Philip Kremer The Incompleteness of S4 \oplus S4 for the Product Space $\mathbb{R} \times \mathbb{R}$

Abstract

Shehtman introduced bimodal logics of the products of Kripke frames, thereby introducing frame products of unimodal logics. Van Benthem, Bezhanishvili, ten Cate and Sarenac generalize this idea to the bimodal logics of the products of topological spaces, thereby introducing topological products of unimodal logics. In particular, they show that the topological product of S 4 and S 4 is $\mathrm{S} 4 \oplus \mathrm{~S} 4$, i.e., the fusion of S 4 and S 4 : this logic is strictly weaker than the frame product $\mathrm{S} 4 \times \mathrm{S} 4$. Indeed, van Benthem et al. show that $\mathrm{S} 4 \oplus \mathrm{~S} 4$ is the bimodal logic of the particular product space $\mathbb{Q} \times \mathbb{Q}$, leaving open the question of whether $S 4 \oplus S 4$ is also complete for the product space $\mathbb{R} \times \mathbb{R}$. We answer this question in the negative.

Keywords: Bimodal logic, Multimodal logic, Topological semantics, Topological product, Product space.

Let \mathcal{L} be a propositional language with a set $P V$ of propositional variables; standard Boolean connectives \&, \vee and \neg; and two modal operators, \square_{1} and \square_{2}. We define the Boolean connectives \supset and \equiv as usual and the modal operators \diamond_{1} and \diamond_{2} in the obvious way. Let $\mathrm{S} 4 \oplus \mathrm{~S} 4$ be the fusion of S 4 and S4: i.e., the bimodal logic axiomatized by S 4 -axioms for both modal operators \square_{1} and \square_{2} as well as the rules of Modus Ponens, necessitation for \square_{1} and for \square_{2}, and substitution. ${ }^{1}$

A unirelational (Kripke) frame is a pair $\mathcal{U}=\langle W, R\rangle$, where W is a nonempty set and R is a reflexive transitive relation on W. A birelational (Kripke) frame is a triple $\mathcal{B}=\left\langle W, R_{1}, R_{2}\right\rangle$, where W is a nonempty set and R_{1} and R_{2} are reflexive transitive relations on W. A birelational model is a quartuple $\mathcal{M}=\left\langle W, R_{1}, R_{2}, V\right\rangle$, where $\left\langle W, R_{1}, R_{2}\right\rangle$ is a birelational frame and $V: P V \rightarrow \mathcal{P}(W)$. V is extended to all formulas as follows:

$$
\begin{aligned}
V(\neg A) & =W-V(A) \\
V(A \& B) & =V(A) \cap V(B) \\
V(A \vee B) & =V(A) \cup V(B) \\
V\left(\square_{1} A\right) & =\left\{w \in W: \forall v \in W\left(w R_{1} v \Rightarrow v \in V(A)\right)\right\} \\
V\left(\square_{2} A\right) & =\left\{w \in W: \forall v \in W\left(w R_{2} v \Rightarrow v \in V(A)\right)\right\}
\end{aligned}
$$

[^0]Presented by Melvin Fitting; Received August 12, 2014

We say that $\mathcal{M} \vDash A$ iff $V(A)=W$. Given a birelational frame $\mathcal{B}=$ $\left\langle W, R_{1}, R_{2}\right\rangle$, we say that $\mathcal{B} \vDash A$ iff $\mathcal{M} \vDash A$ for every birelational model $\mathcal{M}=\left\langle W, R_{1}, R_{2}, V\right\rangle$. The proof of the following theorem is a straightforward generalization of the unimodal case for S 4 .

Theorem 1. $A \in \mathrm{~S} 4 \oplus \mathrm{~S} 4$ iff $\mathcal{B} \vDash A$ for every birelational frame \mathcal{B}.
Van Benthem, Bezhanishvili, ten Cate and Sarenac note, in [6] (a slightly updated version of [5]), that Shehtman [4] initiated the study of a particular class of birelational frames: those that are the products of unirelational frames. ${ }^{2}$ Given two unirelational frames $\mathcal{U}_{1}=\left\langle W_{1}, R_{1}\right\rangle$ and $\mathcal{U}_{2}=\left\langle W_{2}, R_{2}\right\rangle$, define the birelational frame $\mathcal{U}_{1} \times \mathcal{U}_{2}={ }_{\mathrm{df}}\left\langle W_{1} \times W_{2}, R_{1}^{\prime}, R_{2}^{\prime}\right\rangle$ where

$$
\begin{array}{lll}
\langle w, v\rangle R_{1}^{\prime}\langle x, y\rangle & \text { iff } & w R_{1} x \text { and } v=y ; \text { and } \\
\langle w, v\rangle R_{2}^{\prime}\langle x, y\rangle & \text { iff } & w=x \text { and } v R_{2} y .
\end{array}
$$

A birelational frame of the form $\mathcal{U}_{1} \times \mathcal{U}_{2}$ is a product frame. The logic of product frames turns out to be the product logic $\mathrm{S} 4 \times \mathrm{S} 4$, defined by adding the following two axiom schemes to the fusion $\mathrm{S} 4 \oplus \mathrm{~S} 4$:

$$
\begin{array}{ll}
\operatorname{com} \text { (commutativity) } & \square_{1} \square_{2} A \equiv \square_{2} \square_{1} A \\
\operatorname{chr} \text { (Church-Rosser) } & \diamond_{1} \square_{2} A \supset \square_{2} \diamond_{1} A
\end{array}
$$

As noted in [6], the following theorem is an immediate corollary of a more general theorem of [2]:

Theorem 2. $A \in \mathrm{~S} 4 \times \mathrm{S} 4$ iff $\mathcal{B} \vDash A$ for every product frame \mathcal{B}.
The topological semantics for S 4 generalizes the unirelational Kripke frame semantics for S 4 . [6] generalizes the above birelational frame semantics for $\mathrm{S} 4 \oplus \mathrm{~S} 4$ to a bitopological semantics. A bitopological space is a triple $\mathcal{X}=\left\langle X, \tau_{1}, \tau_{2}\right\rangle$, where X is a nonempty set and each of τ_{1} and τ_{2} is a topology on X. Given any $S \subseteq X$, we can consider two interiors of S, $\operatorname{Int} t_{1}(S)$ and $\operatorname{Int} t_{2}(S)$, associated with the topologies τ_{1} and τ_{2} respectively. A bitopological model is a quartuple $\mathcal{M}=\left\langle X, \tau_{1}, \tau_{2}, V\right\rangle$, where $\left\langle X, \tau_{1}, \tau_{2}\right\rangle$ is a bitopological space and $V: P V \rightarrow \mathcal{P}(X)$. V is extended to all formulas as follows:

$$
\begin{aligned}
V(\neg A) & =X-V(A) \\
V(A \& B) & =V(A) \cap V(B) \\
V(A \vee B) & =V(A) \cup V(B) \\
V\left(\square_{1} A\right) & =\operatorname{Int}_{1}(V(A)) \\
V\left(\square_{2} A\right) & =\operatorname{Int}_{2}(V(A))
\end{aligned}
$$

[^1]We sometimes write $x \Vdash A$ instead of $x \in V(A)$. We say that $M \vDash A$ iff $V(A)=X$. Given a bitopological space $\mathcal{X}=\left\langle X, \tau_{1}, \tau_{2}\right\rangle$, we say that $\mathcal{X} \vDash A$ iff $\mathcal{M} \vDash A$ for every bitopological model $\mathcal{M}=\left\langle X, \tau_{1}, \tau_{2}, V\right\rangle$. The following theorem is an immediate consequence of Theorem 1, above:

Theorem 3. $A \in \mathrm{~S} 4 \oplus \mathrm{~S} 4$ iff $\mathcal{X} \vDash A$ for every bitopological space \mathcal{X}.
[6] defines product spaces analogously to the product frames defined above. Given two topological spaces $\mathcal{X}_{1}=\left\langle X_{1}, \tau_{1}\right\rangle$ and $\mathcal{X}_{2}=\left\langle X_{2}, \tau_{2}\right\rangle$, define the bitopological space $\mathcal{X}_{1} \times \mathcal{X}_{2}={ }_{\mathrm{df}}\left\langle X_{1} \times X_{2}, \tau_{1}^{\prime}, \tau_{2}^{\prime}\right\rangle$ where the following two families of subsets of $X_{1} \times X_{2}$ form bases for the topologies τ_{1}^{\prime} and τ_{2}^{\prime}, respectively:

$$
\begin{array}{ll}
\text { Basis for } \tau_{1}^{\prime}: & \left\{O \times\{x\}: O \in \tau_{1} \& x \in X_{2}\right\} \\
\text { Basis for } \tau_{2}^{\prime}: & \left\{\{x\} \times O: x \in X_{1} \& O \in \tau_{2}\right\}
\end{array}
$$

A bitopological space of the form $\mathcal{X}_{1} \times \mathcal{X}_{2}$ is a product space. ${ }^{3}$ [6] refers to the induced topologies τ_{1}^{\prime} and τ_{2}^{\prime} as the horizontal and vertical topologies, respectively.

The following table summarizes the results stated so far:

The logic of	all	product
birelational frames	$\mathrm{S} 4 \oplus \mathrm{~S} 4$	$\mathrm{~S} 4 \times \mathrm{S} 4$
bitopological spaces	$\mathrm{S} 4 \oplus \mathrm{~S} 4$	

It is natural to expect the unfilled entry to be $\mathrm{S} 4 \times \mathrm{S} 4$. But it isn't: [6] proves the following surprising theorem.

Theorem 4. $A \in \mathrm{~S} 4 \oplus \mathrm{~S} 4$ iff $\mathcal{X} \vDash A$ for every product space \mathcal{X}.
In the unimodal case, we find not only that S 4 is complete for the class of all topological spaces, but also that S 4 is complete for a number of particular topological spaces, for example the rational line \mathbb{Q} and the real line \mathbb{R}. It is natural to ask whether these results generalize to the logic $\mathrm{S} 4 \oplus \mathrm{~S} 4$ and the bitopological spaces $\mathbb{Q} \times \mathbb{Q}$ and $\mathbb{R} \times \mathbb{R} .^{4}$ [6] proves that the generalization does go through for $\mathbb{Q} \times \mathbb{Q}$:

Theorem 5. $A \in \mathrm{~S} 4 \oplus \mathrm{~S} 4$ iff $\mathbb{Q} \times \mathbb{Q} \vDash A$.

[^2](In the exposition in [6], Theorem 4 is presented as a corollary to Theorem 5, which is proved more directly.)
[6] leaves open the question of whether $\mathrm{S} 4 \oplus \mathrm{~S} 4$ is complete for $\mathbb{R} \times \mathbb{R}$. The purpose of this note is to answer that question in the negative:

Theorem 6. $\mathrm{S} 4 \oplus \mathrm{~S} 4$ is not complete for $\mathbb{R} \times \mathbb{R}$.
For Theorem 6, it suffices to find a formula A such that $\mathbb{R} \times \mathbb{R} \vDash A$ and $\mathcal{M}_{0} \not \models A$ for some birelational model \mathcal{M}_{0}. Let B and C be the following formulas, where p is a propositional variable:

$$
\begin{array}{ll}
B & \square_{2} p \& \diamond_{1} \neg p \& \diamond_{2} \square_{1} p \\
C & \square_{2} \neg p \& \diamond_{1} p \& \diamond_{2} \square_{1} \neg p
\end{array}
$$

And let A be the formula $\neg \square_{1}(B \vee C)$.
Let $\mathcal{M}_{0}={ }_{\mathrm{df}}\left\langle W_{0}, R_{1}, R_{2}, V_{0}\right\rangle$ where

$$
\begin{aligned}
W_{0} & =\{1,2,3,4\} \\
R_{1} & =\{\langle w, w\rangle: w \in W\} \cup\{\langle 1,2\rangle,\langle 2,1\rangle\} \\
R_{2} & =\{\langle w, w\rangle: w \in W\} \cup\{\langle 1,3\rangle,\langle 2,4\rangle\} \\
V_{0}(p) & =\{1,3\}
\end{aligned}
$$

Note the following. $V_{0}\left(\square_{2} p\right)=\{1,3\}$. Also, $V_{0}\left(\square_{1} p\right)=\{3\}$. So $V_{0}\left(\diamond_{2} \square_{1} p\right)=$ $\{1,3\}$. Also, $V_{0}\left(\diamond_{1} \neg p\right)=\{1,2,4\}$. Thus $V_{0}(B)=\{1\}$. Similarly, $V_{0}(C)=$ $\{2\}$. So $V_{0}(B \vee C)=\{1,2\}$. So $V_{0}\left(\square_{1}(B \vee C)\right)=\{1,2\}$. So $V_{0}(A)=\{3,4\}$. So $\mathcal{M}_{0} \not \nexists A$.

Our final task is to show that $\mathbb{R} \times \mathbb{R} \vDash A$. First we introduce some new terminology. An open horizontal interval is any subset of $\mathbb{R} \times \mathbb{R}$ of the following form, where $a, b, c \in \mathbb{R}$, where $a<b$ and where $(a, b)={ }_{\mathrm{df}}\{x \in \mathbb{R}$: $a<x<b\}$:

$$
(a, b) \times\{c\}
$$

Similarly, an open vertical interval is any subset of $\mathbb{R} \times \mathbb{R}$ of the following form, where $a, b, c \in \mathbb{R}$ and $a<b$:

$$
\{c\} \times(a, b)
$$

The unit open horizontal interval is $I_{0}=\mathrm{df}(0,1) \times\{0\}$. Note that the open horizontal intervals form a basis for the horizontal topology on $\mathbb{R} \times \mathbb{R}$, and the open vertical intervals form a basis for the vertical topology.

Now for our final task: suppose, for a reductio, that $\mathbb{R} \times \mathbb{R} \not \models A$. Then there is some model $\mathcal{M}=\left\langle\mathbb{R} \times \mathbb{R}, \tau_{1}, \tau_{2}, V\right\rangle$ where τ_{1} and τ_{2} are the horizontal and vertical topologies induced on $\mathbb{R} \times \mathbb{R}$ by the standard topology on \mathbb{R},
where $V: P V \rightarrow \mathcal{P}(\mathbb{R} \times \mathbb{R})$, and where $\mathcal{M} \not \vDash A$. So there is some point $\langle a, b\rangle \in \mathbb{R} \times \mathbb{R}$ such that

$$
\langle a, b\rangle \Vdash \square_{1}(B \vee C)
$$

So, for some horizontal interval I, we have $\langle a, b\rangle \in I$ and

$$
I \subseteq V(B \vee C)
$$

Without loss of generality, we can assume that $I=I_{0}$. So

$$
I=I_{0} \subseteq V(B) \cup V(C)
$$

Let

$$
\begin{aligned}
P & ={ }_{\mathrm{df}} \quad I_{0} \cap V(B), \\
Q & ={ }_{\mathrm{df}} \quad I_{0} \cap V(C), \\
P^{*} & ={ }_{\mathrm{df}} \quad\{x \in \mathbb{R}:\langle x, 0\rangle \in P\}=\{x \in \mathbb{R}: \exists y \in \mathbb{R}\langle x, y\rangle \in P\}, \text { and } \\
Q^{*} & ={ }_{\mathrm{df}} \quad\{x \in \mathbb{R}:\langle x, 0\rangle \in Q\}=\{x \in \mathbb{R}: \exists y \in \mathbb{R}\langle x, y\rangle \in Q\},
\end{aligned}
$$

so that $I_{0}=P \cup Q$. Note that $P \subseteq V(B) \subseteq V(p)$ and $Q \subseteq V(C) \subseteq V(\neg p)=$ $(\mathbb{R} \times \mathbb{R})-V(p)$. So

$$
\begin{aligned}
P & =I_{0} \cap V(p), \text { and } \\
Q & =I_{0} \cap V(\neg p) .
\end{aligned}
$$

So $P \cap Q=\emptyset$ and $I_{0}=P \dot{\cup} Q$. We will now show that $I_{0} \subseteq C l_{1}(P)$, where $C l_{1}$ is the closure operator associated with the horizontal topology, τ_{1}. So suppose that $\langle x, 0\rangle \in I_{0}$. If $\langle x, 0\rangle \in P$ then clearly $\langle x, 0\rangle \in C l_{1}(P)$. On the other hand, if $\langle x, 0\rangle \notin P$, then we have $\langle x, 0\rangle \in Q=I_{0} \cap V(C) \subseteq$ $I_{0} \cap V\left(\diamond_{1} p\right)=I_{0} \cap C l_{1}(V(p)) \subseteq C l_{1}\left(I_{0} \cap V(p)\right)$ (since I_{0} is horizontally open $)=C l_{1}(P)$. Thus, $I_{0} \subseteq C l_{1}(P)$ as desired. Similarly, $I_{0} \subseteq C l_{1}(Q)$. We summarize: $I_{0}=P \dot{\cup} Q$ and $I_{0} \subseteq C l_{1}(P)$ and $I_{0} \subseteq C l_{1}(Q)$. Thus $(0,1)=P^{*} \dot{\cup} Q^{*}$, and $C l\left(P^{*}\right)=C l\left(Q^{*}\right)=[0,1]$, where $C l$ is the standard closure operator on subsets of \mathbb{R} and where $[0,1]$ is the closed unit interval. Note finally that $\operatorname{Int}\left(P^{*}\right)=\operatorname{Int}\left(Q^{*}\right)=\emptyset$, where Int is the standard interior operator on subsets of \mathbb{R}.

Note that, for each $x \in(0,1)$,

$$
\begin{array}{ll}
\text { if } x \in P^{*}, & \text { then }\langle x, 0\rangle \in V\left(\square_{2} p\right) \text {, and } \\
\text { if } x \in Q^{*}, & \text { then }\langle x, 0\rangle \in V\left(\square_{2} \neg p\right) .
\end{array}
$$

Thus, for each $x \in(0,1)$, we can choose an open vertical interval J_{x} so that $\langle x, 0\rangle \in J_{x}$ and
if $x \in P^{*}, \quad$ then $J_{x} \subseteq V(p)$, and if $x \in Q^{*}, \quad$ then $J_{x} \subseteq V(\neg p)$.

Note that $J_{x}=\{x\} \times(a, b)$ for some $a, b \in \mathbb{R}$ with $a<0<b .{ }^{5}$
Given $y>0$, we define the sets P_{y}, Q_{y}, and $R_{y} \subseteq(0,1)$ as follows:

$$
\left.\begin{array}{rl}
P_{y} & ={ }_{\mathrm{df}} \\
Q_{y} & ={ }_{\mathrm{df}} \quad\left\{x \in P^{*}:\langle x, y\rangle \in J_{x} \text { and }\langle x,-y\rangle \in J_{x}\right\} \\
R_{y} & ={ }_{\mathrm{df}}
\end{array} \quad\left\{x \in(0,1):\langle x, y\rangle \in J_{x} \text { and }\langle x,-y\rangle \in J_{x}\right\}, y \in J_{x} \text { and }\langle x,-y\rangle \in J_{x}\right\}=P_{y} \dot{\cup} Q_{y} .
$$

Here are some useful facts about P_{y}, Q_{y} and R_{y}. First,

$$
\begin{aligned}
P_{y} & =\left\{x \in P^{*}:(\{x\} \times[-y, y]) \subseteq J_{x}\right\} \\
Q_{y} & =\left\{x \in Q^{*}:(\{x\} \times[-y, y]) \subseteq J_{x}\right\}, \text { and } \\
R_{y} & =\left\{x \in(0,1):(\{x\} \times[-y, y]) \subseteq J_{x}\right\}
\end{aligned}
$$

Second, if $y>y^{\prime}>0$, then $P_{y} \subseteq P_{y^{\prime}} \subseteq P^{*}$ and $Q_{y} \subseteq Q_{y^{\prime}} \subseteq Q^{*}$ and $R_{y} \subseteq R_{y^{\prime}} \subseteq(0,1)$. And third,

$$
\begin{aligned}
P^{*} & =\bigcup_{n \geq 1} P_{\frac{1}{n}}, \\
Q^{*} & =\bigcup_{n \geq 1} Q_{\frac{1}{n}}, \text { and } \\
(0,1) & =\bigcup_{n \geq 1} R_{\frac{1}{n}} .
\end{aligned}
$$

Lemma 7. $C l\left(P_{y}\right) \cap(0,1) \subseteq P^{*}$, for each $y>0$.
Proof. Suppose not. Then for some $y>0$ and some $x \in(0,1)$ we have $x \in C l\left(P_{y}\right)$ and $x \notin P^{*}$. So $x \in C l\left(P_{y}\right)$ and $x \in Q^{*}$. We will now show the following:

$$
\forall z \in(-y, y),\langle x, z\rangle \Vdash \diamond_{1} p .
$$

So choose any $z \in(-y, y)$. We consider two cases: (1) $z=0$ and (2) $z \neq 0$.
In case (1), since $x \in Q^{*}$, we have the following: $\langle x, z\rangle=\langle x, 0\rangle \in Q \subseteq$ $V(C)=V\left(\square_{2} \neg p \& \diamond_{1} p \& \square_{2} \diamond_{1} \neg p\right) \subseteq V\left(\diamond_{1} p\right)$. So $\langle x, z\rangle \Vdash \diamond_{1} p$ as desired.

In case (2), consider any open horizontal interval K such that $\langle x, z\rangle \in K$. We want to show that $K \cap V(p)$ is nonempty. Let $K^{*}=_{\mathrm{df}}\{w \in(0,1)$: $\langle w, z\rangle \in K\}$. Note that $x \in K^{*}$ and that K^{*} is an open interval in the real line. So, since $x \in C l\left(P_{y}\right)$, there is some $v \in K^{*} \cap P_{y}$. Also, since $0<|z|<y$, we have $P_{y} \subseteq P_{|z|}$. So $v \in K^{*}$ and $v \in P_{|z|}$. Thus, $\langle v, z\rangle \in K$ and $\langle v, z\rangle \in J_{v}$.

[^3]And for each $x \in Q^{*}$, we can define J_{x} similarly in terms of $V(\neg p)$.

Since $J_{v} \subseteq V(p)$, we have $\langle v, z\rangle \in K \cap V(p)$. So $K \cap V(p)$ is nonempty, as desired, and (\dagger) is shown.

From (\dagger) it follows that $\left.\langle x, 0\rangle \Vdash \square_{2}\right\rangle_{1} p$. So $\langle x, 0\rangle \Vdash \diamond_{2} \square_{1} \neg p$. On the other hand, $x \in Q^{*}$. So

$$
\langle x, 0\rangle \in Q \subseteq V(C)=V\left(\square_{2} \neg p \& \diamond_{1} p \& \diamond_{2} \square_{1} \neg p\right) \subseteq V\left(\diamond_{2} \square_{1} \neg p\right) .
$$

So $\langle x, 0\rangle \Vdash \diamond_{2} \square_{1} \neg p$. A contradiction.
Given that $C l\left(P_{y}\right) \cap(0,1) \subseteq P^{*}($ Lemma 7$)$, and given that $P_{y} \subseteq(0,1)$, we conclude that

$$
\operatorname{Int}\left(C l\left(P_{y}\right)\right)=\operatorname{Int}\left(C l\left(P_{y}\right) \cap(0,1)\right) \subseteq \operatorname{Int}\left(P^{*}\right)=\emptyset .
$$

So P_{y} is nowhere dense, for each $y>0$. A completely parallel argument shows that Q_{y} is nowhere dense, for each $y>0$. So $R_{y}=P_{y} \cup Q_{y}$ is nowhere dense, for each $y>0$. Recall that

$$
(0,1)=\bigcup_{n \geq 1} R_{\frac{1}{n}} .
$$

Thus, the open unit interval is a countable union of nowhere dense sets, i.e. it is meagre. But this contradicts the Baire Category Theorem. This ends our proof that $\mathbb{R} \times \mathbb{R} \vDash A$.
To summarize: We have shown that the following formula, though not a theorem of $\mathrm{S} 4 \oplus \mathrm{~S} 4$, is validated by $\mathbb{R} \times \mathbb{R}$:

$$
\neg \square_{1}\left(\left(\square_{2} p \& \diamond_{1} \neg p \& \diamond_{2} \square_{1} p\right) \vee\left(\square_{2} \neg p \& \diamond_{1} p \& \diamond_{2} \square_{1} \neg p\right)\right) .
$$

So $S 4 \oplus S 4$ is not complete for $\mathbb{R} \times \mathbb{R}$. A slight reworking of the above argument shows that this formula is also validated by $\mathbb{R} \times \mathbb{Q}$: thus $\mathrm{S} 4 \oplus$ S 4 is not complete for $\mathbb{R} \times \mathbb{Q}$. If we define a formula A^{\prime} by switching the subscripted 1's and 2's in the formula A, then we get a formula that, though not a theorem of $\mathrm{S} 4 \oplus \mathrm{~S} 4$, is validated by $\mathrm{Q} \times \mathbb{R}$: thus $\mathrm{S} 4 \oplus \mathrm{~S} 4$ is not complete for $\mathbb{Q} \times \mathbb{R}$.

For any bitopological space \mathcal{X} and any class \mathfrak{X} of bitopological spaces, define the $\operatorname{logics} \log (\mathcal{X})==_{\mathrm{df}}\{A: \mathcal{X} \vDash A\}$ and $\log (\mathfrak{X})={ }_{\mathrm{df}}\{A: \mathcal{X} \vDash A$, for every $\mathcal{X} \in \mathfrak{X}\}$. For any (uni)topological space \mathcal{X} and any class \mathfrak{Y} of (uni)topological spaces, define the class of bitopological spaces $\mathcal{X} \times \mathfrak{Y}={ }_{\mathrm{df}}$ $\{\mathcal{X} \times \mathcal{Y}: \mathcal{Y} \in \mathfrak{Y}\}$; and let \mathfrak{T} be the class of all (uni)topological spaces and \mathfrak{A} be the class of all Alexandroff spaces. ${ }^{6}$ There remains the question of

[^4]the properties (axiomatizability, etc.) of $\log (\mathbb{R} \times \mathbb{R}), \log (\mathbb{R} \times \mathbb{Q})$ and other related logics, such as $\log (\mathbb{R} \times \mathfrak{T})$ and $\log (\mathbb{R} \times \mathfrak{A})$. Finally, let $\mathfrak{T r i v}$ be the class of trivial (uni)topological spaces, i.e. spaces with only two open sets. Valentin Shehtman has suggested, in personal correspondence, a possibly easier but still open question: what are the properties (axiomatizability, etc.) of $\log (\mathbb{R} \times \mathfrak{T r i v}) ?^{7}$

Acknowledgements. Thanks to Guram Bezhanishvili for introducing this topic to me and for directing my attention to his co-written papers [5] and [6].

References

[1] Gabbay, D. M., A. Kurucz, F. Wolter, and M. Zakharyaschev, Manydimensional modal logics: theory and applications, Studies in Logic and the Foundations of Mathematics, Volume 148, Elsevier, 2003.
[2] Gabbay, D. M., and V. B. Shehtman, Products of modal logics, part 1, Logic Journal of the IGPL 1:73-146, 1998.
http://jigpal.oxfordjournals.org/cgi/reprint/6/1/73
[3] Kremer, P., The topological product of S4 and S5, ms. http://individual.utoronto.ca/philipkremer/onlinepapers/TopS4xS5.pdf
[4] Shehtman, V. B., Two-dimensional modal logics (in Russian), Matematicheskie Zametki 23:773-781, 1978. English translation, Mathematical Notes 23:417-424, 1978.
http://www.springerlink.com/content/u032125210714g71/ doi:10.1007/BF01789012
[5] van Benthem, J., G. Bezhanishvili, B. ten Cate, and D. Sarenac, Modal logics for products of topologies, ILLC Prepublications, ILLC; PP-2004-15, 2004. http://www.illc.uva.nl/Publications/ResearchReports/PP-2004-15.text.pdf
[6] van Benthem, J., G. Bezhanishvili, B. ten Cate, and D. Sarenac, Multimodal logics for products of topologies, Studia Logica 84:369-392, 2006.
http://scholarsportal.info/pdflinks/07062316015328141.pdf

Philip Kremer

Department of Philosophy
University of Toronto Scarborough
1265 Military Trail
Toronto ON M1C 1A4, Canada
kremer@utsc.utoronto.ca

[^5]
[^0]: ${ }^{1}$ We are following the notation in [5] and [6] here, though other notation is used for S4 \oplus S4: [1] and others use S4 \otimes S4 and [2] uses S4 * S4.

[^1]: ${ }^{2}$ As noted in [6], a systematic study of multi-dimensional modal logics of products of Kripke frames can be found in [2], and an up-to-date account of the most important results in the field can be found in [1].

[^2]: ${ }^{3}$ This terminology is at odds with the standard terminology in topology, where the product space $\mathcal{X}_{1} \times \mathcal{X}_{2}$ is a topological space with a single topology defined in terms of τ_{1} and τ_{2}. The current notion of a product space as a bitopological space is the analog of the notion of a product frame, as defined above, as a birelational frame.
 ${ }^{4}$ Here we are assuming that $\mathbb{Q} \times \mathbb{Q}[\mathbb{R} \times \mathbb{R}]$ is equipped with horizontal and vertical topologies induced by the standard topology on $\mathbb{Q}[\mathbb{R}]$.

[^3]: ${ }^{5}$ We do not need the axiom of choice to choose the J_{x} 's. For each $x \in P^{*}$, we can define

 $$
 J_{x}={ }_{\mathrm{df}}(\{x\} \times(-1,1)) \cap \bigcup\{J \text { an open vertical interval }:\langle x, 0\rangle \in J \subseteq V(p)\} .
 $$

[^4]: ${ }^{6}$ A (uni)topological space $\mathcal{X}=\langle X, \tau\rangle$ is Alexandroff iff τ is closed under arbitrary intersections. There is a well-known duality between Alexandroff spaces and unirelational Kripke frames: For each unirelational Kripke frame $\mathcal{U}=\langle W, R\rangle$, define the toplogical space $\mathcal{X}_{\mathcal{U}}={ }_{\mathrm{df}}\langle W, \tau\rangle$, where $O \in \tau$ iff $(\forall x, y \in W)(x \in O \Rightarrow y \in O)$. Note that a topological space \mathcal{X} is Alexandroff iff $\mathcal{X}=\mathcal{X}_{\mathcal{U}}$ for some unirelational Kripke frame \mathcal{U}.

[^5]: ${ }^{7}$ Let $c o m \supset$ be the left-to-right direction of the axioms scheme com: $\square_{1} \square_{2} A \supset \square_{2} \square_{1} A$. In [3], we show that $\log (\mathbb{Q} \times \mathfrak{T} \mathfrak{r i v})$ can be axiomatized by adding to $\mathrm{S} 4 \oplus \mathrm{~S} 5$ the axioms schemes $c o m_{\supset}$ and $c h r$, and that $\log (\mathbb{R} \times \mathfrak{T} \mathfrak{r i v})$ cannot be so axiomatized.

