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Abstract 

Many activities in Cognitive Science involve complex 
computer models and simulations of both theoretical and real 
entities. Artificial Intelligence and the study of artificial neural 
nets in particular, are seen as major contributors in the quest 
for understanding the human mind. Computational models 
serve as objects of experimentation, and results from these 
virtual experiments are tacitly included in the framework of 
empirical science. Simulations of cognitive functions, like 
learning to speak, or discovering syntactical structures in 
language, are the basis for many claims about human 
capacities in language acquisition. This raises the question 
whether results obtained from experiments that are essentially 
performed on data structures are equivalent to results from 
"real" experiments. This paper examines some design 
methodologies for models of cognitive functions using 
artificial neural nets. The process of conducting the cognitive 
simulations is largely a projection of theories, or even 
unsubstantiated conjectures, onto simulated neural structures 
and an interpretation of the experimental results in terms of 
the human brain. The problem with this process is that results 
from virtual experiments are taken to refer unambiguously to 
the human brain; and the more the language of human 
cognitive function is deployed in both theory construction and 
(virtual) experimental interpretation, the more convincing the 
impression. Additionally, the complexity of the 
methodologies, principles, and visualization techniques, in the 
implementation of the computational model, masks the lack of 
actual similarities between model and real world phenomena. 
Some computational models involving artificial neural nets 
have had some success, even commercially, but there are 
indications that the results from virtual experiments have little 
value in explaining cognitive functions. The problem seems to 
be in relating computational, or mathematical, entities to real 
world objects, like neurons and brains. I argue that the role of 
Artificial Intelligence as a contributor to the knowledge base 
of Cognitive Science is diminished as a consequence. 

Introduction 
Models and simulations have been described as mock-ups, 
analogies, simplifications, or metaphors, and sometimes the 
term simulation carries connotations of pretense, or even 
deceit. However, in the world of science and technology, 
these connotations have largely faded, and the use of 
computational models and simulations has become common 
practice. Fox Keller (2003) remarks that during the 1940s  

 
the valence of the term [simulation] changes 
decisively: now productive rather than merely 
deceptive, and, in particular, designating a technique 

for the promotion of scientific understanding (Fox 
Keller, 2003, p198).  
 

While models are generally accepted as tools in the 
empirical sciences, their epistemological status is still to be 
determined. Ziman (2000) points out that the notion of a 
model defies formal definition like other metascientific 
concepts. Without a proper definition of what is understood 
by a model, it is also difficult to place models into a 
scientific framework. Models have served as the basis for 
major shifts in theories in the physical sciences. Bohr’s 
model of atoms, for example, changed the way in which 
chemists could predict the properties of substances. Models 
and simulations can also be in the form of some apparatus, 
like the model of an aeroplane in a wind tunnel, or the ball 
and stick models of molecules. Computer models and 
simulations (CMS)1 are a progression from computational 
utility. In the early days of modern computing, the range of 
problems that could be subjected to quantitative analysis had 
been radically extended (Fox Keller, 2003). Calculations, 
that had been too complex and tedious to deal with 
numerically, became trivial in a very short period of time2. 
CMS possess properties that extend the utility of previous 
models in terms of speed and numerical accuracy. They 
allow for convenient ‘what if’ experiments where the 
behavior of a mathematical model can be examined over a 
range of changing parameters. On this basis, CMS seem to 
surpass theoretical models, such as Bohr’s atom model, or 
physical models that are made of real material. However, 
there are particular problems in using CMS as objects of 
                                                           
1 I will use the terms computer model and computer simulation 
interchangeably. In the context of this paper models and 
simulations are mathematical constructs that have been instantiated 
as executable programs. A simulation is a model that has been 
designed to illustrate its dynamics, but a clear distinction is neither 
possible nor necessary in the context of this paper. 
 
2 Monstrous analog tide calculating machines, high precision 
developments of Lord Kelvin’s tide predictors, were operating until 
the mid 1960s. Williams (1997) notes that the machine, constructed 
and operated by the U.S. Coast and Geodetic Survey, could 
calculate the height of the tides to the nearest 0.1 ft for each minute 
of the year for a location in a few minutes. The magnitude of 
calculations involved to establish a tidal forecast can be gaged by 
the fact that in a modern computer the cosine sub-routine is called 
about 20 million times to predict the tides for a single year for a 
single location (Williams, 1997). The tide predictors were 
essentially mechanical models of the cyclic movement of heavenly 
bodies. Nowadays, these calculations can be solved numerically 
with higher precision in a few seconds. 
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scientific experimentation and also as tools to support claims 
about theories. 

Experimentation 
CMS in engineering disciplines or the physical sciences are 
dealing with real world entities and phenomena. Some 
mapping from the real entities to the modeled entities 
usually exists and such ‘realistic models’ are approximate 
representations of the real world. How approximate do the 
models have to be for scientific experimentation?  For 
Hacking, experimentation is not merely about the 
observation of phenomena and the subsequent inferences 
about the underlying theories, but is about observing and 
interfering with the objects in question. The ability to 
manipulate objects is an essential part of the experiment, 
which is “to create, produce, refine, and stabilize 
phenomena" (Hacking, 1983, 230). The close connection 
between experiment and some real world entities is also a 
key requirement in the definition offered by Harré, who says 
that  

[a]n experiment is the manipulation of [an] 
apparatus, which is an arrangement of material stuff 
integrated into the material world in a number of 
different ways (Harré, 2003, p19).  
 

The kinds of experiments that fit the criteria, which relate 
to the discussions by Harré and Hacking, are the activities 
we often associate with what happens in the laboratory. 
These are the kinds of experiments we know about from our 
high school days. However, it has become obvious that the 
vast majority of experiments are different from this 
stereotypic view (Morgan, 2003). There are no materials that 
could possibly be manipulated in experiments with CMS. 
The material, the apparatus and the process of interference 
are all replaced by data structures and computational 
processes3. The nature of the entities and the phenomena that 
are the points of interest in the field of Cognitive Science 
dictates that CMS are often the only way to do any 
experimentation at all. The experiment is moved into the 
realm of the virtual for convenience or necessity. 

Assumptions and Methods 
In the current Theory of Mind in Cognitive Science it is a 
fundamental assumption that cognitive functions are 
computational processes, or at least computable processes, 
performed by brains. This hypothesis is attractive, because, 
as Sterelny puts it,  

 
[i]t is good research strategy to try to model our 
information processing on something we already 
know a bit about. And we do know a good deal about 
computation, both from the theory of formalised 
systems of reasoning and from the actual 

                                                           
3 The only material part of the experiment is the computer 
hardware. With the proliferation of the personal computer it turns 
out that the vast majority of CMS are implemented on the same 
platform, i.e., more or less identical hardware. 

implementation of some of those systems on real 
machines (Sterelny, 1989, p74).  
 

It seems obvious that CMS would be the ideal approach to 
provide the clues and explanations for the Theory of Mind, 
as computation is the essence of what happens in brains and 
in CMS.  

Viewing the brain as a black box that computes is only 
one level of description. Another takes into account that 
brains are amongst other things composed of about 1010 
neurons that are interconnected by about 1014 synapses. The 
neuron has been determined as the smallest building block in 
terms of computational power4. CMS can be based on either 
assumption, resulting in models that treat either the brain or 
the neuron as a black box. In Artificial Intelligence these 
levels of description correspond in many ways to the 
symbolic and connectionist paradigms. The symbolic 
approach is primarily concerned with what goes on in the 
brain, while the connectionists are interested in how things 
happen in the brain. The connectionist approach adds a kind 
of neural plausibility, because these modeling techniques are 
methodologically comparable with what neurons do in 
brains (Schultz, 2003).  

At this point, it is important to note that the description of 
the functionality of a neuronal model in AI, is already far 
removed from the actual observable functions of a neuron, 
even if we restrict the discussion to the most basic 
input/output functionality of the biological neuron5. The 
theory about the outward computational functionality of the 
simplified neuron does not take this behavior into account. 
The dissimilarities initially concerned hardware based 
models, but shifting these models into the ‘virtual’ does not 
reduce, or eliminate, these discrepancies. For example, the 
rate of switching is of importance in biological neurons6 , 
but it has no significance in the neural models used 
commonly in artificial neural nets (ANN). Also, the number 
of connections between neurons is much larger than most 
models take into account. Some neurons may have 106, or 
107, synapses, whereas the number of connections in models 
is usually restricted to less than 102. Modeling techniques at 
neural level are only loosely aligned with the real biology 
and the real observable behavior of neurons.  

Construction 
The earliest functional models of neurons by McCulloch and 
Pitts (1943) were simple switching devices and the modeled 
behavior was strictly according to the rules of elementary 
logic. The discreet components, which only operated in 

                                                           
4 Penrose (1990) and others propose that some form of quantum 
computing is performed with the neuron. 
 
5 For example, real neurons change their output behavior in 
response to the firing rate of neighboring neurons. The rate at 
which information is presented to the inputs (synapses) has a real 
effect on the eventuality and timing of the neuron’s output 
(spiking). 
 
6 The firing rate changes the behavior dynamically, so that a neuron 
is more sensitive after a burst of activity. 
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switching mode, i.e. on/off, were designed to implement the 
basic logic functions AND, OR, and NOT. These early 
models had little in common with real neurons and the 
experiments did not yield much in terms of progress toward 
an artificial intelligence. With hindsight, Copeland points 
out that  
 

[h]alf a century later on, it is clear that people were 
putting two and two together to make five. Even at 
that time there was a certain amount of nagging 
evidence regarding the dissimilarities between 
neurons and computing hardware (Copeland, 1993, 
p185). 
  

Hebb’s discovery, that some neural connections are 
modified over time by patterns of excitations (Hebb, 1949), 
led to the development of the perceptron, which represented 
one of the first learning networks (Rosenblatt, 1958, 1962). 
A decade later, the connectionist program came almost to a 
halt after the “remorseless analysis of what perceptrons 
cannot do" (McLeod et al., 1998, 323). This analysis by 
Minsky and Papert (1988) showed that perceptrons can only 
solve tasks that are linearly separable7. Neural network 
models that employ primary elements of the all-or-nothing 
type without sophisticated transition functions offer little, if 
anything, beyond digital circuitry. Since then, artificial 
multi-layered networks comprising non-linear neurons have 
been shown to be much more powerful than Minsky and 
Papert were willing to admit. Churchland writes that  
 

[...] a nonlinear response profile brings the entire 
range of possible nonlinear transformations within 
reach of three-layer networks [...] Now there are no 
transformations beyond the computational power of a 
large enough and suitably weighted network 
(Churchland, 1990, p206).  

 
and Elman et al. say that  

 
[f]or some ranges of inputs [...] these units exhibit an 
all or nothing response (i.e., they output 0.0 or 1.0). 
This sort of response lets the units act in a 
categorical, rule-like manner. For other ranges of 
inputs, however, [...] the nodes are very sensitive and 
have a more graded response. In such cases, the 
nodes are able to make subtle distinctions and even 
categorize along dimensions which may be 
continuous in nature. The nonlinear response of such 
units lies at the heart of much of the behavior which 
makes networks interesting (Elman et al., 1998, p53).  

 
As Elman et al. point out, the nonlinear and continuous 

transition functions of more ‘nature-like’ neural models 
seem to offer much more. The question is, of course, how 

                                                           
7 The relatively simple XOR-function cannot be handled by a 
single-layer network of perceptrons. 
 

much more?  If we examine the mathematics of the models8  
it becomes apparent that there is only some rudimentary, if 
not superficial, functional similarity on offer9. This kind of 
simplicity remains in the assemblies of these units, ANNs. 
Feed forward and recurrent networks implement functions 
from the inputs to the outputs - these networks perform 
linear or non-linear regression. The connections between 
the nodes in the hidden layer contain information about the 
mappings of these functions, and these mappings become the 
source of ‘insights’ about what goes on in the ANNs. It is 
possible, with appropriate statistical methods, to map this 
information (activation patterns) onto locations in n-space to 
make new claims about what the models achieved. 

Interpreting Models 
The assumption that symbols and their semantic contents are 
distributed throughout the network is part of the 
connectionist doctrine. However the interpretation of 
experimental results in the context of neural nets is not 
possible without the use of symbols at some level of 
description. Hoffmann points out that  

 
[ ... ] in more complex systems, the use of symbols 
for describing abstractions of the functionality at the 
lowest level in inevitable [...] any description of a 
sufficiently complex system needs layers of 
abstraction. Thus, even if a non-symbolic approach 
uses tokens at its base level which cannot be 
reasonably interpreted, there still needs to be a more 
abstract level of description (Hoffmann, 1998, p257).  

 
For a meaningful interpretation of the network and its 

dynamics, it is necessary to convey content and meaning in 
terms of non-distributed, or localised, symbols. Elman et al. 
suggest that  

 
localist representations [...] provide a straightforward 
mechanism for capturing the possibility that a system 
may be able to simultaneously entertain multiple 
propositions, each with different strength, and that 
the process of resolving uncertainty may be thought 
of as a constraint satisfaction problem in which 
different pieces of information interact (Elman et al., 
1998, p90).  

 
Localized representations and distributed representations 

cannot be used together in a single representational system 
without confusing the semantic meaning of representations. 
ANNs are described as having distinct and discrete inputs 
and outputs, each labeled with distinct and discrete meaning. 
These localized representations are no longer available once 
the focus shifts on to hidden nodes within the network, and 
the ‘representations’ are now described in terms of weights, 

                                                           
8 Refer to Haykin (1999), Russel and Norvig (1995), Lytton (2002), 
Hoffmann (1998), and many others. 
 
9 Neural models in the field of Computational Neuroscience are 
much more aligned with the biology and chemistry of neurons, but 
they are not the kind of model employed in AI. 
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or synaptic strengths, between individual units. The mistake, 
I believe, is to bring the top-down psychological model and 
the bottom-up neural environment together and to treat the 
result as a coherent and meaningful combination.  

Elman (1990), for example, presented bit patterns to a 
recurrent network, where each individual bit represented a 
particular word in the human language. The patterns 
themselves were presented in sequences forming two and 
three word sentences that had been generated according to a 
set of fixed templates. A cluster analysis of the hidden nodes 
revealed that the trained network exhibits similar activation 
patterns for inputs (words) according to their relative 
position in the sequence (sentence). The analysis of these 
activation patterns allowed for the classification of inputs 
(words) into categories like nouns or verbs. It is important 
here to understand that these results are not furnished by the 
ANN, instead they are interpretations of internal structures 
at a higher level. The actual role of the ANN is that of a 
predictor, where the network attempts to predict the next 
word following the current input10. If the ANN is meant to 
be a model of what happens at the neural level, then the 
question arises, what mechanism is responsible for the 
equivalent analysis of activation patterns in the brain. We 
will have to assume another neural circuit to do an analysis 
of the hidden nodes. This new network could categorize 
words into verbs and nouns, but then we need another circuit 
to categorize words into humans, non-humans, inanimates, 
or edibles, and another to categorize words into mono-
syllabic and multi-syllabic. In fact, we will need an infinite 
number of neural circuits just for the analysis of word 
categories.  

Churchland (1998) describes a recurrent network that 
could model more challenging cognitive functions. He 
suggests that a recurrent network may have an appropriate 
architecture for learning and simulating moral virtues. He 
considers, given the “examples of perceptual or motor 
categories at issue", that a network would be able to map 
concepts like cheating, tormenting, lying, or self-sacrifice 
within a n-space of classes containing dimensions of morally 
significant, morally bad, or morally praiseworthy actions. 
Churchland says that  

 
[t]his high-dimensional similarity space [...] displays 
a structured family of categorical “hot spots" or 
“prototype position", to which actual sensory inputs 
are assimilated with varying degree of closeness 
(Churchland, 1998, p83).  
 

I believe that this approach toward a calculus of moral 
virtues is flawed for two reasons. First there is the question 
of what kinds of “actual sensory inputs" could be available 
to train a network in moral virtues, or to condition a brain in 
moral virtues. The second problem is whether moral 
viewpoints can be synthesized from a possibly large number 
of discrete constituents. For this approach to work, it would 
have to be possible to define a moral action as the function 
                                                           
10 The actual word, which follows the input in the training set, is 
used as the target to determine the error for back propagation 
during the training phase. 

over a set of discrete inputs. However, a morally bad action 
like stealing an item of clothing is not simply the result of 
poverty = true and night time = true or low temperature = 
true and coat available = true, and so on. If it were so, then 
our lives would need to be expressed in terms such that a set 
of mathematical functions could determine our next action, a 
proposition that has profound philosophical consequences.  

Whether one subscribes to Chomsky’s notion of a 
universal grammar or not, relationships between syntax and 
semantics do exist in natural language. It is these 
relationships that were explored by Elman (1990). It should 
be clear that a grammar has far less rules than what makes 
up the moral fabric of a human being. Unlike the formalisms 
that are evident in natural language, there are no similar 
formalisms available for the analysis of moral virtues by 
means of non-linear regression.  

A more interesting problem lies in the interpretation of 
representations that are within the network. First there is the 
question of locating suitable representations that could carry 
any semantics, given that the representations are distributed 
in the network. Rosenblatt explained that  

 
[i]t is significant that the individual elements, or 

cells, of a nerve network have never been 
demonstrated to possess any specifically 
psychological functions, such as “memory", 
“awareness", or “intelligence". Such properties, 
therefore, presumably reside in the organization and 
functioning of the network as a whole, rather than in 
its elementary parts (Rosenblatt, 1962, p9).  

 
However in CMS, the input nodes and output nodes are 

treated as localized representations (symbols). Individual 
model neurons do have semantics bestowed upon them by 
Elman (1990) and Churchland (1998), who map meaningful 
words and moral concepts to the inputs and outputs of their 
networks. Treating the activation patterns of the hidden units 
as a resource for categorical “hot spots", to use Churchland’s 
term, is an even more contentious exercise. The relationships 
and patterns in the input datasets and training datasets 
become embedded in the structure of the network during 
training11. The internal representations, which are “snapshots 
of the internal states during the course of processing 
sequential inputs" (Elman, 1990), are extracted by means of 
cluster analysis of the hidden layer in the ANN. Who really 
does the analysis and interpretation of the distributed 
representations?  The experimenter performs these tasks 
using a new tool, i.e. cluster analysis, - the network has no 
part in this. Moreover, an appropriate analysis, performed on 
the training data, could yield the same information. The 
networks merely compute functions, and the activities of the 
networks do not add any additional information. Despite all 
the complexities of the mathematics of ANNs, the functions 
that are performed are relatively trivial.  

                                                           
11 The patterns and relationships in these datasets can either be 
carefully designed or might be an unwanted by-product. 
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Conclusions 
A model is a simplification of its real world counterpart, but 
models must maintain some plausible connection to real 
world objects or real world phenomena. Green (2001) 
suggested, that some of the ‘apparent’ successes of 
connectionist modeling may well be based on a rather vague 
concept of what is actually modeled. The simple functional 
neurons that are employed in AI, resemble only loosely 
actual biological neurons, and ANNs exhibit only superficial 
commonalities with brain structures. The building blocks 
and tools used in the connectionist paradigm of AI offer 
some plausibility for the bottom-up approach nevertheless. 
While many models share by design the connectionist 
architecture, the processes and functions under investigation 
seem quite different. The investigations about language, 
moral virtues, and many other topics, belong to the top-down 
approach where localized representations are used to convey 
the semantic contents of sensory and conceptual entities. 
Merging the two opposing paradigms within models is not 
without problems. We can easily assign meaning to localized 
representations, and we can manipulate representations 
without loss of semantics, provided we maintain appropriate 
syntactic rules. The processes break down when localized 
representations are ‘manufactured’ by assigning them to 
concepts seemingly emerging from ANNs. The danger is 
that statistical artifacts are presented as novel phenomena of 
the model. However, there are no novel phenomena 
emerging and there is nothing intelligent happening within - 
there is no fire, not even a spark.  
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