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Philip Kremer The Incompleteness of S4 ⊕ S4
for the Product Space R×R

Abstract. Shehtman introduced bimodal logics of the products of Kripke frames,

thereby introducing frame products of unimodal logics. Van Benthem, Bezhanishvili, ten

Cate and Sarenac generalize this idea to the bimodal logics of the products of topological

spaces, thereby introducing topological products of unimodal logics. In particular, they

show that the topological product of S4 and S4 is S4 ⊕ S4, i.e., the fusion of S4 and S4:

this logic is strictly weaker than the frame product S4 × S4. Indeed, van Benthem et al.

show that S4 ⊕ S4 is the bimodal logic of the particular product space Q × Q, leaving

open the question of whether S4 ⊕ S4 is also complete for the product space R×R. We

answer this question in the negative.

Keywords: Bimodal logic, Multimodal logic, Topological semantics, Topological product,

Product space.

Let L be a propositional language with a set PV of propositional variables;
standard Boolean connectives &, ∨ and ¬; and two modal operators, �1 and
�2. We define the Boolean connectives ⊃ and ≡ as usual and the modal
operators ♦1 and ♦2 in the obvious way. Let S4 ⊕ S4 be the fusion of S4
and S4: i.e., the bimodal logic axiomatized by S4-axioms for both modal
operators �1 and �2 as well as the rules of Modus Ponens, necessitation for
�1 and for �2, and substitution.1

A unirelational (Kripke) frame is a pair U = 〈W, R〉, where W is a
nonempty set and R is a reflexive transitive relation on W . A birelational
(Kripke) frame is a triple B = 〈W,R1, R2〉, where W is a nonempty set and
R1 and R2 are reflexive transitive relations on W . A birelational model is
a quartuple M = 〈W,R1, R2, V 〉, where 〈W,R1, R2〉 is a birelational frame
and V : PV → P(W ). V is extended to all formulas as follows:

V (¬A) = W − V (A)
V (A & B) = V (A) ∩ V (B)
V (A ∨ B) = V (A) ∪ V (B)

V (�1A) = {w ∈ W : ∀v ∈ W (wR1v ⇒ v ∈ V (A))}
V (�2A) = {w ∈ W : ∀v ∈ W (wR2v ⇒ v ∈ V (A))}

1We are following the notation in [5] and [6] here, though other notation is used for S4
⊕ S4: [1] and others use S4 ⊗ S4 and [2] uses S4 ∗ S4.
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2 P. Kremer

We say that M � A iff V (A) = W . Given a birelational frame B =
〈W,R1, R2〉, we say that B � A iff M � A for every birelational model
M = 〈W,R1, R2, V 〉. The proof of the following theorem is a straightfor-
ward generalization of the unimodal case for S4.

Theorem 1. A ∈ S4 ⊕ S4 iff B � A for every birelational frame B.

Van Benthem, Bezhanishvili, ten Cate and Sarenac note, in [6] (a slightly
updated version of [5]), that Shehtman [4] initiated the study of a particular
class of birelational frames: those that are the products of unirelational
frames.2 Given two unirelational frames U1 = 〈W1, R1〉 and U2 = 〈W2, R2〉,
define the birelational frame U1 × U2 =df 〈W1 × W2, R

′
1, R

′
2〉 where

〈w, v〉R′
1〈x, y〉 iff wR1x and v = y; and

〈w, v〉R′
2〈x, y〉 iff w = x and vR2y.

A birelational frame of the form U1 × U2 is a product frame. The logic of
product frames turns out to be the product logic S4 × S4, defined by adding
the following two axiom schemes to the fusion S4 ⊕ S4:

com (commutativity) �1�2A ≡ �2�1A
chr (Church-Rosser) ♦1�2A ⊃ �2♦1A

As noted in [6], the following theorem is an immediate corollary of a more
general theorem of [2]:

Theorem 2. A ∈ S4 × S4 iff B � A for every product frame B.

The topological semantics for S4 generalizes the unirelational Kripke
frame semantics for S4. [6] generalizes the above birelational frame semantics
for S4 ⊕ S4 to a bitopological semantics. A bitopological space is a triple
X = 〈X, τ1, τ2〉, where X is a nonempty set and each of τ1 and τ2 is a
topology on X. Given any S ⊆ X, we can consider two interiors of S,
Int1(S) and Int2(S), associated with the topologies τ1 and τ2 respectively.
A bitopological model is a quartuple M = 〈X, τ1, τ2, V 〉, where 〈X, τ1, τ2〉 is
a bitopological space and V : PV → P(X). V is extended to all formulas as
follows:

V (¬A) = X − V (A)
V (A & B) = V (A) ∩ V (B)
V (A ∨ B) = V (A) ∪ V (B)

V (�1A) = Int1(V (A))
V (�2A) = Int2(V (A))

2As noted in [6], a systematic study of multi-dimensional modal logics of products of
Kripke frames can be found in [2], and an up-to-date account of the most important results
in the field can be found in [1].
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We sometimes write x � A instead of x ∈ V (A). We say that M � A iff
V (A) = X. Given a bitopological space X = 〈X, τ1, τ2〉, we say that X � A
iff M � A for every bitopological model M = 〈X, τ1, τ2, V 〉. The following
theorem is an immediate consequence of Theorem 1, above:

Theorem 3. A ∈ S4 ⊕ S4 iff X � A for every bitopological space X .

[6] defines product spaces analogously to the product frames defined
above. Given two topological spaces X1 = 〈X1, τ1〉 and X2 = 〈X2, τ2〉, define
the bitopological space X1 × X2 =df 〈X1 × X2, τ

′
1, τ

′
2〉 where the following

two families of subsets of X1 × X2 form bases for the topologies τ ′
1 and τ ′

2,
respectively:

Basis for τ ′
1: {O × {x} : O ∈ τ1 & x ∈ X2}

Basis for τ ′
2: {{x} × O : x ∈ X1 & O ∈ τ2}

A bitopological space of the form X1 × X2 is a product space.3 [6] refers to
the induced topologies τ ′

1 and τ ′
2 as the horizontal and vertical topologies,

respectively.
The following table summarizes the results stated so far:

The logic of all product
birelational frames S4 ⊕ S4 S4 × S4
bitopological spaces S4 ⊕ S4

It is natural to expect the unfilled entry to be S4 × S4. But it isn’t: [6]
proves the following surprising theorem.

Theorem 4. A ∈ S4 ⊕ S4 iff X � A for every product space X .

In the unimodal case, we find not only that S4 is complete for the class of
all topological spaces, but also that S4 is complete for a number of particular
topological spaces, for example the rational line Q and the real line R. It is
natural to ask whether these results generalize to the logic S4 ⊕ S4 and the
bitopological spaces Q × Q and R × R.4 [6] proves that the generalization
does go through for Q×Q:

Theorem 5. A ∈ S4 ⊕ S4 iff Q×Q � A.

3This terminology is at odds with the standard terminology in topology, where the
product space X1 ×X2 is a topological space with a single topology defined in terms of τ1

and τ2. The current notion of a product space as a bitopological space is the analog of
the notion of a product frame, as defined above, as a birelational frame.

4Here we are assuming that Q × Q [R × R] is equipped with horizontal and vertical
topologies induced by the standard topology on Q [R].
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4 P. Kremer

(In the exposition in [6], Theorem 4 is presented as a corollary to Theorem 5,
which is proved more directly.)

[6] leaves open the question of whether S4 ⊕ S4 is complete for R ×R.
The purpose of this note is to answer that question in the negative:

Theorem 6. S4 ⊕ S4 is not complete for R×R.

For Theorem 6, it suffices to find a formula A such that R×R � A and
M0 �� A for some birelational model M0. Let B and C be the following
formulas, where p is a propositional variable:

B �2p & ♦1¬p & ♦2�1p
C �2¬p & ♦1p & ♦2�1¬p

And let A be the formula ¬�1(B ∨ C).
Let M0 =df 〈W0, R1, R2, V0〉 where

W0 = {1, 2, 3, 4}
R1 = {〈w, w〉 : w ∈ W} ∪ {〈1, 2〉, 〈2, 1〉}
R2 = {〈w, w〉 : w ∈ W} ∪ {〈1, 3〉, 〈2, 4〉}

V0(p) = {1, 3}
Note the following. V0(�2p) = {1, 3}. Also, V0(�1p) = {3}. So V0(♦2�1p) =
{1, 3}. Also, V0(♦1¬p) = {1, 2, 4}. Thus V0(B) = {1}. Similarly, V0(C) =
{2}. So V0(B ∨ C) = {1, 2}. So V0(�1(B ∨ C)) = {1, 2}. So V0(A) = {3, 4}.
So M0 �� A.

Our final task is to show that R × R � A. First we introduce some
new terminology. An open horizontal interval is any subset of R×R of the
following form, where a, b, c ∈ R, where a < b and where (a, b) =df {x ∈ R :
a < x < b}:

(a, b) × {c}.
Similarly, an open vertical interval is any subset of R × R of the following
form, where a, b, c ∈ R and a < b:

{c} × (a, b).

The unit open horizontal interval is I0 =df (0, 1) × {0}. Note that the open
horizontal intervals form a basis for the horizontal topology on R×R, and
the open vertical intervals form a basis for the vertical topology.

Now for our final task: suppose, for a reductio, that R × R �� A. Then
there is some model M = 〈R×R, τ1, τ2, V 〉 where τ1 and τ2 are the horizontal
and vertical topologies induced on R × R by the standard topology on R,
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where V : PV → P(R × R), and where M �� A. So there is some point
〈a, b〉 ∈ R×R such that

〈a, b〉 � �1(B ∨ C).

So, for some horizontal interval I, we have 〈a, b〉 ∈ I and

I ⊆ V (B ∨ C).

Without loss of generality, we can assume that I = I0. So

I = I0 ⊆ V (B) ∪ V (C).

Let

P =df I0 ∩ V (B),
Q =df I0 ∩ V (C),

P ∗ =df {x ∈ R : 〈x, 0〉 ∈ P} = {x ∈ R : ∃y ∈ R 〈x, y〉 ∈ P}, and
Q∗ =df {x ∈ R : 〈x, 0〉 ∈ Q} = {x ∈ R : ∃y ∈ R 〈x, y〉 ∈ Q},

so that I0 = P ∪Q. Note that P ⊆ V (B) ⊆ V (p) and Q ⊆ V (C) ⊆ V (¬p) =
(R×R) − V (p). So

P = I0 ∩ V (p), and
Q = I0 ∩ V (¬p).

So P ∩ Q = ∅ and I0 = P ∪̇ Q. We will now show that I0 ⊆ Cl1(P ),
where Cl1 is the closure operator associated with the horizontal topology,
τ1. So suppose that 〈x, 0〉 ∈ I0. If 〈x, 0〉 ∈ P then clearly 〈x, 0〉 ∈ Cl1(P ).
On the other hand, if 〈x, 0〉 �∈ P , then we have 〈x, 0〉 ∈ Q = I0 ∩ V (C) ⊆
I0 ∩ V (♦1p) = I0 ∩ Cl1(V (p)) ⊆ Cl1(I0 ∩ V (p)) (since I0 is horizontally
open) = Cl1(P ). Thus, I0 ⊆ Cl1(P ) as desired. Similarly, I0 ⊆ Cl1(Q).
We summarize: I0 = P ∪̇ Q and I0 ⊆ Cl1(P ) and I0 ⊆ Cl1(Q). Thus
(0, 1) = P ∗ ∪̇ Q∗, and Cl(P ∗) = Cl(Q∗) = [0, 1], where Cl is the standard
closure operator on subsets of R and where [0, 1] is the closed unit interval.
Note finally that Int(P ∗) = Int(Q∗) = ∅, where Int is the standard interior
operator on subsets of R.

Note that, for each x ∈ (0, 1),

if x ∈ P ∗, then 〈x, 0〉 ∈ V (�2p), and
if x ∈ Q∗, then 〈x, 0〉 ∈ V (�2¬p).

Thus, for each x ∈ (0, 1), we can choose an open vertical interval Jx so that
〈x, 0〉 ∈ Jx and
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6 P. Kremer

if x ∈ P ∗, then Jx ⊆ V (p), and
if x ∈ Q∗, then Jx ⊆ V (¬p).

Note that Jx = {x} × (a, b) for some a, b ∈ R with a < 0 < b.5

Given y > 0, we define the sets Py, Qy, and Ry ⊆ (0, 1) as follows:

Py =df {x ∈ P ∗ : 〈x, y〉 ∈ Jx and 〈x,−y〉 ∈ Jx}
Qy =df {x ∈ Q∗ : 〈x, y〉 ∈ Jx and 〈x,−y〉 ∈ Jx}
Ry =df {x ∈ (0, 1) : 〈x, y〉 ∈ Jx and 〈x,−y〉 ∈ Jx} = Py ∪̇ Qy.

Here are some useful facts about Py, Qy and Ry. First,

Py = {x ∈ P ∗ :
({x} × [−y, y]

) ⊆ Jx},
Qy = {x ∈ Q∗ :

({x} × [−y, y]
) ⊆ Jx}, and

Ry = {x ∈ (0, 1) :
({x} × [−y, y]

) ⊆ Jx}.
Second, if y > y′ > 0, then Py ⊆ Py′ ⊆ P ∗ and Qy ⊆ Qy′ ⊆ Q∗ and
Ry ⊆ Ry′ ⊆ (0, 1). And third,

P ∗ =
⋃

n≥1 P 1
n
,

Q∗ =
⋃

n≥1 Q 1
n
, and

(0, 1) =
⋃

n≥1 R 1
n
.

Lemma 7. Cl(Py) ∩ (0, 1) ⊆ P ∗, for each y > 0.

Proof. Suppose not. Then for some y > 0 and some x ∈ (0, 1) we have
x ∈ Cl(Py) and x �∈ P ∗. So x ∈ Cl(Py) and x ∈ Q∗. We will now show the
following:

∀z ∈ (−y, y), 〈x, z〉 � ♦1p. (†)
So choose any z ∈ (−y, y). We consider two cases: (1) z = 0 and (2) z �= 0.

In case (1), since x ∈ Q∗, we have the following: 〈x, z〉 = 〈x, 0〉 ∈ Q ⊆
V (C) = V (�2¬p & ♦1p & �2♦1¬p) ⊆ V (♦1p). So 〈x, z〉 � ♦1p as desired.

In case (2), consider any open horizontal interval K such that 〈x, z〉 ∈ K.
We want to show that K ∩ V (p) is nonempty. Let K∗ =df {w ∈ (0, 1) :
〈w, z〉 ∈ K}. Note that x ∈ K∗ and that K∗ is an open interval in the real
line. So, since x ∈ Cl(Py), there is some v ∈ K∗∩Py. Also, since 0 < |z| < y,
we have Py ⊆ P|z|. So v ∈ K∗ and v ∈ P|z|. Thus, 〈v, z〉 ∈ K and 〈v, z〉 ∈ Jv.

5We do not need the axiom of choice to choose the Jx’s. For each x ∈ P ∗, we can define

Jx =df ({x} × (−1, 1)) ∩
⋃

{J an open vertical interval : 〈x, 0〉 ∈ J ⊆ V (p)}.

And for each x ∈ Q∗, we can define Jx similarly in terms of V (¬p).
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Since Jv ⊆ V (p), we have 〈v, z〉 ∈ K ∩ V (p). So K ∩ V (p) is nonempty, as
desired, and (†) is shown.

From (†) it follows that 〈x, 0〉 � �2♦1p. So 〈x, 0〉 �� ♦2�1¬p. On the
other hand, x ∈ Q∗. So

〈x, 0〉 ∈ Q ⊆ V (C) = V (�2¬p & ♦1p & ♦2�1¬p) ⊆ V (♦2�1¬p).

So 〈x, 0〉 � ♦2�1¬p. A contradiction.

Given that Cl(Py) ∩ (0, 1) ⊆ P ∗ (Lemma 7), and given that Py ⊆ (0, 1), we
conclude that

Int(Cl(Py)) = Int(Cl(Py) ∩ (0, 1)) ⊆ Int(P ∗) = ∅.
So Py is nowhere dense, for each y > 0. A completely parallel argument
shows that Qy is nowhere dense, for each y > 0. So Ry = Py ∪Qy is nowhere
dense, for each y > 0. Recall that

(0, 1) =
⋃

n≥1 R 1
n
.

Thus, the open unit interval is a countable union of nowhere dense sets, i.e.
it is meagre. But this contradicts the Baire Category Theorem. This ends
our proof that R×R � A.

To summarize: We have shown that the following formula, though not a
theorem of S4 ⊕ S4, is validated by R×R:

¬�1((�2p & ♦1¬p & ♦2�1p) ∨ (�2¬p & ♦1p & ♦2�1¬p)).

So S4 ⊕ S4 is not complete for R × R. A slight reworking of the above
argument shows that this formula is also validated by R × Q: thus S4 ⊕
S4 is not complete for R × Q. If we define a formula A′ by switching the
subscripted 1’s and 2’s in the formula A, then we get a formula that, though
not a theorem of S4 ⊕ S4, is validated by Q × R: thus S4 ⊕ S4 is not
complete for Q×R.

For any bitopological space X and any class X of bitopological spaces,
define the logics Log(X ) =df {A : X � A} and Log(X) =df {A : X � A,
for every X ∈ X}. For any (uni)topological space X and any class Y of
(uni)topological spaces, define the class of bitopological spaces X × Y =df

{X × Y : Y ∈ Y}; and let T be the class of all (uni)topological spaces and
A be the class of all Alexandroff spaces.6 There remains the question of

6A (uni)topological space X = 〈X, τ〉 is Alexandroff iff τ is closed under arbitrary
intersections. There is a well-known duality between Alexandroff spaces and unirelational
Kripke frames: For each unirelational Kripke frame U = 〈W, R〉, define the toplogical space
XU =df 〈W, τ〉, where O ∈ τ iff (∀x, y ∈ W )(x ∈ O ⇒ y ∈ O). Note that a topological
space X is Alexandroff iff X = XU for some unirelational Kripke frame U .

225



8 P. Kremer

the properties (axiomatizability, etc.) of Log(R×R), Log(R×Q) and other
related logics, such as Log(R× T) and Log(R× A). Finally, let Triv be the
class of trivial (uni)topological spaces, i.e. spaces with only two open sets.
Valentin Shehtman has suggested, in personal correspondence, a possibly
easier but still open question: what are the properties (axiomatizability,
etc.) of Log(R× Triv)?7

Acknowledgements. Thanks to Guram Bezhanishvili for introducing this
topic to me and for directing my attention to his co-written papers [5] and [6].
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