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Abstract. The simplest combination of unimodal logics L1 and L2 into a bimodal logic

is their fusion, L1 ⊗ L2, axiomatized by the theorems of L1 for �1 and of L2 for �2.

Shehtman introduced combinations that are not only bimodal, but two-dimensional: he

defined 2-d Cartesian products of 1-d Kripke frames, using these Cartesian products to

define the frame product L1 ×L2 of L1 and L2. Van Benthem, Bezhanishvili, ten Cate and

Sarenac generalized Shehtman’s idea and introduced the topological product L1×tL2, using

Cartesian products of topological spaces rather than of Kripke frames. Frame products have

been extensively studied, but much less is known about topological products. The goal of

the current paper is to give necessary and sufficient conditions for the topological product

to match the frame product, for Kripke complete extensions of S4: L1 ×t L2 = L1 × L2 iff

L1 � S5 or L2 � S5 or L1, L2 = S5.

Keywords: Bimodal logic, Multimodal logic, Topological semantics, Topological product,

Product space.

Let L be a propositional language with a set PV of propositional vari-
ables; standard Boolean connectives ∧, ∨ and ¬; and one modal operator,
�. And let L12 be like L, except with two modal operators, �1 and �2.
We use standard definitions of ⊃, ≡, ♦, ♦1 and ♦2. A normal unimodal
[bimodal ] logic is any set L of formulas of L [L12] containing every propo-
sitional tautology and the formula (�(p ⊃ q) ⊃ (�p ⊃ �q)) [the formulas
(�1(p ⊃ q) ⊃ (�1p ⊃ �1q)) and (�2(p ⊃ q) ⊃ (�2p ⊃ �2q))], and closed
under modus ponens, necessitation for � [for �1 and �2], and substitution –
we will suppress the adjective ‘normal’. A logic L is consistent iff L excludes
some formula in the relevant language. L extends L′ iff L′ ⊆ L. Given any
logic L and any set Γ of formulas, L + Γ is the logic generated by closing
L ∪ Γ under modus ponens, necessitation (for either � or for each of �1

and �2, depending on the language) and substitution. If Γ = {A1, . . . , An},
then we write L + A1 + · · · + An for L + Γ. K is the smallest unimodal
logic. S4 =df K + (�p ⊃ p) + (�p ⊃ ��p), S4.2 =df S4 + (♦�p ⊃ �♦p),
S5 =df S4 + (♦p ⊃ �♦p), Triv =df S4 + (p ⊃ �p), and Verum =df K + �p.
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The simplest combination of two unimodal logics L1 and L2 into a
bimodal logic is their bimodal fusion, L1 ⊗ L2: let L′

1 [L′
2] be the set of

formulas of L12 got by replacing each occurrence of � in each formula in
L1 [L2] by �1 [�2]; and let L1 ⊗ L2 be the smallest set of formulas of L12

containing L′
1∪L′

2 and closed under modus ponens, necessitation for �1 and
for �2, and substitution.

Shehtman [13] introduces combinations that are not only bimodal, but
two-dimensional: he defines a kind of birelational Kripke frame as a Carte-
sian product of two Kripke frames. The frame product L1 × L2, is then the
set of formulas in the language L12 validated by every product of a Kripke
frame validating L1 with a Kripke frame validating L2.

For unimodal logics stronger than S4, the McKinsey-Tarski topological
semantics [9–11] for the unimodal language L generalizes the Kripke seman-
tics. Van Benthem et al. [15] generalize Shehtman’s products of frames to
products of topological spaces: they define a kind of bitopological space
as a Cartesian product of two topological spaces. The topological product
L1 ×t L2, is then the set of formulas in the language L12 validated by every
product of a topological space validating L1 with a topological space vali-
dating L2. Frame products have been extensively studied,1 but much less is
known about topological products. The main purpose of the current paper
is to give necessary and sufficient conditions for the topological product to
match the frame product, for Kripke complete extensions L1 and L2 of S4:
L1 ×t L2 = L1 × L2 iff L1 � S5 or L2 � S5 or L1 = L2 = S5.

1. Details

1.1. Kripke Semantics

Here are the gory, and typically routine, details. A Kripke uniframe [biframe]
is an ordered pair [triple] F = 〈W,R〉 [F = 〈W,R1, R2〉] where W is a
nonempty set and R is a binary relation on W [R1 and R2 are binary
relations on W ]. We sometimes use the expression frame ambiguously for
uniframes and biframes. If F is a uniframe [biframe and i ∈ {1, 2}], then
F is reflexive, transitive, etc. [ i-reflexive, i-transitive, etc.], iff R [Ri] is
reflexive, transitive, etc. If F is a biframe, then F is simply reflexive,
transitive, etc., iff F is i-reflexive, i-transitive, etc., for each i ∈ {1, 2}.

1As noted in [15], a systematic study of multi-dimensional modal logics of products
of Kripke frames can be found in [4], and an up-to-date account of the most important
results in the field can be found in [5]. See also [7].
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If F is a uniframe [biframe and i ∈ {1, 2}] and S ⊆ W , then the inte-
rior [s] of S is [are] Int(S) =df {w ∈ W : ∀w′ ∈ W,wRw′ ⇒ w′ ∈ S}
[Inti(S) =df {w ∈ W : ∀w′ ∈ W,wRiw

′ ⇒ w′ ∈ S}]. A Kripke uni-
model [bimodel ] is an ordered pair M = 〈F, V 〉, where F = 〈W,R〉
[F = 〈W,R1, R2〉] is a uniframe [biframe] and V : PV → P(W ). The valu-
ation function V extends to all formulas in the language L [L12] as follows:
V (¬A) = W − V (A), V (A ∧ B) = V (A) ∩ V (B), V (A ∨ B) = V (A) ∪ V (B),
and V (�A) = Int(V (A)) [V (�iA) = Inti(V (A)), i = 1, 2]. We say w � A
iff w ∈ V (A). We say M � A iff V (A) = W . We say F � A iff M � A
for every model M = 〈F, V 〉. If Γ is a set of formulas, then we say that
F � Γ iff F � A for every A ∈ Γ. If F is a class of frames, then we say that
F � Γ iff F � Γ for every F ∈ F . Fr(Γ) =df {F : F � Γ}. If F is a class
of frames, then Log(F) =df {A : ∀F ∈ F , F � A}: note that Log(F) is a
normal modal logic. If F is a frame, Log(F ) =df Log({F}). The following
results are well-known in the unary case: Fr(K) = {F : F is a uniframe} and
K = Log(Fr(K)); Fr(S4) = {F : F is a reflexive, transitive uniframe} and
S4 = Log(Fr(S4)); and Fr(S5) = {F : F is a reflexive, transitive, symmet-
ric uniframe} and S5 = Log(Fr(S5)) = Log({〈W,R〉 : ∀w, w′ ∈ W,wRw′}).
A logic L is Kripke complete iff L = Log(F) for some class F of frames;
equivalently, iff L = Log(Fr(L)).

The definitions and results in this paragraph are from [13] and [4]. Given
two uniframes F1 = 〈W1, R1〉 and F2 = 〈W2, R2〉, the biframe F1 × F2 =df

〈W1 × W2, S1, S2〉, where 〈w1, w2〉S1〈w′
1, w

′
2〉 iff w1R1w

′
1 and w2 = w′

2; and
where 〈w1, w2〉S2〈w′

1, w
′
2〉 iff w1 = w′

1 and w2R2w
′
2. If F1 and F2 are classes

of uniframes, then F1 × F2 =df {F1 × F2 : F1 ∈ F1 and F2 ∈ F2}. If L1 and
L2 are unimodal logics, then the frame product of L1 and L2 is the bimodal
logic L1 × L2 =df Log(Fr(L1) × Fr(L2)). Every product frame validates the
following three formulas:

com⊃ (left commutativity) �1�2p ⊃ �2�1p

com⊂ (right commutativity) �2�1p ⊃ �1�2p

chr (Church–Rosser) ♦1�2p ⊃ �2♦1p.

The commutator of L1 and L2 is the bimodal logic [L1, L2] =df L1 ⊗ L2 +
com⊃ + com⊂ + chr . We always have L1 ⊗ L2 ⊆ L1 × L2 and almost always
L1 ⊗ L2 � L1 × L2;2 For many popular modal logics, L1 × L2 = [L1, L2]

2But not always. Suppose that one of L1 or L2 is either Triv or Verum, and that the
other is Kripke complete. Then L1 ⊗L2 = L1 ×L2. Ditto, if either L1 or L2 is inconsistent,
regardless of whether the other is Kripke complete.
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(see [4, Theorem 7.12]), in particular when L1, L2 ∈ {S4, S5}. (Sometimes,
however, this fails: see [4, Theorem 8.2].)

1.2. Topological Semantics

A topological unispace [bispace] is an ordered pair [triple] T = 〈X, τ〉 [T =
〈X, τ1, τ2〉] where X is a nonempty set and τ is a topology on X [τ1 and τ2
are topologies on X].3 If T is a unispace [bispace and i ∈ {1, 2}], then a set
Y ⊆ X is open [i-open] iff Y ∈ τ [Y ∈ τi] and closed [i-closed ] iff X −Y ∈ τ
[X − Y ∈ τi]. For unispaces [bispaces], the topology τ [each topology τi]
is associated with an interior operator Int [Inti] and a closure operator Cl
[Cli]. We sometimes use the expression space ambiguously for unispaces and
bispaces. A topological unimodel [bimodel ] is an ordered pair M = 〈T, V 〉,
where T = 〈X, τ〉 [T = 〈X, τ1, τ2〉] is a unispace [bispace] and V : PV →
P(W ).The valuation function V extends to all formulas in the language L
[L12] as follows: V (¬A) = X −V (A), V (A∧B) = V (A)∩V (B), V (A∨B) =
V (A) ∪ V (B), and V (�A) = Int(V (A)) [V (�iA) = Inti(V (A)), i = 1, 2]. We
say x � A iff x ∈ V (A). We say M � A iff V (A) = X. We say T � A
iff M � A for every model M = 〈T, V 〉. If Γ is a set of formulas, then we
say that T � Γ iff T � A for every A ∈ Γ. If T is a class of spaces, then
we say that T � Γ iff T � Γ for every T ∈ T . Sp(Γ) =df {T : T � Γ}. If
T is a class of spaces, then Log(T ) =df {A : ∀T ∈ T , T � A}: note that
Log(T ) is a normal extension of S4. If T is a space, Log(T ) =df Log({T}). A
logic L is topologically complete iff L = Log(T ) for some class T of spaces;
equivalently, iff L = Log(Sp(L)).

A unispace [bispace] is Alexandrov [i-Alexandrov ] iff any intersection of
open [i-open] sets is open [i-open]. A bispace is simply Alexandrov iff it is
i-Alexandrov for each i ∈ {1, 2}. Every reflexive, transitive uniframe F =
〈W,R〉 [biframe F = 〈W,R1, R2〉] generates an Alexandrov unispace TF =
〈W, τ〉 [bispace TF = 〈W, τ1, τ2〉]: let τ = {O ⊆ W : w ∈ O and wRw′ ⇒
w′ ∈ O} [τi = {O ⊆ W : w ∈ O and wRiw

′ ⇒ w′ ∈ O}]. Note that a space
is Alexandrov iff it is generated in this way. Note also that the definition
of Int(S) [Inti(S)] given for S ⊆ W in Sect. 1.1 corresponds exactly to the
topological interior associated with τ [τi]. This last point implies that any
valuation function V : PV → P(W ) extends in the same way when defined
in terms of the Kripke model 〈F, V 〉 or the topological model 〈TF , V 〉. We
will treat reflexive, transitive frames as notational variants of Alexandrov
spaces, identifying F and TF . Let Alex be the class of Alexandrov unispaces.

3We assume familiarity with the basics of point-set topology.
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The following results are well-known, the first originally due to [10]: S4 =
Log({T : T is a unispace}) = Log(Q) = Log(R) = Log(Alex ), where R and Q

are the reals and the rationals with the standard topologies; S5 = Log({T : T
is an almost discrete unispace}) = Log({T : T is a trivial unispace}).4

Also, Sp(S4) = {T : T is a unispace}; and Sp(S5) = {T : T is an almost
discrete unispace}. Note that every almost discrete unispace is Alexandrov:
thus, Sp(S5) ⊆ Alex . Indeed, if L ⊇ S5, then Sp(L) ⊆ Alex . Given the
identification of reflexive, transitive Kripke frames with Alexandrov spaces,
any Kripke complete extension of S4 is also topologically complete.

The definitions in this paragraph are from [15]. Given two unispaces T1 =
〈X1, τ1〉 and T2 = 〈X2, τ2〉, the bispace T1 ×T2 =df 〈X1 ×X2, σ1, σ2〉, where
σ1 has as a basis the family {O × {x} : O ∈ τ1 and x ∈ X2} and σ2 has
as a basis the family {{x} × O : x ∈ X1 and O ∈ τ2}.5 If T1 and T2 are
classes of unispaces, then T1 × T2 =df {T1 × T2 : T1 ∈ T1 and T2 ∈ T2}. If L1

and L2 are unimodal logics, then the topological product of L1 and L2 is the
bimodal logic L1 ×t L2 =df Log(Sp(L1) × Sp(L2)).

In general,

L1 ⊗ L2 ⊆ L1 ×t L2 ⊆ L1 × L2.

The main result of [15] is that

S4 ⊗ S4 = S4 ×t S4 � S4 × S4.

But going topological does not always have the same effect [6]:

S5 ⊗ S5 � S5 ×t S5 = S5 × S5, and

S4 ⊗ S5 � S4 ×t S5 = S4 ⊗ S5 + com⊃ + chr � S4 × S5.

Given that S4 ×t S5 = S4 ⊗ S5 + com⊃ + chr , S4 ×t S5 is identical to the
semiproduct (to use Shehtman’s [14] expression) of S4 and S5: such logics
are studied in [8].

Not much else is known about topological products. It is worth noting
how different S4 and S5 are in this context: the topological product of S4

4A unispace 〈X, τ〉 is almost discrete iff every open set is closed, and trivial iff τ =
{∅, X}.

5Recall that every Kripke frame F generates an Alexandrov space TF : indeed, we are
treating F and TF as notational variants. Also note that, if F1 and F2 are Kripke frames,
then TF1×F2 = TF1 × TF2 . Thus the frame product of F1 and F2 is a notational variant of
the topological product of TF1 and TF2 , so we can be a bit sloppy about which product
(Kripke or topological) we are using ‘×’ for when considering Kripke frames/Alexandrov
spaces.



492 P. Kremer

with itself matches the fusion of S4 with itself; by contrast, the topological
product of S5 with itself matches the frame product of S5 with itself. This
suggests two general questions: When does L1 ×t L2 = L1 ⊗ L2? And when
does L1×tL2 = L1×L2? As indicated above, the main purpose of this paper
is to prove the following – and to answer the second question – for Kripke
complete extensions L1 and L2 of S4:

Theorem 1.1. L1 ×t L2 = L1 ×L2 iff L1 � S5 or L2 � S5 or L1 = L2 = S5.

Before we turn to the proof of Theorem 1.1, we note a fact about interiors
and closures in product spaces. In particular, consider spaces T1 = 〈X1, τ1〉
and T2 = 〈X2, τ2〉, and their product T1 × T2 =df 〈X1 × X2, σ1, σ2〉. We will
write IntTi

[ClTi
] for the interior [closure] operator in the space Ti, and Inti

[Cli] for the ith interior [closure] operator in the product space T1 × T2. For
any x ∈ X1, we define a right projection operator rtx : P(X1×X2) → P(X2)
as follows: rtx(S) = {y ∈ X2 : 〈x, y〉 ∈ S}, for S ⊆ X1×X2. Similarly, for any
y ∈ X2, we define a left projection operator lfty : P(X1 × X2) → P(X1) as
follows: lfty(S) = {x ∈ X1 : 〈x, y〉 ∈ S}. Note that S =

⋃
x∈X1

{x}×rtx(S) =⋃
y∈X2

lfty(S) × {y}. As for interiors and closures:

Lemma 1.2. For any S ⊆ X1 × X2:

Int1(S) =
⋃

y∈X2

IntT1(lfty(S)) × {y}

Cl1(S) =
⋃

y∈X2

ClT1(lfty(S)) × {y}

Int2(S) =
⋃

x∈X1

{x} × IntT2(rtx(S))

Cl2(S) =
⋃

x∈X1

{x} × ClT2(rtx(S))

2. Proving Theorem 1.1

Theorem 1.1 follows directly from Corollaries 2.7 and 2.10, below. We begin
by specifying some particular uniframes and unispaces. First our uniframes:

◦−
◦ =df 〈{0, 1},≤〉 and, for each n ≥ 1, ◦n =df 〈{1, . . . , n}, {1, . . . , n} ×

{1, . . . , n}〉. Thus ◦−
◦ is a (or ‘the’, up to isomorphism) two-element reflex-

ive chain, and ◦n is a (or ‘the’) n-element cluster. Using standard methods,
it is easy to prove that Log( ◦−

◦) = S4.2 + (p ∨ �(p ⊃ �p)) = S4 + (♦�p ⊃
�♦p) + (p ∨ �(p ⊃ �p)); that Log(◦1) = Triv; and that
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Log(◦n) = S5 +

⎛

⎜
⎝

n∧

i=1

♦pi ⊃

⎛

⎜
⎝�

n∨

i=1

pi ∨
n∨

i,j=1
i �=j

♦(pi ∧ pj)

⎞

⎟
⎠

⎞

⎟
⎠ .

Next, our unispaces: The trivial space Nt =df 〈N, τ t〉, where τ t =df

{∅,N}; and the El’kin space (in the terminology of [1]), Ne =df 〈N, τe〉,
where τe = U ∪{∅} for some nonprincipal ultrafilter U on N. It follows from
Theorem 4.7 in [1] that Ne ∈ Sp(Log( ◦−

◦)). Also, clearly, Nt ∈ Sp(S5). Given
the identification in Sect. 1.2 of reflexive, transitive frames with Alexandrov
spaces, ◦−

◦ is identified with the space {0, 1} with three open sets, ∅, {0, 1},
and {1}, i.e., ◦−

◦ is a (‘the’, up to homeomorphism) Sierpinski space; and ◦n is
identified with the space {1, . . . , n} with the trivial topology with only two
open sets, ∅ and {1, . . . , n}.

Now we consider L ×t Log(◦n), where n ≥ 1. If T = 〈X, τ〉 is a unispace,
an open set O ⊆ X is trivial iff O has no open subsets other than O and ∅.

Lemma 2.1. If T ∈ Sp(Log(◦n)), then T is the disjoint union of trivial open
sets, each of cardinality ≤ n.

Corollary 2.2. For any class T of unispaces, Log(T × Sp(Log(◦n))) =
Log(T × {◦n}).

Proof. Since ◦n ∈ Sp(Log(◦n)), Log(T ×Sp(Log(◦n))) ⊆ Log(T ×{◦n}). So
we need only show that Log(T ×{◦n}) ⊆ Log(T ×Sp(Log(◦n))). So suppose
that A �∈ Log(T × Sp(Log(◦n))). Then there is a T1 = 〈X1, τ1〉 ∈ T and
a T2 = 〈X2, τ2〉 ∈ Sp(Log(◦n))), such that T1 × T2 �� A. Write T1 × T2 =
〈X1 × X2, σ1, σ2〉. So, for some binary topological model M = 〈T1 × T2, V 〉
and for some 〈x1, x2〉 ∈ X1 × X2, we have 〈x1, x2〉 �∈ V (A). By Lemma 2.1,
there is a trivial open set O ⊆ X2, with m elements, such that m ≤ n and
x2 ∈ O.

Let T = 〈O, ρ〉, where ρ = {O ∩ S : S ∈ τ2}. So T is a subspace of
T2. Write T1 × T = 〈X1 × O, ρ′

1, ρ
′
2〉. Define V ′ : PV → P(X1 × O) as

follows: V ′(p) = V (p) ∩ (X1 × O). By a standard inductive argument, for
every formula B of L12, V ′(B) = V (B) ∩ (X1 × O). So 〈x1, x2〉 �∈ V ′(A). So
T1×T �� A. Note that T is homeomorphic6 to ◦m. So T1×◦m �� A. If m = n

6Suppose that T = 〈X, τ〉 [T = 〈X, τ1, τ2〉] and S = 〈Y, ρ〉 [T = 〈X, ρ1, ρ2〉] are
unispaces [bispaces] and that f : X → Y . Then f is continuous [i-continuous] iff the
inverse image of every open [i-open] subset of Y is open [i-open]. And f is open [i-open]
iff the image of every open [i-open] subset of X is open [i-open]. If T and S are bispaces,
then we say that f is continuous iff f is 1- and 2-continuous, and that f is open iff f is
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then we’re done. Otherwise, we extend ◦m to ◦n by treating m + 1, . . . , n as
copies of 1, to get a valuation on T1 × ◦n that falsifies A. So T1 × ◦n �� A.
So A �∈ Log(T × {◦n}), as desired.

Given any n ≥ 1, associate with every propositional variable, p ∈ PV , n
propositional variables p1, . . . , pn, in such a way that PV = {pi : p ∈ PV }
and if p, q ∈ PV with p �= q or i �= j then pi �= qj . Next, given any n ≥ 1,
for each i ∈ {1, . . . , n} we define a translation Trni from formulas of L12 to
formulas of L:

Trni (p) = pi

Trni (A ∧ B) = Trni (A) ∧ Trni (B)

Trni (A ∨ B) = Trni (A) ∨ Trni (B)

Trni (¬A) = ¬Trni (A)

Trni (�1A) = �Trni (A)

Trni (�2A) =
n∧

j=1

Trnj (A)

Lemma 2.3. Fix n ≥ 1. Suppose that T = 〈X, τ〉 is a unispace, M = 〈T, V 〉
is a topological unimodel, and M ′ = 〈T × ◦n, V ′〉 is a topological bimodel
with 〈x, i〉 ∈ V ′(p) iff x ∈ V (pi). Then, for every formula A of L12, every
x ∈ X and every i ∈ {1, . . . , n}, we have 〈x, i〉 ∈ V ′(A) iff x ∈ V (Trni (A)).

Proof. By a straightforward induction on construction of the formula A.
We consider two cases in the inductive step: A = �1B and A = �2B. Recall
that T ×◦n = 〈X×{1, . . . , n}, σ1, σ2〉, where {O×{i} : O ∈ τ and 1 ≤ i ≤ n}
is a basis for σ1, and where {{x} × {1, . . . n} : x ∈ X} is a basis for σ2.
Case 1: A = �1B. Note: 〈x, i〉 ∈ V ′(A)

iff, for some O ∈ τ , 〈x, i〉 ∈ O × {i} ⊆ V ′(B),
iff, for some O ∈ τ , x ∈ O ⊆ V (Trni (B)), by the inductive hypothesis,
iff x ∈ V (�Trni (B)),
iff x ∈ V (Trni (�1B)) = V (Trni (A)).

Case 2: A = �2B. Note: 〈x, i〉 ∈ V ′(A)
iff, for every j ∈ {1, . . . , n}, 〈x, j〉 ∈ V ′(B),

Footnote 6 continued
1- and 2-open. A homeomorphism from T to S is any continuous open bijection. And we
say that T and S are homeomorphic iff there is a homeomorphism from T onto S. It is clear
that if T and S are homeomorphic unispaces and U is some other unispace, then U × T
is homeomorphic to U × S. It is also clear that if T and S are homeomorphic unispaces
[bispaces] and A is a formula of L [L12], then T � A iff S � A.
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iff, for every j ∈ {1, . . . , n}, x ∈ V (Trnj (B)), by the inductive hypothesis,
iff x ∈ V (

∧n
j=1 Tr

n
j (B))

iff x ∈ V (Trni (�2B)) = V (Trni (A)).

Corollary 2.4. Fix n ≥ 1. Suppose that T = 〈X, τ〉 is a unispace. Then,
for every formula A of L12 and every i ∈ {1, . . . , n}, T × ◦n � A iff T �
Trni (A).

Corollary 2.5. Fix n ≥ 1. Suppose that T and T ′ are nonempty classes
of unispaces such that Log(T ) = Log(T ′). Then Log(T × {◦n}) = Log(T ′ ×
{◦n}).

Proof. Suppose that A �∈ Log(T × {◦n}). Then A �∈ Log(T × ◦n), for
some T ∈ T . So Trni (A) �∈ Log(T ), by Corollary 2.4. So Trni (A) �∈ Log(T ).
So Trni (A) �∈ Log(T ′). So Trni (A) �∈ Log(T ′), for some T ′ ∈ T ′. So A �∈
Log(T ′ × ◦n). So A �∈ Log(T ′ × {◦n}).

Thus Log(T ′ × {◦n}) ⊆ Log(T × {◦n}). Similarly, Log(T × {◦n}) ⊆
Log(T ′ × {◦n}).

Corollary 2.6. If L is a Kripke complete extension of S4, then L ×t

Log(◦n) = L × Log(◦n).

Proof. Since L is Kripke complete, L = Log(Fr(L)). Since Fr(L) is a class of
reflexive transitive uniframes, we are treating it also as a class of Alexandrov
unispaces. So Fr(L) ⊆ Sp(L). So L ⊆ Log(Sp(L)) ⊆ Log(Fr(L)) = L. So
Log(Fr(L)) = Log(Sp(L)). So Log(Fr(L) × {◦n}) = Log(Sp(L) × {◦n}), by
Corollary 2.5. So Log(Fr(L) × Sp(Log(◦n))) = Log(Sp(L) × Sp(Log(◦n))), by
Corollary 2.2.

Also notice that every unispace T with T � Log(◦n) is Alexandrov.
Thus, every such T can be identified with a uniframe. Thus Fr(Log(◦n)) =
Sp(Log(◦n)). So Log(Fr(L) × Fr(Log(◦n))) = Log(Fr(L) × Sp(Log(◦n))) =
Log(Sp(L) × Sp(Log(◦n))). So L × Log(◦n) = L ×t Log(◦n).

So we get the right-to-left direction of the biconditional in Theorem 1.1:

Corollary 2.7. Suppose that L1 and L2 are Kripke complete extensions of
S4. Then if either L1 � S5 or L2 � S5 or L1 = L2 = S5, then L1 ×t L2 =
L1 × L2.

Proof. Suppose L2 � S5, i.e., L2 is a strict extension of S5. Then either
L2 is inconsistent or L2 = Log(◦n) for some n, a classic result of [12]. So
L1 ×t L2 = L1 × L2, either trivially if L2 is inconsistent or by Corollary 2.6
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if L2 is consistent. Similarly, if L1 � S5, then L1 ×t L2 = L1 × L2. Finally,
consider S5 ×t S5. Note that every member of Sp(S5) is Alexandrov, and so
is identified with some Kripke frame. So S5×t S5 = Log(Sp(S5)×Sp(S5)) =
Log(Fr(S5) × Fr(S5)) = S5 × S5.

Remark 2.8. Before we address the left-to-right direction of the bicondi-
tional in Theorem 1.1, some notation and a few remarks. We will be inter-
ested in the two unispaces, Ne and Nt, defined above; and the two product
spaces, Ne × Nt and Ne × Ne. We will write IntNe [IntNt ] for the interior
operator in the space Ne [Nt] and similarly for ClNe [ClNt ]. We will write Inti
[Cli] for the ith interior [closure] operator in the product space Ne ×Nt and
Int′i [Cl′i] for the ith interior [closure] operator in the product space Ne ×Ne.
Note that Int′1 = Int1 but that Int′2 �= Int2. We will also use the notation
introduced at the end of Sect. 1.2: for any S ⊆ N × N, and any n ∈ N,
rtn(S) =df {m ∈ N : 〈n,m〉 ∈ S} and lftn(S) =df {m ∈ N : 〈m,n〉 ∈ S}. For
each n ∈ N, define the nth row and the nth column in N × N as follows:
Rn =df N × {n} and Cn =df {n} × N. Note that, for any S ⊆ N × N,
S ∩ Rn = lftn(S) × {n} and S ∩ Cn = {n} × rtn(S).

Lemma 2.9. (1) com⊂ �∈ Log( ◦−
◦) ×t S5.

(2) com⊃ �∈ S5 ×t Log( ◦−
◦).

(3) com⊂ �∈ Log( ◦−
◦) ×t Log( ◦−
◦).

(4) com⊃ �∈ Log( ◦−
◦) ×t Log( ◦−
◦).

(5) chr �∈ Log( ◦−
◦) ×t Log( ◦−
◦).

Proof. We only prove (1), (3) and (5), since the proofs of (2) and (4)
are symmetric to the proofs of (1) and (3) respectively. Recall that Ne ∈
Sp(Log( ◦−

◦)) and Nt ∈ Sp(S5). So to prove (1) it suffices to show that Ne ×
Nt �� com⊂; to prove (3) it suffices to show that Ne × Ne �� com⊂; and to
prove (5) it suffices to show that Ne × Ne �� chr .
Proof of (1) and (3). It suffices to specify a set P ⊆ N × N such that
both Int2Int1(P ) − Int1Int2(P ) �= ∅ and Int′2Int

′
1(P ) − Int′1Int

′
2(P ) �= ∅. Let

P =df {〈m,n〉 : m = 0 or n = 0 or 0 < n < m}. Figure 1 represents P : the
bullets represent the ordered pairs in P and the open circles represent the
ordered pairs not in P . Figure 1 also indicates the rows and columns, Rn

and Cn.
Calculating both Int1(P ) and Int′1(P ). Note that lftn(P ) × {n} = P ∩ Rn is
cofinite in Rn for every n ∈ N. So lftn(P ) is cofinite in N for every n ∈ N.
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Figure 1. The set P ⊆ N × N

So lftn(P ) is open in Ne, since every cofinite subset of N is open in Ne. So
IntNe(lftn(P )) = lftn(P ). So

Int1(P ) =
⋃

n∈N

IntNe(lftn(P )) × {n}, by Lemma 1.2

=
⋃

n∈N

lftn(P ) × {n} = P.

As noted in Remark 2.8, the operators Int1 and Int′1 are identical. Thus we
also have Int′1(P ) = P .
Calculating both Int2(P ) and Int′2(P ). Note that rt0(P ) = N and rtn(P )
is finite for every n ≥ 1. So IntNt(rt0(P )) = IntNe(rt0(P )) = N; also
IntNt(rtn(P )) = IntNe(rtn(P )) = ∅ for every n ≥ 1, since ∅ is the only
open finite set in Nt and the only open finite set in Ne. So we get two very
similar calculations:

Int2(P ) =
⋃

n∈N

{n} × IntNt(rtn(P )) (by Lemma 1.2) = {0} × N = C0.

Int′2(P ) =
⋃

n∈N

{n} × IntNe(rtn(P )) (by Lemma 1.2) = {0} × N = C0.

Thus Int2Int1(P ) = Int2(P ) = C0 = Int′2(P ) = Int′2Int
′
1(P ): see Figure 2.

Wrapping up. Note that IntNe(S) = ∅ for any finite S ⊆ N. So Int1(C0) =
Int′1(C0) = ∪n∈N(IntNe({0}) × {n} (by Lemma 1.2) = ∅. So Int1Int2(P ) =
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Figure 2. Int2(P ) = Int2Int1(P ) = C0 = Int′2(P ) = Int′2Int
′
1(P )

Figure 3. The set Q ⊆ N × N

Int′1Int
′
2(P ) = ∅. So Int2Int1(P ) − Int1Int2(P ) = C0 �= ∅ and Int′2Int

′
1(P ) −

Int′1Int
′
2(P ) = C0 �= ∅, as desired.

Proof of (5). It suffices to specify a set Q ⊆ N × N such that Cl′1Int
′
2(Q) −

Int′2Cl
′
1(Q) �= ∅. Let Q =df {〈m,n〉 : m �= 0 and either n = 0 or m ≤ n}, as

represented in Figure 3.
Calculating Int′2(Q). Note that {n} × rtn(Q) = Q ∩ Cn is either empty or
cofinite in Cn for every n ∈ N. So rtn(Q) is either empty or cofinite in N

for every n ∈ N. So rtn(Q) is open in Ne, since every cofinite subset of N is
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Figure 4. Cl′1Int
′
2(Q) = Cl′1(Q) = {〈0, 0〉} ∪ Q

open in Ne. So IntNe(rtn(Q)) = rtn(Q). So

Int′2(Q) =
⋃

n∈N

{n} × IntNe(rtn(Q)) (by Lemma 1.2) =
⋃

n∈N

{n} × rtn(Q) = Q.

Calculating Cl′1Int
′
2(Q) = Cl′1(Q). Note that lftn(Q)×{n} = Q∩Rn is infinite

for n = 0 and finite for n ≥ 1. Thus lftn(Q) is infinite for n = 0 and finite for
n ≥ 1. Now, every finite subset of N is closed in Ne, while the closure of any
infinite set is simply N. So ClNe(lft0(Q)) = N and ClNe(lftn(Q)) = lftn(Q),
for n ≥ 1. So,

Cl′1(Q) =
⋃

n∈N

ClNe(lftn(Q)) × {n}, by Lemma 1.2

= N × {0} ∪
⋃

n≥1

lftn(Q) × {n}

= {〈0, 0〉} ∪ (Q ∩ R0) ∪
⋃

n≥1

lftn(Q) × {n}

= {〈0, 0〉} ∪ (lft0(Q) × {0}) ∪
⋃

n≥1

lftn(Q) × {n}

= {〈0, 0〉} ∪
⋃

n∈N

lftn(Q) × {n}

= {〈0, 0〉} ∪ Q

Cl′1Int
′
2(Q) = Cl′1(Q) is represented by Figure 4.
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Calculating Int′2Cl
′
1(Q). Let Q′ = Cl′1(Q) = {〈0, 0〉} ∪ Q. First note that

rtn(Q′) = rtn(Q) for n ≥ 1. Note that {n} × rtn(Q′) = Q′ ∩ Cn is finite if
n = 0 and is cofinite in Cn if n ≥ 1. Thus rtn(Q′) is finite if n = 0 and is
cofinite in N if n ≥ 1. The only finite subset of N which is open in Ne is
∅ and every cofinite subset of N is open in Ne. So IntNe(rtn(Q′)) = ∅ and
IntNe(rtn(Q′)) = rtn(Q′) = rtn(Q) if n ≥ 1. So,

Int′2Cl
′
1(Q) = Int′2(Q

′)

=
⋃

n∈N

{n} × IntNe(rtn(Q′)), by Lemma 1.2

=
⋃

n≥1

{n} × rtn(Q)

=
⋃

n∈N

{n} × rtn(Q), since rt0(Q) = ∅

= Q

Wrapping up. Cl′1Int
′
2(Q)− Int′2Cl

′
1(Q) = ({〈0, 0〉}∪Q)−Q = {〈0, 0〉} �= ∅.

The following corollary is equivalent to the left-to-right direction of the
biconditional in Theorem 1.1.

Corollary 2.10. Suppose that L1 and L2 are Kripke complete extensions
of S4. Then if

(1) L1, L2 �⊇ S5 or

(2) L1 �⊇ S5 and L2 = S5 or

(3) L2 �⊇ S5 and L1 = S5.

then L1 ×t L2 �= L1 × L2.

Proof. First note that by the structure of extensions of S4, if L is any
extension of S4, then either L ⊇ S5 or L ⊆ Log( ◦−

◦). This was originally
proved in [2]. See also [3]. We proceed by considering only two cases, (1)
L1, L2 �⊇ S5 and (2) L1 �⊇ S5 and L2 = S5, since the third case (3) L2 �⊇ S5
and L1 = S5, is symmetric to (2).

Case 1: L1, L2 �⊇ S5. Then L1, L2 ⊆ Log( ◦−
◦). So L1×tL2 ⊆ Log( ◦−
◦)×tLog( ◦−
◦).

So, by Lemma 2.9, com⊂, com⊃, chr �∈ L1 ×t L2. But com⊂, com⊃, chr ∈
[L1, L2] ⊆ L1 × L2. So L1 ×t L2 �= L1 × L2.

Case 2: L1 �⊇ S5 and L2 = S5. Then L1 ⊆ Log( ◦−
◦). So L1 ×t S5 ⊆

Log( ◦−
◦)×t S5. So, by Lemma 2.9, com⊂ �∈ L1 ×t L2. So, as in Case 1, L1 ×t L2

�= L1 × L2.
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3. Concluding Remarks

We have given necessary and sufficient conditions for the topological product
of Kripke complete extensions of S4 to match their frame product. In the
most basic case, the topological product matches not the frame product but
the fusion: S4 ×t S4 = S4 ⊗ S4 � S4 × S4. Given this, there are nine easy
examples of L1 ×t L2 = L1 ⊗ L2: when each of L1 and L2 is either S4, Triv,
or inconsistent. We know of no other examples; nor of any counterexamples,
except in cases where L1 ⊇ S5 or L2 ⊇ S5 – e.g., S4 ×t S5 �= S4 ⊗ S5, as
noted in Sect. 1.2. This suggests three related projects, the third much more
ambitious than the first two:

1. find other examples of L1 ×t L2 = L1 ⊗ L2, or show there aren’t any;

2. find counterexamples to L1 ×t L2 = L1 ⊗ L2, where L1 and L2 are topo-
logically complete and L1, L2 �⊇ S5, or show there aren’t any;

3. find nontrivial necessary and sufficient conditions for L1×tL2 = L1⊗L2.

Acknowledgements. Thanks to two anonymous referees for carefully reading
this paper and providing very helpful suggestions.
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