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a b s t r a c t

The topological semantics for modal logic interprets a standard modal propositional
language in topological spaces rather than Kripke frames: the most general logic of
topological spaces becomes S4. But othermodal logics can be given a topological semantics
by restricting attention to subclasses of topological spaces: in particular, S5 is logic
of the class of almost discrete topological spaces, and also of trivial topological spaces.
Dynamic Topological Logic (DTL) interprets a modal language enriched with two unary
temporal connectives, next and henceforth. DTL interprets the extended language in
dynamic topological systems: a DTS is a topological space together with a continuous
function used to interpret the temporal connectives. In this paper, we axiomatize four
conservative extensions of S5, and show them to be the logic of continuous functions
on almost discrete spaces, of homeomorphisms on almost discrete spaces, of continuous
functions on trivial spaces and of homeomorphisms on trivial spaces.

© 2009 Elsevier B.V. All rights reserved.

1. Background

1.1. S5 in the topological semantics

Let L2 be a modal propositional language with a set PV = {p1, . . . , pn, . . .} of propositional variables, parentheses,
Boolean connectives & and ¬, and a unary modal connective 2. We assume that the Boolean connectives ∨, ⊃ and ≡, and
the unary modal connective ♦ are defined in the usual way. The McKinsey–Tarski topological semantics1 interprets L2 in
topological spaces, interpreting 2 as topological interior. The resulting modal logic, S4, can thus be seen as the modal logic
of topological spaces.
Formally, a topological model is an ordered pair M = 〈X, V 〉, where X is a topological space and V : PV → P (X). The

function V is extended to all formulas ofL2 as follows, where Int(Y ) is topological interior of Y , for any Y ⊆ X:
V (¬A)= X − V (A)
V (A & B)= V (A) ∩ V (B)
V (2A)= Int(V (A)).

We define four validity relations, whereM = 〈X, A〉 and where T is a class of topological spaces:
M � A iff V (A) = X
X � A iff 〈X, V 〉 � A, for every V : PV → X
T � A iff X � A, for every X ∈ T

� A iff X � A, for every topological space X .

The main theorem of [9] is as follows: � A iff A ∈ S4.

E-mail address: philip.kremer@utoronto.ca.
URL: http://individual.utoronto.ca/philipkremer.

1 See [8,9]. This semantics predates the Kripke semantics of [6,7].
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Any class T of topological spaces determines a modal logic, namely {A : A is a formula of L2 and T � A}. In particular,
the modal logic S5 is determined in this way by the classAD of almost discrete spaces,2 and the class T R of trivial spaces.3
That is, for any formula A in the languageL2, we have the following4:

A ∈ S5 iff AD � A
A ∈ S5 iff T R � A.

AD and T R are not the only classes of topological spaces that determine S5, but each ofAD and T R is noteworthy:

AD . The classAD is the largest class of topological spaces that determines S5: thusAD not only determines S5 but
is, in a clear sense, determined by S5.

T R. Suppose that for a topological modelM = 〈X, V 〉, we think of the points in X as possible worlds and of a formula
A as true in the world x iff x ∈ V (A). Then the trivial topological spaces are distinguished by the simplicity of the
interpretation of the truth of 2A and♦A in a world x: 2A is true in x iff A is true in every world, and♦A is true in x iff
A is true in some world.

Thus, below, the classesAD and T R will figure prominently.

1.2. Dynamic topological logic

The Dynamic Topological Logic (DTL) programme of [5] extends the languageL2 to a modal-temporal languageLwith
two additional connectives: the unary temporal connectives ◦ (next) and ∗ (henceforth).5 This language is interpreted in
dynamic topological systems rather than topological spaces: a dynamic topological system (DTS) is an orderedpair 〈X, f 〉, where
X is a topological space and f is a continuous function on X . We interpret the temporal connectives of the modal-temporal
language L by means of the function f : ◦A will be true at a world x iff A is true at fx; and ∗A will be true at x iff A is true at
each of x, fx, ffx, fffx, and so on. More precisely, a dynamic topological model is an ordered tripleM = 〈X, f , V 〉, where 〈X, f 〉
is a topological space and V : PV → P (X). The function V is extended to all formulas ofL as follows:

V (¬A)= X − V (A)
V (A & B)= V (A) ∩ V (B)
V (2A)= Int(V (A))
V (◦A)= f −1(V (A))
V (∗A)=

⋂
i∈N
f −iInt(V (A)).

Here, for any set Y ⊆ X , the set f −1(Y ) is the inverse image of Y , i.e. f −1(Y ) = {x ∈ X : f (x) ∈ Y }; we also define f 0(Y ) = Y ,
and f −(i+1)(Y ) = f −1(f −i(Y )).
We define six validity relations, whereM = 〈X, f , V 〉, where T is a class of topological spaces, and where F is a class of

continuous functions:
M � A iff V (A) = X

〈X, f 〉 � A iff 〈X, f , V 〉 � A, for every V : PV → X
X � A iff 〈X, f 〉 � A, for every continuous f on X
T � A iff X � A, for every X ∈ T

T ,F � A iff 〈X, f 〉 � A, for every X ∈ T and every continuous
function f on X such that f ∈ F

� A iff X � A, for every topological space X .

Our main project in the current paper is to axiomatize the following four logics, where H is the class of
homeomorphisms6:

1. The logic of continuous functions on almost discrete spaces: {A : AD � A}.
2. The logic of homeomorphisms on almost discrete spaces: {A : AD,H � A}.
3. The logic of continuous functions on trivial spaces7: {A : T R � A}.
4. The logic of homeomorphisms on trivial spaces: {A : T R,H � A}.

Given our remarks in Section 1.1, each of these logics is a conservative extension of the logic S5 formulated in the
languageL2.

2 A topological space is almost discrete iff every open set is closed. An alternative definition: a topological space X is almost discrete iff there is a familyO
of pairwise disjoint nonempty open sets such that X =

⋃
O. Note that this family forms a basis for the topology.

3 A topological space is trivial iff there are exactly two open sets: the empty set and the whole space.
4 The claims which follow are immediate consequences of the work of [6].
5 See [5] for some motivation of the DTL programme and for references. A similar programme was independently initiated by [1] and [2].
6 A function on a topological space is a homeomorphism iff it is a continuous bijection with a continuous inverse.
7 Of course, every function on a trivial space is continuous.
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2. Four axiom systems

2.1. The systems

Suppose that we formulate a purely temporal logic in the purely temporal language L◦∗, i.e. the language L without
the modal connective 2. The function-based interpretation of ◦ and ∗ gives us the linear time logic LTL, determined by the
following axioms and rules8:

Axioms: Classical tautologies
S4 axioms for ∗: ∗(A ⊃ B) ⊃ (∗A ⊃ ∗B)

∗A ⊃ A
∗A ⊃ ∗∗A

◦ commutes with ¬, ∨, ∗: ◦¬A ≡ ¬◦A
◦(A ∨ B) ≡ (◦A ∨ ◦B)
◦∗A ≡ ∗◦A

∗ implies ◦: ∗A ⊃ ◦A
The induction axiom: A & ∗(A ⊃ ◦A) ⊃ ∗A

Rules: Modus Ponens: (A ⊃ B), A/B
Necessitation for ∗: A/∗A.

We define S5C as the logic in the modal-temporal languageL given by the following axioms and rules:
Axioms: Classical tautologies

S5 axioms for 2: 2(A ⊃ B) ⊃ (2A ⊃ 2B)
2A ⊃ A
2A ⊃ 22A
♦A ⊃ 2♦A

LTL axioms for ◦ and ∗: ∗(A ⊃ B) ⊃ (∗A ⊃ ∗B)
∗A ⊃ A
∗A ⊃ ∗∗A
◦¬A ≡ ¬◦A
◦(A ∨ B) ≡ (◦A ∨ ◦B)
◦∗A ≡ ∗◦A
∗A ⊃ ◦A
A & ∗(A ⊃ ◦A) ⊃ ∗A

The continuity axiom: ◦2A ⊃ 2◦A

Rules: Modus Ponens: (A ⊃ B), A/B
Necessitation for ∗: A/∗A
Necessitation for 2: A/2A.

If we take the three rules as given, we can think of S5C as follows:
S5C= S5+ LTL+ (◦2A ⊃ 2◦A).

S5C is the logic of continuous functions on almost discrete spaces (see Section 3.5). The logic of continuous functions on
trivial spaces, can be axiomatized in a similar way (see Section 3.2):

S5Ct= S5+ LTL+ (2A ⊃ 2◦A).
The logic of homeomorphisms on trivial spaces can be axiomatized by converting the distinctive conditional axiom of S5Ct
into a biconditional (see Section 3.3):

S5Ht= S5+ LTL+ (2A ≡ 2◦A).
In order to axiomatize the logic of homeomorphisms on almost discrete spaces, we add an additional rule, the rule of next
removal:

Next removal: ◦A/A.
And we define S5H as follows (see Section 3.6):

S5H= S5+ LTL+ (◦2A ≡ 2◦A)+ ◦A/A.
Note that each of S5C, S5Ct, S5H and S5Ht is a conservative extension of the logic S5 formulated in the languageL2. To

see this, given any formula A ofL, let A′ be the result of deleting all occurrences of ◦ and ∗. Then for any formula A ofL, if A
is a theorem of S5C [S5Ct, S5H, S5Ht], then A′ is a theorem of S5. In particular, if A has no occurrences of ◦ or ∗, then if A is a
theorem of S5C [S5Ct, S5H, S5Ht], then A itself is a theorem of S5. By a similar argument, each of S5C, S5Ct, S5H and S5Ht is
a conservative extension of the logic LTL formulated in the purely temporal languageL◦∗.

8 See [10] for an introduction to and history of LTL.
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Our main theorem is the following soundness and completeness theorem:
Theorem 2.1.1. For every formula A,

(1) A ∈ S5C iff AD � A
(2) A ∈ S5H iff AD,H � A
(3) A ∈ S5Ct iff T R � A
(4) A ∈ S5Ht iff T R,H � A.

The (⇒) directions of the biconditionals in Theorem 2.1.1 correspond to soundness, and are left to the reader. In Section 3
we prove the (⇐) directions of the biconditionals, i.e. completeness, for S5Ct, S5Ht, S5C and S5H, in that order. We will also
prove the decidability of these four logics, despite the failure of the finite model property for S5H and S5Ht (see Sections 3.3
and 3.6).
Remark 2.1.2. After seeing a first draft of this paper, Frank Wolter noted that the logics considered here are closely related
to the many-dimensional modal logics considered in [3]. In the notation and terminology of [3], S5C= LTL× S5, the product
of LTL and S5. [3] considers a temporal logic PTL, slightly different from LTL: rather than our unary henceforth connective,
PTL has a unary always in the future connective, a unary always in the past connective, and a binary until connective. Though
both the motivation for the semantics and the perspective of [3] are quite different from ours, [3]’s semantics for its logic
PTL × S5 is (more or less) a notational variant of our semantics in the special case where the class of topological spaces
is the class of almost discrete spaces and the class of functions is the class of all continuous functions on almost discrete
spaces. [3] presents an axiomatization of PTL× S5, together with completeness and decidability proofs. Our completeness
and decidability results for S5C (Theorem 2.1.1, (1), and Corollary 3.5.5) follow from the results in [3], though our proofs
are quite different.9 Analogues of our our semantics in our other three cases (represented by Theorem 2.1.1, (2)–(4)) are not
considered in [3], nor are the concomitant logics S5H, S5Ct and S5Ht: these logics do not spring as quickly to mind from the
perspective in [3] as they do from the perspective of DTL.

2.2. Some useful facts

We use the facts proved in this subsection to establish further results. These facts also give a feel for the interaction
between the topological modality and the temporal modalities in our logics.
Fact 2.2.1. Suppose that L is one of S5C, S5H, S5Ct and S5Ht. And suppose that (A ⊃ ◦A) ∈ L. Then (A ⊃ ∗A) ∈ L.
Proof. Given that (A ⊃ ◦A) ∈ L, we also have ∗(A ⊃ ◦A) ∈ L. Given the induction axiom of LTL, we have ((A & ∗(A ⊃ ◦A)) ⊃
∗A) ∈ L. Therefore (∗(A ⊃ ◦A) ⊃ (A ⊃ ∗A)) ∈ L. Thus (A ⊃ ∗A) ∈ L, as desired. �

Fact 2.2.2. Suppose that L is one of S5C, S5H, S5Ct and S5Ht. Then (◦∗A & A⊃ ∗A) ∈ L.
Proof.

(1) ◦A ⊃ (A ⊃ ◦A) ∈ L Axiom of L
(2) ∗◦A ⊃ ∗(A ⊃ ◦A) ∈ L by (1)
(3) ∗◦A & A ⊃ A & ∗(A ⊃ ◦A) ∈ L by (2)
(4) A & ∗(A ⊃ ◦A) ⊃ ∗A ∈ L Axiom of L
(5) ∗◦A & A ⊃ ∗A ∈ L by (3), (4)
(6) ◦∗A & A ⊃ ∗A ∈ L ◦ commutes with ∗. �

Fact 2.2.3. (2A ⊃ ◦2A) ∈ S5Ct.
Proof.

(1) (2A ⊃ 22A) ∈ S5Ct Axiom of S5Ct
(2) (22A ⊃ 2◦2A) ∈ S5Ct Axiom of S5Ct
(3) (2◦2A ⊃ ◦2A) ∈ S5Ct Axiom of S5Ct
(4) (2A ⊃ ◦2A) ∈ S5Ct by (1), (2), (3). �

Fact 2.2.4. (◦2A ⊃ 2A) ∈ S5Ct.
Proof.

(1) (2¬2A ⊃ ◦2¬2A) ∈ S5Ct by Fact 2.2.3
(2) (2¬2A ⊃ ¬2A) ∈ S5Ct Axiom of S5Ct
(3) (◦2¬2A ⊃ ◦¬2A) ∈ S5Ct by (2)
(4) (2¬2A ⊃ ◦¬2A) ∈ S5Ct by (1), (3)
(5) (2¬2A ⊃ ¬◦2A) ∈ S5Ct ◦ commutes with ¬
(6) (◦2A ⊃ ¬2¬2A) ∈ S5Ct by (5)
(7) (◦2A ⊃ ♦2A) ∈ S5Ct by (6)
(8) (♦2A ⊃ 2A) ∈ S5Ct Axiom of S5Ct
(9) (◦2A ⊃ 2A) ∈ S5Ct by (7), (8). �

9 [3] presents refined decidability results for PTL× S5, for example that its decision problem is EXPSPACE-complete (p. 268).



100 P. Kremer / Annals of Pure and Applied Logic 160 (2009) 96–116

Fact 2.2.5. (◦2A ⊃ 2◦A) ∈ S5Ct.

Proof. See Fact 2.2.4 and the distinctive axiom of S5Ct. �

Fact 2.2.6. (2◦A ⊃ ◦2A) ∈ S5Ht.
Proof. Clearly, S5Ct⊆ S5Ht. So (2A ⊃ ◦2A) ∈ S5Ht, by Fact 2.2.3. Also, (2A ≡ 2◦A) is an axiom of S5Ht. So (2◦A ⊃ ◦2A)
∈ S5Ht. �

2.3. More facts

The facts in the current subsection are stated and proved in order to give more of a feel for the interaction between the
topological modality and the temporal modalities in our logics. We could have waited until completeness was proved for
our four logics, and then given semantic proofs of the facts in this section. But we believe that it is instructive to give the
syntactic proofs here.

Fact 2.3.1. (♦◦A ⊃ ♦A) ∈ S5Ct.
Proof.

(1) (2¬A ⊃ 2◦¬A) ∈ S5Ct Axiom of S5Ct
(2) (¬2◦¬A ⊃ ¬2¬A) ∈ S5Ct by (1)
(3) (¬2¬◦A ⊃ ¬2¬A) ∈ S5Ct ◦ commutes with ¬
(4) (♦◦A ⊃ ♦A) ∈ S5Ct by (3). �

Fact 2.3.2. (2A ⊃ ∗2A) ∈ S5Ct.
Proof. See Facts 2.2.3 and 2.2.1. �

Fact 2.3.3. (2∗A ⊃ ∗2A) ∈ S5H.
Proof.

(1) ∗∗A ⊃ ◦∗A ∈ S5H Axiom of S5H
(2) ∗A ⊃ ∗∗A ∈ S5H Axiom of S5H
(3) ∗A ⊃ ◦∗A ∈ S5H by (1), (2)
(4) 2∗A ⊃ 2◦∗A ∈ S5H by (3)
(5) ◦2∗2A ≡ 2◦∗2A ∈ S5H Axiom of S5H
(6) 2∗A ⊃ ◦2∗A ∈ S5H by (4), (5)
(7) 2∗A ⊃ ∗2∗A ∈ S5H by Fact 2.2.1
(8) ∗A ⊃ A ∈ S5H Axiom of S5H
(9) 2∗A ⊃ 2A ∈ S5H by (8)
(10) ∗2∗A ⊃ ∗2A ∈ S5H by (9)
(11) 2∗A ⊃ ∗2A ∈ S5H by (7), (10). �

Fact 2.3.4. (∗2A ⊃ 2∗A) ∈ S5C.

Proof.
(1) ∗2A ⊃ 2A ∈ S5C Axiom of S5C
(2) ♦∗2A ⊃ ♦2A ∈ S5C by (1)
(3) ♦2A ⊃ 2A ∈ S5C Axiom of S5C
(4) ♦∗2A ⊃ 2A ∈ S5C by (2), (3)
(5) 2A ⊃ A ∈ S5C Axiom of S5C
(6) ♦∗2A ⊃ A ∈ S5C by (4), (5)
(7) ◦∗A & A ⊃ ∗A ∈ S5C by Fact 2.2.2
(8) 2◦∗A & 2A ⊃ 2∗A ∈ S5C by (7)
(9) ◦2∗A ⊃ 2◦∗A ∈ S5C Axiom of S5C
(10) ◦2∗A & 2A ⊃ 2∗A ∈ S5C by (8), (9).
(11) ¬2∗A & 2A ⊃ ¬◦2∗A ∈ S5C by (10)
(12) ¬2∗A & 2A ⊃ ◦¬2∗A ∈ S5C ◦ commutes with¬
(13) ¬2∗A &♦∗2A ⊃ ◦¬2∗A ∈ S5C by (4), (12)
(14) ∗∗2A ⊃ ◦∗2A ∈ S5C Axiom of S5C
(15) ∗2A ⊃ ∗∗2A ∈ S5C Axiom of S5C
(16) ∗2A ⊃ ◦∗2A ∈ S5C by (14), (15)
(17) ♦∗2A ⊃ ♦◦∗2A ∈ S5C by (16)
(18) ♦∗2A ⊃ ¬2¬◦∗2A ∈ S5C by (17)
(19) ♦∗2A ⊃ ¬2◦¬∗2A ∈ S5C ◦ commutes with¬
(20) ◦2¬∗2A ⊃ 2◦¬∗2A ∈ S5C Axiom of S5C
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(21) ♦∗2A ⊃ ¬◦2¬∗2A ∈ S5C by (19), (20)
(22) ♦∗2A ⊃ ◦¬2¬∗2A ∈ S5C ◦ commutes with¬
(23) ♦∗2A ⊃ ◦♦∗2A ∈ S5C by (22)
(24) ¬2∗A &♦∗2A ⊃ ◦¬2∗A & ◦♦∗2A ∈ S5C by (13), (23)
(25) ¬2∗A &♦∗2A ⊃ ◦(¬2∗A &♦∗2A) ∈ S5C ◦ commutes with &
(26) ¬2∗A &♦∗2A ⊃ ∗(¬2∗A &♦∗2A) ∈ S5C by Fact 2.2.1
(27) (¬2∗A &♦∗2A) ⊃ ♦∗2A ∈ S5C propositional tautology
(28) ∗(¬2∗A &♦∗2A) ⊃ ∗♦∗2A ∈ S5C by (27)
(29) ¬2∗A &♦∗2A ⊃ ∗♦∗2A ∈ S5C by (26), (28)
(30) ♦∗2A ⊃ 2∗A ∨ ∗♦∗2A ∈ S5C by (29)
(31) 2∗A ⊃ ∗A ∈ S5C Axiom of S5C
(32) ♦∗2A ⊃ ∗A ∨ ∗♦∗2A ∈ S5C by (29)
(33) ∗♦∗2A ⊃ ∗A ∈ S5C by (6)
(34) ♦∗2A ⊃ ∗A ∈ S5C by (32), (33)
(35) 2♦∗2A ⊃ 2∗A ∈ S5C by (35)
(36) ∗2A ⊃ 2♦∗2A ∈ S5C Axiom of S5C
(37) ∗2A ⊃ 2∗A ∈ S5C by (35), (36). �

2.4. Relations among our logics

The facts in the current subsection help spell out the relations among our four logics. Their proofs rely on the soundness
claims in Theorem 2.1.1, which we are taking as proved.

Fact 2.4.1. (2p ⊃ ◦2p) ∈ S5Ct – S5H.

Proof. Given the soundness of S5H for homeomorphisms on almost discrete spaces, it suffices to find a dynamic topological
model M = 〈X, f , V 〉, where X is almost discrete and f is a homeomorphism and M 6� (2p ⊃ ◦2p). Let X = {0, 1} with
open sets ∅, {0}, {1} and X; f (0) = 1 and f (1) = 0; and V (p) = {0}. It is easy to check thatM 6� (2p ⊃ ◦2p). �

Fact 2.4.2. (2◦p ⊃ ◦2p) ∈ S5H – S5Ct.

Proof. Given the soundness of S5Ct for trivial spaces, it suffices to find a dynamic topological modelM = 〈X, f , V 〉, where
X is trivial and M 6� (2◦p ⊃ ◦2p). Let X = {0, 1} with open sets ∅ and X; f (0) = f (1) = 1; and V (p) = {1}. It is easy to
check thatM 6� (2◦p ⊃ ◦2p). �

Theorem 2.4.3. Our four logics are related as follows:

S5C ( S5Ct ( S5Ht
S5C ( S5H ( S5Ht
S5Ct 6⊆ S5H
S5H 6⊆ S5Ct.

Proof. S5C⊆ S5Ct, by Fact 2.2.5. And clearly S5Ct⊆ S5Ht, by Fact 2.2.5.
Clearly S5C⊆ S5H. By Fact 2.2.5, (◦2A ⊃ 2◦A) ∈ S5Ct⊆ S5Ht. And by Fact 2.2.6, (2◦A ⊃ ◦2A) ∈ S5Ht. So (◦2A ≡ 2◦A) ∈

S5Ht. So S5H⊆ S5Ht.
S5Ct 6⊆ S5H, by Fact 2.4.1. Thus S5Ct 6⊆ S5C and S5Ht 6⊆ S5H.
S5H 6⊆ S5Ct, by Fact 2.4.2. Thus S5H 6⊆ S5C and S5Ht 6⊆ S5Ct. �

2.5. The rule next removal

Next removal is a peculiar rule. Some basic facts concerning it are as follows:

1. Next removal is admissible in S5Ht (Fact 2.5.1).
2. Next removal is admissible in S5C (Theorem 3.5.6).
3. S5Ct+ ◦A/A= S5Ht (Fact 2.5.2).
4. Next removal is not admissible in S5Ct, since S5Ct ( S5Ht (Theorem 2.4.3).

In this subsection, we give a syntactic proof of (1). It would be nice to have a syntactic proof of (2), but we do not know of
one. Instead, we give a semantic proof after we prove completeness for S5C (Section 3.5, Theorem 3.5.6). We prove (3) in
this subsection, from which (4) follows.

Fact 2.5.1. If ◦A ∈ S5Ht then A ∈ S5Ht.
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Proof. Suppose that ◦A ∈ S5Ht. Then we have the following:

(1) 2◦A ∈ S5Ht Necessitation for 2

(2) (2A ≡ 2◦A) ∈ S5Ht Axiom of S5Ht
(3) 2A ∈ S5Ht by (1), (2)
(4) (2A ⊃ A) ∈ S5Ht Axiom of S5Ht
(5) A ∈ S5Ht by (3), (4). �

Fact 2.5.2. S5Ct+ ◦A/A = S5Ht.

Proof. Clearly S5Ct ⊆ S5Ht. Also, S5Ht is closed under the rule of next removal, by Fact 2.5.1. So S5Ct + ◦A/A ⊆ S5Ht. To
show that S5Ct + ◦A/A = S5Ht, it suffices to show that (2A ≡ 2◦A) ∈ S5Ct + ◦A/A. Given that (2A ⊃ 2◦A) ∈ S5Ct, it
suffices to show that (2◦A ⊃ 2A) ∈ S5Ct+ ◦A/A. Here goes:

(1) (◦2◦A ⊃ 2◦A) ∈ S5Ct by Fact 2.2.4
(2) (2◦A ⊃ ◦A) ∈ S5Ct Axiom of S5Ct
(3) (◦2◦A ⊃ ◦A) ∈ S5Ct by (1), (2)
(4) ◦(2◦A ⊃ A) ∈ S5Ct ◦ commutes with⊃
(5) ◦(2◦A ⊃ A) ∈ S5Ct+ ◦A/A by (4)
(6) (2◦A ⊃ A) ∈ S5Ct+ ◦A/A by (5)
(7) (22◦A ⊃ 2A) ∈ S5Ct+ ◦A/A by (6)
(8) (2◦A ⊃ 22◦A) ∈ S5Ct+◦A/A Axiom of S5Ct
(9) (2◦A ⊃ 2A) ∈ S5Ct+ ◦A/A by (7), (8). �

We do not know whether we can axiomatize S5H without next removal. We conjecture that we can:

Conjecture 2.5.3. S5H= S5+ LTL+ (◦2A ≡ 2◦A).

3. Completeness

3.1. Common elements

The completeness proofs for our four logics have many elements in common. We recycle some of the ideas used in the
literature to prove the completeness of LTL, butwe do not proceed exactly as elsewhere. In particular, we have to be attentive
to the topological connective 2. With S5Ct and S5Ht, we are dealing with trivial spaces, so we do not have to be especially
attentive to topological issues. The interaction, in S5Ct and S5Ht, between 2 and the temporal connectives is very tractable,
as is evidenced by the following theorems of these two logics: (2A ⊃ 2◦A), (2A ≡ ◦2A), and (2A ≡ ∗2A). We will have to
be more attentive when it comes to S5C and S5H, since then we will be working with nontrivial spaces.
Suppose, then that L is one of the logics S5C, S5H, S5Ct and S5Ht. A signed formula is an ordered pair +C = 〈+, C〉

or −C = 〈−, C〉. We identify any set of signed formulas with the corresponding formula: the formula corresponding to
{+A,−B, −C}, for example, is A & ¬B & ¬C . The formula corresponding to the empty set (of signed formulas) is (p ∨ ¬p).
We say that a formula A is consistent iff ¬A 6∈ L. The notion of consistency and all notions defined in terms of consistency
depend on which logic L we are working with: we will let context determine L. The points in the current subsection do not
depend on L.
Suppose thatΦ is a finite set of formulas. AΦ-atom (we often just say atom) is a set α of signed formulas such that,

1. α isΦ-complete, in the following sense: for each formula C , C ∈ Φ iff either+C ∈ α or−C ∈ α; and
2. α is consistent.

A formula ismodal iff it is of the form2A or¬2A. Otherwise it is nonmodal. Here we note that, if A is modal, then (A ⊃ 2A) ∈
L and (¬A ⊃ 2¬A) ∈ L: this follows from the S5 axioms used to define L. Given an atom α, we define the modal part of α
as follows:

αM =df {±A ∈ α : A is a modal formula}.

Note that (αM ⊃ 2αM) ∈ L.
Given a finite setΦ of formulas, we define some relations onΦ-atoms:

αRβ iff αM = βM
αSβ iff (α & ◦β) is consistent
αS0β iff α = β

αSn+1β iff αSγ and γ Snβ , for someΦ-complete consistentΦ-atom γ
αS]β iff αSnβ , for some n ≥ 0.

R is clearly an equivalence relation on theΦ-atoms. We will denote the equivalence class determined by α as |α|R. The next
few lemmas concern R and S.
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Lemma 3.1.1. Suppose thatΦ is a finite set of formulas closed under subformulas, that 2A ∈ Φ and that α is aΦ-atom α. Then

+2A ∈ α iff, for every β ∈ |α|R,+A ∈ β .

Proof. Note that A ∈ Φ , since 2A ∈ Φ . We consider both directions of the desired biconditional.
(⇒) Suppose that+2A ∈ α and that β ∈ |α|R. Then αRβ . So αM = βM . So+2A ∈ β . So+A ∈ β , since β is Φ-complete

and consistent.
(⇐) Suppose that+2A 6∈ α. Then−2A ∈ α. First, we claim that (¬A & αM) is consistent. Suppose not. Then (αM ⊃ A) ∈

L. So (2αM ⊃ 2A) ∈ L. Recall that (αM ⊃ 2αM) ∈ L. So (αM ⊃ 2A) ∈ S5Ct. But this cannot be, given that−2A ∈ α and that
α is consistent. Given that (¬A & αM) is consistent, there is some atom β such that αM ∪ {−A} ⊆ β . Note that βM = αM , so
that β ∈ |α|R. �

Lemma 3.1.2. Suppose thatΦ is a finite set of formulas closed under subformulas with ◦A ∈ Φ; and that α and β areΦ-atoms
with αSβ . Then+◦A ∈ α iff A ∈ β .

Lemma 3.1.3. Suppose that Φ is a finite set of formulas closed under subformulas and that α is a Φ-atom. Then there is some
Φ-atom β such that αSβ .

Proof. Let At be the set ofΦ-atoms, and let
∨
At be the disjunction of all the (formulas corresponding to) theΦ-atoms. Note

that
∨
At is an instance of a propositional tautology. So ◦

∨
At ∈ L. Suppose, for a reductio, that (α & ◦β) is inconsistent, for

each β ∈ At . Then (α & ◦
∨
At) is inconsistent. So α is inconsistent, since ◦

∨
At ∈ L. But this contradicts the fact that α is a

Φ-atom. �

Lemma 3.1.4. Suppose thatΦ is a finite set of formulas closed under subformulas, that α and β areΦ-atoms with αSβ , and that
+∗A ∈ α. Then+∗A ∈ β .

Proof. We need only note that (∗A ⊃ ◦∗A) ∈ L. �

Corollary 3.1.5. Suppose that Φ is a finite set of formulas closed under subformulas, that α and β are Φ-atoms with αS]β , and
that+∗A ∈ α. Then+∗A ∈ β .

Lemma 3.1.6. Suppose thatΦ is a finite set of formulas closed under subformulas, that α is aΦ-atom, and that−∗A ∈ α. Then
there is someΦ-atom β such that αS]β and−A ∈ β .

Proof. (We adapt the third clause of the proof of Lemma 1 in [4]. The same idea is used in [5] to a slightly different end.)
For any atom γ , let Γ Sγ = {δ : γ Sδ} and let Γ

]
γ = {δ : γ S

]δ}. For any set Γ of atoms, let
∨
Γ be the disjunction of all

the (formulas corresponding to) atoms in Γ . Then (γ ⊃ ◦
∨
Γ Sγ ) ∈ L, for any atom γ . Also, if γ ∈ Γ

]
α , then Γ

S
γ ⊆ Γ ]

α . So
(γ ⊃ ◦

∨
Γ ]
α ) ∈ L, for any atom γ ∈ Γ

]
α . So (

∨
Γ ]
α ⊃ ◦

∨
Γ ]
α ) ∈ L. So (

∨
Γ ]
α ⊃ ∗

∨
Γ ]
α ) ∈ L, by Fact 2.2.1. Also, α ∈ Γ

]
α , so

(α ⊃
∨
Γ ]
α ) ∈ L. So (α ⊃ ∗

∨
Γ ]
α ) ∈ L.

Now suppose that −∗A ∈ α, but (for a reductio) that there is no β such that αS]β and −A ∈ β . Then A ∈ β , for every
β ∈ Γ ]

α . So (
∨
Γ ]
α ⊃ A) ∈ L. So (∗

∨
Γ ]
α ⊃ ∗A) ∈ L. So (α ⊃ ∗A) ∈ L. So α is inconsistent, since −∗A ∈ α. But α is

consistent. �

For our completeness proofs, we will build models out of sequences of Φ-atoms and other objects. For our purposes, a
finite sequence is a sequence 〈xi〉ni=0 indexed by the set {0, . . . , n} for some n ∈ N; an infinite sequence is a sequence 〈xi〉i≥0
indexed by the natural numbers; and a bi-infinite sequence is a ‘sequence’ 〈xi〉i∈Z indexed by the integers. We can also use
the following notation for infinite sequences: 〈xi〉i∈N. A natural number k is a periodic point of an infinite sequence 〈xi〉i≥0 iff
for some l ≥ 1we have xi+l = xi for every i ≥ k. Note that, if k is a periodic point, then so is any j ≥ k. An infinite sequence is
eventually periodic iff it has a periodic point. A bi-infinite sequence 〈xi〉i∈Z is bi-eventually periodic iff both infinite sequences
〈xi〉i≥0 and 〈x–i〉i≥0 are eventually periodic. An object x is cofinal in an infinite sequence 〈xi〉i≥0 iff for each i ≥ 0 there is a
j ≥ i such that x = xj. A natural number k is a cofinality point of an infinite sequence 〈xi〉i≥0 iff xi is cofinal for every i ≥ k.
Note that, if k is a cofinality point, then so is any j ≥ k. Note also that any periodic point is also a cofinality point.
Suppose that Φ is a finite set of formulas. A finite sequence 〈αi〉ni=0 [an infinite sequence 〈αi〉i≥0, a bi-infinite sequence

〈αi〉i∈Z] ofΦ-atoms is an S-sequence iff αiSαi+1, for each i ≥ 0 and< n [for each i ≥ 0, for each i ∈ Z]. An infinite sequence
〈αi〉i≥0 [a bi-infinite sequence 〈αi〉i∈Z] of Φ-atoms is ∗-complete iff for every i ≥ 0 [i ∈ Z] and every formula A, if−∗A ∈ αi
then there is some j ≥ i such that−A ∈ αj. A finite sequence 〈αi〉ni=0 witnesses the signed formula−∗A iff if−∗A ∈ α0 then
−A ∈ αn.

Lemma 3.1.7. Suppose that Φ is a finite set of formulas closed under subformulas, that α is a Φ-atom, and that ∗A ∈ Φ . Then
there is a finite S-sequence 〈αi〉ni=0 ofΦ-atoms, with α0 = α, that witnesses the signed formula−∗A.

Proof. If−∗A 6∈ α then it is easy: just let α0 = α and let our sequence be 〈αi〉0i=0. If−∗A ∈ α then, by Lemma 3.1.6, there is
aΦ-atom β such that αS]β and−A ∈ β . Since αS]β , there is a finite S-sequence 〈αi〉ni=0 with α0 = α and αn = β . Note that
this sequence witnesses the signed formula−∗A. �

Lemma 3.1.8. Suppose that Φ is a finite set of formulas closed under subformulas, and that α is a Φ-atom. Then there is a
∗-complete infinite S-sequence 〈αi〉i≥0, such that α0 = α.
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Proof. If Φ contains no formulas of the form ∗A, then it is easy: just choose any S-sequence 〈αi〉i≥0, such that α0 = α. The
existence of such a sequence is guaranteed by Lemma 3.1.3.
Otherwise, Φ contains some formula(s) of the form ∗A. List the set {−∗A : ∗A ∈ Φ} as follows: {−∗A0, . . . ,−∗Av−1},

where v ≥ 1. For any j, k ≥ 1, let rem(k, j) be the remainder of k divided by j; for example rem(47, 7) = 5. And, for each
k ≥ 0, define−∗Ak = −∗Arem(v,k). Thus, the sequence 〈−∗Ai〉i≥0 looks like this:

−∗A0, . . . ,−∗Av–1,−∗A0, . . . ,−∗Av–1,−∗A0, . . . ,−∗Av–1, . . . .

For each k ≥ 0, we will define by induction on k a finite S-sequence 〈αki 〉
mk
i=0, for some mk, that witnesses the signed

formula −∗Ak. By Lemma 3.1.7, we can choose a finite S-sequence 〈α0i 〉
m0
i=0 that witnesses the signed formula −∗A0, with

α00 = α. Assume that we have defined a finite S-sequence 〈αki 〉
mk
i=0 that witnesses the signed formula −∗Ak. Let α

k+1
0 be

any Φ-atom such that αkmkSα
k+1
0 . By Lemma 3.1.7, we can choose a finite S-sequence 〈αk+1i 〉

mk+1
i=0 that witnesses the signed

formula−∗Ak+1.
Now define the sequence 〈αi〉i≥0 by gluing together the sequences 〈αki 〉

mk
i=0 as follows:

α00, . . . , α
0
m0 , α

1
0, . . . , α

1
m1 , α

2
0, . . . , α

2
m2 , α

3
0, . . . , α

3
m3 , . . . .

To be more precise, for each k ≥ 0, let nk = k+
∑k
i=0mk. For each i ≥ 0, let ki = min{k : i ≤ nk}. Finally, let αi = α

ki
i+mki–nki

.
Note the following:

αnk–mk = αk0

αnk–mk+i = αki , if i ≤ mk
αnk = αkmk

αnk+1 = αk+10 .

Clearly 〈αi〉i≥0 is an infinite S-sequence whose first member is α. We must still show that this sequence is ∗-complete.
Suppose not. Then there is some l ≥ 0 and some−∗A ∈ αl such that

+A ∈ αj for every j ≥ l. (Ď)

We claim that

−∗A ∈ αj for every j ≥ l. (Ě)

To see (Ě), suppose not. Choose the smallest j ≥ l such that +∗A ∈ αj. In fact, j > l, since −∗A ∈ αl. So −∗A ∈ αj−1. Also
+A ∈ αj−1, since j − 1 ≥ l. Also, (¬∗A & A ⊃ ◦¬∗A) ∈ L. So (αj−1 ⊃ ◦¬∗A) ∈ L. So αj−1 is not consistent with ◦αj, since
+∗A ∈ αj. But this contradicts the fact that 〈αi〉i≥0 is an S-sequence.
Now that we have established (Ě), choose k ≥ l so that−∗A = −∗Ak. Note that l ≤ k ≤ nk − mk. So−∗Ak ∈ αnk–mk , by

(Ě). Also, as noted above, αnk–mk = α
k
0. So−∗Ak ∈ α

k
0. Recall that the sequence 〈α

k
i 〉
mk
i=0 witnesses the signed formula−∗Ak.

So−A ∈ αkmk . As noted above, αnk = α
k
mk . So−A ∈ αnk . But l ≤ k ≤ nk, so that+A ∈ αnk , by (Ě). A contradiction. �

We can improve on Lemma 3.1.8:

Lemma 3.1.9. Suppose that Φ is a finite set of formulas closed under subformulas, and that α is a Φ-atom. Then there is an
eventually periodic ∗-complete infinite S-sequence 〈αi〉i≥0, such that α0 = α.

Proof. By Lemma 3.1.8, there is an ∗-complete infinite S-sequence 〈βi〉i≥0, such that β0 = α. Let Γ be the set of Φ-atoms
cofinal in 〈βi〉i≥0. Since there are only finitely manyΦ-atoms, there is a cofinality point, say k. Note that, for every j ≥ k,

{βi : i ≥ j} = {βi : i ≥ k} = Γ .

So, for every j ≥ 0,

{βi : i ≥ j} = {βi : j ≤ i < k} ∪ Γ .

Choose the smallest l ≥ 1 such that βk = βk+l. Define the new sequence 〈αi〉i≥0 as follows:

αi = βi for i < k
αi+ml = βi for i ≥ k, i < k+ l,m ≥ 0.

Note first that α0 = α. Also note that the sequence 〈αi〉i≥0 is an S-sequence and is periodic. Finally note that, for every j ≥ k,

{αi : i ≥ j} = {αi : i ≥ k} = Γ .

So, for every j ≥ 0,

{αi : i ≥ j} = {αi : j ≤ i < k} ∪ Γ = {βi : i ≥ j}.

So the sequence 〈αi〉i≥0 is ∗-complete, like the sequence 〈βi〉i≥0. �
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3.2. Completeness of S5Ct

The proof of completeness for S5Ct relies on the particular Lemma 3.2.1.

Lemma 3.2.1. Suppose that Φ is a finite set of formulas closed under subformulas, and that α and β are Φ-atoms. Then if αSβ
then αRβ .

Proof. For a reductio, suppose that αSβ but that αM 6= βM . We consider two cases.
(Case 1) for some 2A ∈ Φ , we have +2A ∈ α and −2A ∈ β . Since αSβ , the following is consistent: (2A & ◦¬2A). But

this contradicts Fact 2.2.3, which says that (2A ⊃ ◦2A) ∈ S5Ct.
(Case 2) for some 2A ∈ Φ , we have −2A ∈ α and +2A ∈ β . Since αSβ , the following is consistent: (¬2A & ◦2A). But

this contradicts Fact 2.2.4, which says that (◦2A ⊃ 2A) ∈ S5Ct. �

Definition 3.2.2. Suppose thatΦ is a finite set of formulas closed under subformulas, and that α is aΦ-atom.Wewill define
a finite trivial topological space,Xα; a continuous function, fα onXα; and a valuation functionVα : PV → P (Xα). In particular,
Xα will be a finite subset ofN× N.
First, enumerate all of the atoms in |α|R, starting with α itself: α0, . . . , αn, with α0 = α. For each αm, let 〈αmi 〉i≥0 be an

eventually periodic ∗-complete infinite S-sequence with αm0 = α
m: such a sequence exists by Lemma 3.1.9. Thus we have n

eventually periodic sequences,

α00 α01 α02 α03 α04 . . .

α10 α11 α12 α13 α14 . . .

...
...

...
...

...
...

αn0 αn1 αn2 αn3 αn4 . . .

Since each of these sequence is eventually periodic, for eachm = 0, . . . , nwe have the following: there is a km ≥ 0 and an
lm ≥ 1 such that, for every i ≥ km, we have αmi+lm = α

m
i . We cut each sequence off at (km + lm)− 1:

α00 α01 α02 . . . α0k0 α0k0+1 . . . α0(k0+l0)−1

α10 α11 α12 . . . α1k1 α1k1+1 . . . α1(k1+l1)−1

...
...

...
...

...
...

...
...

αn0 αn1 αn2 . . . αnkn αnkn+1 . . . αn(kn+ln)−1

We define Xα as follows:

Xα = {〈a, b〉 ∈ N× N : 0 ≤ a ≤ n and 0 ≤ b ≤ (ka + la)− 1}.

We impose the trivial topology on Xα . We define the function fα : Xα → Xα as follows:

fα(〈a, b〉) =
{
〈a, b+ 1〉, if b < (ka + la)− 1
〈a, ka〉, if b = (ka + la)− 1.

We define the valuation function Vα as follows:

Vα(p) = {〈a, b〉 ∈ Xα : +p ∈ αab}, for each propositional variable p.

Finally, we define the dynamic topological model,Mα =df 〈Xα, fα, Vα〉.

Shortly we will prove the following:

Theorem 3.2.3. Suppose that Φ is a finite set of formulas closed under subformulas, and that α is a Φ-atom. And suppose that
Xα , fα , and Vα are defined as in Definition 3.2.2. Then, for each A ∈ Φ:

for each 〈a, b〉 ∈ Xα , 〈a, b〉 ∈ Vα(A) iff+A ∈ αab .

But first we state a lemma about fα .

Lemma 3.2.4. Suppose that Φ is a finite set of formulas closed under subformulas, and that α is a Φ-atom. Suppose that
〈a, b〉 ∈ Xα , that i ≥ 0 and that 〈a, b′〉 = f iα(〈a, b〉). Then α

a
b′ = αab+i. (Note that the ordered pair 〈a, b + i〉 need not be

in Xα .)

Proof of Theorem 3.2.3. By induction on the structure of A. We will use all the notation, terminology and so on in
Definition 3.2.2.
(Case 1) A ∈ PV . The result is given by the definition of Vα .
(Case 2) A is of the form ¬B. Choose 〈a, b〉 ∈ Xα . Then note: 〈a, b〉 ∈ Vα(A) iff 〈a, b〉 ∈ Vα(¬B) iff 〈a, b〉 6∈ Vα(B) iff

+B 6∈ αab (by the inductive hypothesis) iff −B ∈ α
a
b (since α

a
b is Φ-complete) iff +¬B ∈ α

a
b (since α

a
b is Φ-complete and

consistent) iff+A ∈ αab .
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(Case 3) A is of the form (B & C). Choose 〈a, b〉 ∈ Xα . Then note: 〈a, b〉 ∈ Vα(A) iff 〈a, b〉 ∈ Vα(B & C) iff 〈a, b〉 ∈ Vα(B)
and 〈a, b〉 ∈ Vα(C) iff +B ∈ αab or +C ∈ α

a
b (by the inductive hypothesis) iff +(B & C) ∈ α

a
b (since α

a
b is Φ-complete and

consistent) iff+A ∈ αab .
(Case 4) A is of the form 2B. Choose 〈a, b〉 ∈ Xα . First, we note that

αRαij for each 〈i, j〉 ∈ Xα. (Ď)

This follows from the following: Lemma 3.2.1, the fact that αRαi0, and the fact that α
i
0S
]αij . Second, we note that,

for eachΦ-atom β, if αRβ then, for some 〈i, j〉 ∈ Xα, β = αij . (Ě)

Now note: 〈a, b〉 ∈ Vα(A) iff 〈a, b〉 ∈ Vα(2B) iff 〈a, b〉 ∈ Int(Vα(B)) iff 〈i, j〉 ∈ Vα(B) for every 〈i, j〉 ∈ Xα iff+B ∈ αij for every
〈i, j〉 ∈ Xα (by IH) iff+B ∈ β for everyΦ-atom β with αRβ (by (Ď) and (Ě)) iff+2B ∈ α (by Lemma 3.1.1) iff+A ∈ αab .
(Case 5) A is of the form ◦B. Choose 〈a, b〉 ∈ Xα . We consider two cases: (5.1) b < (ka+ la)−1, and (5.2) b = (ka+ la)−1.

(Case 5.1): 〈a, b〉 ∈ Vα(A) iff 〈a, b〉 ∈ Vα(◦B) iff fα(〈a, b〉) ∈ Vα(B) iff 〈a, b + 1〉 ∈ Vα(B) iff+B ∈ αab+1 (by IH) iff+◦B ∈ α
a
b

(by Lemma 3.1.2) iff+A ∈ αab . (Case 5.2): 〈a, b〉 ∈ Vα(A) iff 〈a, (ka + la) − 1〉 ∈ Vα(◦B) iff fα(〈a, (ka + la) − 1〉) ∈ Vα(B) iff
〈a, ka〉 ∈ Vα(B) iff +B ∈ αaka (by IH) iff +B ∈ α

a
ka+la (since α

a
ka = αaka+la ) iff +B ∈ α

a
b+1 iff +◦B ∈ α

a
b (by Lemma 3.1.2) iff

+A ∈ αab .
(Case 6) A is of the form ∗B. Choose 〈a, b〉 ∈ Xα . We consider both directions of our biconditional separately.
(⇒)Weprove the contrapositive. So suppose that+A 6∈ αab . Then+∗B 6∈ α

a
b . So−∗B ∈ α

a
b . So, since 〈α

a
i 〉i≥0 is∗-complete,

we have −B ∈ αab+i, for some i ≥ 0. Let 〈a, b
′
〉 = f iα(〈a, b〉). By Lemma 3.2.4, α

a
b′ = αab+i. So −B ∈ α

a
b′ . So +B 6∈ α

a
b′ . So

〈a, b′〉 6∈ Vα(B), by IH. So f iα(〈a, b〉) 6∈ Vα(B). So 〈a, b〉 6∈ Vα(∗B). So 〈a, b〉 6∈ Vα(A).
(⇐) We prove the contrapositive. So suppose that 〈a, b〉 6∈ Vα(A). Then 〈a, b〉 6∈ Vα(∗B). So f iα(〈a, b〉) 6∈ Vα(B) for some

i ≥ 0. Let 〈a, b′〉 = f iα(〈a, b〉). Then 〈a, b
′
〉 6∈ Vα(B). So+B 6∈ αab′ , by IH. So+B 6∈ α

a
b+i, by Lemma 3.2.4. So+∗B 6∈ α

a
b+i. Now

note that αabS
]αab+i. So+∗B 6∈ α

a
b , by Lemma 3.1.5. So+A 6∈ α

a
b . �

Corollary 3.2.5. Suppose that A 6∈ S5Ct. Then there is some finite trivial topological space X such that X 6� A.

Proof. Suppose that A 6∈ S5Ct. LetΦ be the set of subformulas of A. Choose aΦ-atom α with−A ∈ α. Define the topological
modelMα = 〈Xα, fα, Vα〉 as in Definition 3.2.2. By Theorem 3.2.3 and the fact that α00 = α, we have 〈0, 0〉 6∈ Vα(A). So Xα 6� A.
And Xα is a finite trivial topological space. �

The completeness of S5Ct for trivial topological spaces follows directly from Corollary 3.2.5. Indeed, this Corollary is
stronger than completeness: it also entails that S5Ct has the finite model property. Thus:

Corollary 3.2.6. S5Ct is decidable.

3.3. Completeness of S5Ht

The completeness proof for S5Ht proceeds in much the same way as the completeness proof for S5Ct, with a couple
of extra bells and whistles. There is a major glitch: S5Ht does not have the finite model property. To be more precise, the
formula (◦∗p ⊃ ∗p) is not a theorem of S5Ht, but is validated by every model 〈X, f , V 〉where X is a finite topological space
(trivial or not) and f is a homeomorphism.
To see that (◦∗p ⊃ ∗p) is not a theorem of S5Ht, it suffices to define a trivial topological space X , a bijection f on X , and

a function V : PV → P (X) such that 〈X, f , V 〉 6� (◦∗p ⊃ ∗p). Here goes: X = Z, i.e. the set of integers, with the trivial
topology; f (z) = z + 1 for each z ∈ Z; and, for each propositional variable p, we have V (p) = {1, 2, 3, . . .}. It is easy to
check that 0 6∈ V (◦∗p ⊃ ∗p).
Now we show that (◦∗p ⊃ ∗p) is validated by every model 〈X, f , V 〉where X is a finite topological space (trivial or not)

and f is a homeomorphism. Consider any finite topological space X , any homeomorphism f on X , and any V : PV → P (X).
Suppose that x ∈ X but x 6∈ V (◦∗p ⊃ ∗p). Then, x ∈ V (◦∗p) and x 6∈ V (∗p). So f i(x) ∈ V (p) for every i ≥ 1; and f i(x) 6∈ V (p)
for some i ≥ 0. So f i(x) ∈ V (p) for every i ≥ 1; and x 6∈ V (p). But since X is finite and f is a bijection, we have x = f k(x) for
some k ≥ 1. Since k ≥ 1, we have f k(x) ∈ V (p). So x ∈ V (p), which contradicts x 6∈ V (p).
Onto the proof of completeness for S5Ht. Suppose that Φ is a finite set of formulas. A finite sequence 〈αi〉ni=0 [an infinite

sequence 〈αi〉i≥0] ofΦ-atoms is a backward S-sequence iff αi+1Sαi, for each i ≥ 0 and< n [for each i ≥ 0].

Lemma 3.3.1. Suppose that Φ is a finite set of formulas closed under subformulas, and that α and β are Φ-atoms. Then if αSβ
then αRβ .

Proof. The same as the proof of Lemma 3.2.1. �

Lemma 3.3.2. Suppose that Φ is a finite set of formulas closed under subformulas, and that α is a Φ-atom. Then there is some
Φ-atom β such that βSα. (Compare Lemma 3.1.3.)

Proof. Since α is aΦ-atom, α is consistent. So¬α 6∈ S5Ht. So ◦¬α 6∈ S5Ht, by Fact 2.5.1. So¬◦α 6∈ S5Ht. So ◦α is consistent.
So there is someΦ-atom β such that the following is consistent: (β & ◦α). �
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Corollary 3.3.3. Suppose thatΦ is a finite set of formulas closed under subformulas, and that α is aΦ-atom. Then there is some
infinite eventually periodic backward S-sequence whose initial member is α.

Proof. The existence of an infinite backward S-sequence whose initial member α is guaranteed by Lemma 3.3.2. The
existence of an eventually periodic infinite backward S-sequencewhose initialmemberα is guaranteed by the former remark
and the fact that there are only finitely manyΦ-atoms. �

Lemma 3.3.4. Suppose that Φ is a finite set of formulas closed under subformulas, and that α is a Φ-atom. Then there is a bi-
eventually periodic ∗-complete bi-infinite S-sequence 〈αi〉i∈Z, such that α0 = α.

Proof. By Lemma 3.1.9, there is an eventually periodic ∗-complete infinite S-sequence 〈αi〉i≥0, such that α0 = α. And by
Lemma 3.3.3, there is an eventually periodic backward S-sequence 〈α′i〉i≥0, such that α

′

0 = α. For each i < 0, define αi = α
′

–i.
Then the bi-infinite sequence 〈αi〉i∈Z is bi-eventually periodic and ∗-complete, and α0 = α. �

Definition 3.3.5. Suppose thatΦ is a finite set of formulas closed under subformulas, and that α is aΦ-atom.Wewill define
a trivial topological space, Xα; a homeomorphism, fα on Xα; and a valuation function Vα : PV → P (Xα). In particular, Xα
will be an infinite subset of Z× Z.
First, enumerate all of the atoms in |α|R, starting with α itself: α0, . . . , αn, with α0 = α. For each αm, let 〈αmi 〉i∈Z be a

bi-eventually periodic ∗-complete infinite S-sequence with αm0 = αm. Thus we have n bi-eventually periodic bi-infinite
sequences,

. . . α0–4 α0–3 α0–2 α0–1 α00 α01 α02 α03 α04 . . .

. . . α1–4 α1–3 α1–2 α1–1 α10 α11 α12 α13 α14 . . .

...
...

...
...

...
...

...
...

...
...

...
. . . αn–4 αn–3 αn–2 αn–1 αn0 αn1 αn2 αn3 αn4 . . .

We define Xα as follows:

Xα = {0, . . . , n} × Z.

We impose the trivial topology on Xα . We define the function fα : Xα → Xα as follows:

fα(〈a, b〉) = 〈a, b+ 1〉.

We define the valuation function Vα as follows:

Vα(p) = {〈a, b〉 : 0 ≤ a ≤ n and + p ∈ αab}, for each propositional variable p.

Finally, we define the dynamic topological model,Mα =df 〈Xα, fα, Vα〉.

The proof of the following theorem is similar to the proof of Theorem 3.2.3:

Theorem 3.3.6. Suppose that Φ is a finite set of formulas closed under subformulas, and that α is a Φ-atom. And suppose that
Xα , fα , and Vα are defined as in Definition 3.3.5. Then, for each A ∈ Φ:

for each 〈a, b〉 ∈ Xα , 〈a, b〉 ∈ Vα(A) iff+A ∈ αab .

And we thus get an analogue (without the finiteness condition) of Corollary 3.2.5:

Corollary 3.3.7. Suppose that A 6∈ S5Ht. Then there is some trivial topological space X and some homeomorphism f : X → X
such that 〈X, f 〉 6� A.

The completeness of S5Ht for homeomorphisms on trivial topological spaces follows from Corollary 3.3.7.
What about the decidability of S5Ht? We do not get it through any finite model property. But decidability does follow

from the fact that each model Xα is of a kind that can be finitely represented. To be more precise.

Definition 3.3.8. A premodel is an ordered quartupleM = 〈X, g, h, V 〉 satisfying the following:

1. For some n ≥ 0 and somem0, . . . ,mn,m′0, . . . ,m
′
n ∈ Z,

X = {〈a, b〉 : 0 ≤ a ≤ n andma ≤ b ≤ m′a}.

2. g, h : {0, . . . , n} → Z.
3. ma ≤ g(a) ≤ 0 ≤ h(a) ≤ m′a.
4. V : PV → P (X).

Note that 〈a, g(a)〉 ∈ X and 〈a, h(a)〉 ∈ X . Given a premodel M = 〈X, g, h, V 〉, we define nX = max{a : ∃b, 〈a, b〉 ∈ X}.
And for each a ∈ {0, . . . , nX }, we define ma = min{b : 〈a, b〉 ∈ X} and m′a = max{b : 〈a, b〉 ∈ X}. Note that
ma ≤ g(a) ≤ 0 ≤ h(a) ≤ m′a for each a ≤ nX . Also note that every premodel is finite.
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Definition 3.3.9. Given a premodelM = 〈X, g, h, V 〉, we define the dynamic topological modelM ′ = 〈X ′, f ′, V ′〉 generated
by M as follows:

X ′ = {0, . . . , nX } × Z, with the trivial topology
f ′(〈a, b〉) = 〈a, b+ 1〉, for a = {0, . . . , nX } and b ∈ Z
V ′(p) = V (p) ∪

{〈a, b− k((g(a)−ma)+ 1)〉 : 〈a, b〉 ∈ V (p) and b ≤ g(a) and k ≥ 1} ∪
{〈a, b+ k((m′a − h(a))+ 1)〉 : 〈a, b〉 ∈ V (p) and b ≥ h(a) and k ≥ 1}.

Definition 3.3.10. IfM is a premodel and A is a formula, we say thatM � A iffM ′ � A whereM ′ is the dynamic topological
model generated byM .

Theorem 3.3.11. A ∈ S5Ht iff M � A, for every premodel M.

Proof. The (⇒) direction of the biconditional is soundness of S5Ht for premodels. This follows from soundness of S5Ht for
dynamic topological models 〈X, f , V 〉, where X is trivial and f is a homeomorphism, because every dynamic topological
model generated by a premodel is of this kind. The (⇐) direction of the biconditional follows from Theorem 3.3.6 and the
fact that the modelMα , defined in Definition 3.3.5, is generated by some premodel. �

Corollary 3.3.12. S5Ht is decidable.

3.4. Completeness of S5C and S5H: Common elements

The completeness proofs for S5C and S5H have some elements in common. They also require modifying the approach we
have taken so far in important ways. For starters, for some of our results it will not suffice that the set Φ be closed under
subformulas: we will add an additional closure condition, which we explain presently. For this subsection, we assume that
the logic L is either S5C or S5H.
Suppose thatΦ is a finite set of formulas (closed under subformulas or not). We define themodal part ofΦ as follows:
ΦM =df {A ∈ Φ : A is a modal formula}.

And we define the nonmodal part ofΦ as follows:
ΦNM =dfΦ − ΦM .

Suppose that α is aΦ-atom. We have already defined the modal part of α as follows:
αM =df {±A ∈ α : A is a modal formula}.

We define the nonmodal part of α as follows:
αNM =df α − αM .

Notice that if α is aΦ-atom then αNM is aΦNM-atom.
Suppose that Φ is a finite set of formulas (closed under subformulas or not). Suppose that A ∈ ΦNM and that α is a

Φ-atom.We say that A nonmodally dominates α iff A is consistent and (A ⊃ αNM) ∈ L. Finally, we say thatΦ is closed iff both
1. Φ is closed under subformulas; and
2. for every Φ-atom α, there is some A ∈ ΦNM that nonmodally dominates α, and such that ♦A ∈ Φ (i.e. such that
¬2¬A ∈ Φ).

Lemma 3.4.1. For every formula A there is a finite closed setΦ of formulas such that A ∈ Φ .
Proof. Suppose that A is a formula. First, let Ψ be the set of subformulas of A. And let ΨNM = {B1, . . . , Bn}. We will now
define a large number of conjunctions of the members of ΨNM . To define these, let S be the set of sequences of 0s and 1s of
length between 1 and n. For s ∈ S, let ln(s) be the length of s, and if ln(s) < n, then let s0 [s1] be s concatenated with 0 [1].
We define As for each sequence s ∈ S:

A0 = ¬B1
A1 = B1
As0 = (As & ¬Bln(s)+1)
As1 = (As & Bln(s)+1).

Thus, for example A11001 = ((((B1 & B2) & ¬B3) & ¬B4) & B5). Now we define the setΦ as follows:

Φ = ΨM ∪ {B1, . . . , Bn,¬B1, . . . ,¬Bn} ∪ {As : s ∈ S}

∪ {¬As : s ∈ S and ln(s) = n}
∪ {2¬As : s ∈ S and ln(s) = n}
∪ {¬2¬As : s ∈ S and ln(s) = n}.
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Our set Φ is clearly both finite and closed under subformulas. We still have to show that for every Φ-atom α, there is
some A ∈ ΦNM that nonmodally dominates α, and such that♦A ∈ Φ . So suppose that α is aΦ-atom. Let α′ be the following
subset of α: α′ = {±iBi : Bi ∈ ΨNM and ±iBi ∈ α}. Here ±iBi is either + Bi or −Bi depending on which of these two is in
α (exactly one is). Note that α′ is a ΨNM-atom. Let sα be the member of S determined as follows: the ith member of sα is 1
if +Bi ∈ α and is 0 if −Bi ∈ α. Note that ♦Asα ∈ Φ , by the definition of Φ . It now suffices to show that Asα nonmodally
dominates α. First, notice that Asα is consistent, since α is consistent. So now it suffices to show that for every signed formula
±B ∈ αNM we have (Asα ⊃ ±B) ∈ L. Here±B is+B if+B ∈ αNM and−B if−B ∈ αNM .
So choose±B ∈ αNM . Then B ∈ ΦNM . So,

B ∈ {B1, . . . , Bn,¬B1, . . . ,¬Bn} ∪ {As : s ∈ S}

∪ {¬As : s ∈ S and ln(s) = n}.

We consider four cases.
(Case 1) B = Bi, for some i. If +Bi ∈ α, then Bi is one of the conjuncts of Asα . And if −Bi ∈ α, then ¬Bi is one of the

conjuncts of Asα . In either case, the formula corresponding to the signed formula±B is a conjunct of Asα . So (Asα ⊃ ±B) ∈ L.
(Case 2) B = ¬Bi, for some i. If+¬Bi ∈ α, then−Bi ∈ α, so that B is one of the conjuncts of Asα . And if−¬Bi ∈ α, then

+ Bi ∈ α, so that ¬B is the double negation of one of the conjuncts of Asα . In either case, the formula corresponding to the
signed formula±B is a conjunct, or the double negation of a conjunct, of Asα . So (Asα ⊃ ±B) ∈ L.
(Case 3) B = As for some s ∈ S. If s is an initial segment of sα , then As is a conjunct of Asα and+As ∈ α. Thus+B ∈ α and

(Asα ⊃ +B) ∈ L. If s is not an initial segment of α, then−As ∈ α and (Asα ⊃ ¬As) ∈ L. So−B ∈ α and (Asα ⊃ ¬B) ∈ L.
(Case 4) B = ¬As for some s ∈ S with ln(s) = n. If s = sα , then+As = +Asα ∈ α so that−B ∈ α and (Asα ⊃ ¬B) ∈ L. If

s 6= sα , then−As ∈ α so that+B ∈ α and (Asα ⊃ B) ∈ L. �

Lemma 3.4.2. Suppose that Φ is a closed finite set of formulas, that α is a Φ-atom, that A ∈ ΦNM and that A nonmodally
dominates α. Then A ∈ α.

Proof. Suppose not. Then−A ∈ α. So (A ⊃ ¬A) ∈ L. So ¬A ∈ L. But this contradicts the consistency of A. �

Suppose thatΦ is a closed finite set of formulas. Recall the relation S and the equivalence relation R defined onΦ-atoms,
and recall that we are using the notation |α|R for the equivalence class determined by theΦ-atom α.

Lemma 3.4.3. Suppose that Φ is a closed finite set of formulas. Suppose that α, β and γ are Φ-atoms such that αSβ and αRγ .
Then there is aΦ-atom δ such that βRδ and γ Sδ. Thus the bottom right corner of the square on the left can be filled in as indicated:

α S β α S β
R R =⇒ R R
γ S ?? γ S δ

Proof. Suppose that α, β and γ areΦ-atoms such that αSβ and αRγ . Since αSβ , the formula (α & ◦β) is consistent. So the
formula (αM & ◦βM) is consistent. Since αRγ , we have αM = γM . So the formula (γM & ◦βM) is consistent. We claim that

(γ & ◦βM) is consistent. (Ď)

To see this, suppose not. Let γNM = γ−γM . So (γNM & γM & ◦βM) is inconsistent. By the closure ofΦ , we can choose a formula
A such that A nonmodally dominates γ . In other words, A is consistent, ♦A ∈ Φ and (A ⊃ γNM) ∈ L. So (A & γM & ◦βM) is
inconsistent. So ((γM & ◦βM) ⊃ ¬A) ∈ L. So ((2γM & 2◦βM) ⊃ 2¬A) ∈ L. So ((2γM & ◦2βM) ⊃ ¬♦A) ∈ L. Recall that
(γM ≡ 2γM) ∈ L and (βM ≡ 2βM) ∈ L. So ((γM & ◦βM) ⊃ ¬♦A) ∈ L. So (♦A & γM & ◦βM) is inconsistent. But since A
nonmodally dominates γ , we have+A ∈ γ . So+♦A ∈ γ , since♦A ∈ Φ . So+♦A ∈ γM . So, (γM & ◦βM) is inconsistent. But
we have already noted that (γM & ◦βM) is consistent. This proves (Ď).
Given the consistency of (γ & ◦βM), we can add signed nonmodal formulas to the set βM until we get a Φ-atom δ with

δM = βM and with (γ & ◦δ) consistent. �

Suppose that Φ is a finite set of formulas. A Φ-cluster is a function f : |α|R → |β|R, for some α and some β such that
γ S f(γ ) for each γ ∈ |α|R. Given a Φ-cluster f, we use the notation dom(f) and range(f) for the domain and range of f. The
Φ-cluster f coheres with theΦ-cluster g iff range(f) ⊆ dom(g).
A finite sequence 〈fi〉ni=0 [an infinite sequence 〈fi〉i≥0, a bi-infinite sequence 〈fi〉i∈Z] ofΦ-clusters is coherent iff fi coheres

with fi+1, for each i ≥ 0 and < n [for each i ≥ 0, for each i ∈ Z]. Suppose that F = 〈fi〉ni=0 [F = 〈fi〉i≥0, F = 〈fi〉i∈Z] is a
coherent finite [infinite, bi-infinite] sequence of Φ-clusters, that i ≥ 0 and≤ n [i ≥ 0, i ∈ Z], that j ≥ i and≤ n [j ≥ i] and
that α ∈ dom(fi). We define Fi→j(α) as follows:

Fi→i(α) = α

Fi→j+1(α) = fj(F
i→j(α)).

Note that Fi→j : dom(fi) → dom(fj). An infinite sequence F = 〈fi〉i≥0 [a bi-infinite sequence 〈fi〉i∈Z] of Φ-clusters is
∗-complete iff for every i ≥ 0 [i ∈ Z], for every α ∈ dom(fi) and for every formula A, if −∗A ∈ α then there is some
j ≥ i such that −A ∈ Fi→j(α). A finite sequence F = 〈fi〉

n
i=0 witnesses the signed formula −∗A iff for every α ∈ dom(f0) if

−∗A ∈ α then there is somem ≤ n such that−A ∈ F0→m(α).
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We have not shown that there are any Φ-clusters, let alone any eventually periodic ∗-complete coherent infinite
sequences ofΦ-clusters. But we will.

Lemma 3.4.4. Suppose thatΦ is a closed finite set of formulas, and thatα and β areΦ-atomswithαSβ . Then there is aΦ-cluster
f : |α|R → |β|R with f(α) = β .

Proof. This is a direct consequence of Lemma 3.4.3. �

Lemma 3.4.5. Suppose thatΦ is a closed finite set of formulas, and thatα and β areΦ-atomswithαS]β . Then there is a coherent
finite sequence F = 〈fi〉

n
i=0 ofΦ-clusters such that dom(f0) = |α|R and dom(fn) = |β|R and F0→n(α) = β .

Proof. Since αS]β , there is some S-sequence α0, . . . , αn of atoms with α0 = α and αn = β . Choose some αn+1 so that
αnSαn+1. For each k ≤ n, choose aΦ-cluster fk : |αk|R → |αk+1|R with f(αk) = αk+1. Then the finite sequence F = 〈fi〉

n
i=0 of

Φ–clusters is as desired. �

Lemma 3.4.6. Suppose that Φ is a finite set of formulas closed under subformulas, that α is a Φ-atom, and that ∗A ∈ Φ . Then
there is a coherent finite sequence F = 〈fi〉

n
i=0 ofΦ-clusters, with dom(f0) = |α|R, that witnesses the signed formula−∗A.

Proof. List |α|R as follows: {α1, . . . , αn}. We will define n increasingly long coherent finite sequences of Φ-clusters, F1 =
〈fi〉

m1
i=0, . . ., Fn = 〈fi〉

mn
i=0. For each k ∈ {1, . . . , n}, we will ensure the following:

if 1 ≤ j ≤ k and − ∗A ∈ αj then there is an i ≤ mk such that − A ∈ F0→ik (αj). (Ď)

Fwill then be the last of these sequence, i.e. Fn.
Define F1 as follows. Find a Φ-atom β1 such that α1S]β1 and if −∗A ∈ α1 then −A ∈ β1. By Lemma 3.4.5, there is

a coherent finite sequence F1 = 〈fi〉
m1
i=0 of Φ-clusters such that dom(f0) = |α1|R = |α|R and dom(fm1) = |β1|R and

F
0→m1
1 (α1) = β1.
Suppose that the coherent finite sequence Fk = 〈fi〉

mk
i=0 has been defined so that (Ď) holds, and that k < n. Define Fk+1 as

follows, consider two cases.
(Case 1) Suppose that there is an i ≤ mk such that if −∗A ∈ αk+1 then −A ∈ F0→ik (αk+1). Then let mk+1 = mk and let

Fk+1 = Fk.
(Case 2) Suppose that there is no i ≤ mk such that if−∗A ∈ αk+1 then−A ∈ F0→ik (αk+1). Then−∗A ∈ αk+1 and for every

i ≤ mk, we have+A ∈ F0→ik (αk+1). We claim that

−∗A ∈ F0→ik (αk+1), for every i ≤ mk. (Ě)

The argument for (Ě) is pretty much the same as the argument, in the proof of Lemma 3.1.8, for the claim labelled (Ě)
there: we do not repeat that argument here. Given (Ě), we have −∗A ∈ F

0→mk
k (αk+1) ∈ dom(fmk). Indeed, we have

−∗A ∈ fk(F
0→mk
k (αk+1)) ∈ range(fmk). It will simplify things if we let α

′
= fk(F

0→mk
k (αk+1)). So−∗A ∈ α′ ∈ range(fmk).

Find a Φ-atom β ′ such that α′S]β ′ and −A ∈ β ′. By Lemma 3.4.5, there is a coherent finite sequence G = 〈gi〉
u
i=0 of

Φ-clusters such that dom(g0) = |α′|R and dom(gu) = |β ′|R and G0→u(α′) = β ′. We define the sequence Fk+1 = 〈fi〉
mk+1
i=0 by

gluing G at the end of Fk. More precisely, letmk+1 = mk + u+ 1 and for i ∈ {mk + 1, . . . ,mk+1}, let fi = gi–(mk+1).
In either Case 1 or Case 2, note that Fk+1 = 〈fi〉

mk+1
i=0 is a coherent finite sequence and that

if 1 ≤ j ≤ k+ 1 and − ∗A ∈ αj then there is an i ≤ mk+1 such that − A ∈ F0→ik+1 (αj). (ĎĎ)

Given that Fk+1 was built from Fk so as to ensure (ĎĎ), we conclude that we have successfully ensured (Ď) for each k. Now
let F = Fn. Note that F is a coherent finite sequence of Φ-clusters and that dom(f0) = |α|R. Also, since (Ď) holds for k = n,
the sequence Fwitnesses−∗A. �

Lemma 3.4.7. Suppose that Φ is a closed finite set of formulas and that α is a Φ-atom. Then there is a ∗-complete coherent
infinite sequence 〈fi〉i≥0 ofΦ-clusters, such that α ∈ dom(f0).

Proof (This Proof is Very Similar to the Proof of the Analogous Lemma 3.1.8). IfΦ contains no formulas of the form ∗A, then it
is easy. First, by Lemma 3.4.4, we can choose a Φ-cluster f0 with α ∈ dom(f0). For each n ≥ 0, if we have a Φ-cluster fn,
then, by Lemma 3.4.4, we can choose a Φ-cluster fn+1 with range(fn) ⊆ dom(fn+1). The sequence 〈fi〉i≥0 of Φ-clusters will
be infinite, ∗-complete, and coherent.
Otherwise, Φ contains some formula(s) of the form ∗A. List the set {−∗A : ∗A ∈ Φ} as follows: {−∗A0, . . . ,−∗Av−1},

where v ≥ 1. For any j, k ≥ 1, let rem(k, j) be the remainder of k divided by j; for example rem(47, 7) = 5. And, for each
k ≥ 0, define−∗Ak = −∗Arem(v,k). Thus, the sequence 〈−∗Ai〉i≥0 looks like this:

−∗A0, . . . ,−∗Av–1,−∗A0, . . . ,−∗Av–1,−∗A0, . . . ,−∗Av–1, . . . .

For each k ≥ 0, we will define by induction on k a coherent finite sequence Fk = 〈f
k
i 〉
mk
i=0, for somemk, that witnesses the

signed formula−∗Ak. By Lemma 3.4.6, we can choose a sequence F0 = 〈f
0
i 〉
m0
i=0 that witnesses the signed formula−∗A0, with

dom(f00) = |α|R. Assume that we have defined a sequence Fk = 〈f
k
i 〉
mk
i=0 that witnesses the signed formula−∗Ak. Choose any
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β ∈ range(fkmk). By Lemma 3.4.6, we can choose a sequence Fk+1 = 〈f
k+1
i 〉

mk+1
i=0 that witnesses the signed formula −∗Ak+1,

with dom(fk+10 ) = |β|R. Notice that range(fkmk) ⊆ dom(f
k+1
0 ).

Now define the infinite sequence F = 〈fi〉i≥0 by gluing together the sequences Fk as follows:

f00, . . . , f
0
m0 , f

1
0, . . . , f

1
m1 , f

2
0, . . . , f

2
m2 , f

3
0, . . . , f

3
m3 , . . . .

To be more precise, for each k ≥ 0, let nk = k+
∑k
i=0mk. For each i ≥ 0, let ki = min{k : i ≤ nk}. Finally, let fi = f

ki
i+mki–nki

.
Note the following:

fnk–mk = fk0

fnk–mk+i = fki , if i ≤ mk
fnk = fkmk

fnk+1 = fk+10 .

Also notice that,

if l ≤ (nk −mk) andm ≤ mk and γ ∈ dom(fl), then F0→mk (Fl→(nk –mk)(γ )) = Fl→(nk –mk)+m(γ ). (?)

Clearly F = 〈fi〉i≥0 is a coherent infinite sequence whose first member is α. We must still show that F is ∗-complete.
Suppose not. Then there is some l ≥ 0 and some γ ∈ dom(fl) and some−∗A ∈ γ such that

+A ∈ Fl→j(γ ) textrmforeveryj ≥ l. (Ď)

We claim that

−∗A ∈ Fl→j(γ ) for every j ≥ l. (Ě)

The argument for (Ě) is pretty much the same as the argument, in the proof of Lemma 3.1.8, for the claim labelled (Ě) there:
we do not repeat that argument here.
Choose some k ≥ l for which −∗A = −∗Ak. Note that l ≤ k ≤ nk − mk. So −∗Ak ∈ Fl→(nk–mk)(γ ), by (Ě). Let

δ = Fl→(nk–mk)(γ ). So −∗Ak ∈ δ ∈ dom(fnk–mk). Also, as noted above, fnk–mk = fk0. So −∗Ak ∈ δ ∈ dom(f
k
0). Recall that

the sequence Fk = 〈f
k
i 〉
mk
i=0 witnesses the signed formula −∗Ak. So there is some m ≤ mk such that −A ∈ F0→mk (δ). Sos

−A ∈ F0→mk (Fl→(nk–mk)(γ )). So−A ∈ Fl→(nk–mk)+m(γ ), by (?), above. But this contradicts (Ď). �

We can improve on Lemma 3.4.7:

Lemma 3.4.8. Suppose that Φ is a closed finite set of formulas and that α is a Φ-atom. Then there is an eventually periodic
∗-complete coherent infinite sequence 〈fi〉i≥0 ofΦ-clusters, such that α ∈ dom(f0).

Proof. By Lemma 3.4.7, there is a ∗-complete coherent infinite sequence G = 〈gi〉i≥0 ofΦ-clusters, such that α ∈ dom(g0).
We will now define five natural numbers a ≤ b ≤ c ≤ d ≤ e.
For each k ≥ 0, Let Γk = {β : β ∈ dom(gi) for some i ≥ 0 such that i ≤ k}. And let Γ = {β : β ∈ dom(gi) for some

i ≥ 0} = ∪kΓk. Note that Γ is finite, since there are finitely manyΦ-atoms. So we can let a be the smallest natural number
such that Γa = Γ .

g0, g1, . . . , ga︸ ︷︷ ︸, ga+1, ga+2, . . .
every member of Γ
is in the domain of
one of these clusters.

Since there are finitelyΦ-clusters, the sequence 〈gi〉i≥0 has a cofinality point. Let b be the smallest cofinality point greater
than a. So for each i ≥ b, theΦ-cluster gi is cofinal in the sequence 〈gi〉i≥0.

g0, g1, . . . , gb−1︸ ︷︷ ︸, gb, gb+1, gb+2, . . .︸ ︷︷ ︸
every member of Γ every cofinalΦ-cluster
is in the domain of is among these clusters
one of these clusters.

For each k ≥ b, et Σk = {β : β ∈ dom(gi) for some i ≥ b such that i ≤ k}. And let Σ = {β : β ∈ dom(gi) for some
i ≥ b} = ∪kΓk. Note thatΣ is the set of allΦ-clusters cofinal in the sequence 〈gi〉i≥0. So we can let c be the smallest natural
number greater than b such thatΣc = Σ .

g0, g1, . . . , gb−1︸ ︷︷ ︸, gb, gb+1, gb+2, . . . , gc︸ ︷︷ ︸, gc+1, . . .
every member of Γ every cofinalΦ-cluster
is in the domain of is among these clusters
one of these clusters.
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Suppose that −∗A ∈ β ∈ dom(gi) where i ≤ c. Since G is ∗-complete, there is a j ≥ i such that −A ∈ Gi→j(β). Since
there are only finitely formulas in Φ and since there are only finitely many Φ-atoms, there is a number d > c with the
following property: For each formula A and eachΦ-atom β and each i ≤ c , if−∗A ∈ β ∈ dom(gi) then there is a j ≥ i such
that both j < d and−A ∈ Gi→j(β).

g0, g1, . . . , gb−1︸ ︷︷ ︸, gb, gb+1, gb+2, . . . , gc︸ ︷︷ ︸, gc+1, . . . , gd−1, gd, gd+1, . . .

every member of Γ every cofinalΦ-cluster (∀A)(∀β)(∀i ≤ c)
is in the domain of is among these clusters (if –∗A ∈ β ∈ dom(gi)
one of these clusters. then ∃j(j ≥ i & j < d

& –A ∈ Gi→j(β)))

Finally, since theΦ-cluster gb is cofinal in the sequence G, there is an e ≥ d such that ge+1 = gb. Note: for each formula
A and eachΦ-atom β and each i ≤ c , if−∗A ∈ β ∈ dom(gi) then there is a j ≥ i such that both j < e+1 and−A ∈ Gi→j(β).
Also note: for every i > e there is a j such that j ≥ b and j ≤ c and gj = gi.

g0, g1, . . . , gb−1︸ ︷︷ ︸, gb, gb+1, gb+2, . . . , gc︸ ︷︷ ︸, gc+1, . . . , ge−1, ge, ge+1 = gb, . . .

every member of Γ every cofinalΦ-cluster (∀A)(∀β)(∀i ≤ c)
is in the domain of is among these clusters (if –∗A ∈ β ∈ dom(gi)
one of these clusters. then ∃j(j≥i & j<e+1

& –A ∈ Gi→j(β)))

We define our new infinite sequence F ofΦ-clusters as follows:

g0, g1, . . . , gb−1︸ ︷︷ ︸, gb, . . . , gc, gc+1, . . . , ge︸ ︷︷ ︸, gb, . . . , gc, gc+1, . . . , ge︸ ︷︷ ︸, . . .

initial repeating repeating
segment segment segment

More precisely, let F = 〈fi〉i≥0, where for i ≥ 0,

fi = gi, if i < b; and
fi+m(1+e−b) = gi, if i ≥ b and i ≤ e andm ≥ 0.

Note that F is an eventually periodic coherent infinite sequence. F is also ∗-complete. To see this, suppose that−∗A ∈ β ∈ fi
for some A and some β and some i. We want to show that

−A ∈ Fi→j(β) for some j ≥ i. (?)

Suppose that (?) is false. Then

+A ∈ Fi→j(β) for every j ≥ i. (Ď)

We claim that

−∗A ∈ Fi→j(β) for every j ≥ i. (Ě)

The argument for (Ě) is pretty much the same as the argument, in the proof of Lemma 3.1.8, for the claim labelled (Ě) there:
we do not repeat that argument here.
Letm be the smallest natural number such that i ≤ b+m(1+ e−b). And let b′ = b+m(1+ e−b) and let γ = Fi→b

′

(β).
By (Ě), we have −∗A ∈ γ ∈ dom(fb′). Note also that fb′ = gb. So −∗A ∈ γ ∈ dom(gb). So, since b ≤ c , for some j we have
j ≥ b and j ≤ e and−A ∈ Gb→j(γ ). Let j′ = j+m(1+ (e− b)).
Now, for any k ∈ {b, . . . , j}we have fk+m(1+e–b) = gk. So

F(b+m(1+e–b))→(j+m(1+e–b))(γ ) = Gb→j(γ ).

That is, Fb
′
→j′(γ ) = Gb→j(γ ). Therefore−A ∈ Fb

′
→j′(γ ) = Fb

′
→j′(Fi→b

′

(β)) = Fi→j
′

(β). But this contradicts (Ď). �

3.5. Completeness of S5C

Definition 3.5.1. Suppose that Φ is a closed finite set of formulas, and that α is a Φ-atom. We will define a finite almost
discrete topological space, Xα; a continuous function, fα on Xα; and a valuation function Vα : PV → P (Xα).
First, choose an eventually periodic ∗-complete coherent infinite sequence 〈fi〉i≥0 of Φ-clusters, such that α ∈ dom(f0).

Choose k ≥ 1 and l ≥ 1 so that for every i ≥ k, we have fi+l = fi. We cut the sequence F off at (k+ l)− 1:

f0, f1, . . . , fk, fk+1, . . . , fk+l–1.

We define Xα as follows:

Xα = {〈i, β〉 : 0 ≤ i ≤ (k+ l− 1) and β ∈ dom(fi)}.
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For each i ≤ (k+ l−1), define the set Oi as follows: Oi = {〈i, β〉 : β ∈ dom(fi)}. The topology we impose on Xα is as follows:
a set is open iff it is either empty or a union of some of the Oi’s. In other words, the Oi’s form a basis for our topology. Since
our topology has a basis of pairwise disjoint open sets, the space Xα is almost discrete.
We define a function fα : Xα → Xα as follows:

fα(〈i, β〉) =
{
〈i+ 1, fi(β)〉, if i < (k+ l)− 1
〈k, fi(β)〉, if i = (k+ l)− 1.

The function fα is continuous, since the inverse image of every basis set Oi is open. In particular, f −1α (O0) = ∅; f −1α (Ok) =
Ok–1 ∪ O(k+l)−1; and if i 6= 0 and i 6= k then f −1α (Oi) = Oi–1. We define the valuation function Vα as follows:

Vα(p) = {〈i, β〉 ∈ Xα : +p ∈ β}, for each propositional variable p.

Finally, we define the dynamic topological model,Mα =df 〈Xα, fα, Vα〉.

The following lemma is analogous to Lemma 3.2.4.

Lemma 3.5.2. Suppose thatΦ is a closed finite set of formulas and that α is aΦ-atom. Suppose that 〈i, β〉 ∈ Xα , that j ≥ 0 and
that 〈i′, γ 〉 = f jα(〈i, β〉). Then fi′ = fi+j and γ = Fi→i+j(β). (Note that the ordered pair 〈i+ j, γ 〉 need not be in Xα .)

Theorem 3.5.3. Suppose that Φ is a closed finite set of formulas, and that α is a Φ-atom. And suppose that Xα , fα , and Vα are
defined as in Definition 3.5.1. Then, for each A ∈ Φ:

for each 〈i, β〉 ∈ Xα , 〈i, β〉 ∈ Vα(A) iff+A ∈ β .

Proof. By induction on the structure of A. We will use all the notation, terminology and so on in Definition 3.5.1.
(Case 1) A ∈ PV . The result is given by the definition of Vα .
(Case 2) A is of the form¬B. Choose 〈i, β〉 ∈ Xα . Then note: 〈i, β〉 ∈ Vα(A) iff 〈i, β〉 ∈ Vα(¬B) iff 〈i, β〉 6∈ Vα(B) iff+B 6∈ β

(by the inductive hypothesis) iff −B ∈ β (since β is Φ-complete) iff +¬B ∈ β (since β is Φ-complete and consistent) iff
+A ∈ β .
(Case 3) A is of the form (B & C). Choose 〈i, β〉 ∈ Xα . Then note: 〈i, β〉 ∈ Vα(A) iff 〈i, β〉 ∈ Vα(B & C) iff 〈i, β〉 ∈ Vα(B) and

〈i, β〉 ∈ Vα(C) iff+B ∈ β or+C ∈ β (by the inductive hypothesis) iff+(B & C) ∈ β (since β isΦ-complete and consistent)
iff+A ∈ β .
(Case 4) A is of the form 2B. Choose 〈i, β〉 ∈ Xα . So β ∈ dom(fi) = |β|R. By Lemma 3.1.1, we have

+2B ∈ β iff, for every γ ∈ |β|R,+B ∈ γ .

Thus,

(1) +2B ∈ β iff, for every γ ∈ dom(fi),+B ∈ γ .
(2) +2B ∈ β iff, for every γ ∈ dom(fi), 〈, i, γ 〉 ∈ V (B) by IH.
(3) +2B ∈ β iff Oi ⊆ Vα(B) by the def’n of Oi.
(4) +2B ∈ β iff Oi ⊆ Int(Vα(B)) since Oi is open.

Now note that Oi is the smallest open set containing 〈i, β〉. Thus, for any Y ⊆ Xα , we have Oi ⊆ O iff 〈i, β〉 ∈ O. In particular,
Oi ⊆ Int(Vα(B)) iff 〈i, β〉 ∈ Int(Vα(B)) = Vα(2B). So+2B ∈ β iff 〈i, β〉 ∈ Vα(2B).
(Case 5) A is of the form ◦B. Choose 〈i, β〉 ∈ Xα . We consider two cases: (5.1) i < (k + l) − 1, and (5.2) i = (k + l) − 1.

(Case 5.1) 〈i, β〉 ∈ Vα(A) iff 〈i, β〉 ∈ Vα(◦B) iff fα(〈i, β〉) ∈ Vα(B) iff 〈i+ 1, fi(β)〉 ∈ Vα(B) iff+B ∈ fi(β) (by IH) iff+◦B ∈ β
(by Lemma 3.1.2, since β S fi(β)) iff+A ∈ β . (Case 5.2) 〈i, β〉 ∈ Vα(A) iff 〈k+ l−1, β〉 ∈ Vα(◦B) iff fα(〈k+ l−1, β〉) ∈ Vα(B)
iff 〈k, fi(β)〉 iff+B ∈ fi(β) iff ◦B ∈ β (by Lemma 3.1.2, since β S fi(β)) iff+A ∈ β .
(Case 6) A is of the form ∗B. Choose 〈i, β〉 ∈ Xα . We consider both directions of our biconditional separately.
(⇒)We prove the contrapositive. So suppose that+A 6∈ β . Then+∗B 6∈ β . So−∗B ∈ β ∈ dom(fi). So, since the sequence

F = 〈fi〉i≥0 is ∗-complete, we have−B ∈ Fi→j(β), for some j ≥ i. Let 〈i′, γ 〉 = f j–iα (〈i, β〉). Then fi′ = fj and γ = Fi→j(β), by
Lemma 3.5.2. So+B 6∈ γ . So 〈i′, γ 〉 6∈ Vα(B), by IH. So f j–iα (〈i, β〉) 6∈ Vα(B). So 〈i, β〉 6∈ Vα(∗B). So 〈i, β〉 6∈ Vα(A).
(⇐) We prove the contrapositive. So suppose that 〈i, β〉 6∈ Vα(A). Then 〈i, β〉 6∈ Vα(∗B). So f jα(〈i, β〉) 6∈ Vα(B) for some

j ≥ 0. Let 〈i′, γ 〉 = f jα(〈i, β〉). Then 〈i
′, γ 〉 6∈ Vα(B). So+B 6∈ γ , by IH. So+B 6∈ Fi→i+j(β), by Lemma 3.5.2. So+∗B 6∈ β . Now

note that β S] Fi→i+j(β). So+∗B 6∈ β , by Lemma 3.1.5. So+A 6∈ β . �

Corollary 3.5.4. Suppose that A 6∈ S5C. Then there is some finite almost discrete topological space X such that X 6� A.

Proof. Suppose that A 6∈ S5Ct. By Lemma 3.4.1, there is a finite closed setΦ of formulas such that A ∈ Φ . Choose aΦ-atom
α with −A ∈ α. Define the topological model Mα = 〈Xα, fα, Vα〉 as in Definition 3.5.1. By Theorem 3.5.3 and the fact that
α ∈ dom(f0), we have 〈0, α〉 6∈ Vα(A). So Xα 6� A. And Xα is a finite almost discrete topological space. �

The completeness of S5C for almost discrete topological spaces follows directly fromCorollary 3.5.4. Indeed, this Corollary
is stronger than completeness: it also entails that S5C has the finite model property. Thus:

Corollary 3.5.5. S5C is decidable.
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In Section 2.5, we promised a proof of the following:

Theorem 3.5.6. Next removal is admissible in S5C.
Proof. Suppose, for a reductio, that ◦A ∈ S5C, but A 6∈ S5C. Since A 6∈ S5C, there is an almost discrete topological space X , a
continuous function f : X → X , and a valuation function V : PV → P (X) such that V (A) 6= X . Choose some b ∈ X − V (A).
Define a new topological space X ′, a new continuous function f ′, and a new valuation function V ′ as follows. Choose any
object a 6∈ X , and let X ′ = X ∪{a}, where the following subsets of X are open: the sets O ⊆ X that are open in X , and the sets
of the form O ∪ {a} where O ⊆ X is open in X . Note that X ′ is an almost discrete topological space. Define f ′ by extending
f to X ′ as follows: f ′(a) = b. Note that f ′ is continuous. And define V ′ as follows: V ′(p) = V (p). It is easy to prove that
V ′(B) ∩ X = V (B), for every formula B. Thus b 6∈ V ′(A). Thus a 6∈ V ′(◦A). Thus X ′ 6� ◦A. Thus, by the soundness of S5C for
almost discrete spaces, ◦A 6∈ S5C. But this contradicts our original assumption. �

3.6. Completeness of S5H

The completeness proof for S5H borrows ideas from both the completeness proof for S5Ht and the completeness proof
for S5C. Two things must be noted right away. The first thing is that S5H fails to satisfy the finite model property in the same
sense that S5Ht fails: the formula (◦∗p ⊃ ∗p) is not a theorem of S5H, even though it is validated by every model 〈X, f , V 〉
where X is a finite topological space (almost discrete or not) and f is a homeomorphism. The second thing is that it will
suffice to prove that S5H is complete for open onto continuous functions on almost discrete spaces.10

Lemma 3.6.1. Suppose that M 6� A where M = 〈X, f , V 〉, where X is an almost discrete topological space, and where f is an
open continuous function from X onto X. And suppose that M 6� A. Then there is some almost discrete topological space X ′, some
homeomorphism f ′ : X ′ → X ′ and some valuation function V ′ : PV → P (X ′) such that M ′ 6� A where M ′ = 〈X ′, f ′, V ′〉.

Proof. Say that an infinite sequence 〈xi〉i≥0 is a backwards f -sequence iff xi = f (xi+1) for each i ≥ 0. Since f is onto, every
x ∈ X is the initialmember of somebackwards f -sequence, perhapsmany. LetX ′ be the set of backwards f -sequences. Let the
open subsets of X ′ be the sets of the following form: {〈xi〉i≥0 ∈ X ′ : x0 ∈ O}, where O is open in X . Note that these open sets
form an almost discrete topology on X ′. And define f ′ as follows: f ′(〈xi〉i≥0) = 〈f (xi)〉i≥0. Note that f ′ is a homeomorphism
on X ′. Define V ′(p) = {〈xi〉i≥0 ∈ X ′ : x0 ∈ V (p)}. It is a straightforward matter to show that, for each formula A, we have
V ′(A) = {〈xi〉i≥0 ∈ X ′ : x0 ∈ V (A)}. ThusM ′ 6� A sinceM 6� A. �

Our canonical model (see Definition 3.6.9) will use an open onto continuous function, which will not necessarily be one-
one.
Recall that a Φ-cluster is a function f : |α|R → |β|R for some Φ-atoms α and β . We will say that a Φ-cluster f is an onto

Φ-cluster iff f is a function from |α|R onto |β|R for some Φ-atoms α and β . We will want our sequences of Φ-clusters to be
sequences of ontoΦ-clusters. The following Lemma, similar to Lemma 3.4.3, helps with this:

Lemma 3.6.2. Suppose that Φ is a closed finite set of formulas. Suppose that α, β and δ are Φ-atoms such that αSβ and βRδ.
Then there is aΦ-atom γ such that αRγ and γ Sδ. Thus the bottom left corner of the square on the left can be filled in as indicated:

α S β α S β
R R =⇒ R R
?? S δ γ S δ

Proof. Suppose that α, β and δ are Φ-atoms such that αSβ and βRδ. Since αSβ , the formula (α & ◦β) is consistent. So the
formula (αM & ◦βM) is consistent. Since βRδ, we have βM = δM . So the formula (αM & ◦δM) is consistent. We claim that

(αM & ◦δ) is consistent. (Ď)

To see this, suppose not. Let δNM = δ−δM . So (αM & ◦(δNM & δM)) is inconsistent. By the closure ofΦ , we can choose a formula
A such that A nonmodally dominates δ. In other words, A is consistent,♦A ∈ Φ and (A ⊃ δNM) ∈ S5H. So (αM & ◦(A & δM))
is inconsistent. So (αM & ◦A & ◦δM) is inconsistent. So ((αM & ◦δM) ⊃ ¬◦A) ∈ S5H. So ((2αM & 2◦δM) ⊃ 2¬◦A) ∈
S5H. So ((2αM & 2◦δM) ⊃ 2◦¬A) ∈ S5H. Recall that (◦2¬A ≡ 2◦¬A) and (◦2δ ≡ 2◦δ) are axioms of S5H. So
((2αM & ◦2δM) ⊃ ◦2¬A) ∈ S5H. So ((2αM & ◦2δM) ⊃ ¬◦♦A) ∈ S5H. Recall that (γM ≡ 2γM) ∈ S5H and (δM ≡ 2δM) ∈
S5H. So ((αM & ◦δM) ⊃ ¬◦♦A) ∈ S5H. So (αM & ◦δM& ◦♦A) is inconsistent. But since A nonmodally dominates δ, we have
+A ∈ δ. So+♦A ∈ δ, since♦A ∈ Φ . So+♦A ∈ δM . So (αM & ◦δM) is inconsistent. Butwe have already noted that (αM & ◦δM)
is consistent. This proves (Ď).
Given the consistency of (αM & ◦δ), we can add signed nonmodal formulas to the set αM until we get a Φ-atom γ with

γM = αM and with (γ & ◦δ) consistent. �

The following Lemma is a strengthening of Lemma 3.4.4:

Lemma 3.6.3. Suppose that Φ is a closed finite set of formulas, and that α and β are Φ-atoms with αSβ . Then there is an onto
Φ-cluster f : |α|R → |β|R with f(α) = β .

10 We say that a function on a topological space is open iff the image of every open set is open.
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Proof. List the members of |β|R as follows: β1, . . . , βn, with β1 = β . By Lemma 3.6.2, there are α1, . . . , αn ∈ |α|R, with
α1 = α, such that αiSβi for each i ∈ {1, . . . , n}. Define f(αi) inductively as follows:

f(α1) = β1

f(αi+1) =

{
βi+1, if αi+1 6= αj, for any j ≤ i
f(αj), if αi+1 = αj and j ≤ i.

If |α|R = {α1, . . . , αn}, then we are done: f is aΦ-cluster from |α|R onto |β|R with f(α) = β .
Otherwise, list the members of |α|R − {α1, . . . , αn} as follows: γ1, . . . , γm. By Lemma 3.4.3, there are δ1, . . . , δm ∈ |β|R

such that γiSδi for each i ∈ {1, . . . ,m}. Define f(γi) = δi. Now f is aΦ-cluster from |α|R onto |β|R with f(α) = β . �

Given Lemma 3.6.3, we get stronger analogues of Lemmas 3.4.5–3.4.7, with onto Φ-clusters and sequences of onto
Φ-clusters: the proofs are virtually the same. In particular, we get the following:

Lemma 3.6.4. Suppose that Φ is a closed finite set of formulas and that α is a Φ-atom. Then there is an eventually periodic
∗-complete coherent infinite sequence 〈fi〉i≥0 of ontoΦ-clusters, such that α ∈ dom(f0).

Recall that the proof of completeness for S5Ht relied on backwards S-sequences of Φ-atoms, so that we could build bi-
infinite S-sequences. For S5H, we need backwards coherent sequences: a finite sequence 〈fi〉ni=0 [an infinite sequence 〈fi〉i≥0]
of Φ-clusters is backwards-coherent iff fi+1 coheres with fi, for each i ≥ 0 and < n [for each i ≥ 0]. We start with the
following analogue of Lemma 3.3.2:

Lemma 3.6.5. Suppose thatΦ is a closed finite set of formulas, and that α is aΦ-atom. Then there is aΦ-atom β such that βSα.

Proof. Since α is aΦ-atom, α is consistent. So¬α 6∈ S5H. So ◦¬α 6∈ S5H, since S5H is closed under the rule of next removal.
So ¬◦α 6∈ S5Ht. So ◦α is consistent. So there is someΦ-atom β such that the following is consistent: (β & ◦α). �

Corollary 3.6.6. Suppose thatΦ is a closed finite set of formulas, and that α is aΦ-atom. Then there is an onto cluster f such that
α ∈ range(f).

Proof. This follows from Lemma 3.6.5 and Lemma 3.6.3. �

Corollary 3.6.7. Suppose thatΦ is a closed finite set of formulas, and that f is an ontoΦ-cluster. Then there is an infinite eventually
periodic backwards-coherent sequence 〈fi〉i≥0 of ontoΦ-clusters with f0 = f.

Proof. The existence of an infinite backwards-coherent sequence 〈f0〉i≥0 of onto Φ-clusters with f0 = f is guaranteed by
Corollary 3.6.6. The existence of an eventually periodic infinite eventually periodic backwards-coherent sequence 〈f0〉i≥0 of
ontoΦ-clusters with f0 = f is guaranteed by the former remark and the fact that there are only finitelymanyΦ-clusters. �

Lemma 3.6.8. Suppose that Φ is a closed finite set of formulas and that α is a Φ-atom. Then there is a bi-eventually periodic
∗-complete coherent bi-infinite sequence 〈fi〉i∈Z of onto clusters such that α0 ∈ f0.

Proof. By Lemma 3.6.4, there is an eventually periodic ∗-complete coherent infinite sequence 〈fi〉i≥0 of onto Φ-clusters,
such that α ∈ dom(f0). And by Lemma 3.6.7, there is an infinite eventually periodic backwards-coherent sequence 〈f′i〉i≥0
of onto Φ-clusters with f′0 = f0. For each i < 0, define fi = f′–i. Then the bi-infinite sequence 〈fi〉i∈Z of onto clusters is
bi-eventually periodic, coherent and ∗-complete; and α ∈ f0. �

Definition 3.6.9. Suppose thatΦ is a closed finite set of formulas, and that α is aΦ-atom.Wewill define an almost discrete
topological space, Xα; a continuous open onto function, fα on Xα; and a valuation function Vα : PV → P (Xα).
First, choose a bi-eventually periodic ∗-complete coherent bi-infinite sequence 〈fi〉i∈Z of onto Φ-clusters, such that

α ∈ dom(f0). We define Xα as follows:

Xα = {〈i, β〉 : i ∈ Z and β ∈ dom(fi)}.

For each i ∈ Z, define the set Oi as follows: Oi = {〈i, β〉 : β ∈ dom(fi)}. The topology we impose on Xα is as follows: a set
is open iff it is either empty or a union of some of the Oi’s. In other words, the Oi’s form a basis for our topology. Since our
topology has a basis of pairwise disjoint open sets, the space Xα is almost discrete.
We define a function fα : Xα → Xα as follows:

fα(〈i, β〉) = 〈i+ 1, fi(β)〉.

Note that both the image under fα and the inverse image under fα of any basis setOi is open: the image isOi+1 and the inverse
image is Oi–1. So the function fα is continuous and open. The function fα also maps Xα onto Xα: suppose that 〈i, β〉 ∈ Xα;
then β ∈ dom(fi); and since fi–1 : dom(fi–1) → dom(fi) is onto, there is a γ ∈ dom(fi–1) such that fi–1(γ ) = β; thus
f (〈i− 1, γ 〉) = 〈i, β〉.
We define the valuation function Vα as follows:

Vα(p) = {〈i, β〉 ∈ Xα : +p ∈ β}, for each propositional variable p.

Finally, we define the dynamic topological model,Mα =df 〈Xα, fα, Vα〉.



116 P. Kremer / Annals of Pure and Applied Logic 160 (2009) 96–116

The proof of the following theorem is similar to the proof of Theorem 3.5.3:

Theorem 3.6.10. Suppose that Φ is a closed finite set of formulas, and that α is a Φ-atom. And suppose that Xα , fα , and Vα are
defined as in Definition 3.6.9. Then, for each A ∈ Φ:

for each 〈i, β〉 ∈ Xα , 〈i, β〉 ∈ Vα(A) iff+A ∈ β .

And we thus get an analogue (without the finiteness condition) of Corollary 3.5.4:

Corollary 3.6.11. Suppose that A 6∈ S5H. Then there is almost discrete topological space X and some continuous open onto
function f : X → X such that 〈X, f 〉 6� A.

The completeness of S5H for continuous open onto functions on almost discrete spaces follows from Corollary 3.3.7. The
completeness of S5H for homeomorphisms on almost discrete spaces follows from Corollary 3.3.7 and Lemma 3.6.1.
What about the decidability of S5H? We do not get it through any finite model property. But, as in the case of S5Ht,

decidability does follow from the fact that each model Xα is of a kind that can be finitely represented: using a method of
finite premodels similar to that used at the end of Section 3.3, we can prove the following:

Theorem 3.6.12. S5H is decidable.

References

[1] S. Artemov, J. Davoren, A. Nerode, Modal logics and topological semantics for hybrid systems, Technical Report MSI 97–05, Cornell University, June
1997. Available at: http://www.cs.gc.cuny.edu/~sartemov/.

[2] J. Davoren, Modal logics for continuous dynamics, Ph.D. Thesis, Cornell University, 1998.
[3] D. Gabbay, A. Kurucz, F.Wolter,M. Zakharyaschev,Many-DimensionalModal Logics: Theory and Applications, in: Studies in Logic and the Foundations
of Mathematics, vol. 148, Elsevier, Amsterdam, 2003.

[4] D. Kozen, R. Parikh, An elementary proof of the completeness of PDL, Theoretical Computer Science 14 (1981) 113–118.
[5] P. Kremer, G. Mints, Dynamic topological logic, Annals of Pure and Applied Logic 131 (2005) 133–158.
[6] S. Kripke, A completeness theorem in modal logic, Journal of Symbolic Logic 24 (1959) 1–14.
[7] S. Kripke, Semantical analysis of modal logic I, normal propositional calculi, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 9
(1963) 67–96.

[8] J.C.C. McKinsey, A solution of the decision problem for the Lewis systems S2 and S4, with an application to topology, The Journal of Symbolic Logic 6
(1941) 117–134.

[9] J.C.C. McKinsey, A. Tarski, The algebra of topology, Annals of Mathematics 45 (1944) 141–191.
[10] J. van Benthem, Temporal logic, in: D.M. Gabbay, C.J. Hogger, J.A. Robinson (Eds.), Handbook of Logic in Artificial Intelligence and Logic Programming,

vol. 4, Clarendon Press, Oxford, 1995, pp. 241–350.

http://www.cs.gc.cuny.edu/~sartemov/

	Dynamic topological S5
	Background
	S5 in the topological semantics
	Dynamic topological logic

	Four axiom systems
	The systems
	Some useful facts
	More facts
	Relations among our logics
	The rule next removal

	Completeness
	Common elements
	Completeness of S5Ct
	Completeness of S5Ht
	Completeness of S5C and S5H: Common elements
	Completeness of S5C
	Completeness of S5H

	References


