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Note: The following versionof this paperdoesnot containthe proofsof the statedtheorems.

A longerversion,completewith proofs,is forthcoming.

§1. Introduction. In "The truth is neversimple" (1986) and its addendum(1988), Burgess

conductsabreathtakinglycomprehensivesurveyof thecomplexityof thesetof truthswhicharise

whenyou adda truth predicateto arithmetic,andinterpretthat predicateaccordingto the fixed

point semanticsor the revision-theoreticsemanticsfor languagesexpressingtheir own truth

concepts.Burgessconsidersvarioussetsthat canbe saidto representtruth in this context,and

showsthat their complexityrangesfrom Π1
1 or Σ1

1 to Π1
2 or Σ1

2. Thus,enrichingarithmeticwith

a truth predicateincreasesits complexity,which is otherwiseonly ∆1
1.

In his survey,Burgessassumesthat we havefixed someGödel numbering(or someother

kind of codingof sentencesasnumbers)effectivelyidentifyingasentencewith its Gödelnumber.

Gödelnumberingis usefulbecauseit allows the objectlanguageto mimic talk aboutsentences,

evenwhen our model’s domaincontainsonly numbers. And if we want a semanticsfor an

objectlanguageexpressingits own truth concept,it seemsa minimal requirementthat theobject

languagebe ableto refer to or at leastquantify over sentences.

Gödelnumberingnot only allows us to satisfy this minimal requirement;it alsoallows the

objectlanguageto saywhenonesentenceis theconjunctionof two sentences,whenonesentence

is the negationof another,when one sentenceis a substitutioninstanceof another,and so on.

Thus Burgess’sresultsdo not show that truth alone accountsfor the increasein arithmetic’s

complexityfrom ∆1
1 to Π1

1, Σ1
1, Π1

2 or Σ1
2. Rather,it is the interplay betweentruth andtheserich

syntacticresourcesthat is responsiblefor the increasein complexity. In the currentpaper,we

investigate,in variouscontexts,thecomplexityof truth ratherthanthecomplexityof truth + rich

syntactic resources. And we discoverthat the truth, evenin arithmetic,is sometimessimple.

Gupta(1982)makesa similar point, not aboutthe complexityof truth, but aboutthe ability

of a languagescontaining its own truth predicateto expressthe liar’s paradox and other
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pathologies.Tarski (1936)arguesthatevery"semanticallyclosed"languagesatisfyingthe laws

of classicallogic and the Tarski biconditionalsis inconsistent,wherea "semanticallyclosed"

languageis onethat hasnamesfor its own expressionsandexpressesits own truth concept(or

othersemanticconcepts) (p. 165) . Guptaconstructsa perfectlyconsistentsemanticallyclosed

languagethat obeysthe laws of logic andin which the Tarski biconditionalsare true. (Gupta’s

languageonly hasnamesfor its sentences,but hepointsout thatwe couldharmlesslyaddnames

for the otherexpressions.)Guptaguaranteesthecombinationof consistency,satisfactionof the

T-biconditionals,and semanticclosureby restricting the syntacticresourcesof the language:

Tarskisimply assumesthat richersyntacticresourcesareavailablewheninformally constructing

the liar’s paradox. And the syntacticresourcesassumedby Tarski are preciselythe kind of

resourcesthat Gödelnumberingmakesavailable. Gupta’ssimple languageis a specialcaseof

the languageswe considerin §4, below.

§2. Basic definitions. We assumefamiliarity with the fixed point and revision theoretic

semantics,sowe skimpon themotivationfor thebasicdefinitions. Throughout,we assumethat

L is a first-order languagewith a distinguishedpredicateT and a quote name‘A’ for each

sentenceA of L. The T-free fragment of L is the fragmentof L that doesnot contain any

occurrencesof T, exceptin the scopeof quotationmarks. Following GuptaandBelnap(1993)

we let S = { A: A is a sentenceof L}. We beginwith the fixed point semantics.

A classical model for L is an orderedpair M = 〈D, I〉, whereD, the domain of discourse, is

a nonemptyset; and where I is a function such that I(c) ∈ D, for each constantc of L;

I(f):Dn → D for eachn-ary function symbol f of L; andI(R):Dn → { t, f} for eachn-ary relation

symbol R of L. Truth in a classicalmodel is definedas usual. A ground model for L is a

classicalmodel M = 〈D, I〉 for the T-free fragmentof L, such that I(‘ A’) = A ∈ D for each

sentenceA of L.

Given a groundmodelM = 〈D, I〉 for L, an hypothesis is a function h:D → { t, f, n} anda

classical hypothesis,a functionh:D → { t, f}. Let h+ = {d ∈ D: h(d) = t} andh− = {d ∈ D: h(d)
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= f}. Let M + h be the model M′ = 〈D, I′〉 for all of L, where I′ and I agreeon the T-free

fragmentof L andwhereI′(T) = h. In a three-valued modelM + h, we assignto eachsentence

a truth-valueby using,for example,the strong Kleene scheme, SK. Accordingto SK,

¬t = f and¬f = t and¬n = n;

(t & t) = t, and(f & x) = f for any x ∈ { t, f, n}, and(t & n) = (n & t) = (n & n) = n;

(t ∨ x) = t for any x ∈ { t, f, n}, and(f ∨ f) = f, and(f ∨ n) = (n ∨ f) = (n ∨ n) = n;

and the quantifiersare treatedanalogousto & and∨. SK delivers,for eachsentenceA of L a

valueValM + h, SK(A) ∈ { t, f, n}. The valueValM + h, WK(A) usingthe weak Kleene scheme, WK,

is definedsimilarly exceptthat (f & n) = (n & f) = n = (n ∨ t) = (t ∨ n) andanalagouslyfor the

quantifiers. ThevalueValM + h, SV(A) usingthesupervaluation scheme, SV, is definedasfollows.

First say that h ≤ h′ iff if h(d) = t [f] then h′(d) = t [f] for every d ∈ D. When M + h is

classical,we denotethetruth valueof a sentenceA by ValM + h, CL(A): CL is theclassical scheme.

Finally,

ValM + h, SV(A) =df t [f], if ValM + h′, CL(A) = t [f] for everyclassicalh′ ≥ h.

n, otherwise.

For X = CL, WK, SK, or SV, define the jump operator XM on the set of hypothesesas

follows, restrictingthis definition to classicalhypothesesfor X = CL:

XM(h)(A) = ValM + h, X(A), if A ∈ S

XM(h)(d) = f if d ∈ D − S.

The modelsM + h in which T plausiblyexpressestruth arethosein which h is a fixed point of

XM, i.e. whenXM(h) = h. Kripke (1975)provesthat WKM, [SKM, SVM] hasa fixed point, for

every ground model M. In fact, Kripke’s results are stronger. Say that a function X on

hypothesesis monotone iff, for all hypothesesh andh′, if h ≤ h′ thenX(h) ≤ X(h′). WKM, SKM,

andSVM aremonotone,for everygroundmodelM. Eachmonotonefunction X not only hasa

fixed point, but a least fixed point, lfp(X). Saythat h andh′ arecompatible iff h ≤ h″ andh′ ≤

h″ for somehypothesish″, andthath is intrinsic iff h is compatiblewith everyfixed point. Each
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monotonefunctionX not only hasa least fixed point,buta greatest intrinsic fixed point,gifp(X),

which is not in generalidentical to lfp(X).

Given a ground model M and an evaluation schemeX, a sentenceA is everywhere

(somewhere) (nowhere) true [false] iff h(A) = t [f] for every (some)(no) fixed point h, and is

intrinsically true [false] iff h(A) = t [f] at someintrinsic fixed point h. With Burgess(1986)we

notethat A is everywheretrue [false] iff A ∈ lfp(XM)+ [lfp(X M)−], andis intrinsically true [false]

iff A ∈ gifp(XM)+ [gifp(XM)−]. Define sfp(XM)+ [sfp(XM)−] to be the set of sentencesthat are

somewheretrue [false].

Now we moveon to therevision-theoreticsemantics.Fix a groundmodelM = 〈D, I〉. Given

any functionX on hypothesesanX-sequence, or a revision sequence for X, is anordinal-length

sequenceS of hypothesessuchthat Sα + 1 = X(Sα) for everyordinal α; andsuchthat for every

limit ordinalλ, everytruth valuex andeveryd ∈ D, Sλ(d) = x if thereis a β < λ suchthatSα(d)

= x for everyordinal α betweenβ andλ. This secondclauseis the limit rule for X-sequences.

Note that if S is an X-sequencethen X is defined on Sα for every ordinal α; so, if S is a

CLM-sequencethenSα is classicalfor everyordinal α. A sentenceA is stably x in S iff thereis

a β such that Sα(d) = x for every ordinal α > β. If A is not stably anything in S then A is

unstable in S. S culminates in h iff thereis a β suchthat Sα = h for everyα ≥ β. Note that if

X = WK, SK or SV, thenthereis a uniqueXM-sequenceS suchthat S0(d) = n for everyd ∈ D.

Furthermore,that XM-sequenceculminatesin lfp(XM). For revision theory, we are primarily

interestedin the casewhere X = CLM. Following Burgess,we distinguish one particular

sequence,the negative sequence or the N-sequence for M, which is the CLM-sequenceS for

which (1) S0(d) = f for everyd ∈ D, and(2) for every limit ordinal λ andeveryd ∈ D, Sλ(d)

= t if and only if thereis a β < λ suchthat Sα(d) = t for everyordinal α betweenβ andλ. In

the N-sequence,everysentenceis assessedasfalseto beginwith, anda sentenceis assessedas

falseat the limit, unlessif it forcedto be assessedastrue.
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FollowingBurgess,wedefine,for groundmodelsM, thesets TM, FM, UM, ◊TM, ◊FM, ◊UM

wherethe appearanceof (of ◊) andof T [of F] [of U] indicatesthe setof sentencesthat are

stablytrue[stably false] [unstable]in every(some)CLM-sequence.And we definelimMN asthe

setof sentencesstably true in the N-sequencefor M.

§3. Burgess’s results. For this section,let L be the languageof arithmeticenrichedwith

a predicateT and a quote name‘A’ for eachsentenceA of L. Fix someGödel numbering

establishinga bijectionbetweensentencesof L andnaturalnumbers,so thatGn(A) is theGödel

numberof A. Let N = 〈ω, I〉 bethestandardmodelof arithmetic,understoodasa groundmodel

for L whenwe identify a sentencewith its Gödelnumber,so that I(‘ A’) = Gn(A).

Remark. Burgessworks with a languageL that hasa function symbol for everyprimitive

recursivefunction,but this doesnot affect thebasicresults. Also, giventhat I(‘ A’) = Gn(A), the

quotenamesareredundantsincethe sentenceA is namedby Gn(A)th numeral. We includethe

inessentialquotenamesto makethe languagelike the languagesusedin §2, but their presence

or absencehasno effect on complexity.

Remark. Another approachwould be to let N = 〈S, I〉 where I is defined so that N is

isomorphicto thestandardmodelof arithmeticwherethe isomorphismmapseachsentenceA to

Gn(A).

Burgessprovesthe following:

The set is

(1) lfp(SKN)+ completeΠ1
1.

(2) sfp(SKN)+ completeΣ1
1.

(3) sfp(SKN)+ ∩ sfp(SKN)− completeΣ1
1.

(4) ω − (sfp(SKN)+ ∪ sfp(SKN)−) completeΠ1
1.

(5) sfp(SKN)+ − sfp(SKN)− completedifferenceof two Σ1
1.

(6) gifp(SKN)+ completeΣ1
1-in-a-Π1

1-parameter.

(7) lfp(SVN)+ completeΠ1
1.
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(8) sfp(SVN)+ completeΣ1
2.

(9) gifp(SKN)+ ∆1
2-in-a-Π1

2-parameter.

(10) TN completeΠ1
2.

(11) ◊UN completeΣ1
2.

(12) ◊TN at leastΣ1
1 andat mostΣ1

2.

(13) UN at leastΠ1
1 andat mostΠ1

2.

(14) limNN ∆1
2.

Furthermore,every Π1
1 or Σ1

1 set is reducibleto limNN, and every set Σ1
1-in-a-Π1

2-parameteror

Π1
1-in-a-Π1

2-parameteris reducibleto gifp(SKN)+.

Remark. Burgessattributes(1)-(5), (7) andthe upperboundin (6) to Kripke – (1) and(7)

arestatedwithout proof by Kripke (1975).

§4. The truth is sometimes decidable. For this section,let L bea first-orderlanguagewith

a finite list, c1, ..., cn, of constantsother thanquotenames;with no function symbols;andwith

only two relationsymbols: the identity sign,=, andthe truth predicate,T. We alsoassumethat

L hasa quotename‘A’ for eachsentenceA of L.

Remark. If the list of constantsin nonempty,thenthereis a groundmodelexpressingthe

liar’s paradox: considerany groundmodelM = 〈D, I〉 suchthat I(c1) = ¬Tc1.

Theorem 4.1. If M is any groundmodel for L, then the following setsare all decidable:

lfp(WKM)+, lfp(SKM)+, lfp(SVM)+, gifp(WKM)+, gifp(SKM)+, gifp(SVM)+, sfp(WKM)+, sfp(SKM)+,

sfp(SVM)+, TM, ◊TM, UM, ◊UM, limMN.

Considerthe specialcasewhereL hasno constantsother thanquotenames. Let M be any

groundmodel for L. Then,in additionto the abovetheorem,we havethe following.

Theorem 4.2. (i) UM = ◊UM = sfp(WKM)+ ∩ sfp(WKM)− = sfp(SKM)+ ∩ sfp(SKM)− = ∅.

(ii) sfp(WKM)+ ∪ sfp(WKM)− = sfp(SKM)+ ∪ sfp(SKM)− = S.

Theorem 4.3. sfp(WKM)+ = sfp(SKM)+ = sfp(SVM)+ = lfp(SVM)+ = gifp(WKM)+ = gifp(SKM)+

= gifp(SVM)+ = TM = ◊TM.
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Remark. WhenL hasno constantsotherthanquotenames,CLM hasexactlyonefixed point,

say h0, and h0 = gifp(WKM) = gifp(SKM) = lfp(SVM) = gifp(SVM). Furthermoreevery

CLM-revisionsequenceconvergesto h0. Let betheclassicalinterpretedlanguage〈L, M + h0〉,

whereM is thegroundmodelwhosedomainis thesetof sentencesof L. is a simpleversion

of Gupta’s(1982)classical,semanticallyclosed,languageexpressingits own truth conceptand

verifying all the T-biconditionals.

§5. Arithmetic plus truth is sometimes as simple as arithmetic. Supposethat we want

to study the effects of adding the truth predicateto arithmetic, without assumingthe rich

syntacticresourcesprovidedby Gödelnumbering.Oneapproach(§5.1)is to considera language

that talks aboutboth numbersandsentences,but that keepsthe two distinct: so we focuson a

singlemodelwhosedomainD is ω ∪ S. On the first approach,addingtruth to the languageof

arithmeticintroducesno complexity: theresultingsetsof sentencesplausiblyrepresentingtruth

are all reducibleto arithmetic. Another approach(§5.2) is to considermodelsthat, like the

Burgessmodel in §2, above,essentiallyidentify each sentencewith some number,but not

throughGödelnumbering: we considermodelsM = 〈D, I〉 which areisomorphicto thestandard

modelof arithmetic,andfor which S ⊆ D.

§5.1. Numbers and sentences. For this subsection,let L be a first order languagewith

identity with a constanto (zero), a binary relation symbol s (successor),two trinary relation

symbols+ (addition) and × (multiplication), a unary relation symbol Num (number),a truth

predicateT, and quotenamesfor the sentencesof L. Our reasonsfor treatings, + and × as

relationsratherthanfunctionswill becomeapparent.Let M = 〈D, I〉 be the following classical

groundmodel for which,

D = ω ∪ S

I(Num)(d) = t iff d ∈ ω

I(s)(d, d′) = t iff d ∈ ω andd′ ∈ ω andd′ = d + 1

I(+)(d, d′, d″) = t iff d ∈ ω andd′ ∈ ω andd″ ∈ ω andd″ = d + d′
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I(×)(d, d′, d″) = t iff d ∈ ω andd′ ∈ ω andd″ ∈ ω andd″ = d × d′

I(‘ A’) = A, for eachA ∈ S.

Theorem 5.1.1. lfp(WKM)+ andlfp(SKM)+ arereducibleto true arithmetic.

Theorem 5.1.2. (i) UM = ◊UM = sfp(WKM)+ ∩ sfp(WKM)− = sfp(SKM)+ ∩ sfp(SKM)− = ∅.

(ii) sfp(WKM)+ ∪ sfp(WKM)− = sfp(SKM)+ ∪ sfp(SKM)− = S.

Theorem 5.1.3. sfp(WKM)+ = sfp(SKM)+ = sfp(SVM)+ = lfp(SVM)+ = gifp(WKM)+ =

gifp(SKM)+ = gifp(SVM)+ = TM = ◊TM = limMN is reducibleto arithmetic.

§5.2. Sentences as numbers. For this subsection,let L be the first order languageof

arithmetic enlargedwith a truth predicateT and quote namesfor the sentencesof L. The

symbolss, + and× canbe treatedasfunctionsymbolsor relationsymbols. A groundmodelM

= 〈D, I〉 is standard iff M restrictedthe the languageof arithmetic (i.e. the fragmentof L

without T andwithout quotenames)is isomorphicto the standardmodelof arithmetic.

Theorem 5.2.1. Thereis a standardmodelM anda classicalhypothesish, suchthat h is a

fixed point of CLM andsuchthath+ = { A: h(A) = t} = { A: ValM + h, CL(A) = t} is reducibleto true

arithmetic.

Remark. Thusthereis a classicalinterpretedlanguage = 〈L, M + h〉 whoseT- andquote-

name-freefragment is isomorphicto the standardmodel of arithmetic, in which T plausibly

meanstruth, andwhosesetof truths is reducibleto true arithmetic.

Question. What is the leastcomplexity of lfp(WKM)+ as M rangesover standardground

models? How about lfp(SKM)+, lfp(SVM)+, gifp(WKM)+, gifp(SKM)+, gifp(SVM)+, sfp(WKM)+,

sfp(SKM)+, sfp(SVM)+, TM, ◊TM, UM and◊UM?

§6. Logics of truth. Fix somelanguageL with a distinguishedpredicateT andquotenames

for all the sentencesof L, and fix somevaluation schemeX. The following logics of truth

suggestthemselves:

Every fixed point logic, efp(X) ∩M is a groundmodel ∩h is a fixed point of X h+

Leastfixed point logic, lfp(X) ∩M is a groundmodel lfp(XM)+
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Intrinsic fixed point logic, ifp(X) ∩M is a groundmodel ∪h is an intrinsic fixed point of X h+

Greatestintrinsic fixed point logic, gifp(X) ∩M is a groundmodel gifp(XM)+

Somefixed point logic, sfp(X) ∩M is a groundmodel sfp(XM)+

Universalrevision logic, T ∩M is a groundmodel TM

Existentialrevision logic, ◊T ∩M is a groundmodel ◊TM

It is immediatelyclear that efp(X) = lfp(X) andthat ifp(X) = gifp(X).

Theorem 6.1. lfp(WK), lfp(SK) andlfp(SV) arerecursivelyenumerable.

Remark. The complexityof the remainingsetsis open.

Remark. T is the set V*
L of P. Kremer (1993). We caution against inferring from

Burgess’sresult that TN is completeΠ1
2 any conclusionthat T is completeΠ1

2. Considerthe

analoguein the fixed point semantics: lfp(SKN)+ is completeΠ1
1, but lfp(SK) is recursively

enumerable. We can seejust how much work Gödel numberingis doing in sucha context.

Welch2001claimsto havesolvedthecomplexityof T (seep. 351,Remark5), but heassumes

Gödelnumbering. The problemremainsopen.

Remark. We alsocautionagainstinferring from Burgess’sresult that TN is completeΠ1
2

anyconclusionthatGuptaandBelnap’slogic S* is completeΠ1
2 (asin Welch2001,p. 348). S*

is a generalrevision-theoreticlogic of circular concepts,and T is the result of applying that

logic to truth. Again, if we defineda fixed-pointanalogueof S* usingthe leastfixed point and

the Strong Kleene Schemethe resulting logic of circular definitions would be recursively

enumerabledespitethe fact that lfp(SKN)+ is completeΠ1
1. As a matterof fact, S* is complete

Π1
2 (Kremer (1993) andAntonelli (1993)),but that doesnot meanthat Burgess’sresultscould

havebeenappealedto for this result.
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