THE TRUTH IS SOMETIMES SIMPLE
Philip Kremer, Departmenbf Philosophy,McMasterUniversity

Note: The following versionof this paperdoesnot containthe proofs of the statedtheorems.
A longerversion,completewith proofs,is forthcoming.

81. Introduction. In "The truth is neversimple" (1986) and its addendum(1988), Burgess
conductsa breathtakinglycomprehensiveurveyof the complexityof the setof truthswhich arise
whenyou adda truth predicateto arithmetic,andinterpretthat predicateaccordingto the fixed

point semanticsor the revision-theoreticsemanticsfor languagesexpressingtheir own truth

concepts. Burgessconsidersvarioussetsthat canbe saidto representruth in this context,and
showsthat their complexity rangesfrom IM; or X} to M3 or =5. Thus, enrichingarithmeticwith

a truth predicateincreasests complexity, which is otherwiseonly A7

In his survey, Burgessassumeghat we havefixed someGoédel numbering(or someother
kind of codingof sentenceasnumberskeffectivelyidentifying a sentencevith its Gédelnumber.
Godelnumberingis usefulbecausat allows the objectlanguageto mimic talk aboutsentences,
evenwhen our model’'s domain containsonly numbers. And if we want a semanticsfor an
objectlanguagesxpressingts own truth conceptjt seemsa minimal requirementhatthe object
languagebe ableto referto or at leastquantify over sentences.

Godelnumberingnot only allows us to satisfy this minimal requirementjt also allows the
objectlanguagdo saywhenonesentencés the conjunctionof two sentencesyhenonesentence
is the negationof another,when one sentenceas a substitutioninstanceof another,and so on.
Thus Burgess’sresultsdo not show that truth alone accountsfor the increasein arithmetic’s
complexityfrom Al to M1, 51, M3 or Z}. Rather,it is the interplay betweentruth andtheserich
syntacticresourceghat is responsibldor the increasein complexity. In the currentpaper,we
investigatejn variouscontextsthe complexityof truth ratherthanthe complexityof truth + rich
syntactic resources. And we discoverthat the truth, evenin arithmetic,is sometimessimple.

Gupta(1982) makesa similar point, not aboutthe complexity of truth, but aboutthe ability

of a languagescontaining its own truth predicateto expressthe liar's paradoxand other
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pathologies. Tarski (1936)arguesthat every“semanticallyclosed"languagesatisfyingthe laws
of classicallogic and the Tarski biconditionalsis inconsistentwhere a "semanticallyclosed"
languages onethat hasnamesfor its own expressiongndexpresse#ts own truth concept(or
othersemanticconcepts) (p. 165) . Guptaconstructsa perfectly consistenssemanticallyclosed
languagethat obeysthe laws of logic andin which the Tarski biconditionalsaretrue. (Gupta’s
languageonly hasnamedor its sentencedyut he pointsout thatwe could harmlesslyaddnames
for the otherexpressions.)Guptaguaranteeshe combinationof consistencysatisfactionof the
T-biconditionals,and semanticclosure by restricting the syntacticresourcesof the language:
Tarskisimply assumeshatricher syntacticresourcesreavailablewheninformally constructing
the liar's paradox. And the syntacticresourcesassumedoy Tarski are preciselythe kind of
resourceghat Godel numberingmakesavailable. Gupta’ssimple languages a specialcaseof
the languagesve considerin 84, below.

§2. Basic definitions. We assumefamiliarity with the fixed point and revision theoretic
semanticssowe skimp on the motivationfor the basicdefinitions. Throughoutwe assumehat
L is a first-order languagewith a distinguishedpredicateT and a quote name*‘A’ for each
sentenceA of L. The T-free fragment of L is the fragmentof L that doesnot containany
occurrence®f T, exceptin the scopeof quotationmarks. Following Guptaand Belnap(1993)
welet S={A: Aisasentencef L}. We beginwith the fixed point semantics.

A classical model for L is anorderedpair M = [D, I[JwhereD, the domain of discourse, is
a nonemptyset; and where | is a function such that I(c) O D, for eachconstantc of L;
I(f):D" - D for eachn-ary function symbolf of L; andI(R):D" - {t, f} for eachn-aryrelation
symbol R of L. Truth in a classicalmodelis definedas usual. A ground model for L is a
classicalmodel M = [D, |for the T-free fragmentof L, suchthat I(*A) = A O D for each
sentenceA of L.

Givena groundmodelM = [D, ICfor L, an hypothesis is a functionh:D - {t, f, n} anda

classical hypothesisafunctionh:D - {t, f}. Leth"={d O D: h(d)=1t} andh™ ={d O D: h(d)
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= f}. Let M + h be the modelM’ = [D, I'Ofor all of L, wherel" and | agreeon the T-free
fragmentof L andwherel’(T) = h. In athree-valued modelM + h, we assignto eachsentence
a truth-valueby using, for example the strong Kleene scheme, SK. Accordingto SK,

-t =fand-f =t and-n =n;

t&t)=t,and(f & x) =f foranyx O {t,f,n}, and(t & n)=(n& t)=(n & n) =n;

(tOx)=tforanyx O{t,f,n}, and(f Of) =f,and(f On) =(n Of) =(n On) =n;
andthe quantifiersare treatedanalogoudo & and[]. SK delivers,for eachsentenceA of L a
valueValy , , «(A) O {t, f, n}. ThevalueVal, . w(A) usingthe weak Kleene scheme, WK,
is definedsimilarly exceptthat (f & n) = (n & f) = n = (n Ot) = (t O n) andanalagouslyor the
quantifiers. ThevalueValy, , , s\(A) usingthe supervaluation scheme, SV, is definedasfollows.
First saythat h < h' iff if h(d) =t [f] thenh'(d) =t [f] for everyd O D. WhenM + h is
classicalwe denotethetruth valueof asentencéA by Val,, . , - (A): CL is theclassical scheme.
Finally,

Valy . n s(A) =4 t [f], if Valy ., o (A) =t [f] for everyclassicalh’ > h.

n, otherwise.
For X = CL, WK, SK, or SV, define the jump operator X,, on the setof hypothesesas
follows, restrictingthis definition to classicalhypothesedor X = CL.:
Xu(h)(®) = Valy ., x(A), if AOS
Xuh)(d)=fifdOD-S.

ThemodelsM + h in which T plausibly expresses$ruth arethosein which h is a fixed point of
Xwu 1. when X,,(h) = h. Kripke (1975) provesthat WK,,, [SK,,, SV,,] hasa fixed point, for
every ground model M. In fact, Kripke’s results are stronger. Say that a function X on
hypothesess monotone iff, for all hypothese$ andh', if h < h' thenX(h) < X(h'). WK,,, SKy,,
and SV,, aremonotonefor everygroundmodelM. Eachmonotonefunction X not only hasa
fixed point, but a least fixed point, Ifp(X). Saythath andh’ arecompatible iff h < h" andh’ <

h" for somehypothesid”, andthath is intrinsic iff h is compatiblewith everyfixed point. Each
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monotonefunction X not only hasaleast fixed point, buta greatest intrinsic fixed point, gifp(X),
which is not in generalidenticalto Ifp(X).

Given a ground model M and an evaluation schemeX, a sentenceA is everywhere
(somewhere) (nowhere) true [false] iff h(A) =t [f] for every (some)(no) fixed point h, andis
intrinsically true [false] iff h(A) =t [f] at someintrinsic fixed pointh. With Burgess(1986)we
notethatA is everywhererue [false] iff A O Ifp(X,,)* [Ifp(X )], andis intrinsically true [false]
iff A O gifp(X,)" [gifp(Xy)]. Define sfp(X,,)" [sfp(Xy)7] to be the setof sentenceshat are
somewherdrue [false].

Now we moveonto therevision-theoreticsemantics.Fix agroundmodelM = [D, I Given
any function X on hypothesesn X-sequence, or arevision sequence for X, is anordinal-length
sequences of hypothesesuchthat S, ., ; = X(S,) for everyordinal a; and suchthat for every
limit ordinalA, everytruth valuex andeveryd [0 D, S,(d) = x if thereis a3 < A suchthatS,(d)
= x for everyordinala between andA. This secondclauseis the limit rule for X-sequences.
Note that if S is an X-sequencehen X is definedon S, for every ordinal a; so, if Sis a
CL,-sequencehensS, is classicalfor everyordinala. A sentencé is stably x in Siff thereis
a 3 suchthat S,(d) = x for everyordinal a > . If A is not stably anythingin S thenA is
unstablein S. S culminatesin h iff thereis a3 suchthatS, = h for everya = 3. Note that if
X = WK, SK or SV, thenthereis a uniqueX,,-sequence suchthat S(d) = n for everyd 0 D.
Furthermore that X,,-sequenceculminatesin Ifp(X,,). For revision theory, we are primarily
interestedin the casewhere X = CL,,. Following Burgess,we distinguish one particular
sequencethe negative sequence or the N-sequence for M, which is the CL,,-sequences for
which (1) S,(d) = f for everyd [0 D, and(2) for everylimit ordinal A andeveryd 0 D, S,(d)
=t if and only if thereis a3 < A suchthatS,(d) =t for everyordinal a betweenf andA. In
the N-sequenceevery sentenceas assessedsfalseto beginwith, anda sentenceas assesseds

false at the limit, unlessif it forcedto be assessedstrue.
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Following Burgessye define,for groundmodelsM, thesets 1T,,, CIF,,, (U, 0T,,, OF,, OU,,
wherethe appearancef [ (of ¢) andof T [of F] [of U] indicatesthe setof sentenceshat are
stablytrue[stably false][unstable]in every(some)CL,,-sequence And we definelimN asthe
setof sentencestablytrue in the N-sequencdor M.

83. Burgess'sresults. For this section,let L be the languageof arithmeticenrichedwith
a predicateT and a quote name‘A’ for eachsentenceA of L. Fix someGodel numbering
establishinga bijection betweensentencesf L andnaturalnumberssothat Gn(A) is the Godel
numberof A. Let N = [d, |Cbethe standardnodelof arithmetic,understoodasa groundmodel
for L whenwe identify a sentencewith its Gédelnumber,sothatI(* A’) = Gn(A).

Remark. Burgessworks with alanguagel. that hasa function symbolfor every primitive
recursivefunction, but this doesnot affectthe basicresults. Also, giventhatI(* A’) = Gn(A), the
quotenamesare redundansincethe sentence is namedby Gn(A)" numeral. We includethe
inessentialjuotenamesto makethe languagdike the languagesisedin 82, but their presence
or absencéhasno effect on complexity.

Remark. Another approachwould be to let N = [, IOwherel is definedso that N is
isomorphicto the standardnodelof arithmeticwheretheisomorphismmapseachsentenceA to
Gn(A).

Burgessprovesthe following:

The set is
(1)  Ifp(SKy)* completel;.
(2)  sfp(SK)* completes?.
(3) sfp(SK)* n sfp(SK,)" complete3?.
(4) - (sfp(SK,)" O sfp(SK)) completell;.
(5) sfp(SK,)" - sfp(SK\)” completedifferenceof two 3.
(6)  gifp(SKy)" completeZj-in-af1;-parameter.

(1) Ifp(SVy)’ completel?.



(8)  sfp(S\W)* completex;.

(9)  gifp(SKy)* Ax-in-aT13-parameter.
(10) O, completerlls.

(11) 90U, completex;.

(12) 0T, atleastz; andat most 3.
(13) U, at leastM} andat most;.
(14)  lim N AL

Furthermore gvery IN; or 3 setis reducibleto limyN, and every set Z3-in-a{1;-parameteror
Mj-in-a-M3-parameteis reducibleto gifp(SK,)".

Remark. Burgessattributes(1)-(5), (7) andthe upperboundin (6) to Kripke — (1) and (7)
are statedwithout proof by Kripke (1975).

84. Thetruth is sometimes decidable. Forthis section et L beafirst-orderlanguagewith
afinite list, c,, ..., c,, of constantotherthan quotenameswith no function symbols;and with
only two relationsymbols: the identity sign, =, andthe truth predicate,T. We alsoassumehat
L hasa quotename’A’ for eachsentenceA of L.

Remark. If thelist of constantdn nonempty thenthereis a groundmodelexpressinghe
liar's paradox: considerany groundmodelM = [D, IOsuchthatl(c,) = =Tc;,.

Theorem 4.1. If M is any groundmodelfor L, thenthe following setsare all decidable:
fp(WK,,)", Ifp(SK,)", fp(SVy)", gifp(WK,,)", gifp(SKy)", gifp(SViy)", sfp(WK,,)", sfp(SK,)",
sfp(S\,,)*, OIT,,, 0Ty, CU,,, OU,,, lim,N.

Considerthe specialcasewhereL hasno constantotherthanquotenames. Let M be any
groundmodelfor L. Then,in additionto the abovetheorem,we havethe following.

Theorem 4.2. (i) CU,, = 0U,, = sfp(WK,,)" n sfp(WK,,)™ = sfp(SK,)" n sfp(SK,,)” = O.

(i) sfp(WK,,)" O sfp(WK,,)” = sfp(SK,)" O sfp(SK,)” = S.

Theorem 4.3. sfp(WK,,)" = sfp(SK,)" = sfp(SV,,)" = Ifp(SV,,)" = gifp(WK,,)" = gifp(SK,,)*

= gifp(SV,)" = OT,, = 0T,
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Remark. WhenL hasno constant®therthanquotenamesCL,, hasexactlyonefixed point,
say h,, and h, = gifp(WK,,) = gifp(SK,) = Ifp(SV,,) = gifp(SV,). Furthermoreevery
CL,,-revisionsequenceonvergeso h,. Let & betheclassicainterpretedanguagdl, M + h,[]
whereM is the groundmodelwhosedomainis the setof sentencesf L. < is a simpleversion
of Gupta’s(1982)classical semanticallyclosed,languageexpressingts own truth conceptand
verifying all the T-biconditionals.

85. Arithmetic plus truth is sometimes as simple as arithmetic. Supposehat we want
to study the effects of adding the truth predicateto arithmetic, without assumingthe rich
syntacticresourceprovidedby Godelnumbering. Oneapproach(85.1)is to consideralanguage
that talks aboutboth numbersand sentenceshut that keepsthe two distinct: sowe focuson a
singlemodelwhosedomainD is w O S. On thefirst approachaddingtruth to the languageof
arithmeticintroducesno complexity: theresultingsetsof sentenceplausibly representingruth
are all reducibleto arithmetic. Another approach(85.2) is to considermodelsthat, like the
Burgessmodel in 82, above, essentiallyidentify each sentencewith some number, but not
throughGédelnumbering: we considemodelsM = D, I0which areisomorphicto the standard
model of arithmetic,andfor which S O D.

85.1. Numbers and sentences. For this subsection]et L be a first order languagewith
identity with a constanto (zero), a binary relation symbol s (successor)two trinary relation
symbols+ (addition) and x (multiplication), a unary relation symbol Num (number),a truth
predicateT, and quote namesfor the sentence®f L. Our reasondor treatings, + and x as
relationsratherthanfunctionswill becomeapparent.Let M = [D, |Cbe the following classical

groundmodelfor which,

D = wids
[(Num)(d) =t iff ddw
I(s)(d,d) =t iff dO0Owandd Owandd =d+1

[(+)(d, d', d") =t iff dOJwandd O wandd’ O wandd' =d+d



[(x)(d, d', d") =t iff dOJwandd O wandd’ 0wandd =d x d
I("A) = A, for eachA O S.

Theorem 5.1.1. Ifp(WK,,)" andIfp(SK,,)* arereducibleto true arithmetic.

Theorem 5.1.2. (i) OU,, =90U,, = sfp(WK,)" n sfp(WK,,)” = sfp(SK,)* n sfp(SK,)" = O.
(i) sfp(WK,,)" O sfp(WK,,)™ = sfp(SK,)" O sfp(SK,)” = S.

Theorem 5.1.3. sfp(WK,,)" = sfp(SKy)" = sfp(SW,)" = Ifp(SV,)" = gifp(WK,,)" =
gifp(SK,,)* = gifp(SVv,,)" = CIT,, = 0T,, = limyN is reducibleto arithmetic.

85.2. Sentences as numbers. For this subsectionlet L be the first order languageof
arithmetic enlargedwith a truth predicateT and quote namesfor the sentencesf L. The
symbolss, + andx canbe treatedasfunction symbolsor relationsymbols. A groundmodelM
= [D, I0is standard iff M restrictedthe the languageof arithmetic (i.e. the fragmentof L
without T and without quotenames)is isomorphicto the standardnodel of arithmetic.

Theorem 5.2.1. Thereis a standardnodelM and a classicalhypothesish, suchthath is a
fixed point of CL,, andsuchthath” = {A: h(A) =t} = {A: Val,, , , ¢ (A) = t} is reducibleto true
arithmetic.

Remark. Thusthereis a classicalinterpretedanguages = (I, M + hClwhoseT- andquote-
name-freefragmentis isomorphicto the standardmodel of arithmetic,in which T plausibly
meanstruth, andwhosesetof truthsis reducibleto true arithmetic.

Question. What is the leastcomplexity of Ifp(WK,,)" as M rangesover standardground
models? How about Ifp(SK,,)*, Ifp(SV,,)", gifp(WK,,)", gifp(SK,,)*, gifp(SV,,)", sfp(WK,,)",
sfp(SK,)*, sfp(SV,)*, Ty, ¢T,, OU,, andoU,,?

86. Logicsof truth. Fix somelanguagd. with a distinguishedredicatelT andquotenames
for all the sentence®f L, andfix somevaluationschemeX. The following logics of truth
suggesthemselves:

Every fixed point logic, efp(X)

+
n M is a groundmodel n h is afixed point of X h

Leastfixed point logic, Ifp(X) N is a groundmodel TR(X)*



Intrinsic fixed point logic, ifp(X)

+
n M is a groundmodel Dh is anintrinsic fixed point of X h

Greatesintrinsic fixed point logic, gifp(X) N is a groundmodel FITP(X )"

Somefixed point logic, sfp(X) N M is a groundmodel STP(Xy)*
Universalrevisionlogic, CIT N\ is agroundmodel 1T m
Existentialrevisionlogic, 0T N\ is agroundmodel O T

It is immediatelyclearthat efp(X) = Ifp(X) andthatifp(X) = gifp(X).

Theorem 6.1. Ifp(WK), Ifp(SK) andlIfp(SV) arerecursivelyenumerable.

Remark. The complexity of the remainingsetsis open.

Remark. [IT is the set V| of P. Kremer (1993). We caution against inferring from
Burgess’'sresultthat [T, is completel; any conclusionthat CIT is completel;. Considerthe
analoguein the fixed point semantics: Ifp(SK,)* is completel;, but Ifp(SK) is recursively
enumerable. We can seejust how much work Goédel numberingis doing in sucha context.
Welch2001claimsto havesolvedthe complexityof CIT (seep. 351, Remarkb), but he assumes
Godelnumbering. The problemremainsopen.

Remark. We alsocautionagainstinferring from Burgess’sresultthat 1T, is completell}
any conclusionthat GuptaandBelnap’slogic S* is completel; (asin Welch2001,p. 348). S*
is a generalrevision-theoretidogic of circular conceptsand (1T is the result of applying that
logic to truth. Again, if we defineda fixed-pointanalogueof S* usingthe leastfixed point and
the Strong Kleene Schemethe resulting logic of circular definitions would be recursively
enumerablalespitethe fact that Ifp(SK,)* is completel;. As a matterof fact, S* is complete
M5 (Kremer (1993) and Antonelli (1993)), but that doesnot meanthat Burgess’sresultscould

havebeenappealedo for this result.
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