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THE JOURNAL OF SyMBoLIC Logic
Volume 58, Number 1, March 1993

QUANTIFYING OVER PROPOSITIONS IN RELEVANCE LOGIC:
NONAXIOMATISABILITY OF PRIMARY
INTERPRETATIONS OF Vp AND 3p*

PHILIP KREMER

A typical approach to semantics for relevance (and other) logics: specify a class
of algebraic structures and take a model to be one of these structures, «, together
with some function or relation which associates with every formula 4 a subset of
o. (This is the approach of, among others, Urquhart, Routley and Meyer and Fine.)
In some cases there are restrictions on the class of subsets of « with which a for-
mula can be associated: for example, in the semantics of Routley and Meyer [1973],
a formula can only be associated with subsets which are closed upwards. It is nat-
ural to take a proposition of o to be such a subset of «, and, further, to take the
propositional quantifiers to range over these propositions. (Routley and Meyer
[1973] explicitly consider this interpretation.) Given such an algebraic semantics,
we call (following Routley and Meyer [1973], who follow Henkin [ 1950]) the above-
described interpretation of the quantifiers the primary interpretation associated
with the semantics.!

Received April 11, 1991; revised December 18, 1991.

*I am much indebted to Nuel Belnap for his constant help and encouragement, and, not least of all,
for rather closely inspecting the proofs. I thank Aldo Antonelli for asking me whether the systems studied
here fail to be arithmetical (in the recursion theoretic sense of Hinman [1978], Odifreddi [1989] and
others) as well as recursively enumerable. Not only are the systems here nonarithmetical, they are
recursively isomorphic to full second-order logic. Finally I thank a referee and Richard Shore for point-
ing in the right direction toward proving this stronger result.

YA secondary interpretation of the quantifiers can be developed according to which a secondary
model is specified by an algebra, «, a class, n, of subsets of & and a function which assigns to every
formula a member of 7. (n may be a strict subclass of the class of what I have called “propositions.”)
To get completeness theorems for natural quantified relevance logics, we must restrict our attention to
models for which n obeys certain closure conditions.

In addition, a substitutional interpretation of the quantifiers can be developed— Routley and Meyer
[1973] consider such an interpretation as well as a primary interpretation. In forthcoming work, I plan
to discuss these alternatives.
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Section I shows that the primary interpretation of the universal propositional
quantifier, ¥p, associated with Urquhart’s semilattice semantics® (Urquhart [1972],
[1973], [1992]) is not axiomatisable—indeed the system based on it is recursively
isomorphic to full second-order (classical) logic. Section II shows that the primary
interpretation of Vp and 3p, associated with Routley and Meyer’s relational seman-
tics (Routley and Meyer [1973]) is not axiomatisable—again, the system based on
it is recursively isomorphic to full second-order logic.

These results rely on the following two definitions and theorem from recursion
theory. The definitions are given for sets, 4 and B, of natural numbers, but they
can be taken to apply to sets of formulas of languages whose syntax can be recur-
sively arithmetised.

DEFINITION (Post [1944]; see Odifreddi [1989, p. 324]). A4 is 1-reducible to B
(A <, B) if, for some 1-1 recursive function f, x € A iff f(x) e B. Note: <, is re-
flexive and transitive.

DEFINITION (Post [1944]; see Odifreddi [1989, p. 324]). A is recursively isomor-
phic to B if, for some 1-1 onto recursive function, f, x € 4 iff f(x) € B.

IsoMoRPHISM THEOREM (Myhill [19557]; see Odifreddi [1989, p. 325]). A4 is re-
cursively isomorphic to Biff 4 <, Band B <; A.

§I. The primary interpretation of Vp associated with Urquhart’s semilattice
semantics.

1.1. Formal tools. The object language has the following vocabulary: (,), =, &,V,
and a countably infinite list of propositional variables, p;,p,,..,Py,-...> The set
of formulas is defined in the usual way. We use 4, B, C, D as metavariables ranging
over formulas and p, q,r,... as metavariables ranging over propositional variables.
Also, we use the following notation:

for any set, or family of sets, S:

uS  {x@yeSxenk

nS {x:(WyeS)xen);

205 {x(Vyex)(ye s

for any two sets, S and §": S\S' = {ae S:a ¢ S'}.

1.2. The formal semantics. (Except for Theorem 1, Definition 6, and clause (iv)
in Definition 4, our presentation is a notational variant of that in Urquhart [1973]
and [1992].)

2Here, I investigate the interpretation of Yp and not of p for two related reasons:
(1) Urquhart’s semantics is concerned with the implicational-conjunctional behaviour of relevance
logic, so it seems appropriate to leave 3 out of the picture, as least as a primitive.
(2) The secondary interpretation motivated by Urquhart’s semantics is complete for the logic which
results when we add (with a reasonable set of axioms) Vp to R_4; but not when we add both
Vp and 3p. (Compare the incompleteness of Urquhart’s semantics for R_.4 )
3The language could be supplied with a stock of propositional constants, without signiﬁ(!:ant effect
on the current project.



336 PHILIP KREMER

DEFINITION 1. A semilattice is an ordered pair L = (L, <) such that < partially
orders L, and such that any two points, a and b, in L have a least upper bound,
aob,in L. A semilattice with 0 is a semilattice with a <-smallest element, 0.

DEFINITION 2. A consequence model or c-model (the terminology is from Urqu-
hart [1992]; or “model”) is an ordered pair M = (L, ¢, where L = (L, <> is a
semilattice with 0, and where ¢ is a function which assigns to each atomic formula
a subset of L. M assigns the set ¢(p) to the atomic formula p. (Note that for
Urquhart’s semantics, the class of algebraic structures under consideration is the
class of semilattices with 0. Note also that there is no restriction on which subsets
of L can be the semantic value of a propositional variable; so the set of proposi-
tions is just 2(L).)

DEFINITION 3. Given a c-model, M = (L, <, $), and a subset, S of L, M[S/p]
is the c-model which is just like M except that it assigns S to p.

DEFINITION 4. Given a c-model, M = (L, <,¢>, and a formula A, M(A4), the
subset of L assigned to A by M, is defined thus:

(i) if A is atomic, M(A4) = ¢(A);

(i) M((4 & B)) = M(A)n M(B);
(iii) M((4 - B)) = {ae€ L: (Vb e M(A))(a - b e M(B))};
(iv) M(7pA) = ({M[S/p)(A): S < L}.

DEFINITION 5 (Validity). Given a semilattice with 0, L = (L, <>, a model M and

a formula A:

M = A iff 0 € M(A). (M validates or satisfies A.)

L= Aiff (YM = <L, ¢)) (M & A). (L validates or satisfies A.)

A is c-valid iff (VM) (M = A).
For quantifier-free formulas, the above notions correspond exactly to Urquhart’s
semantic notions.

URQUHART’S SOUNDNESS AND COMPLETENESS THEOREM:

If A is quantifier-free, then A is c-valid iff 4 is a theorem of R_4.

DEFINITION 6. R, P+ = {A: A is a c-valid formula}. (R.,P+ is the logic
based on the primary interpretation of Vp associated with Urquhart’s semilattice
semantics.)

THEOREM 1. R_ 4P+ is recursively isomorphic to full second-order classical logic.

1.3. Proof of Theorem 1: Preliminaries. Nerode and Shore [1980] show that full
second-order classical logic (L?) is recursively isomorphic to the theory of distri-
butive lattices with second-order monadic quantification over ideals (DLMI). In
the appendix, we show that DLMI is 1-reducible to the monadic theory of semi-
lattices with 0 (MSLO). And so, L? is 1-reducible to MSLO0. To show that R_,,P+
is recursively isomorphic to L2, we show:

(1) MSLO0 is 1-reducible to R_gP+ (§1.4); and
(2) R_ 4P+ is 1-reducible to L (§1.5).
To make this precise, we give some definitions.

DEFINITION 7. The full second-order language (SOL) has the following vocabu-
lary: (,), ©,7,V; the equals sign, =; a countably infinite list of individual vari-
ables: x;,%3,...,%,,...; and, for each m > 1, a countably infinite list of m-place
relation variables: X, X7,...,X™ ... We also include a 2-place relation constant,
<, and an individual constant, 0. (These are not necessary, but they simplify things.)
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The set of formulas, and the notions of model and validity are defined in the usual
way, as are &, v, and 3. Second-order logic (L?) is the set of formulas validated by
every model.

DEerINITION 8. The monadic second-order language (MSOL) is exactly like SOL
except that rather than a countable list of m-place relation variables for each m > 1,
it has a countable list of 1-place predicate variables: X, X,,..., X,,....

DEFINITION 9. We use the following abbreviation in SOL and MSOL, for indi-
vidual variables, x, y, and z. Here, w is the first in the list of individual variables
distinct from x, y, and z:

zrR XY= (x<z&y<z&(W(xX<w&y<w)>oz<w).
DEerFINITION 10. semilat is the following formula of SOL and MSOL:

Vx Vo Vxa[x; < xy & ((x; < x5 & x5 < x1) D x; = X,)
& ((x; < x, & x5 < x3) DXy < X3)] & VX, Vx,3x5(x3 & xq 0 X5).

semilat 0 is the following formula: (semilat & (Vx,)(0 < x,)).

DEerINITION 11. The monadic second-order theory of semilattices with 0 (MSLO)
is the set of MSOL formulas which are validated by every model which validates
semilat 0.

THEOREM 2. L% is 1-reducible to MSLO.

(See the appendix for the proof.)

1.4. Proof of Theorem 1: MSLO is 1-reducible to R_ 4P +. In Tables 1 and 2,
L=<L,<)and M =<L, ¢).

Note for Table 1. Given a c-model M and a formula 4, A can be thought of as
playing two roles:

(1) A names a subset of the lattice, namely, M(A4); and

(2) A makes a claim about the c-model.
For example (p — q) names the set M(p — q) and says that M(p) = M(q), since M =
(p — q) iff M(p) = M(q). Table 1 lists formulas constructed with the primitive ob-
ject language connectives and indicates what the formulas say and what they name.
The blank entries are those of no particular interest.

TABLE 1. Object language connectives and their
two meta-linguistic interpretations.

What the formula says: What the formula names:
Formula M &= Formula iff M(Formula)=
(A & B) MEAand M =B M(A)n M(B)
(A - B) M(A) = M(B)
VpA (VS < L)YM[S/p] = A) !
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Note 1 for Table 2. The last two columns of Table 2 play the same role as the
last two columns of Table 1: they tell us how we can interpret the object language
formulas. The entries in these last two columns represent more or less substantial
claims, which are left to the reader to prove.

Note 2 for Table 2. Quantification over propositions amounts, under the pri-
mary interpretation under consideration, to quantification over the subsets of
whatever semilattice we are considering. The effect of quantifying over elements of
the semilattice can be had by restricting a particular quantifier to atomic subsets
of the lattice and by informally identifying an element a € L with the atomic set
{a} = L. This remark should explain the importance of the last row.

TaBLE 2. Object language definitions.

What the What the
definiendum says: definiendum names:
Definiendum Definiens M & Definiendum iff | M(Definiendum)=

Vp(((4 - p) &
(A v B) (B-»p)—>p |MEAorMERB M(A)u M(B)

(A< B) | (A->B)&(B—4)| M(4) = M(B)

F Vpp 1]
t Vp(p — p) {0}
(A > B) (A&t)—-B (MEA=MEB)
—A A>SF Mp A
Vp((A - {aob:ae M(4) &
(4 - B) (B - p)) - p) be M(B)}
(A4-F&
Vp((A & p) > | M(A) = {a} for some
AelL F) v (A -Dp) ain L

Postscript to Table 2. With “>” and “—” we can reflect metalinguistic (classi-
cal) implication and negation in the object language—see the entries in the third
column. “t” is also useful: it names {0}; so under the heuristic identification (ex-
plained above) of atomic subsets of semilattices with their elements, “t” names 0.

DEFINITION 12. Define a recursive 1-1 function, f, from MSOL formulas to
MSOL formulas as follows. Here, for i > 1, x;(p;) is the ith individual (proposi-
tional) variable in the list of individual (propositional) variables in MSOL (the ob-
ject language). x, is the MSOL constant 0, and p, is the defined object language
constant, t.
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f(xi=x) = (pai = P2j);
S < xj) = (P2 ° P2j _’P2j)§
f(Xix;) = (P2 = Pai+1)s
f((4 > B) =(f(4) = f(B));
f(A4) =" f(A)
f(¥x;A) = Vpyi(pai € L = f(A));
F(YX;A) = VP, 1 f(A).

DEFINITION 13. Let g be the following recursive 1-1 function from MSOL for-
mulas to MSOL formulas. Suppose 4 is an MSOL formula and n is the greatest
number such that x, or X, appears in 4. Let g(4) = Vx ---Vx,VX; --- VX, A.

LemMA 1. For any MSOL formula, A, A € MSLO iff g(4) e MSLO.

LeMMA 2. For any closed MSOL formula, A, A € MSLO iff f(A) e R P+.

COROLLARY 1. For any MSOL formula, A, A € MSLO iff fg(A) e R_4P+.

COROLLARY 2. MSLO is 1-reducible to R_ (P +.

L.5. Proof of Theorem 1: R_ 4P + is 1-reducible to L°.

DEFINITION 14. Define a 1-1 recursive function f from object language formulas
to SOL formulas as follows. Note: given an object language formula 4: X will be
free in f(A) just in case p; is free in A4; the only individual variable free in f(A4) will
be x,; and f(A) will contain no m-ary second-order variables for m > 2.

f(p) = Xixy;
f(A & B) = (f(4) & f(B));
f((A = B)) = Vx,(f(A)[x2/x1] 2 Vx3(x3 ® Xz 0 Xy 2 f(B)[x3/x11));
f(¥p:A) = VXif(4).

DEFINITION 15. We define another 1-1 recursive function, g, which assigns to
every formula of the object language a formula in SOL:

g(A) = (semilat 0 = f(A)[0/x]).

LemMA 3. For any object language formula, A, A € R, P+ iff g(A) € L2
COROLLARY 3. R_ 4P+ is 1-reducible to L*.
Theorem 1 is a corollary to Corollaries 2 and 3 and Theorem 2.

§1I. The primary interpretation of Vp and 3p associated with Routley and Meyer’s
relational semantics. (The formal tools are the same as for §1, except that the object
language has the following additional vocabulary: v, ~, 3. Routley and Meyer also
add the two-place connective o, but this can be defined, in any extension of R by
(Ao B)= ~(4—> ~B))

I1.1. The formal semantics. (Except for clauses (vi) and (vii) of Definition 20,
Defirition 22 and Theorem 3, our presentation is a notational variant of Routley
and Meyer’s. Most of the terminology is theirs.)

DEFINITION 16. A relevant model structure (rms) is a quadruple K = <0, K, R,*)
where K is a set, 0 € K, R is a ternary relation on K and * is a unary function on
K satisfying postulates pl—p6 to follow (for all a,b,c,d € K). Before we state the
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postulates, define (for a, b, c,d € K):

(d1) a < biff ROab;

(d2) R%abcd iff (3x € K)(Rabx and Rxcd).
The postulates are

(p1) ROaa;

(p2) Raaa;

(p3) R?*abcd = R%achd,

(p4) R?0abc = Rabc;

(pS) Rabc = Rac*b*;

(p6) a** = a.
(For Routley and Meyer’s semantics the class of algebraic structures under con-
sideration is the class of rms’s.)

Before continuing, we state a useful Lemma:

LEMMA 4. (1) Rabc = Rbac.

(2) (Va,b € K)(3c € K)(Rabc).

PROOF. (1) Suppose Rabc. Since ROaa (p1), R*0abc (d2). So R*0bac (p3). So
Rbac (p4).

(2) Choose a,b € K. Now, RO*0*0* (p2). So R0*00 (pS and p6). So R00*0 (1).
So, since RObb (p1), R*00*bb (d2). So RO*bb (p4). Also, ROaa (p1). So Rala (). So
Raa*0* (p5). So R%aa*bb (d2). So R%aba*b (p3). So (3c)(Rabc & Rca*b) (d2). So
(3c € K)(Rabc). Q.E.D.

DEfFINITION 17. Given an rms K = <0, K, R, *), a K-proposition is any subset, P,
of K such that

[(beP&b<a)=acP]

n(K) (we often just write “n”) is the set of K-propositions.*

DEFINITION 18. A relational model (or “model”) is an ordered pair M = (K, é>
where K is an rms and ¢ is a function which assigns to each atomic formula a mem-
ber of n. M assigns the set ¢(p) to the atomic formula p.

DEFINITION 19. Given a model, M = <K, ¢), and a K-proposition P, M [P/p]is
the model which is just like M except that it assigns P to p.

DEFINITION 20. Given a model, M = <0,K, R, *, ¢, and a formula 4, M (A), the
subset of K assigned to 4 by M, is defined by:

(i) if A is atomic, M(A4) = ¢(A);

(i) M((A & B)) = M(4) n M(B);

(iii) M((A v B)) = M(A)u M(B);

(iv) M((A - B)) = {ce K: (Vae M(A))(Vb e K)(Rcab = b e M(B))};
(v) M(~A) = {a e K: a* ¢ M(A)};

(vi) M(¥pA) = (\{M[P/p)(4): P € n};

(vii) M(3pA) = (J{M[P/p](A): P € n}.

Note: for every formula 4, M(A4) € 7.

“Routley and Meyer [1973] define n(K) as the algebra of propositions rather than simply the set,
but our definition suffices for the present purposes.
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DEFINITION 21 (Validity). Given an rms K, a model M and a formula A4:
M = A iff 0 e M(A). (M validates or satisfies A.)
K = Aiff (VM = (K, p)>)(M &= A). (K validates or satisfies A.)
A is valid iff (VM)(M = A).°
For quantifier-free formulas, the above notions correspond exactly to Routley and
Meyer’s semantic notions.

ROUTLEY AND MEYER’S SOUNDNESS AND COMPLETENESS THEOREM. If A is
quantifier-free, then A is valid iff A is a theorem of R.

DEFINITION 22. RP+ = {A: A is a valid formula}. (RP + is the logic based on
the primary interpretation of Vp and 3p associated with Routley and Meyer’s re-
lational semantics.)

THEOREM 3. RP + is recursively isomorphic to full second-order logic.

I1.2. Proof of Theorem 3: Preliminaries. As in §I, we encode MSLO in the ob-
ject language and encode RP + in SOL. The latter is similar to §1.5. To accomplish
the former, we associate with every semilattice with 0, the rms defined presently.

DEerINITION 23. If L = (L, <) is a semilattice with 0, let K, = <0, L, R, *) where
0 is the <-smallest element of L, and for q, b, ¢ in L:
if 0, a, b, c are distinct then Rabc; and if a < b, then Rabb and Rbab and Rbba; and
a* =a.

THEOREM 4. K, is an rms.

ProoF. K; must satisfy pl—p6 of Definition 16 (§IL.1). p1, p2, p5 and p6 are
straightforward. To see that K satisfies p4, suppose that R?0abc. Then (Ix € L)
(ROax and Rxbc). By the definition of R, x = a. So Rabc. Before we show that K,
satisfies p3, note that R is symmetric—i.e., the following are equivalent: Rabc;
Rbac; Rach; Rbca; Rcab; Rcba. As a result, the following are equivalent: R2abcd,;
R2abdc; R*bacd; R?*badc; R*cdab; R?*dcab; R?*cdba; R?*dcba. Now, suppose that
RZ2abcd. To show that R2acbd, we consider cases and subcases.

Case 1. a =0. RObcd. So, by p4, Rbcd. So Rebd. So, since ROcc, R*Ocbd, as
desired.

Case 2. b, ¢, or d = 0. Using the above equivalences, reduce this to Case 1.

Case 3. b = c. R*acbd follows immediately from R2abcd.

Case 4. a = d. R?abca. So, by the above equivalences, R*acba, as desired.

Case 5. a,b,c,d #0and b #cand a # d.

Case 5.1. a#cand b #d.

5 Among formulas constructed with only the connectives &, —, and only the quantifier V:
(1) there are formulas valid in the Urquhart-inspired sense (of §I), which are not valid in the
Routley-Meyer-inspired sense (of §1I); and
(2) there are formulas valid in the Routley-Meyer-inspired sense which are not valid in the
Urquhart-inspired sense.
A formula of the first kind is the formula which says that every proposition has a classical negation:
Vp3q[((p & q)— Vrr)& (3rr—(p v g))]. A formula of the second kind is the formula which says that every
proposition has a relevant negation. To define this formula, first define 4 - B as Yp(4 — (B — p) — p)).
(Note: the definition conforms to the requirement that the formula of interest be constructed using only
&, —, and V. This is why we do not here define Ao B in the usual way.) Then define f as
3g(q o Vp(((p — q) = q) — p))- (The definitions of A o B and f are from Anderson, Belnap and Dunn
[1991].) The desired formula is: Vp3q[(p > (g — f)) & (g — f)— p)].
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Case 5.11. L is finite. Then L has a <-greatest member, say x. Whether x = a
or x = ¢ or neither, Racx. Similarly Rxbd. So R?acbd as desired.

Case 5.12. L is infinite. Then choose any x distinct from 0, a, b, ¢ and d. By the
definition of R, Racx and Rxbd. So R2achd as desired.

Case 5.2. a = c. Raca. Also, since b # ¢, a # b. So, since a # d, Rabd. So R?acbd,
as desired.

Case 5.3. b = d. Using the above equivalences, reduce this to Case 5.2.

Q.E.D.

(We note that K is singular as defined in §I1.3, Definition 24, below, and super-
classical as defined in §11.4, Definition 25, below.)

Not every rms is such an rms. The trick is to find an object language formula
SEMILAT which is validated by an rms just in case the rms is related to some
semilattice with 0 as in Definition 23. Then, after we have defined functions f and
g similar to those defined in Definitions 12 and 13 (§1.4, above), our main theorem
should look something like this: For any MSOL formula 4, A € MSLO iff
(SEMILAT > fg(A)) € RP+.

There is a special difficulty for the Routley-Meyer semantics which is not present
for the Urquhart semantics. In the context of Urquhart’s semantics, we were able
to reflect metalinguistic implication in the object language by defining a two-
place object language connective, o, with the following property: for every M,
M= (4 > B) iff (M = A= M E B). This ability to reflect metalinguistic impli-
cation in the object language figured prominently in the translation from the MSOL
to the object language in two ways (see Definition 12, §1.4):

(1) it allowed the restriction of propositional quantification to “clements” of
L;and
(2) it provided a convenient translation of (4 > B).
Unfortunately, we have not been able to define such a connective in the context
of Routley and Meyer’s semantics for RP+. (Conjecture: no such connective is
definable.) For this reason, we take a detour through a restricted class of rms’s, the
superclassical rms’s, discussed in §IL4, below. But first we restrict attention to
singular rms’s.

IL.3. Singular relevant model structures. It would be very convenient if, for every
rms K = <0, K, R, *), and for every a,b € K, [(a < b and b < a) = a = b]. This is
not in general the case, but the following definition, theorem and corollary allow
us to restrict our attention to rms’s in which it is the case.

DEerINITION 24. K = <0, K, R, *) is a singular relevant model structure (srms) iff
K is an rms and (Va,b € K)((ROab and ROba) = a = b). A model M is a singular
model (s-model) iff M = <K, ¢) for some singular K.

THEOREM 5. For every model M = {0,K, R, *, ¢) there is an s-model M’ such that
M’ validates exactly the same formulas which M validates.

ProoFr. Consider some model M = <0,K,R,*,¢). For a,b € K, define a = b as
(ROab and ROba). ~ is an equivalence relation. Foranyae K leta' = {be K: b~ a}.
Let K’ = {a":ae K}. Let R’ be the following relation on K': {<a’,b’,c’>: Rabc}.
Define (a')* as (a*), and ¢'(4) as (¢(A)). (¥ and ¢’ are well defined.) Let
M' =<{0,K',R,*,¢'>. Then M’ is an s-model which validates exactly the same
formulas as M. Q.ED.
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COROLLARY 4. RP+ = {A: A is validated by every s-model}.

Henceforth, we restrict attention to srms’s.

IL.4. Superclassical relevant model structures.

DEerFINITION 25. An rms (srms) K = (0,K,R,*) is superclassical iff (Va e K)
(a* = a). We use the abbreviation “Krms” (“Ksrms”) for “superclassical rms”
(“superclassical srms”). (The terminology and abbreviations are adapted from
Routley, Meyer, Plumwood and Brady [1982], where such and similar rms’s are
studied.) A model (s-model) M = (K, ¢) is superclassical iff K is. We use the term
“K-model” (“Ks-model”) for “superclassical model” (“superclassical s-model”).

Note 1. If K is a Ksrms, then n(K) = 2(K).

Note 2. If L is a semilattice with 0, then K, is a Ksrms.

DEerINITION 26. The logic KR is the unquantified propositional logic which
results by adding the following axiom scheme to R: (4 & ~ A) — B). (See Routley,
Meyer, Plumwood and Brady [1982].)

THEOREM 6 (Routley, Meyer, Plumwood and Brady [1982]). If A contains no
propositional quantifiers, then A is a theorem of KR iff A is validated by every
K-model.

DEerINITION 27. KRP+ = {4: 4 is validated by every K-model}.

THEOREM 7. KRP+ = {A: A is validated by every Ks-model}. (See Theorem 4,
§I1.3, above.) :

THEOREM 8. KRP + is recursively isomorphic to full second-order logic.

Given Theorem 2 (§1.3), Theorems 3 and 8 follow from these results: §11.5: MSLO0
is 1-reducible to KRP+; §11.6: KRP+ is 1-reducible to RP+; §I1.7: RP+ is
1-reducible to L2,

I1.5. Proof of Theorems 3 and 8: MSLO0 is 1-reducible to KRP +.

For Table 3, let K = {0,K,R,*) be an srms; let a, b, ¢, etc., range over the ele-
ments of K; and let S and S’ range over the subsets of K.

Note for Table 3. The definition of “semilattice-like” is independent of the
choice of L.

TaBLE 3. Useful meta-linguistic definitions.

Definiendum Definiens

[a] {b: a < b}. Note: [a] € =, and, if K is a Ksrms,
then [a] = {a}.

a<b Rbba Note: < is a partial ordering for an
interesting class of srms’s (including semilattice-
like srms’s, as defined in this table, below).
<is, in general, quite different from <.

SoS {c: (3a € S)(3b € §')(Rabc)}

K is semilattice-like K is isomorphic to K;, for some semilattice with 0O,
L (where “isomorphic” is defined for rms’s in
the obvious way).

T

(K, ¢) is semilattice-like | K is semilattice-like.
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The notes and postscripts to Tables 1 and 2 in §1.4 are of substantial importance
in interpreting Tables 4 and through 6 in the present section.

For Tables 4 through 6, assume that K = {0,K,R,*) is a Ksrms and that
M = (K, ¢) is a Ks-model.

Note for Table 6. In the last row of the second column in Table 6 we use
the abbreviations (Vp € K)A and (3p € K)A. These stand for Vp(p € K o 4) and
Jdp(p € K & A), respectively.

Now, to show that MSLO is 1-reducible to KRP+, define functions f and
g as in Definitions 12 and 13 (in §I.4, above) with the following exception: in
the definition of the recursive function, f, (Definition 12) replace the clauses for
f(x; < x;), f(TA), and f((Vx;)A) with (respectively):

fi <x) = (p2i X pyy)s
f(mA) = ~f(A4); and
S((Vx;)A) = (Vp2i)(p2i € K o f(A)).

TaABLE 4. Object language connectives and their
two meta-linguistic interpretation.

What the formula says: What the formula names:
Formula M = Formula iff M(Formula)=
(A & B) MEAand M= B M(A)n M(B)
(4 v B) MEAor M= B M(A)u M(B)

(4 B) M(A) = M(B)

~A M A K\M(A)
IpA (3S = K)(M[S/p] = A)
VpA (VS < K)(M[S/p] &= A)

TABLE 5. Preliminary object language definitions.

What the What the
definiendum says: definiendum names:
Definiendum Definiens M & Definiendum iff M (Definiendum)=
F Vpp %]
t Vp(p - p) {0}
(Ao B) (~A v B) MEA=MEB K\M(A) U M(B)
(A~ B) ((A—>B)& (B — A)) M(A4) = M(B)
(A > B) ~(A - ~B) M(A) - M(B)
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TaBLE 6. Further object language definitions.

What the definiendum says:
Definiendum Definiens M & Definiendum iff

(A € K) ~(A-> F)&Vp((A & p) = F) v (A - p)) | M(A) = {a} for some a in K

R(A,B,C) | AeK&BeK&CeK&(C— A-B) | M(A)={a}, M(B) = {b}, and
M(C) = {c}, where Rabc

(A< B) R(B, B, A) M(A) = {a} and M(B) = {b},
where a <b
SEMILAT | (WpeK)(VqeK)VreK)[p=<p & M is semilattice-like
(P=q&q=p>(p-9 &

(pP=q&q=<n>p=r]&(VpeK)
(VgeK)FreK)[p=Zr&q=3r&
(VseK)(p=<s&q=<s)or=<s] &
(Vpe K)t=p)

Then, we have the following lemmas and corollaries. (Compare with Lemmas 1 and
2 and Corollaries 1 and 2 in §1.4.)

LEMMA 5. For any MSOL formula, A, A € MSLO iff g(A) e MSLO.

LEMMA 6. For any closed MSOL formula, A, A€ MSLO iff (SEMILAT o
f(A)) e KRP +.

COROLLARY 5. For any MSOL formula, A, Ae MSLO iff (SEMILAT o
fg(A)) e KRP +.

COROLLARY 6. MSLO is 1-reducible to KRP +.

11.6. Proof of Theorems 3 and 8: KRP+ is 1-reducible to RP +. Theorem 9,
below, suffices.

LemMMA 7. If M =<0,K,R,*,¢> is an s-model then M is a Ks-model iff
M = Vpvq((p & ~p) > g).

PRrOOF. (=) is straightforward.

(<=). Suppose M = VpVq((p & ~p)— q). Choose any ae K, and let M' =
M[[al/p][J/q]- Then M’ = (p & ~p)— 4. So [alnM'(~p) < . So a¢ M'(~p).
So a* € [a]. Similarly a** € [a*]. So a* < a** = a < a*. So, since M is an s-model,
a* =a. Q.E.D.

THEOREM 9. A e KRP + iff [VpVq((p & ~p)—q) & t] > A€ RP+.

PROOF. (<=). Suppose [VpVq((p & ~p)— q) & t] - A € RP +, and suppose that
M is a Ks-model. By Lemma 7, M &= VpVq((p & ~p)— q), and, since M =,
M = VpVq((p & ~p) — q) & t. Also, since M is an rms,

M = [VpVq((p & ~p) = q) & t] = A.
So,M = A.S0 A e KRP+.

(=). Suppose [Vp¥q((p & ~p) - q) & t] - A ¢ RP +. Then there is an s-model
M = <{0,K,R,*, ¢) such that M & [VpVq((p & ~p) — q) & t] — A. So there exists
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b € K such that

(1) be M(Yp¥q((p & ~p) = q));

(2) b e M(¢t); and

(3) b¢ M(A).

Claim. M is a Ks-model.

Proof of Claim. Choose any a € K, and let M’ = M[[a]/p][&/q].- Then, by
(1), be M'((p & ~p)—q). So, (Ve,de K)[(ce M'(p & ~p) and Rbcd) = d e F].
So, (Ve,d e K)(c ¢ M'(p & ~p) or not Rbcd). Now, by Lemma 4 (§II.1, above),
(Ve € K)(3d € K)(Rbcd). Therefore, (Vc e K)(c ¢ M'(p & ~p)). Soa¢ M'(p & ~p).
Now, a € [a] = M'(p). So, a¢ M'(~p). So, a* € [a]. So a < a*. This argument is
completely general wrt a; so a* < a**. So a* < a. So, since M is an s-model, a* = a.
So M is a Ks-model.

By (2), b € M(t). So 0 < b. So R00b. So R0b*0*. So R0b0. So b < 0. So, since M
is an s-model, b = 0. So, since b ¢ M(A4), 0 ¢ M(A4). So M is a Ks-model such that
M A.So A ¢ KRP+. Q.E.D.

I1.7. Proof of Theorems 3 and 8: RP + is 1-reducible to L2. To show this, encode
RP+ int L2 Proceed as with the encoding of R_ 4P+ into L? (in §1.6, above),
with the following three exceptions:

(1) take the language of L? to contain both a 3-place relation constant, R, and
a one place function constant, *, rather than the 2-place relation constant
< (see §1.3, Definition 7);

(2) replace the defined formula semilatO (defined in §1.3, Definition 10,
and used in §1.5 Definition 15) with the following formula, rms, in the
language of L% Vx Vx,Vx;Vx,{*(*(x,)) = x; & ROx,x, & Rx,x;x; &
[Fxs(Rx;x,X5 & RX5x3%4) D Ix5(RXX3X%5 & Rx5x,%4)] & [Ix5(ROx x5 &
Rxsx;X3) 2 Rx1x,x3] & [Rx;Xx;X3 D Rx *(x;3)*(x,)]};

(3) in the definition of the recursive function, f (§1.5, Definition 14), replace
the clause for f((4 — B)), and add a clause for f(~ A) as follows:

f(A = B)) = Vx;¥x3(f(A)[x2/x,] & Rx;x,x3) > f(B)[x3/x,]);
f(~A) = T f(A)[*xy)/x,].

§III. Technical and logico-philosophical remarks.

III.1. Technical remarks. We have used a quite general method for proving that
systems resulting from an algebraically-motivated primary interpretation of pro-
positional quantification are recursively isomorphic to full second-order classical
logic. Fine [1970] defines modal analogues to R_,z,P+ and RP+. Assuming a
possible world semantics with an accessibility relation, he defines Kn+, Tn+,
K4n +, S4n +, S4.2n +, and B+, and he discusses proofs that second-order arith-
metic can be encoded into these. One can use methods similar to those in the
present paper to show that these modal systems are recursively isomorphic to
second-order logic. A similar project would be to get a grip on the complexity of the
primary interpretation of the propositional quantification associated with Kripke’s
semantics for intuitionism (see Kripke [1963]). (I do not know what the result would
be; the problem is with reflecting metalinguistic (classical) implication in the object
language. See the discussion in §11.6, above.)
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We know that some primary interpretations are axiomatisable: Kaplan [1970]
and Fine [1970] axiomatise the primary interpretation of the quantifiers over S5
associated with the Kripke’s possible world semantics—indeed, Fine [1970] shows
that S5z + is decidable. Such results suggest that some algebras (for example, sets
of possible worlds with no accessibility relation) do not have enough structure for
our methods. Some algebras might have too much. Perhaps some very general
results are in the neighborhood. Perhaps there are interesting sufficient and/or
necessary conditions on an algebraic semantics for the resulting primary inter-
pretations of the propositional quantifiers to be axiomatisable, or arithmetical, or
recursively isomorphic to second-order logic.

II1.2. Logico-philosophical remarks. One might wonder whether these results
bode well or ill for relevance logic. They seem to bode ill: after all, such a natural
interpretation of the propositional quantifiers is not axiomatisable within a logical
context which prides itself on its proof-theoretic motivation. But this misses the
point of the proof-theoretic motivation of the relevance project. The primary inter-
pretations are semantically motivated, and their nonaxiomatisability just goes to
show that you should not put too much trust in your (formal) semantic intuitions
when approaching R and its cousins. There is an interpretation of the propositional
quantifiers which readily avails itself to a natural axiomatisation and a natural
deduction system (see note 1). The mild semantic awkwardness of this secondary
interpretation should not be too hard to take for anyone who countenances the
relevant model structures of Routley and Meyer [1973] and the frames of Fine
[1974]; like the Routley-Meyer and the Fine semantics, the secondary semantics
for propositional quantifiers is motivated by proof-theoretic rather than semantic
considerations. Indeed, this discussion of the primary and secondary interpreta-
tions of the propositional quantifiers may be a testament to the degree to which,
in relevance logic at least, semantics is abstract proof theory.

§IV. Appendix Proof of Theorem 2, §1.3. Recall that Theorem 2, in §I.3 states
that L2 is 1-reducible to MSLO. First we give some definitions.
DEFINITION 28. A lattice is an ordered pair L. = (L, <) where
(1) < partially orders L; and
(2) each pair, {a, b} of points in L has a least upper bound, a - b, and a greatest
lower bound, a A b, in L.
A distributive lattice is a lattice such that, for points a, b, and c:

aobnrc)y=(@ob)yar(acb) and an(boc)=(anb)o(anc).

DEFINITION 29. Given a lattice L = (L, <) an ideal is a nonempty subset I of
L which is such that (Va,be I)(a b e I)and (Vae I)(Vb e L)(if b < a then be I).

DEerINITION 30. The theory of distributive lattices with second-order monadic
quantification over ideals (DLMI) is the set of sentences in MSOL which are
validated by every model (1) whose underlying structure is a distributive lattice;
(2) which assigns ideals to predicate variables; and (3) for which we interpret mo-
nadic second-order quantification as ranging over ideals.

Theorem 2 of §I.3 follows from Theorems 10 and 11 below and the following:

THEOREM 2.2 (Nerode and Shore [19807]). DLMI is recursively isomorphic to L.
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We continue with some definitions.

Note. Just as we defined the MSOL formula z = x o y (Definition 9, §1.3), we can
define z & x A y. Using these, we can define the formula (with one free predicate
variable): X is an ideal. Also, just as we defined (Definition 10) the formula semilat
(which “says that” the model is a semilattice), we can define a formula, distlat, which
“says that” the model is a distributive lattice.

DEFINITION 33. The monadic theory of distributive lattices (MDL) is the set of
MSOL formulas validated by all models which validate distlat. The monadic theory
of semilattices (MSL)is the set of MSOL formulas which are validated by all models
which validate semilat.

THEOREM 10. DLMI is 1-reducible to MSL.

Proor. MDL is 1-reducible to MSL, since A € MDL iff (distlat > A) e MSL.
To show that DLMI is 1-reducible to MDL, first let f be the recursive 1-1 function
which maps an MSOL formula 4 to an MSOL formula just like A, except that
subformulas of the form (VXB) are replaced by VX (X is an ideal = f(B)). Let g
be as in Definition 13 (§1.4). Then, for all MSOL formulas A, A € DLMI iff
fg(A) e MDL. Q.ED.

THEOREM 11. MSL is 1-reducible to MSLQ.

ProoF. First let h be the following 1-1 recursive function from MSOL
formulas to MSOL formulas: h(A4) results by replacing every occurrence of x; by
X;+1 and by replacing every occurrence of 0 by x;. Next, let g be as in Defini-
tion 13 in §1.4. Finally let the 1-1 recursive function f map a formula A4 to a formula
just like A except that occurrences of subformulas of the form VxB are replaced by
Vx(—1x = 0 = f(B)). Note: A € MSL iff fhg(A) € MSLAO. Q.ED.
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