beexpectedsince,otherthanwith quotenames,there

is no way to distinguishin the languageamongthe sentencesof the language.

This is a specialcaseof Gupta and Belnap’s result, Theorem4.11, below. Essentially,

Theorem4.11 statesthat any groundmodel that cannotdistinguishamongthe sentences,other

thanwith quotenames,is Thomason.First we needto makethenotionof "distinguishingamong

sentences"precise.

Definition 4.9. ([3], Definitions 2D.2) Supposethat M = 〈D, I〉 is a model for L andX ⊆

D.

(i) The interpretationof a namec is X-neutral in M iff I(c) ∉ X.

(ii) The interpretationof an n-placepredicateF is X-neutral in M, iff for all d1, ...,

dn, d′i ∈ D, if di, d′i ∈ X thenI(F)(d1, ..., di, ..., dn) = I(F)(d1, ..., d′i, ..., dn).
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(iii) The interpretationof ann-placefunction symbolf is X-neutral in M, iff both the

rangeof I(f) is disjoint from X and for all d1, ..., dn,d′i ∈ D, if di, d′i ∈ X then

I(f)(d1, ..., di, ..., dn) = I(f)(d1, ..., d′i , ..., dn).

Definition 4.10. ([3], Definition 6A.2) A model M = 〈D, I〉 is X-neutral iff the

interpretationsin M of all the nonquotenames,nonlogicalpredicates,andfunction symbolsare

X-neutral.

Theorem 4.11. ([3], Theorem 6A.5) If the ground model M is S-neutral then M is

Thomason.

Proof. This is a specialcaseof Corollary 4.24,below.

Gupta and Belnap strengthenthis theorem: Supposethat the ground model can in fact

distinguishamongsentences,but only amongsentencesthat are in somesenseunproblematic,

for exampleamongsentenceswith no occurrencesof T or amongµ-groundedsentences.Then

M is still Thomason.

Theorem 4.12. ([3], Theorem6B.4, Convergenceto a fixed point I) If M is X-neutralthen

M is Thomason,providedthat X containseither(i) all sentencesthat haveoccurrencesof T, or

(ii) all sentencesthat areµ-ungroundedin M, or (iii) all sentencesthat areκ-ungroundedin M,

or (iv) all sentencesthat areσ-ungroundedin M.

Proof. (i) is a specialcaseof Corollary 4.24,below. (ii), (iii) and(iv) arespecialcasesof

Theorem4.21,below.

Note that (ii), (iii) and(iv) of Theorem4.12canbe rewordedasfollows.

Theorem 4.13. Let VM = VM
lfp, µ or VM

lfp, κ or VM
lfp, σ, andsupposethat Y ⊆ { A: A ∈ VM or ¬A

∈ VM}. Thenif the groundmodelM is (S - Y)-neutral thenM is Thomason.

GuptaandBelnappresentthe following exampleasan applicationof Theorem4.12. This

showshow easyit canbe, equippedwith Theorem4.12 or 4.13, to showthat a groundmodel

is Thomason.
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Example 4.14. ([3], Example6B.6) Supposethat the groundmodelM = 〈D, I〉 is S-neutral

exceptfor the namea. Furthermoresupposethat Hb is true in M. ThenM is Thomasonif (i)

I(a) = Hb, (ii) I(a) = T‘Hb’, (iii) I(a) = Hb ∨ ¬Ta, or (iv) I(a) = Ta ∨ ¬Ta.

GuptaandBelnap’sothermain theoremconcerningThomasonmodelsis asfollows.

Theorem 4.15. ([3], Theorem6B.8, Convergenceto a fixed point II) Supposethat M is an

(S - Y)-neutralmodelandthat Y ⊆ { A: A ∈ V *
M or ¬A ∈ V *

M}. ThenM is Thomason.

Proof. This is a specialcaseof Theorem4.21,below.

GuptaandBelnapthengo on to aska relatedquestion.

Question 4.16. ([3], Problem6B.15) Supposethat M is (S - Y)-neutral and that Y ⊆ { A:

A ∈ V c
M or ¬A ∈ V c

M}. Is M Thomason?

As pointedout above,an investigationinto the conditionsunderwhich a groundmodelM

is Thomasonis, in effect,an investigationinto the conditionsunderwhich T* dictatesthat truth

behaveslike a classicalconceptin M. It turnsout that, for a wide rangeof our theoriesT, if M

is (S - Y)-neutralwhereY ⊆ { A: A ∈ VM or ¬A ∈ VM} andwhereVM = { A: A is valid in the

groundmodelM accordingto T}, thenT* does,in fact, dictatethat truth behaveslike a classical

conceptin M. To help generalizethis investigation,we define a third relation ≤3 between

theories.

Definition 4.17. Supposethat T andT′ aresuperveniencetheoriesandthat, for anyground

modelM, VM = { A: A is valid in the groundmodelM accordingto T}. We say that T ≤3 T′

iff for every languageL everygroundmodelM andeveryY ⊆ { A: A ∈ VM or ¬A ∈ VM}, if

M is (S - Y)-neutral thenT′ dictatesthat truth behaveslike a classicalconceptin M. We say

that T <3 T′ iff T ≤3 T′ andT 3 T′. We will seethat ≤3 is transitivebut not reflexive.

Remark 4.18. Theorem4.13 (ii), (iii) and (iv) and Theorem4.15 can be summarizedas

follows: Tlfp, µ ≤3 T*, Tlfp, κ ≤3 T*, Tlfp, σ ≤3 T* andT* ≤3 T*. Question4.16amountsto this: Tc

≤3 T*? Theorem4.21,below,deliversa negativeanswerto this question.

Lemma 4.19. ≤3 is transitive.
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Proof. Supposethat T ≤3 T′ andT′ ≤3 T″, and that M is an (S - Y)-neutralgroundmodel

whereY ⊆ { A: A ∈ VM or ¬A ∈ VM} andwhereVM = { A: A is valid in the groundmodelM

accordingto T}. Let V ′M = { A: A is valid in the groundmodelM accordingto T′}. Note that

S = { A: A ∈ V ′M or ¬A ∈ V ′M}, sinceT ≤3 T′. So Y ⊆ { A: A ∈ V ′M or ¬A ∈ V ′M}. So T″

dictatesthat truth behaveslike a classicalconceptin M, asdesired.

Lemma 4.20. (1) If T ≤3 T′ andT′ ≤2 T″ thenT ≤3 T″. (2) If T ≤3 T′ thenT ≤2 T′. (3)

If T ≤1 T′ andT′ ≤3 T″ thenT ≤3 T″.

Proof. (1) follows immediatelyfrom thedefinitions. For (2) SupposethatT ≤3 T′ andthat

T dictatesthat truth behaveslike a classicalconceptin M. ThenM is (S - S)-neutralwhereS

⊆ { A: A ∈ VM or ¬A ∈ VM}. So T′ dictatesthat truth behaveslike a classicalconceptin M,

sinceT ≤3 T′. For (3), assumethat T ≤1 T′ andT′ ≤3 T″ and that M is (S - Y)-neutralwhere

Y ⊆ { A: A ∈ VM or ¬A ∈ VM}. SinceT ≤1 T′, M is (S - Y)-neutralwhereY ⊆ { A: A ∈ V ′M

or ¬A ∈ V ′M}. So, sinceT′ ≤3 T″, T″ dictatesthat truth behaveslike a classicalconceptin M,

asdesired.

Theorem 4.21. (1) <3 behavesasin the following diagram,i.e. it is the smallesttransitive

relationsatisfyingthe conditionsgiven in the diagram. Since≤3 is not reflexive,we needparts

(2) and(3) to completelydetermine≤3. The subscripted3 hasbeendroppedfrom the diagram.

T#

∨
T* < Tc < Tgifp, σ2 < Tgifp, σ1 < Tgifp, σ < Tgifp, κ < Tgifp, µ

∨ ∨
Tlfp, κ < Tlfp, σ < Tlfp, σ1 < Tlfp, σ2

∨
Tlfp, µ

(2) T* ≤3 T* andTc ≤3 Tc andTlfp, σ2 ≤3 Tlfp, σ2 andTgifp, ρ ≤3 Tgifp, ρ for ρ = µ, κ, σ, σ1 or σ2.

(3) T#
3 T# andTlfp, ρ

3 Tlfp, ρ for ρ = µ, κ, σ or σ1.

Proof. Theproofsof (2) and(3) aretricky andleft until §5. Given(2) and(3), andLemma

4.20, and Theorems 4.2 and 4.5, much of the information contained in (1) can be

straightforwardlyproved. First, everyclaim of the form T 2 T′ given in Theorem4.5 implies,
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given Lemma4.20 (2), that T 3 T′. Furthermore,the facts that Tlfp, µ
3 Tlfp, κ andthat Tlfp, κ

3 Tlfp, µ follow from the fact that neitherTlfp, µ nor Tlfp, κ everdictatesthat truth behaveslike a

classicalconcept,evenwhenthe groundmodel is S-neutral,asshownin the proof of Theorem

4.5. Thefact thatT* ≤3 Tc ≤3 Tgifp, σ2 ≤3 Tgifp, σ1 ≤3 Tgifp, σ ≤3 Tgifp, κ ≤3 Tgifp, µ follows from thefact

that T* ≤2 Tc ≤2 Tgifp, σ2 ≤2 Tgifp, σ1 ≤2 Tgifp, σ ≤2 Tgifp, κ ≤2 Tgifp, µ andfrom (2) andLemma4.20(1).

Similarly for the fact that Tlfp, σ2 ≤3 Tc. The fact that Tlfp, σ1 ≤3 Tlfp, σ2 follows from the fact that

Tlfp, σ1 ≤1 Tlfp, σ2 (Theorem4.2)andthatTlfp, σ2 ≤3 Tlfp, σ2 (Theorem4.21(2)) andfrom Lemma4.20

(3).

So, for Theorem4.21,it sufficesto show(2) and(3), aswell asTlfp, µ ≤3 Tlfp, σ ≤3 Tlfp, σ1 and

Tlfp, κ ≤3 Tlfp, σ. For (2) and(3) see§5. For the rest,seeCorollary 4.26.

Remark 4.22. Thepositivepartof Theorem4.21generalizesGuptaandBelnap’sTheorems

4.13(ii), (iii) and(iv), and4.15,statedabove. Thenegativepartsgeneralizethenegativeanswer

to GuptaandBelnap’sQuestion17, askedabove.

Thefact thatTlfp, σ
3 Tlfp, σ meansthat thefollowing conjectureis false: If thegroundmodel

M is (S - Y)-neutralandY ⊆ { A: lfp(σM)(A) = t or lfp(σM)(A) = f}, then lfp(σM) is classical.

Similarly for σ1. But we havesomethingalmostas good.

Theorem 4.23. (TheProvisoTheorem) Let ρ = σ or σ1. If thegroundmodelM is (S - Y)-

neutralandY ⊆ { A: lfp(ρM)(A) = t or lfp(ρM)(A) = f}, then lfp(ρM) is classical,subjectto the

following proviso: for everyn, thereis a sentenceB ∉ Y of degree> n suchthat lfp(ρM)(B) =

t, anda sentenceB ∉ Y of degree> n suchthat lfp(ρM)(B) = f.

Proof. See§5, below.

Corollary 4.24. If the groundmodelM is X-neutral,whereX containsall sentencesthat

have occurrencesof T, then the following theoriesdictate that truth behaveslike a classical

conceptin M: Tlfp, σ, Tlfp, σ1, Tlfp, σ2, T*, T#, Tc, and Tgifp, ρ for ρ = µ, κ, σ, σ1, or σ2. In

particular,if thegroundmodelM is S-neutral,thenthosetheoriesdictatethat truth behaveslike

a classicalconceptin M.
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Proof. Here we rely on the positive part of Theorem4.5, which we havealreadyproved.

Assumethat the groundmodelM is M is X-neutral,whereX containsall sentencesthat have

occurrencesof T. Let Y = { A: A is a sentencein which T doesnot occur}. So M is (S - Y)-

neutraland Y ⊆ { A: lfp(σM)(A) = t or lfp(σM)(A) = f}. Also, we claim that the proviso in

Theorem4.23is satisfiedfor ρ = σ. In particular,for anysentenceA, definethesentenceT0(A)

= A andTn + 1(A) = T‘Tn(A)’. Then,for everyn, the sentenceTn(∀x(Tx ∨ ¬Tx)) is a sentenceB

∉ Y of degree> n suchthat lfp(σM)(B) = t andthe sentenceTn(¬∀x(Tx ∨ ¬Tx)) is a sentence

B ∉ Y of degree> n suchthat lfp(σM)(B) = f. So, by Theorem4.23, Tlfp, σ dictatesthat truth

behaveslike a classicalconceptin M. For the other theoriesTlfp, σ1, Tlfp, σ2, T*, T#, Tc, andthe

Tgifp, ρ, the result follows from this andTheorem4.5, above.

Remark 4.25. Theorem4.24generalizesGuptaandBelnap’sTheorem4.13(i), statedabove.

Corollary 4.26. Tlfp, κ ≤3 Tlfp, σ ≤3 Tlfp, σ1 andTlfp, µ ≤3 Tlfp, σ.

Proof. To seethat Tlfp, σ ≤3 Tlfp, σ1, supposethat M is (S - Y)-neutral and that Y ⊆ { A:

lfp(σM)(A) = t or lfp(σM)(A) = f}. If Tlfp, σ dictatesthat truth behaveslike a classicalconceptin

M, thensodoesTlfp, σ1. SosupposethatTlfp, σ doesnot dictatethat truth behaveslike a classical

conceptin M. First noticethat Y ⊆ { A: lfp(σ1M)(A) = t or lfp(σ1M)(A) = f}. Also, we claim

that the provisoin Theorem4.23 is satisfiedfor ρ = σ1. In particular,choosesomesentenceC

suchthat lfp(σM)(C) = n. Then, for everyn, the sentenceTn(¬(T‘C’& T‘¬C’)) is a sentenceB

∉ Y of degree> n suchthat lfp(σ1M)(B) = t andthe sentenceTn(T‘C’& T‘¬C’) is a sentence

B ∉ Y of degree> n suchthat lfp(σ1M)(B) = f. Thus lfp(σ1M) is classical,asdesired.

The proof that Tlfp, κ ≤3 Tlfp, σ is similar. If M is (S - Y)-neutralandY ⊆ { A: lfp(κM)(A) =

t or lfp(κM)(A) = f}, then M is (S - Y)-neutralwhereY ⊆ { A: lfp(σM)(A) = t or lfp(σM)(A) =

f}. Furthermorethe proviso in Theorem4.23 is satisfiedfor ρ = σ, since for every n, the

sentenceTn(∀x(Tx ∨ ¬Tx)) is a sentenceB ∉ Y of degree> n suchthat lfp(σM)(B) = t andthe

sentenceTn(¬∀x(Tx ∨ ¬Tx)) is a sentenceB ∉ Y of degree> n suchthat lfp(σM)(B) = f. This

suffices. Similarly, Tlfp, µ ≤3 Tlfp, σ.
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5. Proofs and counterexamples. Eachof our main theorems,Theorems4.2, 4.5 and4.21,

makespositiveclaimsof the form T ≤n T′ andnegativeclaimsof the form T n T′, for n = 1,

2 or 3. We alsowant to showTheorem4.23 (the ProvisoTheorem). Given the work already

donein §4, it sufficesto show Theorem4.21 (2) and (3); to show Theorem4.23 (the Proviso

Theorem);andto showthe negativeclaimsof Theorems4.2 and4.5.

We beginwith somepreliminarynotions. Thenwe proveour Major Lemma (Lemma5.5)

and Major Corollary (Corollary 5.6), which we will useto help establishour resultsfrom §4.

Before that we will usethe Major Corollary to give a simplified proof of GuptaandBelnap’s

Main Lemma (Lemma5.7), the lemmathey useto studythe conditionsunderwhich a modelis

Thomason: our new proof avoidstheir doubletransfiniteinduction,andtheir consideration,at

onepoint, of six casesandsubcases.

Definition 5.1. Supposethat M = 〈D, I〉 and M′ = 〈D′, I′〉 are modelsof a first order

languageL, that N is a set of namesfrom L, and that Ψ:D → D′ is a bijection. Ψ is an

N-restricted isomorphism from M to M′ iff I(H)(d1, ..., dn) = I′(H)(Ψ(d1), ..., Ψ(dn)) for every

n-placepredicateletterH andeveryn-tuple〈d1, ..., dn〉; Ψ(I(h)(d1, ..., dn)) = I′(h)(Ψ(d1), ..., Ψ(dn))

for everyn-placefunctionsymbolh (n > 0) andeveryn-tuple〈d1, ..., dn〉; andΨ(I(c)) = I′(c) for

everyc ∈ N.

Lemma 5.2. Supposethat M andM′ aremodelsof a first order languageL, that N is a set

of namesfrom L, and that Ψ is an N-restrictedisomorphismfrom M to M′. Supposethat ρ =

τ, µ, κ or σ. Supposethat everynameoccurringin the sentenceA is in N. ThenValM, ρ(A) =

ValM′, ρ(A).

Definition 5.3. ([3], Definition 6A.2) The degree of a term or formula X of L+, denoted

deg(X), is definedasfollows. (i) If X is a variableor nonquotenamethendeg(X) = 0 = deg(⊥).

(ii) If A is a sentenceof degreen, thenthedeg(‘A’) = n + 1. (iii) If t1, ..., tn aretermsof degrees

i1, ..., in, respectively,and if f [F] is an n-placefunction symbol [predicate],then deg(ft1...tn)
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[deg(Ft1...tn)] = max(i1, ..., in). (iv) If x is a variable,A andB areformulas,anddeg(A) = m and

deg(B) = n, thendeg(∀xA) = deg(¬A) = m anddeg(A & B) = deg(A ∨ B) = max(m,n).

Definition 5.4. Supposethat M = 〈D, I〉 is a groundmodelandthat Y ⊆ S. Saythat h =Y

h′ iff h(A) = h′(A) for everyA ∈ Y. If n is a naturalnumber,say that h =n h′ iff h(A) = h′(A)

for every sentenceA of degree< n. Note that h =0 h′ for any h and h′. If h is a classical

hypothesis,defineτ 0
M(h) = h, andτ n

M
+ 1(h) = τM(τ n

M(h)). Finally, defineτω
M(h):D → D asfollows:

τω
M(h)(d) = t, if, for somem, τ n

M(h)(d) = t for everyn ≥ m.

τω
M(h)(d) = f, if, for somem, τ n

M(h)(d) = f for everyn ≥ m.

τω
M(h)(d) = n otherwise.

Note that if h is classical,thenτ n
M(h) is alwaysclassicalbut τω

M(h) might not be.

Lemma 5.5. (The Major Lemma) Supposethat the groundmodel M = 〈D, I〉 is (S - Y)-

neutral,whereY ⊆ S. Supposethat h andh′ arestronglyconsistentclassicalhypotheses,with

h =n h′ andh =Y h′. ThenτM(h) =n + 1 τM(h′).

Proof. Let Y′ = { A: h(A) = h′(A)}. Note that Y ⊆ Y′, andthat h =Y′ h′. Also notethat A

∈ Y′ iff ¬A ∈ Y′ iff ¬¬A ∈ Y′ iff ¬¬¬A ∈ Y′, etc.,sinceh andh′ arestronglyconsistent.Thus

we have

(*) (A ∉ Y′ andh(A) = t) iff (¬A ∉ Y′ andh(¬A) = f) iff (¬¬A ∉ Y′ andh(¬¬A) =

t) iff (¬¬¬A ∉ Y′ andh(¬¬¬A) = f), etc.

Let U = { A: A is of degree≥ n andA ∉ Y andh(A) = t} andV = { A: A is of degree≥ n and

A ∉ Y andh(A) = f}. Similarly, let U′ = { A: A is of degree≥ n andA ∉ Y andh′(A) = t} and

V′ = { A: A is of degree≥ n andA ∉ Y andh′(A) = f}. Note that U ∪ V = U′ ∪ V′.

If (U ∪ V) ∩ (S - Y′) = ∅, theneverysentenceof degree≥ n is in Y′. In that case,h = h′

andwe aredone. Soassumethat (U ∪ V) ∩ (S - Y′) ≠ ∅. Given(*), A ∈ U ∩ (S - Y′) iff ¬A

∈ V ∩ (S - Y′) iff ¬¬A ∈ U ∩ (S - Y′) iff ¬¬¬A ∈ V ∩ (S - Y′), etc., for everysentenceA.

So U andV arecountablyinfinite (we areassumingthat the languageis countable). Similarly,
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U′ andV′ arecountablyinfinite. Let Φ bea bijectionfrom U ∪ V to U′ ∪ V′ suchthatΦ maps

U onto U′ andV onto V′.

Define a function Ψ:D → D asfollows:

If A is a sentenceof degree< n or A ∈ Y, thenΨ(A) = A.

If A is a sentenceof degree≥ n, thenΨ(A) = Φ(A).

If d ∈ (D - S), thenΨ(d) = d.

Note that Ψ is an N-restrictedisomorphismfrom M + h to M + h′, whereN is thesetof names

of degree≤ n. SoValM + h, τ(A) = ValM + h′, τ(A), for everysentenceA of degree< n + 1. SoτM(h)

=n + 1 τM(h′).

Corollary 5.6. (TheMajor Corollary) Supposethat thegroundmodelM = 〈D, I〉 is (S - Y)-

neutral,whereY ⊆ S. Supposethat h andh′ arestronglyconsistentclassicalhypothesessuch

that τ n
M(h) =Y τ n

M
+ 1(h) =Y τ n

M(h′) =Y τ n
M

+ 1(h′) for everyn. Thenτω
M(h) = τω

M(h′) is classicalandis

a fixed point of τM.

Proof. By induction,we canshowthat τ n
M(h) =n τ n

M
+ 1(h) =n τ n

M(h′) =n τ n
M

+ 1(h′) for everyn.

The basecaseis vacuouslytrue. The induction step is simply an applicationof the Major

Lemma. But from this it follows that τω
M(h) = τω

M(h′) andτω
M(h) is classical. It remainsto show

thatτω
M(h) is a fixed point of τM. Notethatτω

M(h) =n τ n
M(h) for everyn. So,by theMajor Lemma,

τM(τω
M(h)) =n + 1 τ n

M
+ 1(h) for everyn. So τM(τω

M(h)) =n + 1 τω
M(h) for everyn. So τM(τω

M(h)) = τω
M(h),

asdesired.

Lemma 5.7. (Gupta and Belnap’s Main Lemma, [3], Lemma 6A.4) Let M = 〈D, I〉 be

X-neutral (X ⊆ D). Let S andS′ be τM-sequences,andlet Y be the setof thosesentencesthat

areeitherstablyt in bothS andS′ or stablyf in both. If (S - Y) ⊆ X, thenthereis someordinal

α suchthat for all β ≥ α, Sα = S′β.

Proof. This proof differs from GuptaandBelnap’s. Choosean ordinal γ suchthat, by the

γth stageboth in S andin S′, all of thesentencesin Y havestabilized:i.e., for everyA ∈ Y and

everyβ ≥ γ, Sβ(A) = S′β(A) = Sγ(A) = S′γ(A). In otherwords,for everyβ ≥ γ, Sβ =Y S′β =Y Sγ =Y
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S′γ. γ canbe chosento be a successorordinal. So Sγ andS′γ arestronglyconsistent. By our

Major Corollary, τω
M(Sγ) = τω

M(S′γ) is classicaland is a fixed point of τM. But notice that, since

τω
M(Sγ) = τω

M(S′γ) is classical,we haveSγ + ω = τω
M(Sγ) and S′γ + ω = τω

M(S′γ) by the limit rule for

τM-sequences.Let α = γ + ω. SinceSα = S′α is a fixed point of τM, we concludethat for all β

≥ α, Sα = S′β, asdesired.

Now we canstartproving our positiveresultsfrom §4.

Theorem 4.21 (2). (i) T* ≤3 T*. (ii) Tc ≤3 Tc. (iii) Tlfp, σ2 ≤3 Tlfp, σ2. (iv) Tgifp, ρ ≤3 Tgifp, ρ for

ρ = µ, κ, σ, σ1 or σ2.

Proof. (i) (The proof of (i) is from [3].) Supposethat M is an (S - Y)-neutralmodeland

that Y ⊆ { A: A ∈ V *
M or ¬A ∈ V *

M}. To showthat all τM-sequencesculminatein oneandthe

samefixed point, chooseanytwo τM-sequences,S andS′. Let X = (S - Y), andlet Y′ betheset

of thosesentencesthat areeitherstably t in both S andS′ or stably f in both. Clearly (S - Y′)

⊆ X. So,by GuptaandBelnap’sMain Lemma(Lemma10.5),thereis someordinalα suchthat

for all β ≥ α, Sα = S′β. It follows thatSα = S′α is a fixed point in which bothS andS′ culminate.

(ii) is provedanalogouslyto (i), since it suffices to show that if M is an (S - Y)-neutral

model where Y ⊆ { A: A ∈ V c
M or ¬A ∈ V c

M}, then all maximally consistentτM-sequences

culminatein oneandthe samefixed point.

(iii) Supposethat M is (S - Y)-neutralfor someY ⊆ { A: lfp(σ2M)(A) = t or lfp(σ2M)(A) =

f}. To showthath = lfp(σ2M) is classical,supposenot. Let C bea sentenceof theleastpossible

degree,sayk, suchthat h(C) = n. Note that C ∉ Y. We will get a contradictionby showing

that h(C) = t or f. Recall the definition of σ2M(A) for sentencesA:

σ2M(h)(A) = t [f] iff τM(h′)(A) = t [f] for all classicalandstronglyconsistenth′ ≥ h.

n, otherwise.

To showthat h(C) = t or f it sufficesto showthat σ2M(h)(C) = t or f, sinceh is a fixed point

of σ2M. For the latter, it suffices to show that τM(h′)(C) = τM(h″)(C) for any classicaland

stronglyconsistenthypothesesh′ ≥ h andh″ ≥ h. Choosesuchhypothesesh′ andh″. Note that
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h′ =k h″ sinceh(A) = t or f, for any sentenceA of degree< k. Note also that h′ =Y h″. So by

our Major Lemma5.5, τM(h′) =k + 1 τM(h″). ThusτM(h′)(C) = τM(h″)(C), asdesired.

(iv) We will showsomethingmoregeneral.Fix a groundmodelM. If ρ is a partial function

on the setof hypotheses,we say that ρ is normal iff ρ satisfiesthe following conditions: ρ is

monotone;if h is classicalandρ is definedon h, thenρ(h) = τM(h); for every fixed point h of

ρ, thereis a classicalhypothesish′ suchthath ≤ h′ andρ is definedon h′; if ρ is definedon the

classicalhypothesish, thenρ is alsodefinedon τM(h); andρ is definedon everyfixed point of

τM. Note that µM, κM, σM, σ1M, andσ2M areall normal.

Supposethat ρ is a normaloperatoron hypotheses,and that i is an intrinsic fixed point of

ρ. Supposethat M is (S - Y)-neutralwherei(A) = t or i(A) = f for everysentenceA ∈ Y. We

will showthat gifp(ρ) is classical. This will suffice for our claim that Tgifp, ρ ≤3 Tgifp, ρ for ρ =

µ, κ, σ, σ1 or σ2.

To show that gifp(ρ) is classical,it will suffice to show that ρ hasa greatestfixed point

which is classical: anyclassicalgreatestfixed point is alsothegreatestintrinsic fixed point. For

this it sufficesto showthat for any fixed points f andg, thereis a classicalfixed point h such

that f ≤ h andg ≤ h. So chooseany fixed pointsf andg. Sincei is intrinsic, thereexist fixed

pointsf′ andg′ suchthat f ≤ f′ andi ≤ f′ andg ≤ g′ andi ≤ g′. Chooseclassicalhypotheses,not

necessarilyfixed points, f″ ≥ f′ andg″ ≥ g′, so that ρ is definedon both f″ andg″. Here is a

picture.

f″ g″ classicalhypotheses,maybenot fixed points
\ /
f ′ g ′ fixed points,maybenot classical
/ \ / \
/ i \ intrinsic fixed point, maybenot classical
/ \
f g fixed points,maybenot classical

Observe:τ n
M(f″) = ρn(f″) ≥ ρn(f′) = f′ ≥ i andτ n

M(g″) = ρn(g″) ≥ ρn(g′) = f′ ≥ i for everyn. Recall

that Y ⊆ { A: i(A) = t or i(A) = f}. So τ n
M(f″) =Y i =Y τ n

M(g″) for every n. Thus τ n
M(f″) =Y

τ n
M

+ 1(f″) =Y τ n
M(g″) =Y τ n

M
+ 1(g″), for everyn. Let h = τω

M(f″). By our Major Corollary 5.6, h =
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τω
M(f″) = τω

M(g″) is classicaland is a fixed point of τM andhenceof ρ. It now sufficesto show

that h ≥ f andh ≥ g. For this it sufficesto showthat h ≥ f′ andh ≥ g′. Note that if f′(A) = t

thenτ n
M(f″)(A) = t for everyn, sinceτ n

M(f″) ≥ f′. So h(A) = τω
M(f″)(A) = t. Similarly, if f′(A) =

f thenh(A) = f. Soh ≥ f′. Similarly, h ≥ g′, asdesired. In thepicturebelow,thearrowpointing

from f″ to h indicatesthat any revisionsequencethat beginswith f″ culminatesin h. Similarly

for the arrow pointing from g″ to h.

f″→ h ← g″
\ / \ /
f ′ g ′

/ \ / \
/ i \
/ \
f g

Theorem4.23will be a corollary to Lemma5.8, a reworkingof the Major Lemma.

Lemma 5.8. Supposethat the groundmodel M = 〈D, I〉 is (S - Y)-neutral,whereY ⊆ S.

Supposethat h andh′ areclassicalhypotheses,with h =n h′ andh =Y h′. Supposefurthermore

thatall four of thefollowing setsU, U′, V, andV′ arecountablyinfinite: U = { A: A is of degree

≥ n andA ∉ Y andh(A) = t} andV = { A: A is of degree≥ n andA ∉ Y andh(A) = f} andU′

= { A: A is of degree≥ n andA ∉ Y andh′(A) = t} andV′ = { A: A is of degree≥ n andA ∉ Y

andh′(A) = f}. ThenτM(h) =n + 1 τM(h′).

Proof. The proof follows the proof of Lemma5.5, with a simplification: thereis no need

to defineY′ or to mentionits properties,sincethereis no needto provethatU, U′, V andV′ are

countablyinfinite, sincethat is given by hypothesis.

Theorem 4.23. Let ρ = σ or σ1. If the groundmodel M is (S - Y)-neutral and Y ⊆ { A:

lfp(ρM)(A) = t or lfp(ρM)(A) = f}, thenlfp(ρM) is classical,subjectto the following proviso: for

everyn, thereis a sentenceB ∉ Y of degree> n suchthat lfp(ρM)(B) = t, anda sentenceB ∉

Y of degree> n suchthat lfp(ρM)(B) = f.

Proof. We will run the proof for ρ = σ. The proof is exactly the samefor ρ = σ1. The

proof closelyfollows the proof of Theorem4.21(2)(iii), with h = lfp(σM). So supposethat the
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groundmodelM is (S - Y)-neutral;thatY ⊆ { A: lfp(σM)(A) = t or lfp(σM)(A) = f}; andthat,for

everyn, thereis a sentenceB ∉ Y of degree> n suchthat lfp(ρM)(B) = t, anda sentenceB ∉

Y of degree> n such that lfp(ρM)(B) = f. For a reductio, supposethat h = lfp(σM) is not

classical.

Let C be a sentenceof the leastpossibledegree,sayk, suchthat h(C) = n. Note that C ∉

Y. We will get a contradictionby showingthat h(C) = t or f. Recall that, for any sentenceA,

σM(h)(A) = t [f] iff τM(h′)(A) = t [f] for all classicalh′ ≥ h; and

n, otherwise.

To show that h(C) = t or f it sufficesto show that σM(h)(C) = t or f, sinceh is a fixed point.

For the latter, it sufficesto showthat τM(h′)(C) = τM(h″)(C) for any classicalhypothesesh′ ≥ h

andh″ ≥ h. Choosesuchhypothesesh′ andh″. Note that h′ =k h″ sinceh(A) = t or f, for any

sentenceA of degree< k. Note alsothat h′ =Y h″.

Define four setsU′, U″, V′, andV″ asfollows: U′ = { A: A is of degree≥ k andA ∉ Y and

h′(A) = t} and V′ = { A: A is of degree≥ k and A ∉ Y and h′(A) = f} and U″ = { A: A is of

degree≥ k andA ∉ Y andh″(A) = t} andV″ = { A: A is of degree≥ k andA ∉ Y andh″(A) =

f}. We claim thatU′ is countablyinfinite (assumingthe languageis countable).Recallthat for

everyn, thereis a sentenceB ∉ Y of degree> n suchthat lfp(ρM)(B) = t. So for everyn, there

is a sentenceB ∉ Y of degree> n suchthath(B) = t. SoU′ is countablyinfinite. Similarly, U″,

V′ and V″ are countablyinfinite. So τM(h′) =k + 1 τM(h″), by Lemma 5.8. Thus τM(h′)(C) =

τM(h″)(C), asdesired.

It remainsto proveTheorem4.21(3), andthenegativeclaimsin Theorems4.2 and4.5. We

do this with a seriesof counterexamples.We will bring it all togetherafter presentingthe

examples.

Example 5.9. ([3], Example6B.9) This examplewill show that T#
3 T#. Considera

languageL with nononquotenames,with no functionsymbols,with aone-placepredicateG, and

no othernonlogicalpredicates.Let L+ beL extendedwith a newone-placepredicateT. We will
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alsosupposethat L hasa quotename‘C’ for everysentenceC of L+. Let A = ∃x(Gx & ¬Tx)

andlet Y = { TnA: n ≥ 0}. Let M = 〈D, I〉 be thegroundmodelwhereD is thesetof sentences

of L+ andwhereI(G)(d) = t iff d ∈ Y. Note thateverysentencein Y is nearlystablyt in every

τM-sequence,thoughno sentencein Y is stably t in any τM-sequence.So C ∈ V #
M, for all C ∈

Y. So M is (S - Y)-neutral whereY ⊆ { A: A ∈ V #
M or ¬A ∈ V #

M}. We will now show that

thereis a τM-sequencesS suchthat the sentenceB = ∃x∃y(Gx & Gy & ¬Tx & ¬Ty & x ≠ y) is

neithernearlystablyt in S nor nearlystablyf in S. ThusT# doesnot dictatethat truth behaves

like a classicalconceptin M. Incidentally,this falsifies the claim in [3] that "all sentencesare

nearlystablein all τ-sequencesfor M" (p. 214).

Define setsX0 = Y andXn + 1 = Y - { TnA} for n ≥ 0. Also defineZn = Y - { TnA, Tn + 1A}.

Thereis a τM-sequenceS suchthat, for eachC ∈ Y, eachlimit ordinal λ andeachn ≥ 0,

Sn(C) = t iff C ∈ Xn

Sλ + ω2 + n(C) = t iff C ∈ Zn

Sλ + n(C) = t iff C ∈ Xn, if λ is a limit ordinal not of the form α + ω2.

Note that Sλ + ω2 + n + 1(B) = t and Sλ + ω + n + 1(B) = f, for every limit ordinal λ and every natural

numbern. So B is not nearlystablein S.

Example 5.10. (Gupta)This examplewill showthatT#
2 T* andthatT#

2 Tgifp, µ. Modify

Example5.9 asfollows. Let Y be the smallestsetcontainingeachTnA, andsuchthat if C ∈ Y

thenC ∨ C ∈ Y. Note that everysentencein Y is nearlystablet in every revisionsequence,

but no sentencein Y is stablyt or stablyf in anyrevisionsequence.SoτM hasno classicalfixed

point. So neitherT* nor Tgifp, µ dictatesthat truth behaveslike a classicalconceptin M. But it

follows from Claim 2, below, that T# doesdictatethat truth behaveslike a classicalconceptin

M.

Notice that, for any classicalhypothesish and any n ≥ 0, we have the following: for

countablymanyC ∈ Y of degree≥ n, τ 2
M(h)(C) = t andfor countablymanyC ∈ Y of degree≥
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n, τ 2
M(h)(C) = f. Similarly, for countablymany C ∉ Y of degree≥ n, τ 2

M(h)(C) = t and for

countablymanyC ∉ Y of degree≥ n, τ 2
M(h)(C) = f.

Claim 1. For any two classicalhypothesesh andh′ andanyn ≥ 0, τ n
M

+ 2(h) =n τ n
M

+ 2(h′). Fix

h and h′. Our result is provedby induction on n. The basecaseis vacuouslytrue. For the

inductive step,assumethat τ n
M

+ 2(h) =n τ n
M

+ 2(h′). To show that τ n
M

+ 3(h) =n + 1 τ n
M

+ 3(h′), we will

constructan N-restrictedisomorphismΨ from M + τ n
M

+ 2(h) to M + τ n
M

+ 2(h′), whereN = {‘ A’:

deg(A) < n}. Define U, U′, V, V′, W, W′, X andX′ asfollows:

U =df { A: deg(A) ≥ n andA ∈ Y andτ n
M

+ 2(h) = t}

U′ =df { A: deg(A) ≥ n andA ∈ Y andτ n
M

+ 2(h′) = t}

V =df { A: deg(A) ≥ n andA ∈ Y andτ n
M

+ 2(h) = f}

V′ =df { A: deg(A) ≥ n andA ∈ Y andτ n
M

+ 2(h′) = f}

W =df { A: deg(A) ≥ n andA ∉ Y andτ n
M

+ 2(h) = t}

W′ =df { A: deg(A) ≥ n andA ∉ Y andτ n
M

+ 2(h′) = t}

X =df { A: deg(A) ≥ n andA ∉ Y andτ n
M

+ 2(h) = f}

X′ =df { A: deg(A) ≥ n andA ∉ Y andτ n
M

+ 2(h′) = f}.

Eachof thesesetsis countablyinfinite. Define Ψ by patchingtogetherthe identity function on

the sentencesof degree< n, andbijectionsfrom U to U′, V to V′, W to W′ andX to X′.

Claim 2. For any sentenceA of degree< n, either (i) τm
M(h)(A) = t for every classical

hypothesish andeverym ≥ n + 2; or (ii) τm
M(h)(A) = f for everyclassicalhypothesish andevery

m ≥ n + 2. To seethis, consideranyclassicalhypothesesh andh′ andanym, m′ ≥ n + 2. Note

that if we apply Claim 1 to τm
M

- (n + 2)(h) and τm
M

′ - (n + 2)(h′), we get τm
M(h)(A) = τm

M
′(h′)(A). This

suffices.

Example 5.11. This examplewill be of a groundmodelM suchthat lfp(σ1M) andlfp(σ2M)

areclassical,and furthermoresuchthat M is (S - Y)-neutralwhereY ⊆ { B: B ∈ V c
M or ¬B ∈

V c
M}. On thenegativeside,neitherT* nor T# dictatesthat truth behaveslike a classicalconcept

in M. Thus,Tlfp, σ1
2 T* andTlfp, σ1

2 T#; Tlfp, σ2
2 T* andTlfp, σ2

2 T#; andTc
3 T* andTc
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3 T#, from which it follows—givenTheorem4.21 (2) andLemma4.20—thatTc
2 T* andTc

2 T#. The fact that Tc
3 T* negativelyanswersGuptaandBelnap’sQuestion4.16,above.

Considera languageL with exactlyonenonquotenameb, with no functionsymbols,andwith

a one-placepredicateG, andno othernonlogicalpredicates.Let L+ be L extendedwith a new

one-placepredicateT. We will alsosupposethat L hasa quotename‘B’ for everysentenceB

of L+. For any sentenceB of L+, we defineTnB asfollows: T0B = B andTn + 1B = T‘TnB’. For

any formulaB of L+, we define¬nB asB whenn is evenandas¬B whenn is odd. Let A be the

sentenceT‘Tb’ & T‘¬Tb’. Let Z = { TnA: n ≥ 0}. Let Y = Z ∪ { ∃x(Gx & Tx) & ¬Tb}. Let

M = 〈D, I〉 be a groundmodel,whereD is the setof sentencesof L+, andwhereI(b) = ∃x(Gx

& Tx) & ¬Tb, andI(G)(d) = t iff d ∈ Z. Note that M is (S - Y)-neutral.

Claim 1. NeitherT* nor T# dictatesthat truth behaveslike a classicalconceptin M. Proof:

Say that the classicalhypothesish is interesting iff h(∃x(Gx & Tx)) = h(Tb) = h(¬Tb) = t and

h(B) = f, for everyB ∈ Z. Then,for any interestinghypothesish, if k ≥ 2 thenτ k
M(h)(Tk - 1A) =

τ k
M(h)(¬k - 1Tb) = τ k

M(h)(∃x(Gx & Tx)) = t andτ k
M(h)(¬kTb) = τ k

M(h)(TnA) = f, wheren ≠ k - 1. So

we canconstructa τ-sequenceS for M suchthat Sλ is interestingfor every limit ordinal λ and

suchthat the value of Tb neverstabilizes. In fact, we can assurethat Tb is not evennearly

stable.

Claim 2. For every B ∈ Y, either B ∈ V c
M or ¬B ∈ V c

M. Proof: It sufficesto show that

everysentencein thesetY is stablyf in anymaximallyconsistentτ-sequenceS. Sosupposethat

S is a maximally consistentτ-sequence.ThenSn(A) = f, for eachn, by the strongconsistency

of Sn. So Sk(T
nA) = f for k ≥ 0 andn ≤ k. So Sω(TnA) = f for everyn. So Sω + 1(∃x(Gx & Tx)

& ¬Tb) = Sω + 1(∃x(Gx & Tx)) = Sω + 1(T
nA) = f, for everyn. So Sω + 2(Tb) = Sω + 2(∃x(Gx & Tx)

& ¬Tb) = Sω + 2(∃x(Gx & Tx)) = Sω + 2(T
nA) = f, for everyn. So for everyα ≥ ω + 2 andevery

n, Sα(Tb) = Sα(∃x(Gx & Tx) & ¬Tb) = Sα(∃x(Gx & Tx)) = Sα(T
nA) = f. Soeverysentencein Y

is stably f in S.
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Claim 3. lfp(σ1M) is classical. Proof: It suffices, given Theorem4.23, to prove that

lfp(σ1M)(B) = f for every sentenceB ∈ Y. Let S be the σ1M-sequencethat iteratively builds

lfp(σ1M) from thenull hypothesis:S0(d) = n for eachd ∈ D. Note thatSk + 1(A) = f, for natural

numbersk. The reasonis that in calculatingSk + 1(A), we considerweakly consistentclassical

h ≥ Sk. SoSk + 1(T
nA) = f for k ≥ 0 andn ≤ k. SoSω(TnA) = f for everyn. Thus,asin theproof

of Claim 2, for everyα ≥ ω + 2, Sα(Tb) = Sα(∃x(Gx & Tx) & ¬Tb) = Sα(∃x(Gx & Tx)) = Sα(T
nA)

= f, for everyn. Thus,lfp(σ1M)(B) = f for everysentenceB ∈ Y, asdesired.

Claim 4. lfp(σ2M) is classical.Proof: Notethatσ1M(h) ≤ σ2M(h) for anystronglyconsistent

hypothesish. So lfp(σ1M) ≤ lfp(σ2M). So lfp(σ2M) is classical,given Claim 3.

Example 5.12. (Gupta) This examplewill show that Tlfp, σ
3 Tlfp, σ. Considera language

L with no nonquotenames,with no functionsymbols,with a one-placepredicateG andno other

nonlogicalpredicates. Let L+ be L extendedwith a new one-placepredicateT. We will also

supposethat L hasa quotename‘B’ for everysentenceB of L+. Let D = S ∪ . For eachY

⊆ S, let Y* = { A: ¬A ∈ Y}. For eachY ⊆ D, we will usethe notation[Y] for the ground

model 〈D, IY〉, where

IY(G)(d) = t if d ∈ Y, and

IY(G)(d) = f if d ∉ Y.

For nonintersectingU, V ⊆ D, we will usethe notation(U, V) for the hypothesish suchthat

h(d) = t if d ∈ U,

h(d) = f if d ∈ V,

h(d) = n otherwise.

We definea jump operator,φ, not on hypothesesbut ratheron subsetsof S. For eachY ⊆ S,

φ(Y) =df { A: Val[Y ∪ ] + (Y, Y* ∪ ), σ(A) = t}. Thoughφ is not in anysensemonotone,it will come

in handy,aswe shall see. Let Y0 = ∅. Let Yn + 1 = φ(Yn). Let Yω = { A: thereis ann suchthat

A ∈ Ym for everym ≥ n} = ∪n∩m ≥ n Ym.
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Below,wewill provethatthehypothesis(Yω, Yω* ∪ ) is not classical,andis theleastfixed

point of σ[Y ω ∪ ]. But note that the ground model [Y ω ∪ ] is (S - Yω)-neutral and

lfp(σ[Y ω ∪ ])(A) = t for everyA ∈ Yω. ThusTlfp, σ
3 Tlfp, σ, asdesired.

Our argumentthat (Yω, Yω* ∪ ) = lfp(σ[Y ω ∪ ]) proceedsin numberedclaims.

Claim 1. ∀x(Tx ⊃ Gx) ∉ Yn and ¬∀x(Tx ⊃ Gx) ∉ Yn. The proof is by induction. It is

vacuously true for n = 0. For the inductive step, assumethat ∀x(Tx ⊃ Gx) ∉ Yn and

¬∀x(Tx ⊃ Gx) ∉ Yn. To showthat∀x(Tx ⊃ Gx) ∉ Yn + 1 and¬∀x(Tx ⊃ Gx) ∉ Yn + 1, it suffices

to show that Val[Yn ∪ ] + (Yn,Yn* ∪ ), σ(∀x(Tx ⊃ Gx)) = n. Considerthe classicalhypotheses,h =

(Yn, D - Yn) and h′ = (Yn ∪ { ∀x(Tx ⊃ Gx)}, (D - Yn) - { ∀x(Tx ⊃ Gx)}). By the inductive

hypothesis,we have(Yn, Yn* ∪ ) ≤ h, h′. Furthermore,Val[Yn ∪ ] + h, τ(∀x(Tx ⊃ Gx)) = t and

Val[Yn ∪ ] + h′, τ(∀x(Tx ⊃ Gx)) = f. So Val[Yn ∪ ] + (Yn,Yn* ∪ ), σ(∀x(Tx ⊃ Gx)) = n, asdesired.

Claim 2. (Yω, Yω* ∪ ) is not classical. Proof: Given Claim 1, ∀x(Tx ⊃ Gx) ∉ Yω and

∀x(Tx ⊃ Gx) ∉ Yω*.

Beforewe stateClaim 3, we defineXn =df S - (Yn ∪ Yn*) andXω =df (S - (Yω ∪ Yω*)).

Claim 3. For eachn ≥ 1 andfor eachm, thereis somesentenceof degreem in Yn andsome

sentenceof degreem in Xn. Proof: Note that (TmA ∨ ¬TmA) ∈ Yn and that (TmA ∨ ¬TmA) &

∀x(Tx ⊃ Gx) ∈ Xn, for any sentenceA.

Beforewe stateClaim 4, we introducesomenotation. For U, V ⊆ S, saythatU =n V iff for

everyA of degree< n, A ∈ U iff A ∈ V.

Claim 4. For everyn andeverym ≥ n + 1, Yn + 1 =n Ym. The proof is by inductionon n.

It is vacuouslytruefor n = 0. For theinductionstepassumethatYn + 1 =n Ym. We want to show

that Yn + 2 =n + 1 Ym + 1. It sufficesto constructan N-restrictedisomorphismΨ from [Y n + 1 ∪ ]

to [Ym ∪ ], whereN = {‘ A’: deg(A) < n}. Define sevensubsetsof S asfollows.

U =df { A: deg(A) < n}

V =df { A: deg(A) ≥ n & A ∈ Yn + 1}

W =df { A: deg(A) ≥ n & A ∈ Yn + 1*}
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Z =df { A: deg(A) ≥ n & A ∈ Xn + 1}

V′ =df { A: deg(A) ≥ n & A ∈ Ym}

W′ =df { A: deg(A) ≥ n & A ∈ Ym*}

Z′ =df { A: deg(A) ≥ n & A ∈ Xm}.

Note that eachof V, W, Z, V′, W′ andZ′ is countablyinfinite, by Claim 3. Also notethat

(S - U) = V ∪ W ∪ Z = V′ ∪ W′ ∪ Z′,

Yn+1 ∩ U = Ym ∩ U, and

Yn+1* ∩ U = Ym* ∩ U.

Let Ψ:D → D be a bijection suchthat Ψ(d) = d for everyd ∈ D - S andΨ(A) = A for everyA

∈ U; andsuchthatΨ mapsV ontoV′ andW ontoW′ andZ ontoZ′. ThenΨ is anN-restricted

isomorphism,asdesired.

Claim 5. (Yω, Yω* ∪ ) is a fixed point of σ[Y ω ∪ ]. For this, it sufficesto showthat Yω

is a fixed point of φ. For this, it sufficesto showthat φ(Yω) =n + 1 Yω for everyn. GivenClaim

4, Yω =n + 1 Yn + 2 for everyn. So it sufficesto showthat φ(Yω) =n + 1 Yn + 2 for everyn. Choose

any n. Note that Yω =n Yn + 1, by Claim 4. To show that φ(Yω) =n + 1 Yn + 2, it suffices to

constructan N-restrictedisomorphismfrom [Y ω ∪ ] to [Y n + 1 ∪ ], whereN = {‘ A’: deg(A)

< n}. The constructionfollows the lines of the constructionin the proof of Claim 4.

Claim 6. (Yω, Yω* ∪ ) = lfp(σ[Y ω ∪ ]). Let (Z, Z* ∪ ) = lfp(σ[Y ω ∪ ]). For Claim 6, it

suffices to show by induction on n that Yω =n Z, for eachn. The basecaseis obvious. So

supposethat Yω =n Z. We want to showthat Yω =n + 1 Z. Note, incidentally,that Yω* =n Z*.

Z ⊆ Yω, since(Z, Z* ∪ ) = lfp(σ[Y ω ∪ ]) ≤ (Yω, Yω* ∪ ). So it sufficesto showthat for

everysentenceA of degree< n + 1, if A ∉ Z thenA ∉ Yω. Sosupposethatdeg(A) < n + 1 and

A ∉ Z. Thenthereis someclassicalhypothesis(X, D - X) ≥ (Z, Z* ∪ ) suchthat A is false

in the classicalmodel [Yω ∪ ] + (X, D - X). To show that A ∉ Yω, we will constructa

classicalhypothesis(W, D - W) ≥ (Yω, Yω* ∪ ) such that A is false in the classicalmodel

[Yω ∪ ] + (W, D - W). After weconstruct(W, D - W), it will sufficeto defineanN-restricted
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isomorphismΨ from [Yω ∪ ] + (X, D - X) to [Y ω ∪ ] + (W, D - W), where N = {‘ B’:

deg(B) < n}.

Define sevendisjoint subsetsof S, asfollows:

U =df { A: deg(A) < n}

A =df (X ∩ Yω) - U

B =df (X ∩ Yω*) - U

C =df X - (Yω ∪ Yω* ∪ U)

F =df ((S - X) ∩ Yω) - U

G =df ((S - X) ∩ Yω*) - U

H =df (S - X) - (Yω ∪ Yω* ∪ U)

Note the following:

X = A ∪̇ B ∪̇ C ∪̇ (U ∩ X)

(S - X) = F ∪̇ G ∪̇ H ∪̇ (U ∩ (S - X))

C ∪̇ H = S - (Yω ∪ Yω* ∪ U)

Yω - U = A ∪̇ F

Yω* - U = B ∪̇ G

Yω ∩ U ⊆ X ∩ U, sinceYω =n Z

Yω* ∩ U ⊆ (S - X) ∩ U, sinceYω* =n Z*

Z - U ⊆ A

Z* - U ⊆ G

Note also that eachof the following setscontainssentencesof arbitrarily largedegree: Z, Z*,

andS - (Yω ∪ Yω*). So eachof the following setsis countablyinfinite: A, G, andC ∪̇ H.

ChooseP ⊆ C andQ ⊆ H so that P ∪̇ Q is of the samecardinalityasB ∪̇ C. And let R1

= C - P andR2 = H - Q. Finally, let J be a setof evennumbersof the samecardinalityasF.

And let K = - J. K is countablyinfinite.
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Let W = (X ∩ U) ∪̇ A ∪̇ F ∪̇ P ∪̇ Q. ThenS - W = ((S - X) ∩ U) ∪̇ B ∪̇ G ∪̇ R1 ∪̇ R2.

So Yω = (Yω ∩ U) ∪̇ A ∪̇ F ⊆ W, and Yω* = ((S - X) ∩ U) ∪̇ B ∪̇ G ⊆ S - W. So

(W, D - W) ≥ (Yω, Yω* ∪ ).

Construct an N-restricted isomorphism Ψ from M = [Y ω ∪ ] + (X, D - X) to M′ =

[Yω ∪ ] + (W, D - W) by patchingtogether

the identity function on U,

a bijection from A onto Yω - U = A ∪̇ F,

a bijection from B ∪̇ C onto P ∪̇ Q,

a bijection from G ∪̇ R1 ∪̇ R2 onto B ∪̇ G ∪̇ R1 ∪̇ R2,

a bijection from F onto J, and

a bijection from = J ∪̇ K onto K.

To seethat Ψ is an N-restrictedisomorphismfrom M to M′, first note that Ψ mapsthe

extension of G in M onto the extension of G in M′. The reason is that Yω ∪ =

(U ∩ Yω) ∪̇ A ∪̇ F ∪̇ J ∪̇ K andΨ mapsA to A ∪̇ F, andF to J, andJ ∪̇ K to K. Also, Ψ

mapsX = (U ∩ X) ∪̇ A ∪̇ B ∪̇ C to W = (U ∩ X) ∪̇ A ∪̇ F ∪̇ P ∪̇ Q, sinceΨ mapsA onto

A ∪̇ F, andB ∪̇ C onto P ∪̇ Q. So Ψ mapsthe extensionof T in M onto the extensionof T

in M′. Finally note that for every name‘A’ in N, Ψ mapsthe denotationof ‘A’ in M to the

denotationof ‘A’ in M′, sinceΨ(B) = B if B ∈ U. ThusΨ is anN-restrictedhomomorphismand

Claim 6 is proved.

Example 5.13. (Gupta)Herewe modify Example5.12to get a proof that Tlfp, σ1
3 Tlfp, σ1.

As we shall see,our modified examplewill alsoshowthat Tlfp, σ2
2 Tlfp, σ1.

Example5.13 is like Example5.12,exceptthat the definition of the jump operatorφ must

now beφ(Y) =df { A: Val[Y ∪ ] + (Y, Y* ∪ ), σ1(A) = t}. For theproof of Claim 1, we haveto check

that the two hypotheses, h = (Yn, D - Yn) and h′ = (Yn ∪ { ∀x(Tx ⊃ Gx)},

(D - Yn) - { ∀x(Tx ⊃ Gx)}), arenotonly classicalbutalsoweaklyconsistent.It sufficesto check

that Yn ∪ { ∀x(Tx ⊃ Gx)} is consistentfor everyn. If n = 0, then it is obvious. If n = k + 1,
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then note that every sentencein Yn ∪ { ∀x(Tx ⊃ Gx)} is true in the classical model

Yk ∪ + (Yk, D - Yk). So Yn ∪ { ∀x(Tx ⊃ Gx)}. The proofsof the analoguesClaims2, 3, 4

and5 go throughunmodified,so that (Yω, Yω* ∪ ) is a nonclassicalfixed point of σ1[Y ω ∪ ].

We haveto modify the constructionin the proof of the analogueof Claim 6 asfollows. In

the fourth sentenceof the secondparagraph,we start with someweakly consistent classical

hypothesis (X, D - X) ≥ (Z, Z* ∪ ) such that A is false in the classical model

[Yω ∪ ] + (X, D - X). To showthat A ∉ Yω, we will constructa weakly consistent classical

hypothesis (W, D - W) ≥ (Yω, Yω* ∪ ) such that A is false in the classical model

[Yω ∪ ] + (W, D - W).

Up until thechoiceof P ⊆ C andQ ⊆ H, theconstructionproceedsexactlyasabove. Before

we chooseP and Q, we will prove that (X ∩ U) ∪ Yω = (X ∩ U) ∪̇ A ∪̇ F is consistent.

Supposenot. Then,by compactness,Yω ∪ { B1, ..., Bk} is inconsistentfor someB1, ..., Bk ∈ (X

∩ U). So Yω logically implies B =df ¬(B1 & ... & Bk). So B ∈ Yω. B is of degree< n, since

eachBi ∈ U. So B ∈ Z, sinceYω =n Z. But Z ⊆ X and{ B1, ..., Bk} ⊆ X. SoX is inconsistent.

So (X, D - X) is not weakly consistent,a reductio. So (X ∩ U) ∪ Yω is consistent.

Now we will choose P ⊆ C andQ ⊆ H, but morecarefully thanabove. Note that C ∪̇ H

contains infinitely many sentencesand is closed under negation. Also (X ∩ U) ∪ Yω is

consistent. So therearecountablyinfinitely manysentencesin C ∪̇ H that areconsistentwith

(X ∩ U) ∪ Yω. Sowe canchooseP ⊆ C andQ ⊆ H sothat (X ∩ U) ∪̇ A ∪̇ F ∪̇ P ∪̇ Q = (X

∩ U) ∪ Yω ∪̇ P ∪̇ Q is consistentandso that P ∪̇ Q hasthe samecardinalityasB ∪̇ C.

Let W = (X ∩ U) ∪̇ A ∪̇ F ∪̇ P ∪̇ Q, as above. W is consistent. So the hypothesis

(W, D - W) is weakly consistent.The constructionof the restrictedisomorphismgoesthrough

asabove. So A is false in the classicalmodel [Y ω ∪ ] + (W, D - W), asdesired.

Thus (Yω, Yω* ∪ ) = lfp(σ1[Y ω ∪ ]) and is nonclassical. But note that the groundmodel

[Yω ∪ ] is (S - Yω)-neutralandlfp(σ1[Y ω ∪ ])(A) = t for everyA ∈ Yω. ThusTlfp, σ1
3 Tlfp, σ1,

asdesired.
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We furthermoreclaim that lfp(σ2[Y ω ∪ ]) is classical. Firstly, lfp(σ1[Yω ∪ ]) ≤ lfp(σ2[Y ω ∪ ]).

So the groundmodel [Yω ∪ ] is (S - Yω)-neutraland lfp(σ2[Yω ∪ ])(A) = t for everyA ∈ Yω.

So lfp(σ2[Y ω ∪ ])(A) is classical,since Tlfp, σ2 ≤3 Tlfp, σ2, as proved above. Thus Tlfp, σ2
2

Tlfp, σ1.

Example 5.14. This examplewill show that Tgifp, µ
2 Tgifp, κ. Considera languageL with

exactlytwo nonquotenames,b andc, no functionsymbolsandno nonlogicalpredicates.Let M

= 〈S, I〉 bethatgroundmodelsuchthat I(b) = B = Tb & Tc, andI(c) = C = Tb ∨ ¬Tc. Thefacts

in the following tablecaneasilybe establishedby calculating:

If 〈h(B), h(C)〉 = tt tf tn ft ff fn nt nf nn

then 〈µM(h)(B), µM(h)(C)〉 = tt ft nn ff ft nn nn nn nn

and 〈κM(h)(B), κM(h)(C)〉 = tt ft nt ff ft fn nn ft nn

Given this table,we canargueasin GuptaandBelnap’sTransferTheorem([3], Theorem2D.4)

to the following conclusion: µM hasthreefixed points,which arecompletelydeterminedby the

orderedtriple 〈h(B), h(C), h(∀x(Tx ∨ ¬Tx))〉 andκM hasthreefixed points,which arecompletely

determinedby theorderedtriple 〈h(B), h(C), h(∀x(Tx ∨ ¬Tx))〉. FurthermoreτM hasexactlyone

fixed point,andin that fixed point B andC areboth t. Also, thatuniquefixed point of τM is also

a fixed point of µM andκM. The fixed pointsof µM andκM line up asfollows:

fixed pointsof µM fixed pointsof κM

ttt ttt
| |

ttn fnn ttn
| \ /

nnn nnn

Thusgifp(µM) is classicalbut gifp(κM) is not.

Example 5.15. This examplewill show that Tgifp, κ
2 Tgifp, σ. Considera languageL with

exactlytwo nonquotenames,b andc, no functionsymbolsandno nonlogicalpredicates.Let M

= 〈S, I〉 be that groundmodelsuchthat I(b) = B = Tb ∨ (Tc & ¬Tc), andI(c) = C = (Tb & (Tc
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∨ ¬Tc)) ∨ (¬Tb & ¬Tc). The facts in the following table can easily be establishedby

calculating:

If 〈h(B), H(C)〉 = tt tf tn ft ff fn nt nf nn

then 〈κM(h)(B), κM(h)(C)〉 = tt tt tn ff ft nn nn nn nn

and 〈σM(h)(B), σM(h)(C)〉 = tt tt tt ff ft fn nn nt nn

Given this table,we canargueasin GuptaandBelnap’sTransferTheorem([3], Theorem2D.4)

to the following conclusion: κM hasfour fixed points,which arecompletelydeterminedby the

orderedtriple 〈h(B), h(C), h(∀x(Tx ∨ ¬Tx))〉 andσM hasthreefixed points,which arecompletely

determinedby the orderedpair 〈h(B), h(C)〉. (The reasonwe only needlook at thesepairs of

truth valuesis that the provisoin GuptaandBelnap’sTransferTheoremcanbe droppedfor σ.)

FurthermoreτM hasexactlyone fixed point, and in that fixed point B andC areboth t. Also,

thatuniquefixed point of τM is alsoa fixed point of κM andσM. The fixed pointsof κM andσM

line up asfollows:

fixed pointsof κM fixed pointsof σM

ttt fn tt
| \ /

ttn nn
|
tnn
|
nnn

Thusgifp(κM) is classical,but gifp(σM) is not.

Example 5.16. This examplewill showthat Tgifp, σ
2 Tgifp, σ1. Considera languageL with

exactly four nonquotenames,b, c, d ande, no function symbolsandno nonlogicalpredicates.

Let M = 〈S, I〉 be thatgroundmodelsuchthat I(b) = B = Tb ∨ (Td & Te), I(c) = C = Tb ∨ ¬Tc,

I(d) = D = Tc and I(e) = E = ¬Tc. The facts in the following table can be establishedby

calculating. The asterisksareclassicalwildcards,eithert or f, andthequestionmarkscanvary

with the wildcards:
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If 〈h(B), h(C), h(D), h(E)〉 = tt** ft** *f**

then 〈τM(h)(B), τM(h)(C), τM(h)(B), τM(h)(C)〉 = tttf ?ftf ?tft

From GuptaandBelnap’sTransferTheorem,we canconcludethat τM hasa uniquefixed point,

sayh0, whereh0(B) = h0(C) = h0(D) = t andh0(E) = f. Sinceh0 is a fixed point of τM, it is also

a fixed point of σM andof σ1M.

Furthermore,by anargumentsimilar to thatgivenfor theTransferTheorem,we canconclude

that thefixed pointsof σ arecompletelydeterminedby thevalues〈h(B), h(C), h(D), h(E)〉. (The

reasonwe only needlook at thesequartuplesof truth valuesis that the proviso in Guptaand

Belnap’sTransferTheoremcanbe droppedfor σ.) Thus,we canconcludethat h0 is the only

classicalfixed point of σM, andthe only fixed point h of σM for which h(B) = h(C) = h(D) = t

andh(E) = f. In fact, h0 is theonly fixed point h of σ suchthath(B) = h(C) = t, sinceany fixed

point satisfyingthis alsosatisfiesh(D) = t andh(E) = f.

Claim 1. σ hasno fixed pointsh suchthat h(B) = f or h(C) = f. To seethis, let h be any

fixed point of σ. Supposethat h(C) = f. Then,sinceh is a fixed point of σM, h(Tc) = h(T‘C’)

= h(C) = f, so thath(C) = h(Tb ∨ ¬Tc) = ValM + h, σ(Tb ∨ ¬Tc) = t, a contradiction. On theother

hand,supposethat h(B) = f. Thenh(C) = t or n. If h(C) = t then,sinceh is a fixed point of

σM, h(Tc) = h(T‘C’) = h(C) = t, so that h(C) = h(Tb ∨ ¬Tc) = ValM + h, σ(Tb ∨ ¬Tc) = f, a

contradiction. So h(C) = n. So h(D) = h(Tc) = n = h(¬Tc) = h(E). Let h′ be a classical

hypothesissuchthat h′ ≥ h andh′(Tc) = h′(¬Tc) = t, and let h″ be a classicalhypothesissuch

thath″ ≥ h andh″(Tc) = h″(¬Tc) = f. ThenValM + h′, τ(Td) = ValM + h″, τ(Te) = t andValM + h″, τ(Td)

= ValM + h″, τ(Te) = f. Thus τM(h′)(B) = ValM + h′, τ(Tb ∨ (Td & Te)) = t and τM(h″)(B) =

ValM + h″, τ(Tb ∨ (Td & Te)) = f. So σM(h)(B) = n. This contradictsh’s beinga fixed point of

σM. This provesClaim 1.

Given Claim 1, σ hasno fixed point that are incompatiblewith h0. Thus h0 is σ-intrinsic.

Thus,sinceh0 is classical,h0 = gifp(σM).
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As for σ1, let g be the (weakly classical)hypothesissuchthat g(B) = f andg(A) = n if A ≠

B. Note that σ1M(g)(B) = f. So g ≤ σ1M(g). By the monotonyof σ1, there is a unique

σ1-sequenceS suchthat S0 = g. Furthermore,S is increasing(not strictly) andculminatesin a

fixed point, sayh1. Note that h1(B) = f. But h0 is alsoa fixed point of σ1, andh0(B) = t. So

gifp(σ1M) is not classical.

Example 5.17. This examplewill showthat Tgifp, σ1
2 Tgifp, σ2. Considera languageL with

exactly four nonquotenames,b, c, d ande, no function symbolsandno nonlogicalpredicates.

Let M = 〈S, I〉 be that groundmodelsuchthat I(b) = B = Tb ∨ (¬Td & ¬Te), I(c) = C = Tb ∨

¬Tc, I(d) = D = Tc andI(e) = E = ¬Tc. The facts in the following tablecanbe establishedby

calculating. The asterisksarewildcards,andthe questionmarkscanvary with the wildcards:

If 〈h(B), h(C), h(D), h(E)〉 = tt** ft** *f**

then 〈τM(h)(B), τM(h)(C), τM(h)(C), τM(h)(E)〉 = tttf ?ftf ?tft

From GuptaandBelnap’sTransferTheorem,we canconcludethat τM hasa uniquefixed point,

sayh0, whereh0(B) = h0(C) = h0(D) = t andh0(E) = f. Sinceh0 is a fixed point of τM, it is also

a fixed point of σ1M andof σ2M.

Furthermore,by anargumentsimilar to thatgivenfor theTransferTheorem,we canconclude

that the fixed points of σ1 are completelydeterminedby the values〈h(B), h(C), h(D), h(E)〉.

Thus,we canconcludethat h0 is the only classicalfixed point of σ1M, andthe only fixed point

h of σ1M for which h(B) = h(C) = h(D) = t andh(E) = f. In fact, h0 is the only fixed point h of

σ1 suchthath(B) = h(C) = t, sinceanyfixed point satisfyingthis alsosatisfiesh(D) = t andh(E)

= f.

Now we will showthat σ1 hasno fixed pointsh suchthat h(B) = f. For a reductio,suppose

that h is a fixed point of σ1 with h(B) = f. h(C) cannotbe t, otherwisewe would haveh(C) =

σ1M(h)(C) = f. Similarly h(C) cannotbe f, otherwisewe would haveh(C) = σ1M(h)(C) = t. So

h(C) = n. Thush(T‘C’) = h(Tc) = n = h(¬Tc), sinceh is a fixed point. Considerthe classical

hypothesish′ suchthath′(A) = t iff h(A) = t for everyA ∈ S. h′ is weakly consistent,sincethe
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set{ A: h(A) = t} is consistent,h beinga fixed point. Also notethat h′(Tc) = h′(¬Tc) = f, and

h′(B) = f. ThusValM + h′, τ(Td) = ValM + h′, τ(T‘Tc’) = f = ValM + h′, τ(T’¬Tc’) = ValM + h′, τ(Te). So

ValM + h′, τ(B) = ValM + h′, τ(Tb ∨ (¬Td & ¬Te)) = t. Soby thedefinition of thejump operatorσ1M,

σ1M(h)(B) ≠ f = h(B), which contradictsh’s beinga fixed point of σ1.

Furthermore,σ1 hasno fixed pointsh suchthat h(C) = f. For a reductio,supposethat h is

a fixed point of σ1 with h(C) = f. Soh(Tc) = f, sinceh is a fixed point. Soh(C) = h(Tb ∨ ¬Tc)

= t, a contradiction.

Sofor everyfixed point h of σ1, thepossiblevaluesfor thequartuple〈h(B), h(C), h(D), h(E)〉

are tttf, tnnn, nttf, and nnnn. As alreadypointed out, eachfixed point h of σ1 is uniquely

determinedby 〈h(B), h(C), h(D), h(E)〉, andthe orderingon themis isomorphicto the ordering

inducedon the four quartuplestttf, tnnn,nttf, andnnnn:

tttf
/ \

tnnn nttf
\ /
nnnn

Thush0 is the greatestfixed point of σ1. Thush0 = gifp(σ1M), which is classical.

As for σ2, let g be the (stronglyconsistent)hypothesissuchthat g(B) = f andg(A) = n if A

≠ B. Note that σ2M(g)(B) = f. So g ≤ σ2M(g). By the monotonyof σ2, there is a unique

σ2-sequenceS suchthat S0 = g. Furthermore,S is increasing(not strictly) andculminatesin a

fixed point, sayh1. Note that h1(B) = f. But h0 is alsoa fixed point of σ2, andh0(B) = t. So

gifp(σ2M) is not classical.

Example 5.18. Thisexamplewill showthatTgifp, σ2
2 Tc. Considera languageL with exactly

two nonquotenames,b andc, no functionsymbolsandno nonlogicalpredicates.Let M = 〈S, I〉

be that groundmodel such that I(b) = B = Tc, and I(c) = C = Tb & ¬Tc. The facts in the

following tablecaneasilybe establishedby calculating:

If 〈h(B), h(C)〉 = tt tf tn ft ff fn nt nf nn

then 〈σ2M(h)(B), σ2M(h)(C)〉 = tf ft tf ff
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Note that we havenot filled in all the spacesin the table. Theseare not trivial: in order to

calculatethesevalues,we mustknow which classicalh′ ≥ h arestronglyconsistent.Right away

we know that thereareno stronglyconsistenthypothesesh suchthat 〈h(B), h(C)〉 = 〈t, t〉, so that

we canfill in the third columnof the tablewith "ft". For our purposes,we do not really need

all the othercolumns. All we needis the following:

If 〈h(B), h(C)〉 = tt tf tn ft ff fn nt nf nn

then 〈σ2M(h)(B), σ2M(h)(C)〉 = tf ft ft tf ff ?f tf ?? ??

Given this, by an argumentsimilar to GuptaandBelnap’sargumentfor the TransferTheorem,

we can concludethat eachfixed point h of σ2M is uniquely determinedby the values〈h(B),

h(C)〉, andthatthefixed point h0 determinedby thevalues〈f, f〉 is classical.We canfurthermore

concludethat theonly otherpotentialfixed pointsaredeterminedby thevalues〈n, f〉 and〈n, n〉.

If suchfixed pointsexist, theyareboth≤ h0. So,whateverotherfixed pointstheremight be,h0

= gifp(σ2M). So gifp(σ2M) is classical.

Now we will showthat Tc doesnot dictatethat truth behaveslike a classicalconceptin M.

Chooseany stronglyconsistenthypothesish suchthat h(B) = t andh(C) = f. This canbe done

since(B & ¬C) is consistent. Note that if n is eventhenτ n
M(h)(B) = t andτ n

M(h)(C) = f, and if

n is oddthenτ n
M(h)(B) = f andτ n

M(h)(C) = t. Sothereis somemaximallyconsistentτM-sequence

S suchthat neitherB nor C is stablein S. This suffices.

Example 5.19. This examplewill show that(1) Tlfp, κ
1 Tlfp, µ, and(2) Tlfp, ρ′

1 Tgifp, ρ, where

ρ and ρ′ are chosenfrom the list µ, κ, σ, σ1, σ2, with ρ strictly to the left of ρ′ on this list.

Considera languageL with exactly two nonquotenames,b andc, no function symbolsandno

nonlogicalpredicates.Let M = 〈S, I〉 be that groundmodelsuchthat I(b) = B = ¬Tb. Let C =

∃x(x = x). Note that for any fixed point h of µ, κ, σ, σ1, or σ2, h(B) = f. Thuslfp(κM)(B ∨ C)

= lfp(σM)(B ∨ ¬B) = lfp(σ1M)(¬T‘B’ ∨ ¬T‘¬B’) = lfp(σ2M)(T‘B’ ∨ T‘¬B’) = t. Meanwhile,

lfp(µM)(B ∨ C) = gifp(µM)(B ∨ C) = gifp(κM)(B ∨ ¬B) = gifp(σM)(¬T‘B’ ∨ ¬T‘¬B’) =

gifp(σ1M)(T‘B’ ∨ T‘¬B’) = n.
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Example 5.20. This examplewill showthat T*
1 Tgifp, ρ, for ρ = σ, σ1 or σ2. Considera

languageL with countablyinfinitely manynonquotenames,b0, b1, ..., bn, ..., no functionsymbols

and exactly one non-logicalpredicate,the unary predicateG. Let M = 〈S, I〉 be that classical

groundmodelsuchthat I(b0) = B0 = Tb0 ∨ ∃x∃y(Gx & Gy & Tx & Ty & x ≠ y) ∨ ∀x(Gx ⊃ ¬Tx),

and I(bi) = Bi = ∀x(Gx ⊃ (Tx ≡ x = bi)) for i ≥ 1, andI(G)(A) = t iff A ∈ Y = { B0, B1, ..., Bn,

...}. For eachn ≥ 0, let Hn = {h: h is a classicalhypothesis,andh(Bn) = t andh(Bm) = f for m

≠ n}. Let Hf = {h: h is a classicalhypothesis,andh(Bm) = f for everym} andlet Ht = {h: h is

a classicalhypothesis,andh(Bm) = t for everym}. Note the following:

if h ∈ Hn thenτM(h) ∈ Hn;

if h ∈ Hf thenτM(h) ∈ H0;

if h ∈ Ht thenτM(h) ∈ H0; and

if h ∉ ∪nHn ∪ Hf ∪ Ht thenτM(h) ∈ H0.

Thus,for any τM-sequenceS, we haveS1 ∈ ∪nHn. We alsohave,for everym ≥ 1, Sm =Y Sm + 1.

Thusby the Major Corollary (Corollary 5.6), Sω ∈ ∪nHn is a fixed point. Thus,not only does

every τM-sequenceculminate in somefixed point in ∪nHn, but τM has infinitely many fixed

points,exactlyonein eachHn. Let hn betheuniquefixed point of τM in Hn. NotethatV *
M = { A:

hn(A) = t for eachn}. So ∃x(Gx & Tx) ∈ V *
M. Furthermore,supposewe definethe hypothesis

h* asfollows: h*(A) = t if A ∈ V *
M; h*(A) = f if ¬A ∈ V *

M; h*(A) = n otherwise. Thenh* is the

greatestlower boundof the hn. Also notethat h* is stronglyconsistent.

We will now arguethatgifp(σ2M)(∃x(Gx & Tx)) = gifp(σ1M)(∃x(Gx & Tx)) = gifp(σM)(∃x(Gx

& Tx)) = n. We will only give the argumentfor gifp(σ2M)(∃x(Gx & Tx)); the otherarguments

aresimilar.

Any intrinsic point of σ2M mustbe ≤ any classicalfixed point of τM. Thusgifp(σ2M) ≤ hn,

for eachn. Thus gifp(σ2M) ≤ h*. Now we claim that V *
M ∪ {¬B0, ¬B1, ..., ¬Bn, ...} is a

consistentset. To seethis, note that V *
M ∪ {¬B0, ¬B1, ..., ¬Bn} is a consistentset,sinceV *

M ∪

{¬B0, ¬B1, ..., ¬Bn} ⊆ { A: hn + 1(A) = t}. Given that V *
M ∪ {¬B0, ¬B1, ..., ¬Bn, ...} is consistent,
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the following hypothesish′ ≥ h* is stronglyconsistent: h′(A) = t if A ∈ V *
M; h′(A) = f if ¬A ∈

V *
M or A ∈ Y; h′(A) = n otherwise. Since h′ is strongly consistent,it can be extendedto a

classical stronglyconsistenthypothesish″ ≥ h′ ≥ h* ≥ gifp(σ2M). Note that h″(A) = f for each

A ∈ Y. SoτM(h″)(∃x(Gx & Tx)) = f. Thusgifp(σ2M)(∃x(Gx & Tx)) = σ2M(gifp(σ2M))(∃x(Gx &

Tx)) ≠ t, by the definition of σ2M. Also, gifp(σ2M)(∃x(Gx & Tx)) ≠ f, sincegifp(σ2M) ≤ h0 and

h0(∃x(Gx & Tx)) = t. Thusgifp(σ2M)(∃x(Gx & Tx)) = n, asdesired.

So far, we havethe following results.

Positiveresultsprovedin §4. Tlfp, µ ≤1 Tlfp, κ ≤1 Tlfp, σ ≤1 Tlfp, σ1 ≤1 Tlfp, σ2. Tlfp, ρ ≤1 Tgifp, ρ for

ρ = µ, κ, σ, σ1, or σ2. T* ≤1 T#. T* ≤1 Tc. Tlfp, σ ≤1 T*. Tlfp, σ2 ≤1 Tc. Tlfp, µ ≡2 Tlfp, κ. Tlfp, κ ≤2

Tlfp, σ ≤2 Tlfp, σ1 ≤2 Tlfp, σ2 ≤2 Tc. Tlfp, σ ≤2 T*≤2 T#. T*≤2 Tc. Tc ≤2 Tgifp, σ2. Tgifp, σ2 ≤2 Tgifp, σ1 ≤2

Tgifp, σ ≤2 Tgifp, κ ≤2 Tgifp, µ. T* ≤3 Tc ≤3 Tgifp, σ2 ≤3 Tgifp, σ1 ≤3 Tgifp, σ ≤3 Tgifp, κ ≤3 Tgifp, µ. Tlfp, σ2 ≤3 Tc.

Tlfp, σ1 ≤3 Tlfp, σ2. Tlfp, µ ≤3 Tlfp, σ ≤3 Tlfp, σ1. Tlfp, κ ≤3 Tlfp, σ.

Positiveresultsprovedin §5. T* ≤3 T*. Tc ≤3 Tc. Tlfp, σ2 ≤3 Tlfp, σ2. Tgifp, ρ ≤3 Tgifp, ρ for ρ =

µ, κ, σ, σ1 or σ2.

Negativeresultsfrom the examplesin §5. T#
3 T#. T#

2 T*. T#
2 Tgifp, µ. Tlfp, σ1

2 T*.

Tlfp, σ1
2 T#. Tlfp, σ2

2 T*. Tlfp, σ2
2 T#. Tc

3 T*. Tc
3 T#. Tc

2 T*. Tc
2 T#. Tlfp, σ

3 Tlfp, σ.

Tlfp, σ1
3 Tlfp, σ1. Tlfp, σ2

2 Tlfp, σ1. Tgifp, µ
2 Tgifp, κ. Tgifp, κ

2 Tgifp, σ. Tgifp, σ
2 Tgifp, σ1. Tgifp, σ1

2

Tgifp, σ2. Tgifp, σ2
2 Tc. Tlfp, κ

1 Tlfp, µ. Tlfp, ρ′
1 Tgifp, ρ, whereρ andρ′ arechosenfrom the list µ,

κ, σ, σ1, σ2, so that ρ is strictly to the left of ρ′ on this list. T*
1 Tgifp, ρ, for ρ = σ, σ1 or σ2.

We addthe following threenegativeresults. (i) T*
2 Tlfp, σ. See[3], Example6B.7. (ii)

T*
2 Tlfp, σ2. See[3], Example6B.13. (iii) Tlfp, σ

2 Tlfp, κ. ChooseanyS-neutralgroundmodel.

By Corollary 4.24,lfp(σ) is classical. But, by the proof of Theorem4.5, lfp(κ) is not classical.

The negativeparts of Theorems4.2 and 4.5 follow from theseresults, togetherwith (1)

Lemma4.20; (2) the fact that if T ≤1 T′ thenT ≤2 T′; (3) the fact that ≤1 and≤2 are reflexive

andtransitive;(4) thefact that≤1, ≤2 and≤3 aretransitive;and(5) thepositivepartsof Theorems

4.2 and4.5.
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