Philip Kremer Matching Topological and Frame Products of Modal Logics

Abstract

The simplest combination of unimodal logics L_{1} and L_{2} into a bimodal logic is their fusion, $\mathrm{L}_{1} \otimes \mathrm{~L}_{2}$, axiomatized by the theorems of L_{1} for \square_{1} and of L_{2} for \square_{2}. Shehtman introduced combinations that are not only bimodal, but two-dimensional: he defined 2-d Cartesian products of 1-d Kripke frames, using these Cartesian products to define the frame product $\mathrm{L}_{1} \times \mathrm{L}_{2}$ of L_{1} and L_{2}. Van Benthem, Bezhanishvili, ten Cate and Sarenac generalized Shehtman's idea and introduced the topological product $\mathrm{L}_{1} \times{ }_{t} \mathrm{~L}_{2}$, using Cartesian products of topological spaces rather than of Kripke frames. Frame products have been extensively studied, but much less is known about topological products. The goal of the current paper is to give necessary and sufficient conditions for the topological product to match the frame product, for Kripke complete extensions of S4: $\mathrm{L}_{1} \times{ }_{t} \mathrm{~L}_{2}=\mathrm{L}_{1} \times \mathrm{L}_{2}$ iff $\mathrm{L}_{1} \supsetneq \mathrm{~S} 5$ or $\mathrm{L}_{2} \supsetneq \mathrm{~S} 5$ or $\mathrm{L}_{1}, \mathrm{~L}_{2}=\mathrm{S} 5$.

Keywords: Bimodal logic, Multimodal logic, Topological semantics, Topological product, Product space.

Let \mathcal{L} be a propositional language with a set $P V$ of propositional variables; standard Boolean connectives \wedge, \vee and \neg; and one modal operator, \square. And let \mathcal{L}_{12} be like \mathcal{L}, except with two modal operators, \square_{1} and \square_{2}. We use standard definitions of $\supset, \equiv, \diamond, \diamond_{1}$ and \diamond_{2}. A normal unimodal [bimodal] logic is any set L of formulas of $\mathcal{L}\left[\mathcal{L}_{12}\right]$ containing every propositional tautology and the formula $(\square(p \supset q) \supset(\square p \supset \square q)$) [the formulas $\left(\square_{1}(p \supset q) \supset\left(\square_{1} p \supset \square_{1} q\right)\right)$ and $\left.\left(\square_{2}(p \supset q) \supset\left(\square_{2} p \supset \square_{2} q\right)\right)\right]$, and closed under modus ponens, necessitation for \square [for \square_{1} and \square_{2}], and substitution we will suppress the adjective 'normal'. A logic L is consistent iff L excludes some formula in the relevant language. L extends L^{\prime} iff $\mathrm{L}^{\prime} \subseteq \mathrm{L}$. Given any $\operatorname{logic} L$ and any set Γ of formulas, $L+\Gamma$ is the logic generated by closing $\mathrm{L} \cup \Gamma$ under modus ponens, necessitation (for either \square or for each of \square_{1} and \square_{2}, depending on the language) and substitution. If $\Gamma=\left\{A_{1}, \ldots, A_{n}\right\}$, then we write $\mathrm{L}+A_{1}+\cdots+A_{n}$ for $\mathrm{L}+\Gamma$. K is the smallest unimodal logic. $\mathrm{S} 4={ }_{\mathrm{df}} \mathrm{K}+(\square p \supset p)+(\square p \supset \square \square p), \mathrm{S} 4.2={ }_{\mathrm{df}} \mathrm{S} 4+(\diamond \square p \supset \square \diamond p)$, $\mathrm{S} 5={ }_{\mathrm{df}} \mathrm{S} 4+(\diamond p \supset \square \diamond p)$, Triv $={ }_{\mathrm{df}} \mathrm{S} 4+(p \supset \square p)$, and Verum $={ }_{\mathrm{df}} \mathrm{K}+\square p$.

The simplest combination of two unimodal $\operatorname{logics} \mathrm{L}_{1}$ and L_{2} into a bimodal logic is their bimodal fusion, $\mathrm{L}_{1} \otimes \mathrm{~L}_{2}$: let $\mathrm{L}_{1}^{\prime}\left[\mathrm{L}_{2}^{\prime}\right]$ be the set of formulas of \mathcal{L}_{12} got by replacing each occurrence of \square in each formula in $\mathrm{L}_{1}\left[\mathrm{~L}_{2}\right]$ by $\square_{1}\left[\square_{2}\right]$; and let $\mathrm{L}_{1} \otimes \mathrm{~L}_{2}$ be the smallest set of formulas of \mathcal{L}_{12} containing $L_{1}^{\prime} \cup L_{2}^{\prime}$ and closed under modus ponens, necessitation for \square_{1} and for \square_{2}, and substitution.

Shehtman [13] introduces combinations that are not only bimodal, but two-dimensional: he defines a kind of birelational Kripke frame as a Cartesian product of two Kripke frames. The frame product $\mathrm{L}_{1} \times \mathrm{L}_{2}$, is then the set of formulas in the language \mathcal{L}_{12} validated by every product of a Kripke frame validating L_{1} with a Kripke frame validating L_{2}.

For unimodal logics stronger than S4, the McKinsey-Tarski topological semantics [9-11] for the unimodal language \mathcal{L} generalizes the Kripke semantics. Van Benthem et al. [15] generalize Shehtman's products of frames to products of topological spaces: they define a kind of bitopological space as a Cartesian product of two topological spaces. The topological product $\mathrm{L}_{1} \times{ }_{t} \mathrm{~L}_{2}$, is then the set of formulas in the language \mathcal{L}_{12} validated by every product of a topological space validating L_{1} with a topological space validating L_{2}. Frame products have been extensively studied, ${ }^{1}$ but much less is known about topological products. The main purpose of the current paper is to give necessary and sufficient conditions for the topological product to match the frame product, for Kripke complete extensions L_{1} and L_{2} of S 4 : $\mathrm{L}_{1} \times_{t} \mathrm{~L}_{2}=\mathrm{L}_{1} \times \mathrm{L}_{2}$ iff $\mathrm{L}_{1} \supsetneq \mathrm{~S} 5$ or $\mathrm{L}_{2} \supsetneq \mathrm{~S} 5$ or $\mathrm{L}_{1}=\mathrm{L}_{2}=\mathrm{S} 5$.

1. Details

1.1. Kripke Semantics

Here are the gory, and typically routine, details. A Kripke uniframe [biframe] is an ordered pair [triple] $F=\langle W, R\rangle\left[F=\left\langle W, R_{1}, R_{2}\right\rangle\right]$ where W is a nonempty set and R is a binary relation on $W\left[R_{1}\right.$ and R_{2} are binary relations on $W]$. We sometimes use the expression frame ambiguously for uniframes and biframes. If F is a uniframe [biframe and $i \in\{1,2\}$], then F is reflexive, transitive, etc. [i-reflexive, i-transitive, etc.], iff $R\left[R_{i}\right]$ is reflexive, transitive, etc. If F is a biframe, then F is simply reflexive, transitive, etc., iff F is i-reflexive, i-transitive, etc., for each $i \in\{1,2\}$.

[^0]If F is a uniframe [biframe and $i \in\{1,2\}$] and $S \subseteq W$, then the inte$\operatorname{rior}[s]$ of S is [are] $\operatorname{lnt}(S)={ }_{\mathrm{df}}\left\{w \in W: \forall w^{\prime} \in W, w R w^{\prime} \Rightarrow w^{\prime} \in S\right\}$ $\left[\operatorname{lnt}_{i}(S)={ }_{\mathrm{df}}\left\{w \in W: \forall w^{\prime} \in W, w R_{i} w^{\prime} \Rightarrow w^{\prime} \in S\right\}\right]$. A Kripke unimodel [bimodel] is an ordered pair $M=\langle F, V\rangle$, where $F=\langle W, R\rangle$ $\left[F=\left\langle W, R_{1}, R_{2}\right\rangle\right.$] is a uniframe [biframe] and $V: P V \rightarrow \mathcal{P}(W)$. The valuation function V extends to all formulas in the language $\mathcal{L}\left[\mathcal{L}_{12}\right]$ as follows: $V(\neg A)=W-V(A), V(A \wedge B)=V(A) \cap V(B), V(A \vee B)=V(A) \cup V(B)$, and $V(\square A)=\operatorname{lnt}(V(A))\left[V\left(\square_{i} A\right)=\operatorname{lnt}_{i}(V(A)), i=1,2\right]$. We say $w \Vdash A$ iff $w \in V(A)$. We say $M \Vdash A$ iff $V(A)=W$. We say $F \Vdash A$ iff $M \Vdash A$ for every model $M=\langle F, V\rangle$. If Γ is a set of formulas, then we say that $F \Vdash \Gamma$ iff $F \Vdash A$ for every $A \in \Gamma$. If \mathcal{F} is a class of frames, then we say that $\mathcal{F} \Vdash \Gamma$ iff $F \Vdash \Gamma$ for every $F \in \mathcal{F} . \operatorname{Fr}(\Gamma)={ }_{\mathrm{df}}\{F: F \Vdash \Gamma\}$. If \mathcal{F} is a class of frames, then $\log (\mathcal{F})==_{\mathrm{df}}\{A: \forall F \in \mathcal{F}, F \Vdash A\}$: note that $\log (\mathcal{F})$ is a normal modal logic. If F is a frame, $\log (F)={ }_{\mathrm{df}} \log (\{F\})$. The following results are well-known in the unary case: $\operatorname{Fr}(\mathrm{K})=\{F: F$ is a uniframe $\}$ and $\mathrm{K}=\log (\operatorname{Fr}(\mathrm{K})) ; \operatorname{Fr}(\mathrm{S} 4)=\{F: F$ is a reflexive, transitive uniframe $\}$ and $\mathrm{S} 4=\log (\operatorname{Fr}(\mathrm{S} 4))$; and $\operatorname{Fr}(\mathrm{S} 5)=\{F: F$ is a reflexive, transitive, symmetric uniframe $\}$ and $\mathrm{S} 5=\log (\operatorname{Fr}(\mathrm{S} 5))=\log \left(\left\{\langle W, R\rangle: \forall w, w^{\prime} \in W, w R w^{\prime}\right\}\right)$. A logic L is Kripke complete $\mathrm{iff} \mathrm{L}=\log (\mathcal{F})$ for some class \mathcal{F} of frames; equivalently, iff $L=\log (\operatorname{Fr}(\mathrm{L}))$.

The definitions and results in this paragraph are from [13] and [4]. Given two uniframes $F_{1}=\left\langle W_{1}, R_{1}\right\rangle$ and $F_{2}=\left\langle W_{2}, R_{2}\right\rangle$, the biframe $F_{1} \times F_{2}={ }_{\mathrm{df}}$ $\left\langle W_{1} \times W_{2}, S_{1}, S_{2}\right\rangle$, where $\left\langle w_{1}, w_{2}\right\rangle S_{1}\left\langle w_{1}^{\prime}, w_{2}^{\prime}\right\rangle$ iff $w_{1} R_{1} w_{1}^{\prime}$ and $w_{2}=w_{2}^{\prime}$; and where $\left\langle w_{1}, w_{2}\right\rangle S_{2}\left\langle w_{1}^{\prime}, w_{2}^{\prime}\right\rangle$ iff $w_{1}=w_{1}^{\prime}$ and $w_{2} R_{2} w_{2}^{\prime}$. If \mathcal{F}_{1} and \mathcal{F}_{2} are classes of uniframes, then $\mathcal{F}_{1} \times \mathcal{F}_{2}={ }_{\text {df }}\left\{F_{1} \times F_{2}: F_{1} \in \mathcal{F}_{1}\right.$ and $\left.F_{2} \in \mathcal{F}_{2}\right\}$. If L_{1} and L_{2} are unimodal logics, then the frame product of L_{1} and L_{2} is the bimodal $\operatorname{logic} \mathrm{L}_{1} \times \mathrm{L}_{2}={ }_{\mathrm{df}} \log \left(\operatorname{Fr}\left(\mathrm{L}_{1}\right) \times \operatorname{Fr}\left(\mathrm{L}_{2}\right)\right)$. Every product frame validates the following three formulas:

com $_{\supset}$	(left commutativity)	$\square_{1} \square_{2} p \supset \square_{2} \square_{1} p$
com $_{\subset}$	(right commutativity)	$\square_{2} \square_{1} p \supset \square_{1} \square_{2} p$
chr	(Church-Rosser)	$\diamond_{1} \square_{2} p \supset \square_{2} \diamond_{1} p$.

The commutator of L_{1} and L_{2} is the bimodal logic $\left[L_{1}, L_{2}\right]={ }_{d f} L_{1} \otimes L_{2}+$ $\operatorname{com}_{\supset}+$ com $_{\subset}+$ chr. We always have $\mathrm{L}_{1} \otimes \mathrm{~L}_{2} \subseteq \mathrm{~L}_{1} \times \mathrm{L}_{2}$ and almost always $\mathrm{L}_{1} \otimes \mathrm{~L}_{2} \subsetneq \mathrm{~L}_{1} \times \mathrm{L}_{2} ;^{2}$ For many popular modal logics, $\mathrm{L}_{1} \times \mathrm{L}_{2}=\left[\mathrm{L}_{1}, \mathrm{~L}_{2}\right]$

[^1](see [4, Theorem 7.12]), in particular when $\mathrm{L}_{1}, \mathrm{~L}_{2} \in\{\mathrm{~S} 4, \mathrm{~S} 5\}$. (Sometimes, however, this fails: see [4, Theorem 8.2].)

1.2. Topological Semantics

A topological unispace [bispace] is an ordered pair [triple] $T=\langle X, \tau\rangle[T=$ $\left.\left\langle X, \tau_{1}, \tau_{2}\right\rangle\right]$ where X is a nonempty set and τ is a topology on $X\left[\tau_{1}\right.$ and τ_{2} are topologies on $X] .{ }^{3}$ If T is a unispace [bispace and $i \in\{1,2\}$], then a set $Y \subseteq X$ is open [i-open] iff $Y \in \tau\left[Y \in \tau_{i}\right]$ and closed $[i$-closed $]$ iff $X-Y \in \tau$ [$X-Y \in \tau_{i}$]. For unispaces [bispaces], the topology τ [each topology τ_{i}] is associated with an interior operator $\operatorname{Int}\left[\operatorname{lnt}_{i}\right]$ and a closure operator Cl $\left[\mathrm{Cl}_{i}\right]$. We sometimes use the expression space ambiguously for unispaces and bispaces. A topological unimodel [bimodel] is an ordered pair $M=\langle T, V\rangle$, where $T=\langle X, \tau\rangle\left[T=\left\langle X, \tau_{1}, \tau_{2}\right\rangle\right]$ is a unispace [bispace] and $V: P V \rightarrow$ $\mathcal{P}(W)$.The valuation function V extends to all formulas in the language \mathcal{L} [\mathcal{L}_{12}] as follows: $V(\neg A)=X-V(A), V(A \wedge B)=V(A) \cap V(B), V(A \vee B)=$ $V(A) \cup V(B)$, and $V(\square A)=\operatorname{lnt}(V(A))\left[V\left(\square_{i} A\right)=\operatorname{lnt}_{i}(V(A)), i=1,2\right]$. We say $x \Vdash A$ iff $x \in V(A)$. We say $M \Vdash A$ iff $V(A)=X$. We say $T \Vdash A$ iff $M \Vdash A$ for every model $M=\langle T, V\rangle$. If Γ is a set of formulas, then we say that $T \Vdash \Gamma$ iff $T \Vdash A$ for every $A \in \Gamma$. If \mathcal{T} is a class of spaces, then we say that $\mathcal{T} \Vdash \Gamma$ iff $T \Vdash \Gamma$ for every $T \in \mathcal{T} . \operatorname{Sp}(\Gamma)={ }_{\mathrm{df}}\{T: T \Vdash \Gamma\}$. If \mathcal{T} is a class of spaces, then $\log (\mathcal{T})={ }_{\mathrm{df}}\{A: \forall T \in \mathcal{T}, T \Vdash A\}:$ note that $\log (\mathcal{T})$ is a normal extension of $S 4$. If T is a space, $\log (T)={ }_{\text {df }} \log (\{T\})$. A $\operatorname{logic} \mathrm{L}$ is topologically complete iff $\mathrm{L}=\log (\mathcal{T})$ for some class \mathcal{T} of spaces; equivalently, iff $L=\log (\operatorname{Sp}(\mathrm{L}))$.

A unispace [bispace] is Alexandrov [i-Alexandrov] iff any intersection of open [i-open] sets is open [i-open]. A bispace is simply Alexandrov iff it is i-Alexandrov for each $i \in\{1,2\}$. Every reflexive, transitive uniframe $F=$ $\langle W, R\rangle$ [biframe $\left.F=\left\langle W, R_{1}, R_{2}\right\rangle\right]$ generates an Alexandrov unispace $T_{F}=$ $\langle W, \tau\rangle$ [bispace $\left.T_{F}=\left\langle W, \tau_{1}, \tau_{2}\right\rangle\right]$: let $\tau=\left\{O \subseteq W: w \in O\right.$ and $w R w^{\prime} \Rightarrow$ $\left.w^{\prime} \in O\right\}\left[\tau_{i}=\left\{O \subseteq W: w \in O\right.\right.$ and $\left.\left.w R_{i} w^{\prime} \Rightarrow w^{\prime} \in O\right\}\right]$. Note that a space is Alexandrov iff it is generated in this way. Note also that the definition of $\operatorname{Int}(S)\left[\operatorname{lnt}_{i}(S)\right]$ given for $S \subseteq W$ in Sect. 1.1 corresponds exactly to the topological interior associated with $\tau\left[\tau_{i}\right]$. This last point implies that any valuation function $V: P V \rightarrow \mathcal{P}(W)$ extends in the same way when defined in terms of the Kripke model $\langle F, V\rangle$ or the topological model $\left\langle T_{F}, V\right\rangle$. We will treat reflexive, transitive frames as notational variants of Alexandrov spaces, identifying F and T_{F}. Let Alex be the class of Alexandrov unispaces.

[^2]The following results are well-known, the first originally due to [10]: $\mathrm{S} 4=$ $\log (\{T: T$ is a unispace $\})=\log (\mathbb{Q})=\log (\mathbb{R})=\log ($ Alex $)$, where \mathbb{R} and \mathbb{Q} are the reals and the rationals with the standard topologies; $\mathrm{S} 5=\log (\{T: T$ is an almost discrete unispace $\})=\log (\{T: T$ is a trivial unispace $\}) .{ }^{4}$ Also, $\operatorname{Sp}(\mathrm{S} 4)=\{T: T$ is a unispace $\}$; and $\operatorname{Sp}(\mathrm{S} 5)=\{T: T$ is an almost discrete unispace $\}$. Note that every almost discrete unispace is Alexandrov: thus, $\mathrm{Sp}(\mathrm{S} 5) \subseteq$ Alex. Indeed, if $\mathrm{L} \supseteq \mathrm{S} 5$, then $\mathrm{Sp}(\mathrm{L}) \subseteq$ Alex. Given the identification of reflexive, transitive Kripke frames with Alexandrov spaces, any Kripke complete extension of S 4 is also topologically complete.

The definitions in this paragraph are from [15]. Given two unispaces $T_{1}=$ $\left\langle X_{1}, \tau_{1}\right\rangle$ and $T_{2}=\left\langle X_{2}, \tau_{2}\right\rangle$, the bispace $T_{1} \times T_{2}={ }_{\mathrm{df}}\left\langle X_{1} \times X_{2}, \sigma_{1}, \sigma_{2}\right\rangle$, where σ_{1} has as a basis the family $\left\{O \times\{x\}: O \in \tau_{1}\right.$ and $\left.x \in X_{2}\right\}$ and σ_{2} has as a basis the family $\left\{\{x\} \times O: x \in X_{1}\right.$ and $\left.O \in \tau_{2}\right\} .{ }^{5}$ If \mathcal{T}_{1} and \mathcal{T}_{2} are classes of unispaces, then $\mathcal{T}_{1} \times \mathcal{T}_{2}={ }_{\mathrm{df}}\left\{T_{1} \times T_{2}: T_{1} \in \mathcal{T}_{1}\right.$ and $\left.T_{2} \in \mathcal{T}_{2}\right\}$. If L_{1} and L_{2} are unimodal logics, then the topological product of L_{1} and L_{2} is the bimodal logic $\mathrm{L}_{1} \times{ }_{t} \mathrm{~L}_{2}={ }_{\mathrm{df}} \log \left(\mathrm{Sp}\left(\mathrm{L}_{1}\right) \times \operatorname{Sp}\left(\mathrm{L}_{2}\right)\right)$.

In general,

$$
\mathrm{L}_{1} \otimes \mathrm{~L}_{2} \subseteq \mathrm{~L}_{1} \times_{t} \mathrm{~L}_{2} \subseteq \mathrm{~L}_{1} \times \mathrm{L}_{2}
$$

The main result of [15] is that

$$
\mathrm{S} 4 \otimes \mathrm{~S} 4=\mathrm{S} 4 \times_{t} \mathrm{~S} 4 \subsetneq \mathrm{~S} 4 \times \mathrm{S} 4
$$

But going topological does not always have the same effect [6]:

$$
\begin{gathered}
\mathrm{S} 5 \otimes \mathrm{~S} 5 \subsetneq \mathrm{~S} 5 \times_{t} \mathrm{~S} 5=\mathrm{S} 5 \times \mathrm{S} 5, \text { and } \\
\mathrm{S} 4 \otimes \mathrm{~S} 5 \subsetneq \mathrm{~S} 4 \times_{t} \mathrm{~S} 5=\mathrm{S} 4 \otimes \mathrm{~S} 5+\mathrm{com}_{\supset}+c h r \subsetneq \mathrm{~S} 4 \times \mathrm{S} 5 .
\end{gathered}
$$

Given that $\mathrm{S} 4 \times_{t} \mathrm{~S} 5=\mathrm{S} 4 \otimes \mathrm{~S} 5+c o m_{\supset}+c h r, \mathrm{~S} 4 \times_{t} \mathrm{~S} 5$ is identical to the semiproduct (to use Shehtman's [14] expression) of S4 and S5: such logics are studied in [8].

Not much else is known about topological products. It is worth noting how different S4 and S5 are in this context: the topological product of S4

[^3]with itself matches the fusion of S 4 with itself; by contrast, the topological product of S 5 with itself matches the frame product of S 5 with itself. This suggests two general questions: When does $\mathrm{L}_{1} \times_{t} \mathrm{~L}_{2}=\mathrm{L}_{1} \otimes \mathrm{~L}_{2}$? And when does $\mathrm{L}_{1} \times{ }_{t} \mathrm{~L}_{2}=\mathrm{L}_{1} \times \mathrm{L}_{2}$? As indicated above, the main purpose of this paper is to prove the following - and to answer the second question - for Kripke complete extensions L_{1} and L_{2} of S 4 :

THEOREM 1.1. $\mathrm{L}_{1} \times{ }_{t} \mathrm{~L}_{2}=\mathrm{L}_{1} \times \mathrm{L}_{2}$ iff $\mathrm{L}_{1} \supsetneq \mathrm{~S} 5$ or $\mathrm{L}_{2} \supsetneq \mathrm{~S} 5$ or $\mathrm{L}_{1}=\mathrm{L}_{2}=\mathrm{S} 5$.
Before we turn to the proof of Theorem 1.1, we note a fact about interiors and closures in product spaces. In particular, consider spaces $T_{1}=\left\langle X_{1}, \tau_{1}\right\rangle$ and $T_{2}=\left\langle X_{2}, \tau_{2}\right\rangle$, and their product $T_{1} \times T_{2}={ }_{\mathrm{df}}\left\langle X_{1} \times X_{2}, \sigma_{1}, \sigma_{2}\right\rangle$. We will write $\operatorname{Int}_{T_{i}}\left[\mathrm{Cl}_{T_{i}}\right]$ for the interior [closure] operator in the space T_{i}, and Int_{i} $\left[\mathrm{Cl}_{i}\right]$ for the i th interior [closure] operator in the product space $T_{1} \times T_{2}$. For any $x \in X_{1}$, we define a right projection operator $\mathrm{rt}_{x}: \mathcal{P}\left(X_{1} \times X_{2}\right) \rightarrow \mathcal{P}\left(X_{2}\right)$ as follows: $\mathrm{rt}_{x}(S)=\left\{y \in X_{2}:\langle x, y\rangle \in S\right\}$, for $S \subseteq X_{1} \times X_{2}$. Similarly, for any $y \in X_{2}$, we define a left projection operator $\mathrm{Ift}_{y}: \mathcal{P}\left(X_{1} \times X_{2}\right) \rightarrow \mathcal{P}\left(X_{1}\right)$ as follows: $\operatorname{lft}_{y}(S)=\left\{x \in X_{1}:\langle x, y\rangle \in S\right\}$. Note that $S=\bigcup_{x \in X_{1}}\{x\} \times \operatorname{rt}_{x}(S)=$ $\bigcup_{y \in X_{2}} \operatorname{lft}_{y}(S) \times\{y\}$. As for interiors and closures:
Lemma 1.2. For any $S \subseteq X_{1} \times X_{2}$:

$$
\begin{aligned}
\operatorname{lnt}_{1}(S) & =\bigcup_{y \in X_{2}} \operatorname{lnt}_{T_{1}}\left(\operatorname{lft}_{y}(S)\right) \times\{y\} \\
\mathrm{Cl}_{1}(S) & =\bigcup_{y \in X_{2}} \mathrm{Cl}_{T_{1}}\left(\operatorname{lft}_{y}(S)\right) \times\{y\} \\
\operatorname{lnt}_{2}(S) & =\bigcup_{x \in X_{1}}\{x\} \times \operatorname{lnt}_{T_{2}}\left(\mathrm{rt}_{x}(S)\right) \\
\mathrm{Cl}_{2}(S) & =\bigcup_{x \in X_{1}}\{x\} \times \mathrm{Cl}_{T_{2}}\left(\mathrm{rt}_{x}(S)\right)
\end{aligned}
$$

2. Proving Theorem 1.1

Theorem 1.1 follows directly from Corollaries 2.7 and 2.10 , below. We begin by specifying some particular uniframes and unispaces. First our uniframes: $\oint={ }_{\mathrm{df}}\langle\{0,1\}, \leq\rangle$ and, for each $n \geq 1, \circ_{n}={ }_{\mathrm{df}}\langle\{1, \ldots, n\},\{1, \ldots, n\} \times$ $\{1, \ldots, n\}\rangle$. Thus $?$ is a (or 'the', up to isomorphism) two-element reflexive chain, and \circ_{n} is a (or 'the') n-element cluster. Using standard methods, it is easy to prove that $\log \binom{\mathrm{l}}{\mathrm{o}}=\mathrm{S} 4.2+(p \vee \square(p \supset \square p))=\mathrm{S} 4+(\diamond \square p \supset$ $\square \diamond p)+(p \vee \square(p \supset \square p))$; that $\log \left(\circ_{1}\right)=$ Triv; and that

$$
\log \left(\circ_{n}\right)=\mathrm{S} 5+\left(\bigwedge_{i=1}^{n} \diamond p_{i} \supset\left(\square \bigvee_{i=1}^{n} p_{i} \vee \bigvee_{\substack{i, j=1 \\ i \neq j}}^{n} \diamond\left(p_{i} \wedge p_{j}\right)\right)\right.
$$

Next, our unispaces: The trivial space $\mathbb{N}^{t}={ }_{\mathrm{df}}\left\langle\mathbb{N}, \tau^{t}\right\rangle$, where $\tau^{t}={ }_{\mathrm{df}}$ $\{\emptyset, \mathbb{N}\}$; and the El'kin space (in the terminology of $[1]$), $\mathbb{N}^{e}={ }_{\mathrm{df}}\left\langle\mathbb{N}, \tau^{e}\right\rangle$, where $\tau^{e}=U \cup\{\emptyset\}$ for some nonprincipal ultrafilter U on \mathbb{N}. It follows from Theorem 4.7 in [1] that $\mathbb{N}^{e} \in \operatorname{Sp}\left(\log \binom{\circ}{\right.$\hline}$)$. Also, clearly, $\mathbb{N}^{t} \in \operatorname{Sp}(\mathrm{~S} 5)$. Given the identification in Sect. 1.2 of reflexive, transitive frames with Alexandrov spaces, $?$ is identified with the space $\{0,1\}$ with three open sets, $\emptyset,\{0,1\}$, and $\{1\}$, i.e., $!$ is a ('the', up to homeomorphism) Sierpinski space; and \circ_{n} is identified with the space $\{1, \ldots, n\}$ with the trivial topology with only two open sets, \emptyset and $\{1, \ldots, n\}$.

Now we consider $\mathrm{L} \times_{t} \log \left(\circ_{n}\right)$, where $n \geq 1$. If $T=\langle X, \tau\rangle$ is a unispace, an open set $O \subseteq X$ is trivial iff O has no open subsets other than O and \emptyset.

Lemma 2.1. If $T \in \operatorname{Sp}\left(\log \left(\circ_{n}\right)\right)$, then T is the disjoint union of trivial open sets, each of cardinality $\leq n$.

Corollary 2.2. For any class \mathcal{T} of unispaces, $\log \left(\mathcal{T} \times \operatorname{Sp}\left(\log \left(\circ_{n}\right)\right)\right)=$ $\log \left(\mathcal{T} \times\left\{o_{n}\right\}\right)$.

Proof. Since $o_{n} \in \operatorname{Sp}\left(\log \left(o_{n}\right)\right), \log \left(\mathcal{T} \times \operatorname{Sp}\left(\log \left(o_{n}\right)\right)\right) \subseteq \log \left(\mathcal{T} \times\left\{o_{n}\right\}\right)$. So we need only show that $\log \left(\mathcal{T} \times\left\{\circ_{n}\right\}\right) \subseteq \log \left(\mathcal{T} \times \operatorname{Sp}\left(\log \left(\circ_{n}\right)\right)\right)$. So suppose that $A \notin \log \left(\mathcal{T} \times \operatorname{Sp}\left(\log \left(\circ_{n}\right)\right)\right)$. Then there is a $T_{1}=\left\langle X_{1}, \tau_{1}\right\rangle \in \mathcal{T}$ and a $\left.T_{2}=\left\langle X_{2}, \tau_{2}\right\rangle \in \operatorname{Sp}\left(\log \left(\circ_{n}\right)\right)\right)$, such that $T_{1} \times T_{2} \nvdash A$. Write $T_{1} \times T_{2}=$ $\left\langle X_{1} \times X_{2}, \sigma_{1}, \sigma_{2}\right\rangle$. So, for some binary topological model $M=\left\langle T_{1} \times T_{2}, V\right\rangle$ and for some $\left\langle x_{1}, x_{2}\right\rangle \in X_{1} \times X_{2}$, we have $\left\langle x_{1}, x_{2}\right\rangle \notin V(A)$. By Lemma 2.1, there is a trivial open set $O \subseteq X_{2}$, with m elements, such that $m \leq n$ and $x_{2} \in O$.

Let $T=\langle O, \rho\rangle$, where $\rho=\left\{O \cap S: S \in \tau_{2}\right\}$. So T is a subspace of T_{2}. Write $T_{1} \times T=\left\langle X_{1} \times O, \rho_{1}^{\prime}, \rho_{2}^{\prime}\right\rangle$. Define $V^{\prime}: P V \rightarrow \mathcal{P}\left(X_{1} \times O\right)$ as follows: $V^{\prime}(p)=V(p) \cap\left(X_{1} \times O\right)$. By a standard inductive argument, for every formula B of $\mathcal{L}_{12}, V^{\prime}(B)=V(B) \cap\left(X_{1} \times O\right)$. So $\left\langle x_{1}, x_{2}\right\rangle \notin V^{\prime}(A)$. So $T_{1} \times T \Vdash A$. Note that T is homeomorphic ${ }^{6}$ to \circ_{m}. So $T_{1} \times \circ_{m} \Vdash A$. If $m=n$

[^4]then we're done. Otherwise, we extend \circ_{m} to \circ_{n} by treating $m+1, \ldots, n$ as copies of 1 , to get a valuation on $T_{1} \times \circ_{n}$ that falsifies A. So $T_{1} \times \circ_{n} \Downarrow A$. So $A \notin \log \left(\mathcal{T} \times\left\{o_{n}\right\}\right)$, as desired.

Given any $n \geq 1$, associate with every propositional variable, $p \in P V, n$ propositional variables p_{1}, \ldots, p_{n}, in such a way that $P V=\left\{p_{i}: p \in P V\right\}$ and if $p, q \in P V$ with $p \neq q$ or $i \neq j$ then $p_{i} \neq q_{j}$. Next, given any $n \geq 1$, for each $i \in\{1, \ldots, n\}$ we define a translation $\operatorname{Tr}_{i}^{n}$ from formulas of \mathcal{L}_{12} to formulas of \mathcal{L} :

$$
\begin{aligned}
\operatorname{Tr}_{i}^{n}(p) & =p_{i} \\
\operatorname{Tr}_{i}^{n}(A \wedge B) & =\operatorname{Tr}_{i}^{n}(A) \wedge \operatorname{Tr}_{i}^{n}(B) \\
\operatorname{Tr}_{i}^{n}(A \vee B) & =\operatorname{Tr}_{i}^{n}(A) \vee \operatorname{Tr}_{i}^{n}(B) \\
\operatorname{Tr}_{i}^{n}(\neg A) & =\neg \operatorname{Tr}_{i}^{n}(A) \\
\operatorname{Tr}_{i}^{n}\left(\square_{1} A\right) & =\square \operatorname{Tr}_{i}^{n}(A) \\
\operatorname{Tr}_{i}^{n}\left(\square_{2} A\right) & =\bigwedge_{j=1}^{n} \operatorname{Tr}_{j}^{n}(A)
\end{aligned}
$$

Lemma 2.3. Fix $n \geq 1$. Suppose that $T=\langle X, \tau\rangle$ is a unispace, $M=\langle T, V\rangle$ is a topological unimodel, and $M^{\prime}=\left\langle T \times \circ_{n}, V^{\prime}\right\rangle$ is a topological bimodel with $\langle x, i\rangle \in V^{\prime}(p)$ iff $x \in V\left(p_{i}\right)$. Then, for every formula A of \mathcal{L}_{12}, every $x \in X$ and every $i \in\{1, \ldots, n\}$, we have $\langle x, i\rangle \in V^{\prime}(A)$ iff $x \in V\left(\operatorname{Tr}_{i}^{n}(A)\right)$.

Proof. By a straightforward induction on construction of the formula A. We consider two cases in the inductive step: $A=\square_{1} B$ and $A=\square_{2} B$. Recall that $T \times \circ_{n}=\left\langle X \times\{1, \ldots, n\}, \sigma_{1}, \sigma_{2}\right\rangle$, where $\{O \times\{i\}: O \in \tau$ and $1 \leq i \leq n\}$ is a basis for σ_{1}, and where $\{\{x\} \times\{1, \ldots n\}: x \in X\}$ is a basis for σ_{2}.
Case 1: $A=\square_{1} B$. Note: $\langle x, i\rangle \in V^{\prime}(A)$
iff, for some $O \in \tau,\langle x, i\rangle \in O \times\{i\} \subseteq V^{\prime}(B)$,
iff, for some $O \in \tau, x \in O \subseteq V\left(\operatorname{Tr}_{i}^{n}(B)\right)$, by the inductive hypothesis,
iff $x \in V\left(\square \operatorname{Tr}_{i}^{n}(B)\right)$,
iff $x \in V\left(\operatorname{Tr}_{i}^{n}\left(\square_{1} B\right)\right)=V\left(\operatorname{Tr}_{i}^{n}(A)\right)$.
Case 2: $A=\square_{2} B$. Note: $\langle x, i\rangle \in V^{\prime}(A)$
iff, for every $j \in\{1, \ldots, n\},\langle x, j\rangle \in V^{\prime}(B)$,

Footnote 6 continued

1 - and 2-open. A homeomorphism from T to S is any continuous open bijection. And we say that T and S are homeomorphic iff there is a homeomorphism from T onto S. It is clear that if T and S are homeomorphic unispaces and U is some other unispace, then $U \times T$ is homeomorphic to $U \times S$. It is also clear that if T and S are homeomorphic unispaces [bispaces] and A is a formula of $\mathcal{L}\left[\mathcal{L}_{12}\right]$, then $T \Vdash A$ iff $S \Vdash A$.
iff, for every $j \in\{1, \ldots, n\}, x \in V\left(\operatorname{Tr}_{j}^{n}(B)\right)$, by the inductive hypothesis, iff $x \in V\left(\bigwedge_{j=1}^{n} \operatorname{Tr}_{j}^{n}(B)\right)$
iff $x \in V\left(\operatorname{Tr}_{i}^{n}\left(\square_{2} B\right)\right)=V\left(\operatorname{Tr}_{i}^{n}(A)\right)$.
Corollary 2.4. Fix $n \geq 1$. Suppose that $T=\langle X, \tau\rangle$ is a unispace. Then, for every formula A of \mathcal{L}_{12} and every $i \in\{1, \ldots, n\}, T \times \circ_{n} \Vdash A$ iff $T \Vdash$ $\operatorname{Tr}_{i}^{n}(A)$.

Corollary 2.5. Fix $n \geq 1$. Suppose that \mathcal{T} and \mathcal{T}^{\prime} are nonempty classes of unispaces such that $\log (\mathcal{T})=\log \left(\mathcal{T}^{\prime}\right)$. Then $\log \left(\mathcal{T} \times\left\{o_{n}\right\}\right)=\log \left(\mathcal{T}^{\prime} \times\right.$ $\left\{o_{n}\right\}$).

Proof. Suppose that $A \notin \log \left(\mathcal{T} \times\left\{\circ_{n}\right\}\right)$. Then $A \notin \log \left(T \times \circ_{n}\right)$, for
 So $\operatorname{Tr}_{i}^{n}(A) \notin \log \left(\mathcal{T}^{\prime}\right)$. So $\operatorname{Tr}_{i}^{n}(A) \notin \log \left(T^{\prime}\right)$, for some $T^{\prime} \in \mathcal{T}^{\prime}$. So $A \notin$ $\log \left(T^{\prime} \times \circ_{n}\right)$. So $A \notin \log \left(\mathcal{T}^{\prime} \times\left\{\circ_{n}\right\}\right)$.

Thus $\log \left(\mathcal{T}^{\prime} \times\left\{\circ_{n}\right\}\right) \subseteq \log \left(\mathcal{T} \times\left\{\circ_{n}\right\}\right)$. Similarly, $\log \left(\mathcal{T} \times\left\{\circ_{n}\right\}\right) \subseteq$ $\log \left(\mathcal{T}^{\prime} \times\left\{\circ_{n}\right\}\right)$.

Corollary 2.6. If L is a Kripke complete extension of S4, then $\mathrm{L} \times_{t}$ $\log \left(\circ_{n}\right)=\mathrm{L} \times \log \left(\mathrm{o}_{n}\right)$.

Proof. Since L is Kripke complete, $\mathrm{L}=\log (\operatorname{Fr}(\mathrm{L}))$. Since $\operatorname{Fr}(\mathrm{L})$ is a class of reflexive transitive uniframes, we are treating it also as a class of Alexandrov unispaces. So $\operatorname{Fr}(\mathrm{L}) \subseteq \operatorname{Sp}(\mathrm{L})$. So $\mathrm{L} \subseteq \log (\operatorname{Sp}(\mathrm{L})) \subseteq \log (\operatorname{Fr}(\mathrm{L}))=\mathrm{L}$. So $\log (\operatorname{Fr}(\mathrm{L}))=\log (\operatorname{Sp}(\mathrm{L}))$. So $\log \left(\operatorname{Fr}(\mathrm{L}) \times\left\{\mathrm{o}_{n}\right\}\right)=\log \left(\operatorname{Sp}(\mathrm{L}) \times\left\{\circ_{n}\right\}\right)$, by Corollary 2.5. $\operatorname{So} \log \left(\operatorname{Fr}(\mathrm{L}) \times \operatorname{Sp}\left(\log \left(\circ_{n}\right)\right)\right)=\log \left(\operatorname{Sp}(\mathrm{L}) \times \operatorname{Sp}\left(\log \left(\circ_{n}\right)\right)\right)$, by Corollary 2.2.

Also notice that every unispace T with $T \Vdash \log \left(\circ_{n}\right)$ is Alexandrov. Thus, every such T can be identified with a uniframe. $\operatorname{Thus} \operatorname{Fr}\left(\log \left(\circ_{n}\right)\right)=$ $\operatorname{Sp}\left(\log \left(\circ_{n}\right)\right)$. So $\log \left(\operatorname{Fr}(\mathrm{L}) \times \operatorname{Fr}\left(\log \left(\circ_{n}\right)\right)\right)=\log \left(\operatorname{Fr}(\mathrm{L}) \times \operatorname{Sp}\left(\log \left(\circ_{n}\right)\right)\right)=$ $\log \left(\operatorname{Sp}(\mathrm{L}) \times \operatorname{Sp}\left(\log \left(\circ_{n}\right)\right)\right)$. So $\mathrm{L} \times \log \left(\circ_{n}\right)=\mathrm{L} \times \log \left(\circ_{n}\right)$.

So we get the right-to-left direction of the biconditional in Theorem 1.1:
Corollary 2.7. Suppose that L_{1} and L_{2} are Kripke complete extensions of S4. Then if either $\mathrm{L}_{1} \supsetneq$ S5 or $\mathrm{L}_{2} \supsetneq$ S5 or $\mathrm{L}_{1}=\mathrm{L}_{2}=$ S5, then $\mathrm{L}_{1} \times_{t} \mathrm{~L}_{2}=$ $\mathrm{L}_{1} \times \mathrm{L}_{2}$.

Proof. Suppose $\mathrm{L}_{2} \supsetneq$ S5, i.e., L_{2} is a strict extension of S 5 . Then either L_{2} is inconsistent or $\mathrm{L}_{2}=\log \left(\circ_{n}\right)$ for some n, a classic result of [12]. So $\mathrm{L}_{1} \times{ }_{t} \mathrm{~L}_{2}=\mathrm{L}_{1} \times \mathrm{L}_{2}$, either trivially if L_{2} is inconsistent or by Corollary 2.6
if L_{2} is consistent. Similarly, if $\mathrm{L}_{1} \supsetneq \mathrm{~S} 5$, then $\mathrm{L}_{1} \times_{t} \mathrm{~L}_{2}=\mathrm{L}_{1} \times \mathrm{L}_{2}$. Finally, consider $\mathrm{S} 5 \times_{t} \mathrm{~S} 5$. Note that every member of $\mathrm{Sp}(\mathrm{S} 5)$ is Alexandrov, and so is identified with some Kripke frame. So $S 5 \times{ }_{t} \mathrm{~S} 5=\log (\mathrm{Sp}(\mathrm{S} 5) \times \mathrm{Sp}(\mathrm{S} 5))=$ $\log (\operatorname{Fr}(\mathrm{S} 5) \times \operatorname{Fr}(\mathrm{S} 5))=\mathrm{S} 5 \times \mathrm{S} 5$.

Remark 2.8. Before we address the left-to-right direction of the biconditional in Theorem 1.1, some notation and a few remarks. We will be interested in the two unispaces, \mathbb{N}^{e} and \mathbb{N}^{t}, defined above; and the two product spaces, $\mathbb{N}^{e} \times \mathbb{N}^{t}$ and $\mathbb{N}^{e} \times \mathbb{N}^{e}$. We will write $\operatorname{lnt}_{\mathbb{N}^{e}}\left[\operatorname{lnt}_{\mathbb{N}^{t}}\right]$ for the interior operator in the space $\mathbb{N}^{e}\left[\mathbb{N}^{t}\right]$ and similarly for $\mathrm{Cl}_{\mathbb{N}^{e}}\left[\mathrm{Cl}_{\mathbb{N}^{t}}\right]$. We will write lnt_{i} $\left[\mathrm{Cl}_{i}\right]$ for the i th interior [closure] operator in the product space $\mathbb{N}^{e} \times \mathbb{N}^{t}$ and $\mathrm{Int}_{i}^{\prime}\left[\mathrm{Cl}_{i}^{\prime}\right]$ for the i th interior [closure] operator in the product space $\mathbb{N}^{e} \times \mathbb{N}^{e}$. Note that $\operatorname{Int}_{1}^{\prime}=\operatorname{Int}_{1}$ but that $\operatorname{Int}_{2}^{\prime} \neq \operatorname{Int}{ }_{2}$. We will also use the notation introduced at the end of Sect. 1.2: for any $S \subseteq \mathbb{N} \times \mathbb{N}$, and any $n \in \mathbb{N}$, $\mathrm{rt}_{n}(S)={ }_{\mathrm{df}}\{m \in \mathbb{N}:\langle n, m\rangle \in S\}$ and $\operatorname{lft}_{n}(S)={ }_{\mathrm{df}}\{m \in \mathbb{N}:\langle m, n\rangle \in S\}$. For each $n \in \mathbb{N}$, define the nth row and the nth column in $\mathbb{N} \times \mathbb{N}$ as follows: $\mathrm{R}_{n}={ }_{\mathrm{df}} \mathbb{N} \times\{n\}$ and $\mathrm{C}_{n}==_{\mathrm{df}}\{n\} \times \mathbb{N}$. Note that, for any $S \subseteq \mathbb{N} \times \mathbb{N}$, $S \cap \mathrm{R}_{n}=\operatorname{Ift}_{n}(S) \times\{n\}$ and $S \cap \mathrm{C}_{n}=\{n\} \times \mathrm{rt}_{n}(S)$.

Lemma 2.9. (1) $\operatorname{com}_{\subset} \notin \log (\xi) \times_{t} \operatorname{S5}$.
(2) com $_{\supset} \notin S 5 \times_{t} \log (\%)$.
(3) $\operatorname{com}_{\subset} \notin \log (\mathrm{f}) \times_{t} \log (\%)$.
(4) $\operatorname{com}_{\supset} \notin \log (\mathrm{f}) \times_{t} \log (\%)$.
(5) $\operatorname{ch} r \notin \log \left({ }_{\mathrm{o}}\right) \times{ }_{t} \log (\mathrm{q})$.

Proof. We only prove (1), (3) and (5), since the proofs of (2) and (4) are symmetric to the proofs of (1) and (3) respectively. Recall that $\mathbb{N}^{e} \in$ $\operatorname{Sp}(\log (\S))$ and $\mathbb{N}^{t} \in \operatorname{Sp}(S 5)$. So to prove (1) it suffices to show that $\mathbb{N}^{e} \times$
 prove (5) it suffices to show that $\mathbb{N}^{e} \times \mathbb{N}^{e} \| y c h r$.
Proof of (1) and (3). It suffices to specify a set $P \subseteq \mathbb{N} \times \mathbb{N}$ such that both $\operatorname{lnt}_{2} \operatorname{lnt}_{1}(P)-\operatorname{lnt}_{1} \operatorname{lnt}_{2}(P) \neq \emptyset$ and $\operatorname{lnt}_{2}^{\prime} \operatorname{lnt}_{1}^{\prime}(P)-\operatorname{lnt}_{1}^{\prime} \operatorname{lnt}_{2}^{\prime}(P) \neq \emptyset$. Let $P={ }_{\mathrm{df}}\{\langle m, n\rangle: m=0$ or $n=0$ or $0<n<m\}$. Figure 1 represents P : the bullets represent the ordered pairs in P and the open circles represent the ordered pairs not in P. Figure 1 also indicates the rows and columns, R_{n} and C_{n}.
Calculating both $\operatorname{lnt}_{1}(P)$ and $\operatorname{lnt}_{1}^{\prime}(P)$. Note that $\mathrm{Ift}_{n}(P) \times\{n\}=P \cap \mathrm{R}_{n}$ is cofinite in R_{n} for every $n \in \mathbb{N}$. So $\mathrm{Ift}_{n}(P)$ is cofinite in \mathbb{N} for every $n \in \mathbb{N}$.

Figure 1. The set $P \subseteq \mathbb{N} \times \mathbb{N}$

So $\mathrm{Ift}_{n}(P)$ is open in \mathbb{N}^{e}, since every cofinite subset of \mathbb{N} is open in \mathbb{N}^{e}. So $\operatorname{lnt}_{\mathrm{N}^{e}}\left(\mathrm{Ift}_{n}(P)\right)=\operatorname{lft}_{n}(P)$. So

$$
\begin{aligned}
\operatorname{lnt}_{1}(P) & =\bigcup_{n \in \mathbb{N}} \operatorname{lnt}_{\mathbb{N}^{e}}\left(\operatorname{lft}_{n}(P)\right) \times\{n\}, \text { by Lemma } 1.2 \\
& =\bigcup_{n \in \mathbb{N}} \operatorname{lft}_{n}(P) \times\{n\}=P
\end{aligned}
$$

As noted in Remark 2.8, the operators Int_{1} and $\operatorname{Int}_{1}^{\prime}$ are identical. Thus we also have $\operatorname{lnt}_{1}^{\prime}(P)=P$.
Calculating both $\operatorname{Int}_{2}(P)$ and $\operatorname{Int}_{2}^{\prime}(P)$. Note that $\mathrm{rt}_{0}(P)=\mathbb{N}$ and $\mathrm{rt}_{n}(P)$ is finite for every $n \geq 1$. So $\operatorname{Int}_{\mathbb{N}^{t}}\left(\mathrm{rt}_{0}(P)\right)=\operatorname{Int}_{\mathbb{N}^{e}}\left(\mathrm{rt}_{0}(P)\right)=\mathbb{N}$; also $\operatorname{Int}_{\mathbb{N}^{t} t}\left(\mathrm{rt}_{n}(P)\right)=\operatorname{Int}_{\mathbb{N}^{e}}\left(\mathrm{rt}_{n}(P)\right)=\emptyset$ for every $n \geq 1$, since \emptyset is the only open finite set in \mathbb{N}^{t} and the only open finite set in \mathbb{N}^{e}. So we get two very similar calculations:

$$
\begin{aligned}
& \operatorname{Int}_{2}(P)=\bigcup_{n \in \mathbb{N}}\{n\} \times \operatorname{Int}_{\mathbb{N}^{t}}\left(\mathrm{rt}_{n}(P)\right)(\text { by Lemma 1.2 })=\{0\} \times \mathbb{N}=\mathrm{C}_{0} . \\
& \operatorname{lnt}_{2}^{\prime}(P)=\bigcup_{n \in \mathbb{N}}\{n\} \times \operatorname{Int}_{\mathbb{N}^{e}}\left(\mathrm{rt}_{n}(P)\right)(\text { by Lemma 1.2 })=\{0\} \times \mathbb{N}=\mathrm{C}_{0} .
\end{aligned}
$$

Thus $\operatorname{Int}_{2} \operatorname{Int}_{1}(P)=\operatorname{lnt}_{2}(P)=\mathrm{C}_{0}=\operatorname{lnt}_{2}^{\prime}(P)=\operatorname{lnt}_{2}^{\prime} \operatorname{Int}(P)$: see Figure 2.
Wrapping up. Note that $\operatorname{lnt}_{\mathbb{N}^{e}}(S)=\emptyset$ for any finite $S \subseteq \mathbb{N}$. So $\operatorname{lnt}_{1}\left(\mathrm{C}_{0}\right)=$ $\operatorname{Int}_{1}^{\prime}\left(\mathrm{C}_{0}\right)=\cup_{n \in \mathbb{N}}\left(\operatorname{Int}_{N^{e}}(\{0\}) \times\{n\}(\right.$ by Lemma 1.2 $)=\emptyset$. So $\operatorname{Int}_{1} \operatorname{Int}_{2}(P)=$

Figure 2. $\operatorname{Int}_{2}(P)=\operatorname{Int}_{2} \operatorname{Int}_{1}(P)=\mathrm{C}_{0}=\operatorname{Int}_{2}^{\prime}(P)=\operatorname{Int}_{2}^{\prime} \operatorname{Int}_{1}^{\prime}(P)$

Figure 3. The set $Q \subseteq \mathbb{N} \times \mathbb{N}$
$\operatorname{Int}_{1}^{\prime} \operatorname{Int}_{2}^{\prime}(P)=\emptyset$. So $\operatorname{lnt}_{2} \operatorname{Int}_{1}(P)-\operatorname{Int}_{1} \operatorname{lnt}_{2}(P)=\mathrm{C}_{0} \neq \emptyset$ and $\operatorname{Int}_{2}^{\prime} \operatorname{Int}_{1}^{\prime}(P)-$ $\operatorname{lnt}_{1}^{\prime} \operatorname{lnt}_{2}^{\prime}(P)=\mathrm{C}_{0} \neq \emptyset$, as desired.
Proof of (5). It suffices to specify a set $Q \subseteq \mathbb{N} \times \mathbb{N}$ such that $\mathrm{Cl}_{1}^{\prime} \operatorname{lnt}_{2}^{\prime}(Q)-$ $\operatorname{Int}_{2}^{\prime} \mathrm{Cl}_{1}^{\prime}(Q) \neq \emptyset$. Let $Q={ }_{\mathrm{df}}\{\langle m, n\rangle: m \neq 0$ and either $n=0$ or $m \leq n\}$, as represented in Figure 3.
Calculating $\operatorname{Int}_{2}^{\prime}(Q)$. Note that $\{n\} \times \mathrm{rt}_{n}(Q)=Q \cap \mathrm{C}_{n}$ is either empty or cofinite in C_{n} for every $n \in \mathbb{N}$. So $\mathrm{rt}_{n}(Q)$ is either empty or cofinite in \mathbb{N} for every $n \in \mathbb{N}$. So $\mathrm{rt}_{n}(Q)$ is open in \mathbb{N}^{e}, since every cofinite subset of \mathbb{N} is

Figure 4. $\mathrm{Cl}_{1}^{\prime} \operatorname{lnt}_{2}^{\prime}(Q)=\mathrm{Cl}_{1}^{\prime}(Q)=\{\langle 0,0\rangle\} \cup Q$
open in \mathbb{N}^{e}. So $\operatorname{lnt}_{\mathbb{N}^{e}}\left(\mathrm{rt}_{n}(Q)\right)=\mathrm{rt}_{n}(Q)$. So

$$
\operatorname{lnt}_{2}^{\prime}(Q)=\bigcup_{n \in \mathbb{N}}\{n\} \times \operatorname{lnt}_{\mathbb{N}^{e}}\left(\operatorname{rt}_{n}(Q)\right)(\text { by Lemma 1.2 })=\bigcup_{n \in \mathbb{N}}\{n\} \times \operatorname{rt}_{n}(Q)=Q
$$

Calculating $\mathrm{Cl}_{1}^{\prime} \operatorname{Int}_{2}^{\prime}(Q)=\mathrm{Cl}_{1}^{\prime}(Q)$. Note that $\mathrm{Ift}_{n}(Q) \times\{n\}=Q \cap \mathrm{R}_{n}$ is infinite for $n=0$ and finite for $n \geq 1$. Thus $\operatorname{lft}_{n}(Q)$ is infinite for $n=0$ and finite for $n \geq 1$. Now, every finite subset of \mathbb{N} is closed in \mathbb{N}^{e}, while the closure of any infinite set is simply \mathbb{N}. So $\mathrm{Cl}_{\mathbb{N}^{e}}(\operatorname{lft}(Q))=\mathbb{N}$ and $\mathrm{Cl}_{\mathbb{N}^{e}}\left(\operatorname{lft}_{n}(Q)\right)=\operatorname{lft}_{n}(Q)$, for $n \geq 1$. So,

$$
\begin{aligned}
\mathrm{Cl}_{1}^{\prime}(Q) & =\bigcup_{n \in \mathbb{N}} \mathrm{Cl}_{\mathbb{N}^{e}}\left(\mathrm{Ift}_{n}(Q)\right) \times\{n\}, \text { by Lemma } 1.2 \\
& =\mathbb{N} \times\{0\} \cup \bigcup_{n \geq 1} \mid \operatorname{fft}_{n}(Q) \times\{n\} \\
& =\{\langle 0,0\rangle\} \cup\left(Q \cap \mathrm{R}_{0}\right) \cup \bigcup_{n \geq 1} \mid \mathrm{ft}_{n}(Q) \times\{n\} \\
& =\{\langle 0,0\rangle\} \cup\left(\mid \mathrm{ft}_{0}(Q) \times\{0\}\right) \cup \bigcup_{n \geq 1} \operatorname{Ift}_{n}(Q) \times\{n\} \\
& =\{\langle 0,0\rangle\} \cup \bigcup_{n \in \mathbb{N}} \operatorname{Ift}_{n}(Q) \times\{n\} \\
& =\{\langle 0,0\rangle\} \cup Q
\end{aligned}
$$

$\mathrm{Cl}_{1}^{\prime} \operatorname{lnt}_{2}^{\prime}(Q)=\mathrm{Cl}_{1}^{\prime}(Q)$ is represented by Figure 4.

Calculating $\operatorname{lnt}_{2}^{\prime} \mathrm{Cl}_{1}^{\prime}(Q)$. Let $Q^{\prime}=\mathrm{Cl}_{1}^{\prime}(Q)=\{\langle 0,0\rangle\} \cup Q$. First note that $\mathrm{rt}_{n}\left(Q^{\prime}\right)=\mathrm{rt}_{n}(Q)$ for $n \geq 1$. Note that $\{n\} \times \mathrm{rt}_{n}\left(Q^{\prime}\right)=Q^{\prime} \cap \mathrm{C}_{n}$ is finite if $n=0$ and is cofinite in C_{n} if $n \geq 1$. Thus $\mathrm{rt}_{n}\left(Q^{\prime}\right)$ is finite if $n=0$ and is cofinite in \mathbb{N} if $n \geq 1$. The only finite subset of \mathbb{N} which is open in \mathbb{N}^{e} is \emptyset and every cofinite subset of \mathbb{N} is open in \mathbb{N}^{e}. So $\operatorname{lnt}_{\mathbb{N}^{e}}\left(\operatorname{rt}_{n}\left(Q^{\prime}\right)\right)=\emptyset$ and $\operatorname{Int}_{\mathbb{N}^{e}}\left(\operatorname{rt}_{n}\left(Q^{\prime}\right)\right)=\operatorname{rt}_{n}\left(Q^{\prime}\right)=\mathrm{rt}_{n}(Q)$ if $n \geq 1$. So,

$$
\begin{aligned}
\operatorname{Int}_{2}^{\prime} \mathrm{Cl}_{1}^{\prime}(Q) & =\operatorname{Int}_{2}^{\prime}\left(Q^{\prime}\right) \\
& =\bigcup_{n \in \mathbb{N}}\{n\} \times \operatorname{Int}_{\mathbb{N}^{e}}\left(\operatorname{rt}_{n}\left(Q^{\prime}\right)\right), \text { by Lemma } 1.2 \\
& =\bigcup_{n \geq 1}\{n\} \times \mathrm{rt}_{n}(Q) \\
& =\bigcup_{n \in \mathbb{N}}\{n\} \times \operatorname{rt}_{n}(Q), \text { since } \mathrm{rt}_{0}(Q)=\emptyset \\
& =Q
\end{aligned}
$$

Wrapping up. $\mathrm{Cl}_{1}^{\prime} \operatorname{lnt}_{2}^{\prime}(Q)-\operatorname{lnt}_{2}^{\prime} \mathrm{Cl}_{1}^{\prime}(Q)=(\{\langle 0,0\rangle\} \cup Q)-Q=\{\langle 0,0\rangle\} \neq \emptyset$.

The following corollary is equivalent to the left-to-right direction of the biconditional in Theorem 1.1.

Corollary 2.10. Suppose that L_{1} and L_{2} are Kripke complete extensions of S4. Then if
(1) $\mathrm{L}_{1}, \mathrm{~L}_{2} \nsupseteq \mathrm{~S} 5$ or
(2) $\mathrm{L}_{1} \nsupseteq \mathrm{~S} 5$ and $\mathrm{L}_{2}=\mathrm{S} 5$ or
(3) $\mathrm{L}_{2} \nsupseteq \mathrm{~S} 5$ and $\mathrm{L}_{1}=\mathrm{S} 5$.
then $\mathrm{L}_{1} \times_{t} \mathrm{~L}_{2} \neq \mathrm{L}_{1} \times \mathrm{L}_{2}$.
Proof. First note that by the structure of extensions of S4, if L is any extension of S4, then either $\mathrm{L} \supseteq \mathrm{S} 5$ or $\mathrm{L} \subseteq \log \left({ }_{\mathrm{O}}^{\mathrm{o}}\right)$. This was originally proved in [2]. See also [3]. We proceed by considering only two cases, (1) $\mathrm{L}_{1}, \mathrm{~L}_{2} \nsupseteq \mathrm{~S} 5$ and (2) $\mathrm{L}_{1} \nsupseteq \mathrm{~S} 5$ and $\mathrm{L}_{2}=\mathrm{S} 5$, since the third case (3) $\mathrm{L}_{2} \nsupseteq \mathrm{~S} 5$ and $\mathrm{L}_{1}=\mathrm{S} 5$, is symmetric to (2).

 $\left[\mathrm{L}_{1}, \mathrm{~L}_{2}\right] \subseteq \mathrm{L}_{1} \times \mathrm{L}_{2}$. So $\mathrm{L}_{1} \times_{t} \mathrm{~L}_{2} \neq \mathrm{L}_{1} \times \mathrm{L}_{2}$.

Case 2: $\mathrm{L}_{1} \nsupseteq$ S5 and $\mathrm{L}_{2}=$ S5. Then $\mathrm{L}_{1} \subseteq \log \left({ }_{\mathrm{o}}^{\mathrm{o}}\right)$. So $\mathrm{L}_{1} \times_{t} \mathrm{~S} 5 \subseteq$ $\log (\%) \times_{t} \mathrm{~S} 5$. So, by Lemma 2.9, com $\mathrm{c}_{\subset} \notin \mathrm{L}_{1} \times_{t} \mathrm{~L}_{2}$. So, as in Case 1, $\mathrm{L}_{1} \times_{t} \mathrm{~L}_{2}$ $\neq \mathrm{L}_{1} \times \mathrm{L}_{2}$.

3. Concluding Remarks

We have given necessary and sufficient conditions for the topological product of Kripke complete extensions of S 4 to match their frame product. In the most basic case, the topological product matches not the frame product but the fusion: $\mathrm{S} 4 \times{ }_{t} \mathrm{~S} 4=\mathrm{S} 4 \otimes \mathrm{~S} 4 \subsetneq \mathrm{~S} 4 \times \mathrm{S} 4$. Given this, there are nine easy examples of $\mathrm{L}_{1} \times_{t} \mathrm{~L}_{2}=\mathrm{L}_{1} \otimes \mathrm{~L}_{2}$: when each of L_{1} and L_{2} is either S4, Triv, or inconsistent. We know of no other examples; nor of any counterexamples, except in cases where $\mathrm{L}_{1} \supseteq \mathrm{~S} 5$ or $\mathrm{L}_{2} \supseteq \mathrm{~S} 5-$ e.g., $\mathrm{S} 4 \times_{t} \mathrm{~S} 5 \neq \mathrm{S} 4 \otimes \mathrm{~S} 5$, as noted in Sect. 1.2. This suggests three related projects, the third much more ambitious than the first two:

1. find other examples of $\mathrm{L}_{1} \times_{t} \mathrm{~L}_{2}=\mathrm{L}_{1} \otimes \mathrm{~L}_{2}$, or show there aren't any;
2. find counterexamples to $\mathrm{L}_{1} \times_{t} \mathrm{~L}_{2}=\mathrm{L}_{1} \otimes \mathrm{~L}_{2}$, where L_{1} and L_{2} are topologically complete and $\mathrm{L}_{1}, \mathrm{~L}_{2} \nsupseteq \mathrm{~S} 5$, or show there aren't any;
3. find nontrivial necessary and sufficient conditions for $L_{1} \times{ }_{t} L_{2}=L_{1} \otimes L_{2}$.

Acknowledgements. Thanks to two anonymous referees for carefully reading this paper and providing very helpful suggestions.

References

[1] Bezhanishvili, G., L. Esakia, and D. Gabelaia, Some results on modal axiomatization and definability for topological spaces, Studia Logica 81:325-355, 2005.
[2] Blok, W. J., The lattice of modal logics: an algebraic investigation, Journal of Symbolic Logic 45:221-236, 1980.
[3] Chagrov, A., and M. Zakharyaschev, Modal Logic, Oxford Logic Guides, Vol. 35, Clarendon Press, Oxford, 1997.
[4] Gabbay, D. M., and V. B. Shehtman, Products of modal logics, part 1, Logic Journal of the IGPL 1:73-146, 1998. http://jigpal.oxfordjournals.org/cgi/reprint/6/ 1/73.
[5] Gabbay, D. M., A. Kurucz, F. Wolter, and M. Zakharyaschev, ManyDimensional Modal Logics: Theory and Applications, Studies in Logic and the Foundations of Mathematics, Vol. 148, Elsevier, Amsterdam, 2003.
[6] Kremer, P., The topological product of S4 and S5, ms., http://www.individual. utoronto.ca/philipkremer/onlinepapers/TopS4xS5.
[7] Kurucz, A., Combining modal logics, in J. van Benthem, P. Blackburn, and F. Wolter (eds.), Handbook of Modal Logic, Studies in Logic and Practical Reasoning 3, Elsevier, Amsterdam, 2007, pp. 869-926, http://www.dcs.kcl.ac.uk/staff/kuag/publi/combi.ps.
[8] Kurucz, A., and M. Zakharyaschev, A note on relativised products of modal logics, in P. Balbiani, N.-Y. Suzuki, F. Wolter, and M. Zakharyaschev (eds.), Advances in

Modal Logic, Vol. 4, King's College Publications, 2003, pp. 221-242, http://www.aiml. net/volumes/volume4/Kurucz-Zakharyaschev.ps.
[9] McKinsey, J. C. C., A solution of the decision problem for the Lewis systems S2 and S4, with an application to topology, The Journal of Symbolic Logic 6:117-134, 1941.
[10] McKinsey, J. C. C., and A. Tarski, The algebra of topology, Annals of Mathematics 45:141-191, 1944.
[11] Rasiowa, H., and R. Sikorski, The Mathematics of Metamathematics, Państowowe Wydawnictwo Naukowe, Warsaw, 1963.
[12] Scroggs, S. J., Extensions of the Lewis system S5, The Journal of Symbolic Logic 16:112-120, 1951.
[13] Shehtman, V. B., Two-dimensional modal logics (in Russian), Matematicheskie Zametki 23:773-781, 1978. English translation, Mathematical Notes 23:417-424, 1978.
[14] Shehtman, V. B., Two-dimensional modal logics and relativized quantifiers, Advances in Modal Logic '98, Extended Abstracts, Uppsala, 1998, pp. 226-373.
[15] van Benthem, J., G. Bezhanishvili, B. ten Cate, and D. Sarenac, Multimodal logics of products of topologies, Studia Logica 84:369-392, 2006.

P. Kremer

Department of Philosophy
University of Toronto Scarborough
1265 Military Trail
Toronto, ON M1C 1A4, Canada
kremer@utsc.utoronto.ca

[^0]: ${ }^{1}$ As noted in [15], a systematic study of multi-dimensional modal logics of products of Kripke frames can be found in [4], and an up-to-date account of the most important results in the field can be found in [5]. See also [7].

[^1]: ${ }^{2}$ But not always. Suppose that one of L_{1} or L_{2} is either Triv or Verum, and that the other is Kripke complete. Then $\mathrm{L}_{1} \otimes \mathrm{~L}_{2}=\mathrm{L}_{1} \times \mathrm{L}_{2}$. Ditto, if either L_{1} or L_{2} is inconsistent, regardless of whether the other is Kripke complete.

[^2]: ${ }^{3}$ We assume familiarity with the basics of point-set topology.

[^3]: ${ }^{4}$ A unispace $\langle X, \tau\rangle$ is almost discrete iff every open set is closed, and trivial iff $\tau=$ $\{\emptyset, X\}$.
 ${ }^{5}$ Recall that every Kripke frame F generates an Alexandrov space T_{F} : indeed, we are treating F and T_{F} as notational variants. Also note that, if F_{1} and F_{2} are Kripke frames, then $T_{F_{1} \times F_{2}}=T_{F_{1}} \times T_{F_{2}}$. Thus the frame product of F_{1} and F_{2} is a notational variant of the topological product of $T_{F_{1}}$ and $T_{F_{2}}$, so we can be a bit sloppy about which product (Kripke or topological) we are using ' x ' for when considering Kripke frames/Alexandrov spaces.

[^4]: ${ }^{6}$ Suppose that $T=\langle X, \tau\rangle\left[T=\left\langle X, \tau_{1}, \tau_{2}\right\rangle\right]$ and $S=\langle Y, \rho\rangle\left[T=\left\langle X, \rho_{1}, \rho_{2}\right\rangle\right]$ are unispaces [bispaces] and that $f: X \rightarrow Y$. Then f is continuous [i-continuous] iff the inverse image of every open [i-open] subset of Y is open [i-open]. And f is open [i-open] iff the image of every open [i-open] subset of X is open [i-open]. If T and S are bispaces, then we say that f is continuous iff f is 1 - and 2 -continuous, and that f is open iff f is

