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ABSTRACT. In this paper, we define some consequence relations based on supervaluation
semantics for partial models, and we investigate their properties. For our main consequence
relation, we show that natural versions of the following fail: upwards and downwards
Lowenheim–Skolem, axiomatizability, and compactness. We also consider an alternate
version for supervaluation semantics, and show both axiomatizability and compactness
for the resulting consequence relation.
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1. PARTIAL MODELS AND SUPERVALUATION SEMANTICS

In this paper, we define some consequence relations based on supervalua-
tion semantics for partial models, and we investigate their properties.

Given a first order language L, let a partial model for L be an ordered
pair M = 〈D, I 〉, where D, the domain of discourse, is a non-empty set,
and I is a function assigning

– to each name of L a member of D;
– to each n-place function symbol of L an n-place function on D;
– to some, all or none of the propositional variables of L a member

of {t, f} so that I restricted to the propositional variables is a partial
function; and

– to each n-place relation symbol R of L an ordered pair I (R) =
〈I+(R), I−(R)〉 with I+(R) ⊆ Dn, I−(R) ⊆ Dn and I+(R) ∩
I−(R) = ∅. I+(R) and I−(R) are the extension and the antiextension
of R.

Partial models have been used to represent a number of linguistic phe-
nomena, such as vagueness and truth-theoretic paradoxes.

A partial model M ′ = 〈D′, I ′〉 is a precisification of M = 〈D, I 〉 (in
symbols, M ≤M ′) iff

– D′ = D;
– I ′(c) = I (c) for each name or function symbol c;
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– for each propositional variable p, if I (p) is defined then I ′(p) =
I (p); and

– I+(R) ⊆ I ′+(R) and I−(R) ⊆ I ′−(R) for each relation symbol R.

A partial model M = 〈D, I 〉 is classical iff both I (p) is defined for
each propositional variable and I+(R) ∪ I−(R) = Dn for each n-place
relation symbol R.

Given a modelM = 〈D, I 〉, an assignment of values to the variables, or
assignment, is a function s : vbles → D, where vbles is the set of variables
in the language. If M is classical, s is an assignment, and A is a formula
with or without free variables, the truth value VM,s(A) ∈ {t, f} is defined
in the standard way.

Given a partial model M, assignment s, and sentence A, define

VM,s(A) = t iff VM ′,s(A) = t for all classical precisifications M ′ ofM,

VM,s(A) = f iff VM ′,s(A) = f for all classical precisifications M ′ ofM.

If A has no free individual variables, we just write VM(A) for VM,s(A),
since s drops out as irrelevant. The valuation, i.e. the partial assignment
of truth values to sentences, thus defined is a supervaluation determined
by the partial model M. Note that the sentence A is a theorem of classical
logic iff VM(A) = t for every partial model M iff VM(A) �= f for every
partial model M.

Formal supervaluation semantics are first introduced by van Fraassen
(1966), but in a context different from that of our partial models. Van
Fraassen is interested in languages with truth value gaps generated by
nondenoting names, rather than by partial predicates: thus his notion of
a partial model is quite different to ours. Supervaluation semantics for lan-
guages with nondenoting names are studied in-depth by Woodruff (1984).
The supervaluation idea occurs as early as Mehlberg’s (1958) treatment
of vagueness, though Mehlberg’s presentation is informal. Fine (1975)
presents formal supervaluation semantics for vagueness. See also Lewis
(1970) and Dummett (1970). Supervaluations for partial models in which
“true” is a partial predicate were implicit in van Fraassen’s (1968) discus-
sion of the truth-theoretic paradoxes, but this was first fully developed by
Kripke (1975). See McGee (1991) for a supervaluation treatment, using
partial models, of “true” as a vague predicate.

We define three superconsequence relations (adopting terminology
from Woodruff (1984)). Here we assume that � and � are sets of sen-
tences.
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� �t � iff for every partial model M, if VM(A) = t
for every A ∈ � then VM(B) = t for some
B ∈ �.

� �f iff for every partial model M, if VM(B) = f
for every B ∈ � then VM(A) = f for some
A ∈ �.

� � � iff � �t � and � �f �.

The idea of adding backwards falsehood preservation to the more standard
truth preservation, and the idea of allowing both multiple antecedents and
multiple consequents à la Gentzen, are due to Scott (1975), though he
was working with the strong Kleene scheme (see below) for evaluating
sentences in partial models, rather than with the supervaluation scheme.
Motivations for adopting these ideas are discussed in M. Kremer (1986)
(68–75) and (1988) (see Section 5, below). Note:

(1) � �t B iff � classically entails B,
(2) A �f � iff A classically entails � (in the sense that every classical

model that makes A true makes some member of � true), and
(3) A � B iff A classically entails B.

Our main results concerning �, �t and �f are that their finitary frag-
ments are not axiomatizable, and that the relations themselves are not
compact (see Section 3, below). Thus, although supervaluation semantics
have been touted as preserving classical logic – mostly on account of (1),
above – any such claim must be muted by our results.

Implicit in Mehlberg and explicit in Fine and others is an idea not yet
mentioned: that the truth value of A in a partial model M is determined
not by its truth value in all classical precisifications, but by its truth value
in all admissible classical priecisifications. Scarlet and red are probably
both vague predicates, and the partial model M representing the use of
these predicates will contain some item in neither the extension nor the
antiextension of either predicate. Yet we might insist that in every admissi-
ble classical precisification – every classical precisification relevant to the
truth values of the sentences of the language – if an item is in the extension
of scarlet then it must also be in the extension of red. This would ensure,
for example, that ∀x(x is scarlet ⊃ x is red) is true. In Section 4, below,
we consider superconsequence relations based on this additional idea.

The main rivals to supervaluations are the valuations determined by
the weak and strong Kleene schemes. The Kleene schemes agree with the
supervaluation scheme for atomic sentences, for example, they agree that
the atomic sentence Rc is t if I (c) ∈ I+(R) and f if I (c) ∈ I−(R). If
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we add a third “truth value” n for “neither true nor false”, then the weak
and strong Kleene schemes can be characterized as follows, with ∀ and ∃
treated analogously to & and ∨. For both Kleene schemes, ¬t = f and
¬f = t and ¬n = n. For both Kleene schemes, if x, y ∈ {t, f} then (x & y)
and (x ∨ y) are as in the classical scheme, e.g., (t & f) = f. For the strong
Kleene scheme, (t & n) = (n & t) = (f ∨ n) = (n ∨ f) = (n & n) =
(n ∨ n) = n and (f & n) = (n & f) = f and (t ∨ n) = (n ∨ t) = t. For the
weak Kleene scheme, if either x = n or y = n then (x∨ y) = (x & y) = n.
Thus, on both Kleene schemes, if A is n, then so is (A∨¬A). The method
of supervaluations, by contrast, always assigns the value t to (A∨¬A) and
to every other classical first order theorem.

2. ANALOGUES TO CLASSICAL METATHEOREMS

Say that a set � of sentences is satisfiable [classically satisfiable] iff there
is a partial model [classical model] M such that VM(A) = t for each
A ∈ �. Note that satisfiability is equivalent to classical satisfiability. Thus,
by classical compactness, if every finite subset �′ of the set � of sentences
is satisfiable, then so is �. Thus the supervaluation semantics (trivially)
satisfies compactness in one sense. In Section 3 we will show that a dif-
ferent kind of compactness, superconsequence compactness as opposed
to the current sentence-set compactness, fails for the superconsequence
relations �t, �f and �. In Section 4, we will show that superconsequence
compactness succeeds on the definition of superconsequence based on the
supervaluation approach that evaluates a sentence in a partial model by
considering all admissible precisifications.

The supervaluation semantics also satisfies weak versions of the down-
wards and upwards Lowenheim–Skolem Theorems. Thus:

DOWNWARDS AND UPWARDS LOWENHEIM–SKOLEM THEO-
REM. Suppose that the cardinality of the language is κ , that � is a set
of closed sentences, and that there is a modelM of cardinality λ ≥ κ , such
that VM(A) = t for every A ∈ �. Then for any µ ≥ κ there is a model M ′
of cardinality µ such that VM ′(A) = t for every A ∈ �.

Proof. Given M as in the hypothesis of the theorem, let M∗ be any
classical precisification of M; then VM∗(A) = t for every A ∈ �, and the
cardinality of M∗ is λ. By the classical Lowenheim–Skolem theorem, for
any µ ≥ κ there is a classical model M ′ of cardinality µ which is elemen-
tarily equivalent to M∗; then M ′ is also a partial model, and VM ′(A) = t
for every A ∈ �. ✷



SOME SUPERVALUATION-BASED CONSEQUENCE RELATIONS 229

Nonetheless, stronger versions of the Lowenheim–Skolem theorem fail. For
example, neither the upwards nor the downwards parts of the following
holds:

Suppose that the cardinality of the language is κ , that � and � are sets
of closed sentences, and that there is a model M of cardinality λ ≥ κ ,
which is a counterexample to the consequence claim that � �t �, that is
VM(A) = t for every A ∈ � and VM(A) �= t for every A ∈ �. Then
for any µ ≥ κ there is a counterexample M ′ of cardinality µ such that
VM ′(A) = t for every A ∈ � and VM ′(A) �= t for every A ∈ �. (Similarly
for �f, and �.)

Proof. For the downwards part, consider a countable language with
identity, and with one relational predicate L and one unary predicate F .
Let M be the following partial model: D = R, I+(F ) = I−(F ) =
∅, I+(L) = {〈r, s〉: r ≤ s}, and I−(L) = {〈r, s〉: r > s}. Let � be
the set of sentences true in M, and let � = {∃xFx, ∃x¬Fx}. Note that
VM((∃xFx & ∃y∀x(Fx ⊃ Lxy)) ⊃ ∃z(∀x(Fx ⊃ Lxz)& ∀y(∀x(Fx ⊃
Lxy) ⊃ Lzy)) = t. Note also that VM(∃xFx) = VM(∃x¬Fx) = n; so
that M is a counterexample to the consequence � �t �. Finally, note that
for any sentence A in the F -free fragment of the language, VM(A) = t or
VM(A) = f.

Now suppose that M ′ = 〈D′, I ′〉 is a countable model which makes
all of � true. Note first that for any sentence A in the F -free fragment of
the language, we wil| have that VM ′(A) = VM(A). (Either VM(A) = t
or VM(A) = f; in the first case, A ∈ � and VM ′(A) = t; in the second
case, VM(¬A) = t, ¬A ∈ �, and VM ′(A) = f.) Furthermore, the inter-
pretation of L in I ′ is total in that I ′+(L) ∪ I ′−(L) = D′ × D′, since
VM ′(∀x∀y(Lxy ⊃ ¬Lyx)) = t. (Suppose 〈d, d ′〉 ∈ D′ ×D′ and 〈d, d ′〉 /∈
I ′+(L) ∪ I ′−(L). Then, whether 〈d ′, d〉 ∈ I ′+(L), I ′−(L), or neither, it
is easy to construct a precisification M∗ of M ′ with VM∗(∀x∀y(Lxy ⊃
¬Lyx)) = f.) Hence the structure of M ′ under I ′+(L) is isomorphic to
that of the rational numbers under ≤, and there is some non-emptyX ⊆ D′
which has an upper bound under I ′(L) but has no least upper bound under
I ′(L).

Consider the classical model M∗ with domain D′ such that I ∗+(L) =
I ′+(L) and I ∗+(F ) = X. VM∗((∃xFx & ∃y∀x(Fx ⊃ Lxy)) ⊃
∃z(∀x(Fx ⊃ Lxz)& ∀y(∀x(Fx ⊃ Lxy) ⊃ Lzy)) = f. It follows that M∗
is not a precisification of M ′. Hence either for some d ∈ X, d ∈ I ′−(F ),
or for some d /∈ X, d ∈ I ′+(F ). In the first case, VM ′(∃x¬Fx) = t, and
in the second case VM ′(∃xFx) = t, so M ′ is not a counterexample to the
consequence � �t �.
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For the upwards part, consider a countable language with identity, and
with one relational predicate S and one unary predicate F . Let M be the
following partial model:D = N, I+(F ) = I−(F ) = ∅, I+(S) = {〈n,m〉 :
m = n+ 1}, I−(S) = {〈n,m〉 : m �= n+ 1}. Let � be the set of sentences
true in M, and let � = {∃xFx, ∃x¬Fx}. Note that VM((∀y(¬∃xSyx ⊃
Fx)& ∀x∀y((Fx & Syx) ⊃ Fy)) ⊃ ∀xFx) = t. As above, VM(∃xFx) =
VM(∃x¬Fx) = n, so M is a counterexample to the consequence � �t �;
and for any sentence A in the F -free fragment of the language, VM(A) = t
or VM(A) = f.

Now suppose thatM ′ = 〈D′, I ′〉 is an uncountable model which makes
all of � true. As above, for any sentence A in the F -free fragment of the
language, VM ′(A) = VM(A); and I ′+(S) ∪ I ′−(S) = D′ × D′. Hence
the structure of M ′ under I ′+(S) is a non-standard uncountable model of
the theory of the natural numbers under successor; and so there is a set
X = {d0, d1, d2, . . .} ⊆ D′ which behaves like the natural numbers under
I ′+(S), and there is an element d ∈ D′ − X.

Consider the classical model M∗ with domain D′ such that I ∗+(S) =
I ′+(S) and I ∗+(F ) = X. VM∗((∀y(¬∃xSyx ⊃ Fx)& ∀x∀y((Fx &
Syx) ⊃ Fy)) ⊃ ∀xFx) = f. As above, M∗ is not a precisification of M ′,
so either for some d ∈ X, d ∈ I ′−(F ), or for some d /∈ X, d ∈ I ′+(F ). In
the first case, VM ′(∃x¬Fx) = t, and in the second case VM ′(∃xFx) = t,
and M ′ is not a counterexample to the consequence � �t �. ✷
The above proofs can easily be adapted to show that none of the following
hold:

(1) If the cardinality ofM is greater than the cardinality of the language,
then there is a modelM ′ with cardinality equal to that of the language
which is elementarily equivalent toM.

(2) If the cardinality of M is the cardinality of the language, and if κ is
some greater cardinality, then there is a model M ′ of cardinality κ ,
such that M is elementarily equivalent toM ′.

(3) If the cardinality ofM is greater than the cardinality of the language,
then M has an elementary submodel whose cardinality is that of the
language.

Here, partial models M and M ′ are elementarily equivalent iff for every
closed sentence A, VM(A) = VM ′(A); a partial model M ′ = 〈D′, I ′〉 is
a submodel of M = 〈D, I 〉 iff D′ ⊆ D, I ′(c) = I (c) for every name c,
I ′(f ) is I (f ) restricted to Dn, for every n-place function symbol f , and
I ′+(R) = I+(R) ∩Dn and I ′−(R) = I−(R) ∩Dn for each n-place predi-
cate R; andM ′ is an elementary submodel ofM iffM ′ is a submodel ofM,
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and for every formula A and assignment s of values in D′ to the variables,
VM,s(A) = VM ′,s(A).

3. SUPERCONSEQUENCE RELATIONS

Our main theorems concerning �t, �f and � are the Superconsequence
Nonaxiomatizability Theorem and the Superconsequence Noncompactness
Theorem, below. First, we should point out that � is a mildly strange con-
sequence relation: it is not closed under substitution. For example, suppose
that p and q are propositional variables. Note that p ∨ q � p, q, but that
p ∨ ¬p � p, ¬p. For more about this, see the Substitution Theorem, in
Section 4, below.

We say that � � B is axiomatizable iff the set {〈�,B〉 : � is a finite set
of sentences and B is a sentence and � � B} is recursively enumerable;
and that � � � is axiomatizable iff {〈�,�〉 : � and � are finite sets of
sentences and � � �} is recursively enumerable. Similarly for “A � � is
axiomatizable,” and similarly with � replaced by �t or �f.

SUPERCONSEQUENCE NONAXIOMATIZABILITY THEOREM. Sup-
pose that the language has two two-place relation symbols, R and S. Then
the following are nonaxiomatizable: (1) � �f B, (2) � � B, (3) A �t �,
(4) A � �, (5) � �t �, (6) � �f �, and (7) � � �.

Proof. We will simultaneously show (1) and (2). (3) follows from (1)
since � �f B iff ¬B �t {¬A : A ∈ �}. Similarly, (4) follows from (2). (5)
follows from (3), (6) from (1), and (7) from (2). Let an R-sentence be any
sentence A in which the identity sign does not occur, and such that R is the
only relation symbol, name or function symbol occurring in A. For (1) and
(2), it will suffice to show that if either � �f B is axiomatizable or � � B
is axiomatizable, then there is a positive test for the classical consistency
of R-sentences B.

So assume that either � �f B is axiomatizable or � � B is axiomati-
zable. Shortly we will define a sentence C, and we will define, for every
R-sentence B, a finite set �B such that

(∗) �B � B ∨ C iff �B �f B ∨ C iff B is classically consistent.

Moreover our definition will imply that the function from B to �B is recur-
sive. (∗) will suffice to give us a positive test for the classical consistency
of R-sentences B, since (1) our function from B to �B is recursive and (2)
by our assumption of the axiomatizability either of � �f B or of � � B,
we have a positive test either of whether �B �f B ∨ C or of whether
�B � B ∨ C.

Let C be (∀x∃ySxy & ∀x∀y∀z(Sxy& Syz ⊃ Sxz)) ⊃ ∃xSxx. The
important thing about C is that C is true in every finite classical model
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and thus in every finite partial model. For every R-sentence B, let �B =
{B∨∀x∀yRxy, B∨¬∀x∀yRxy, B∨∃x∃yRxy, B∨¬∃x∃yRxy}. Note
that �B �t B ∨ C since �B classically entails B. So �B � B ∨ C iff
�B �f B ∨ C. So for (∗) it suffices to show that �B �f B ∨ C iff B is
classically consistent.

(⇒) Assume that B is not classically consistent. Then every partial
model falsifies B. Let M = 〈D, I 〉 where D = N (the set of natural
numbers), and where I assigns 〈∅,∅〉 to R and interprets S as classical <
(less than). Note that VM(B) = f and VM(C) = f so that VM(B ∨ C) = f.
On the other hand, VM(A) is neither t nor f for any sentence A ∈ �B . Thus
�B �f B ∨ C.

(⇐) Assume that B is classically consistent. Let M = 〈D, I 〉 be any
partial model such that VM(B∨C) = f, in which case VM(B) = VM(C) =
f. To show that �B �f B ∨ C, we want VM(A) = f for some A ∈ �B .
For this it suffices to show that I (R) �= 〈∅,∅〉. So suppose that I (R) =
〈∅,∅〉. First, D is infinite since VM(C) = f. Since D is infinite and B is
classically consistent and does not contain the identity sign, B is true in
some classical model with domain D. And since S does not occur in B,
B is true in some classical model M ′ = 〈D, I ′〉 with I+(S) ⊆ I ′+(S) and
I−(S) ⊆ I ′−(S). Note that M ≤ M ′, since I (R) = 〈∅,∅〉 and I+(S) ⊆
I ′+(S) and I−(S) ⊆ I ′−(S). But this contradicts the fact that VM ′(B) = t
and VM(B) = f. ✷

Remark. With some coding, the Nonaxiomatizability Theorem can be
strengthened to languages with only one two-place relation symbol, no
other relation symbol, no identity sign, no names and no function sym-
bols.

SUPERCONSEQUENCE NONCOMPACTNESS THEOREM. � is
not compact: there are sets � and � of sentences such that � � � but
�′

� �′ for every finite �′ ⊆ � and every finite �′ ⊆ �. Similarly, �t and
�f are not compact.

Proof. Let A be the sentence ∃xRxx ∨ ∃x∀y¬Rxy ∨ ∃x∃y∃z(Rxy &
Ryz& ¬Rxz). For n ≥ 1, let Bn be the sentence ∀x1 . . .∀xn+1((Rx1x2 &
· · · &Rxnxn+1) ⊃ (Rx1x1 ∨Rx2x1 ∨· · ·∨Rxnx1 ∨Rx2x2 ∨· · ·∨Rxnx2 ∨
· · · ∨ Rxnxn)). (For example, B3 is ∀x1∀x2∀x3∀x4((Rx1x2 &Rx2x3 &
Rx3x4) ⊃ (Rx1x1 ∨Rx2x1 ∨Rx3x1 ∨Rx2x2 ∨Rx3x2 ∨Rx3x3)).) Note that
VM(A) = t in every classical model with finite domain; and VM(Bn) = t
in every classical model whose domain has cardinality ≤n.

Let � =df {∃x∃yRxy, ∃x∃y¬Rxy,B1, B2, B3, . . .}. Shortly, we will
show that
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(1) A �t �
′ for every finite �′ ⊆ �,

(2) A �t �,

(3) A � �′ for every finite �′ ⊆ �, and

(4) A � �.

(1) and (2) imply that �t is not compact. (3) and (4) imply not only that
� is not compact, but that � is not even “compact on the right” in the
obvious sense, even when there is only one sentence on the left. A dual
argument shows that �f is not compact and that � is not “compact on
the left”, even when there is only one sentence on the right. Note that
A classically implies �. So A �f �. Thus, for (4) it suffices to show (2).
Also, (3) follows from (1). So it suffices to show (1) and (2).

First we prove (1). It suffices to show that A �t �n where �n =
{∃x∃yRxy, ∃x∃y¬Rxy,B1 , B2, . . . , Bn}, for each n ≥ 1. For this, let
M = 〈D, I 〉 whereD = {1, 2, 3, . . . , n+1} and where I+(R) = I−(R) =
∅. Note:

(1.1) VM(∃x∃yRxy) = VM(∃x∃y¬Rxy) = n.

(1.2) For i = 1, . . . , n, VM(Bi) �= t. To see this, let M ′ = 〈D, I ′〉, where
I ′+(R) = {〈i, i + 1〉 : i = 1, 2, . . . , n}; and I ′−(R) = D2 − I ′+(R).
M ′ is a classical precisification ofM. Furthermore VM ′(Bi) = f, for
i = l, . . . , n.

(1.3) VM(A) = t. This is because D is finite, so that in every precisifica-
tion ofM, A is true.

(1) follows from (1.1), (1.2), and (1.3).
Next we prove (2). So suppose that A �t �. Let M = 〈D, I 〉 be

a partial model such that VM(∃xRxx ∨ ∃x∀y¬Rxy ∨ ∃x∃y∃z(Rxy &
Ryz& ¬Rxz)) = t and such that, for every B ∈ �, VM(B) �= t. Since
VM(∃x∃yRxy) �= t, I+(R) = ∅, and similarly, since VM(∃x∃y¬Rxy) �= t,
I−(R) = ∅.

Since VM(∃xRxx ∨ ∃x∀y¬Rxy ∨ ∃x∃y∃z(Rxy &Ryz& ¬Rxz)) = t,
D must be finite. For suppose that D is infinite; then D has a subset
D′ = {d1d2, . . .} with the di all distinct. LetM ′ = 〈D, I ′〉, where I ′+(R) =
{〈dm, dn〉 : m < n} ∪ {〈d, dn〉 : d /∈ D′ and n ∈ N} and I ′−(R) =
D2 − I ′+(R). M ′ is a classical precisification of M, and VM ′(A) = f,
contradicting the assumption that VM(A) = t.

Now since D is finite, suppose that the cardinality of D is n. It follows
that VM(Bn) = t. This contradicts the assumption that for every B ∈ �,
VM(B) �= t. This completes the proof of (2). ✷
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Remark. The present proof uses an example due to an anonymous
referee and replaces a more complex example and proof in the original
version of the paper.

4. TRUTH IN ALL ADMISSIBLE PRECISIFICATIONS

As pointed out in Section 1, above, given a partial modelM, we might want
to evaluate sentences not by looking at all precisifications, but rather by
looking only at the admissible precisifications. The idea is that the admis-
sible precisifications are the precisifications that satisfy certain constraints.
One way to implement this idea is to define a supermodel to be a partial
model M together with some set of classical precisifications of M. Truth
in a supermodel would then be truth in all the specified precisifications.
But notice that the partial model M drops out of the picture: any two
supermodels, thus defined, with the same set of classical precisifications
will make the same sentences true and the same sentences false, regardless
of whether the underlying partial models are distinct.

So we define a supermodel to be a nonempty set M of classical models
such that, for any M = 〈D, I 〉 ∈ M and M ′ = 〈D′, I ′〉 ∈ M, we have

– D = D′;
– I (c) = I ′(c) for every constant c; and
– I (f ) = I ′(f ) for every function symbol f .

Notice that for any supermodel M, there is a partial model of which every
M ∈ M is a classical precisification. In particular, choose any M =
〈D, I 〉 ∈ M, let I ′(c) = I (c) for every constant c; let I ′(f ) = I (f ) for
every function symbol f ; let I ′(K) = 〈∅,∅〉 for every relation symbol R;
and let I ′(p) be undefined for every propositional variable p. Note that
every M ∈ M is a classical precisification ofM ′ = 〈D, I ′〉.

Given a supermodel M, an assignment s of values to the variables in
the common domain D of the models in M, and a formula A, define

VM,s(A) = t iff VM,s(A) = t for all M ∈ M,

VM,s(A) = f iff VM,s(A) = f for all M ∈ M.

If A has no free individual variables, we again just write VM(A) for
VM,s(A).

We define three new superconsequence relations. Here we assume that
� and � are sets of formulas.
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� �∗
t � iff for every supermodel M and every assignment s

of values to the variables,
if VM,s(A) = t for every A ∈ � then VM,s(B) = t
for some B ∈ �.

� �∗
f � iff for every supermodel M and every assignment s

of values to the variables,
if VM,s(B) = f for every B ∈ � then VM,s(A) = f
for someA ∈ �.

� �∗ � iff � �t � and � �f �.

Unlike � from Section 3, the superconsequence relation �∗ is closed under
substitution. For example, as with �, we have p ∨ ¬p �

∗ p,¬p. But we
also have p ∨ q �

∗ p, q, in contrast to the fact that p ∨ q � p, q. In
fact, for the propositional fragment of the language, we have the Substitu-
tion Theorem, below, relating �∗

t , �∗
f and �∗ to �t, �f and �. Before we

state this theorem, some preliminary definitions are in order. If S is a sen-
tence in the propositional fragment of the language, p1, . . . , pn are distinct
propositional variables, and A1, . . . , An are sentences in the propositional
fragment, let S[A1, . . . , An/p1, . . . , pn] be the result of simultaneously
replacing Ai for pi in S. If � is a set of sentences in the propositional frag-
ment define �[A1, . . . , An/p1, . . . , pn] similarly. Finally, if � and � are
sets of sentences in the propositional fragment of the language, then we say
that 〈�′,�′〉 is a propositional substitution instance of 〈�,�〉 iff, for some
sentences A1, . . . , An, . . . in the propositional fragment, and for some dis-
tinct propositional variables p1, . . . , pn, �′ = �[A1, . . . , An/p1, . . . , pn]
and likewise for �′ and �.

SUBSTITUTION THEOREM. Suppose that � and � are finite sets of
sentences in the propositional fragment of the language (or, more gener-
ally, sets of sentences in which only a finite number of propositional vari-
ables occur). Then � �∗

t � iff �′ �∗
t �

′ for every propositional substitution
instance 〈�′,�′〉 of 〈�,�〉. Similarly for �∗

f and �f, and for �∗ and �.

Prior to proving this theorem, we introduce some terminology and a lemma.
First the terminology. Let P = {p1, . . . , pn} be a set of distinct propo-
sitional variables. A P -sentence is a sentence in the propositional frag-
ment of the language all of whose propositional variables are in P . If
x1, . . . , xn ∈ {t, f}, then we will use the notation x1 . . . xn for the classical
model M = 〈D, I 〉 such that

– D = {0};
– I (b) = 0 for every name b;
– I (f )(0, . . . , 0) = 0 for every n-ary function symbol f ;
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– I+(R) = Dn and I−(R) = ∅ for every nonlogical n-ary relation
symbol R; and

– I (pi) = xi for i = 1, . . . , n; and I (p) = t for p /∈ P .

We say that a model M = x1 . . . xn is a P -model. We say that a super-
model M is a P -supermodel iff every M ∈ M is a P -model.

Let M0 = 〈D, I 〉 be the following partial model: D = {0}; I (b) = 0
for every name b; I (f )(0, . . . , 0) = 0 for every n-ary function symbol f ;
I+(R) = Dn and I−(R) = ∅ for every nonlogical n-ary relation sym-
bol R; I (pi) = n for i = 1, . . . , n; and I (p) = t for p /∈ P . Then
the classical precisifications of M0 are the P -models. We now have the
following lemma.

LEMMA. For any finite set P = {p1, . . . , pn} of propositional variables,
and any P -supermodel M there are P -sentences A1, . . . , An such that for
every P -sentence S, VM0(S[A1, . . . , An/p1, . . . , pn]) = VM(S).

Proof. Choose M∗ = m̄ = m1 . . .mn ∈ M. For each P -model M =
x̄ = x1 . . . xn, let αi(M) = xi if M ∈ M, and let αi(M) = mi if M /∈ M.
The αi so defined are essentially n-ary truth-functions, so that by the ex-
pressive completeness of the propositional calculus, there are P -sentences
A1, . . . , An such that VM(Ai) = αi(M) for every P -model M. A trivial
induction on the complexity of S shows that for every P -sentence S and
P -model M = x̄ = x1 . . . xn, VM(S[A1, . . . , An/p1, . . . , pn]) = VM(S) if
M ∈ M, and VM(S[A1, . . . , An/p1, . . . , pn]) = VM∗(S) ifM /∈ M.

Now we claim that A1, . . . , An satisfy the requirements of the lemma.
Consider three cases. (1) VM(S) = t. Then Vx̄(S) = t for every x̄ ∈

M, and in particular Vm̄(S) = t. Consequently, Vx̄(S[A1, . . . , An/p1, . . . ,

pn]) = t for every x̄, that is, for all the classical precisifications ofM0, and
so VM0(S[A1, . . . , An/p1, . . . , pn]) = t. (2) VM(S) = f. This is similar
to the first case. (3) VM(S) = n. Then Vx̄(S) = t for some x̄ ∈ M,
and Vȳ(S) = f for some ȳ ∈ M. Thus Vx̄(S[A1, . . . , An/p1, . . . , pn]) =
t and Vȳ(S[A1, . . . , An/p1, . . . , pn]) = f. And, as x̄ and ȳ are classical
precisifications ofM0, VM0(S[A1, . . . , An/p1, . . . , pn]) = n. ✷
With this lemma in hand, we can now prove the substitution theorem.

Proof. We only prove the case for �∗
t and �t∗ .

(⇒) Suppose that � �∗
t � and that 〈�′,�′〉 is a propositional substi-

tution instance of 〈�,�〉. By the first Axiomatizability Theorem (immedi-
ately below), �∗

t is closed under substitution. So �′ �∗
t �

′. It can be shown
from the definitions that if �′ �∗

t �
′ then �′ �t �

′. So �′ �t �
′, as desired.
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(⇐) Assume � �
∗
t �. Let P = {p1, . . . , pn} be the set of propositional

variables occurring in � ∪ �, with the pi distinct. Since � �
∗
t �, there is

a supermodel M such that VM(A) = t for every A ∈ � and VM(B) �= t
for any B ∈ �. Since only the interpretations of the propositional vari-
ables in P are relevant to the truth values of the sentences in � and �,
there is a P -supermodel M such that VM(A) = t for every A ∈ � and
VM(B) �= t for any B ∈ �. Let A1, . . . , An be as in the lemma. Let
�′ = �[A1, . . . , An/p1, . . . , pn] and �′ = �[A1, . . . , An/p1, . . . , pn]. It
follows that VM0(A

′) = t for every A′ ∈ �′, and VM0(B
′) �= t for every

B ′ ∈ �′, and so �′
�t �

′, as desired. ✷
Remark. The present proof of the substitution theorem is adapted from

an argument of Thomason (1973). It replaces a much more cumbersome
proof in an earlier version of this paper. We thank an anonymous referee for
pointing out to us the similarity of our substitution theorem to Thomason’s
results.

The connection of our topic to modal logic bears spelling out: in the propo-
sitional context, a supermodel is effectively an S5 possible worlds model,
and our definition of truth in a supermodel for a sentence A corresponds
to the usual definition of truth in S5 for ✷A. Therefore, in the proposi-
tional context, � �∗

t � iff ✷� �S5 ✷�, where ✷� = {✷A : A ∈ �}.
Similarly, our definition of falsehood in a supermodel for a sentence A
corresponds to the usual definition of truth in S5 for ✷¬A, and so � �∗

f �

iff ✷¬� �S5 ✷¬� iff ♦� �S5 ♦�. Hence, � �∗ � iff ✷� �S5 ✷� and
♦� �S5 ♦�. Similarly, in the full quantificational context, a supermodel
is effectively a QS5 model, where QS5 models have a constant domain
of objects shared by all possible worlds, and the Barcan and converse
Barcan formulas are valid. Thus we will have, quite generally, � �∗

t � iff✷� �QS5 ✷�, � �∗
f � iff ♦� �QS5 ♦�, and � �∗ � iff ✷� �QS5 ✷� and

♦� �QS5 ♦�. Finally, if we add the identity sign, the above equivalences
continue to hold if we posit in QS5, as is usual, that true identities are
necessarily true and false identities are necessarily false.

PROBLEM. Can the Substitution Theorem be extended to the first-order
case, and/or to � and � in which an infinite number of propositional
variables occur?

Without the identity sign, all three of our new consequence relations are
somewhat trivial.

AXIOMATIZABILITY THEOREM 1. If the identity sign does not occur
in any sentence in � ∪� then
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(1) � �∗
t � iff either � is classically inconsistent or � classically entails

B for some B ∈ �;
(2) � �∗

f � iff either ∅ classically entails � or A classically entails �
for some A ∈ �; and

(3) � �∗ � iff both � classically entails B for some B ∈ � and A
classically entails � for some A ∈ �.

Proof. (3) follows from (1) and (2), and the proof of (2) is dual to the
following proof of (1).

(⇐) Straight from the definitions.
(⇒) Suppose that � is classically consistent and that � does not clas-

sically entail B for any B ∈ �. If � is empty, then choose some classical
model M = 〈D, I 〉 and some assignment s such that VM,s(A) = t for
every A ∈ �. Let M = {M}. Then � �

∗
t � since VM,s(A) = t for every

A ∈ �, but VM,s(A) = f for no B ∈ �.
So assume that � is nonempty. Add constants k0, k1, . . . , kn, . . . to the

language. Let D be the set of terms of the expanded language, and let
s(x) = x, for each variable x. List the existentially quantified formulas
of the expanded language as ∃x0A0, ∃x1A1, . . . , ∃xnAn, . . . in such a way
that kn does not occur in ∃xmAm when m ≤ n. (For simplicity, we are
making an inessential assumption that the original language is countable.)
Let �′ = � ∪ {∃xnAn ⊃ An[kn/xn] : n ∈ N}. Note that �′

�
∗
t B for

each B ∈ �. For each formula B ∈ �, let �B be a complete consis-
tent theory containing �′ such that �B �

∗
t B. For each B ∈ �, define

the model MB = 〈D, IB〉 as follows. IB(c) = c for each constant c.
IB(f )(t1, . . . , tn) = f t1, . . . tn, for each n-place function symbol f an
terms t1, . . . , tn. 〈t1, . . . , tn〉 ∈ IB(R) iff Rt1, . . . , tn ∈ �B , for each n-
place relation symbol R and terms t1, . . . , tn. Note that VMB,s(A) = t for
every A ∈ �B and that VMB,s(B) = f. Finally, let M = {MB : B ∈ �}.
Note that M is a supermodel since all theMB ’s have the same domain, and
the IB ’s agree on the interpretation of all constants and function symbols.
Also note that VM,s(A) = t for every A ∈ � and that VM,s(B) �= t for
every B ∈ �. ✷

Remark. (1) delivers an axiomatization of �∗
t and (2) of �∗

f for lan-
guages without the identity sign. For �∗

t , just take any axiomatization of
classical consequence with multiple antecedents and a single or empty
consequent, and add the rule of weakening, usable on the right only as
the last step in a derivation. Dually, for �∗

f , just take any axiomatization
of classical consequence with a single or empty antecedent and multiple
consequents, and add the rule of weakening, usable on the left only as the
last step in a derivation. These give an axiomatization of �∗ for languages
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without the identity sign. Take the axiomatization of �∗
t and the axiomati-

zation of �∗
f and add the following rule of inference, only to be used as the

last step in a derivation: from � �∗
t � and � �∗

f � to infer � �∗ �. We do
not know whether there is any elegant axiomatization of �∗ that does thus
not piggyback on axiomatizations of �∗

t and of �∗
f .

If the identity sign occurs in some sentence in either � or �, things are
not quite so simple. The main problem is that the identity sign is classical
in the sense that either VM,s(x = y) = t or VM,s(x = y) = f, for every
supermodel M, for every assignment s of values to the variables and for
every formula of the form x = y. Thus, for example, we have �∗ x = y,
x �= y.

For our second axiomatizability theorem, we will generalize by con-
sidering uninterpreted languages with two classes of relation symbols:
(1) classical relation symbols, including the identity sign but possibly in-
cluding other symbols; (2) nonclassical relation symbols. We add one
clause to the definition of a supermodel M for any M = 〈D, I 〉 ∈ M

and M ′ = 〈D′, I ′〉 ∈ M, (4) I (R) = I ′(R) for every nonlogical classical
relation symbol R. We say that a formula A is classical iff no nonclassical
relation symbols occur in it.

We define a relation �∗
t between finite sets � and � of formulas by the

following axiomatization:

Axioms: (1) � �∗
t ∅ when � is classically inconsistent.

(2) � �∗
t B when � classically entails B.

(3) ∅ �∗
t B,¬B when B is a classical formula.

Rules: (1)Weakening: from � �∗
t � to infer �′ �∗

t �
′, where � ⊆ �′

and� ⊆ �′.
(2) Cut: from � �∗

t �, C aand C, � �∗
t � to infer � �∗

t �.

(3) ¬intro, when C is a classical formula: from C, � �∗
t � to

infer � �∗
t �,¬C.

For any sets � and � of formulas, we say that � �∗
t � iff �′ �∗

t �
′ for

some finite �′ ⊆ � and some finite �′ ⊆ �. In the presence of Cut, we
could derive Axiom (3) from Rule (3) and vice versa.

Dually, we define a relation �∗
f between finite sets � and� of formulas:

Axioms: (1) ∅ �∗
f � when ∅ classically entails �.

(2) A �∗
f � when A classically entails �.

(3) A,¬A �∗
f ∅ when A is a classical formula.
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Rules: (1)Weakening: from � �∗
f � to infer �′ �∗

f �
′, where � ⊆ �′

and � ⊆ �′.
(2) Cut: from � �∗

f �, C and C, � �∗
f � to infer � �∗

f �.

(3) ¬intro, when C is a classical formula: from � �∗
f �, C to

infer ¬C, � �∗
f �.

For any sets � and � of formulas, we say that � �∗
f �, iff �′ �∗

f �
′ for

some finite �′ ⊆ � and some finite �′ ⊆ �. In the presence of Cut, we
could derive Axiom (3) from Rule (3) and vice versa.

AXIOMATIZABILITY THEOREM 2. (1) � �∗
t � iff � �∗

t �.
(2) � �∗

f � iff � �∗
f �.

Proof. The proof of (2) is dual to the following proof of (1).
(⇒) Straightforward.
(⇐) First, we state and prove two claims.

CLAIM 1. � �∗
t B,¬B when B is a classical formula.

Proof. By Axiom (2) and Rule (3), or Axiom (3) and Rule (1).

CLAIM 2. If � �
∗
t � and if the constant c does not occur in �, � or A,

then ∃xA ⊃ A[c/x], � �
∗
t �.

Proof. An induction on the complexity of proof shows that if ∃xA ⊃
A[c/x], � �∗

t � then � �∗
t �, when c does not occur in �, � or A.

The basis steps rely on facts of classical logic, and the induction steps are
straightforward.

To continue with our proof that if � �∗
t � then � �∗

t �, we consider two
cases.

Case 1: � = ∅. Assume that � �∗
t �. Then there is no supermodel in

which all members of � are true. So there is no classical model in which
all members of � are true, in which case � has a classically inconsistent
finite subset �′. Thus �′ �∗

t �, by axiom 1. So � �∗
t �.

Case 2:� �= ∅. Assume that � �
∗
t �. Add constants k0, k1, . . . , kn, . . .

to the language. List the existentially quantified formulas of the expanded
language as ∃x0A0, ∃x1A1, . . . , ∃xnAn, . . . in such a way that kn does not
occur in ∃xmAm whenm ≤ n. (For simplicity, we are making an inessential
assumption that the original language is countable.) Well-order the formu-
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las of the expanded language as C0, C1, . . . , Cn, . . . and define a sequence
�0, �1, . . . , �n, . . . as follows:

�0 = � ∪ {∃xnAn ⊃ An[kn/xn] : n ∈ N},
�n+1 = �n ∪ {Cn} if �n, Cn �

∗
t �; and �n otherwise.

Let �ω = ⋃
n �n. Note that �0 �

∗
t �, by Claim 2, so that �n �

∗
t �, by

induction on n. Thus �ω �
∗
t �.

CLAIM 3. If �ω �∗
t �, C then C ∈ �ω.

Proof. Choose finite �′ ⊆ �ω and �′ ⊆ � such that �′ �∗
t �

′, C.
If C = Cn /∈ �ω, then �n,Cn �∗

t �. Also, �′ ⊆ �m for some m. If
k = max(m, n) then �k �∗

t � by weakening and cut.

So if �ω �∗
t C then C ∈ �ω. So if �ω classically entails C then C ∈ �ω,

by compactness of classical implication and Axiom (2). So �ω does not
classically entail B for any B ∈ �. So �ω is classically consistent since �
is nonempty. Furthermore, by Claim 1, above, either C ∈ �ω or ¬C ∈ �ω
for any classical formula C.

For each B ∈ �, extend �ω to a complete consistent classical the-
ory �B which does not classically entail B. �B is closed under classical
implication, and so satisfies the witnessing condition: If ∃xA ∈ �B then
A[t/x] ∈ �B for some term t . Moreover, if C is classical then C ∈ �ω iff
C ∈ �B . So, if C is classical then C ∈ �B iff C ∈ �B ′ for any B,B ′ ∈ �.
This applies, in particular, to formulas t = t ′ and t �= t ′, and to Rt1 . . . tn,
and ¬Rt1 . . . tn where R is a classical relation symbol.

Say that two terms t and t ′ of the expanded language are equivalent iff
the formula t = t ′ ∈ �ω. Let [t] be the equivalence class determined by t .
Let D = {[t] : t is a term}, and define s : vbles → D by s(x) = [x].
For each B ∈ �, define the model MB = 〈D, IB〉 as follows. IB(c) =
[c] for each constant c. IB(f )([t1], . . . , [tn]) = [f t1, . . . , tn], for each
n-place function symbol f and terms t1, . . . , tn. 〈[t1], . . . , [tn]〉 ∈ IB(R) iff
Rt1, . . . , tn ∈ �B , for each n-place relation symbol R and terms t1, . . . , tn.
Note that VMB,s(A) = t for every A ∈ �B and that VMB,s(B) = f. Finally,
let M = {MB : B ∈ �}. Note that M is a supermodel since all the
MB ’s have the same domain, and the IB’s agree on the interpretation of all
constants and function symbols and classical Relation symbols. Also note
that VM,s(A) = t for every A ∈ � and that VM,s(B) �= t for every B ∈ �.

Remark. (1) and (2) deliver an axiomatization of �∗.

PROBLEM. Give a cut-free Gentzen-style axiomatization of �∗ without
piggybacking on axiomatizations of �∗

t and �∗
f .
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COROLLARY (SUPERCONSEQUENCE COMPACTNESS THEO-
REM). If � �∗

t � then �′ �∗
t �

′ for some finite �′ ⊆ � and some finite
�′ ⊆ �. Similarly for �∗

f and �∗.

5. RELATED WORK AND FURTHER OPEN QUESTIONS

5.1. Fixed Point Logics of Truth

The current work was prompted by P. Kremer’s reading of M. Kremer
(1988). M. Kremer defines logics motivated by the fixed point semantics, of
Kripke (1975) and of Martin and Woodruff (1975), for languages express-
ing their own truth concepts. These semantics use partial models assigning
a partial interpretation to the special predicate T representing “___ is true”.
Variations on the semantics depend on the scheme of evaluation used,
whether the strong Kleene scheme, the weak Kleene scheme, the superval-
uation scheme, or some other scheme. M. Kremer works with the strong
Kleene scheme, and defines three consequence relations analogous to �t,
�f and � of Section 1, above, with truth preservation, backwards falsehood
preservation, and multiple antecedents and consequents. He then provides
a complete cut-free Gentzen-style axiomatization of the analogue of �,
thereby axiomatizing the strong Kleene fixed point logic of truth. The ques-
tion that motivated P. Kremer to begin the current project is whether the
supervaluation fixed point logic of truth is axiomatizable. That question
remains open.

One reconstruction of M. Kremer’s method is as follows.
Step 1. Begin with a complete cut-free Gentzen-style axiomatization of

the strong Kleene logic of partial models: see M. Kremer’s rules (l)–(3),
(5) and (7)–(19). Scott (1975) also provides an axiomatization of strong
Kleene �, although it is not cut-free.

Step 2. Add special rules arising from the fixed point setting. M. Kremer
points out that, by modifying Step 1, the same procedure allows us to base
an axiomatization of the weak Kleene fixed point logic of truth on the
weak Kleene logic of partial models. Unfortunately, this procedure is not
available for an axiomatization of the supervaluation logic of truth: Step 1
is impossible because the supervaluation logic of partial models in nonax-
iomatizable (see the Superconsequence Nonaxiomatizability Theorem in
Section 3, above). If the supervaluation fixed point logic of truth is indeed
axiomatizable, some other method will be needed to axiomatize it.
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5.2. Supervaluations with Nondenoting Singular Terms

Woodruff (1984) investigates a supervaluation semantics and a supercon-
sequence relation, but for languages with nondenoting singular terms rather
than nonclassical predicates. In his semantics, the upwards and downwards
Lowenheim–Skolem theorems fail, as does the analogue of the sehtence-
set compactness of Section 2. Woodruff defines a superconsequence re-
lation �s based on the preservation of truth-in-a-partial-model, allowing
multiple antecedents but only one consequent. Our analogue to �s is �t

restricted to one consequent. Our analogue to �s is equivalent to classical
consequence, while Woodruff’s �s is /1

1-complete. His techniques do not
seem helpful in establishing the exact complexity, beyond the nonaxioma-
tizability, of our � � �. We leave this as another open question.
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