The Topological Product of S4 and S5

Philip Kremer*

Abstract

The most obvious bimodal logic generated from unimodal logics L_{1} and L_{2} is their fusion, $\mathrm{L}_{1} \otimes \mathrm{~L}_{2}$, axiomatized by the theorems of L_{1} for \square_{1} and of L_{2} for \square_{2}, and by the rules of modus ponens, substitution and necessitation for \square_{1} and for \square_{2}. Shehtman introduced the frame product $\mathrm{L}_{1} \times \mathrm{L}_{2}$, as the logic of the products of certain Kripke frames. Typically, $\mathrm{L}_{1} \otimes \mathrm{~L}_{2} \subsetneq \mathrm{~L}_{1} \times \mathrm{L}_{2}$, e.g. $\mathrm{S} 4 \otimes \mathrm{~S} 4 \subsetneq \mathrm{~S} 4 \times \mathrm{S} 4$. Van Benthem, Bezhanishvili, ten Cate and Sarenac generalized Shehtman's idea and introduced the topological product $\mathrm{L}_{1} \times_{t} \mathrm{~L}_{2}$, as the logic of the products of certain topological spaces: they showed, in particular, that $\mathrm{S} 4 \times_{t} \mathrm{~S} 4=\mathrm{S} 4 \otimes \mathrm{~S} 4$. In this paper, we axiomatize $\mathrm{S} 4 \times{ }_{t} \mathrm{~S} 5$, which is strictly between $\mathrm{S} 4 \otimes \mathrm{~S} 5$ and $\mathrm{S} 4 \times \mathrm{S} 5$. We also apply our techniques to proving a conjecture of van Benthem et al concerning the logic of products of Alexandrov spaces with arbitrary topological spaces.

Keywords: Bimodal logic, multimodal logic, topological semantics, topological product, product space.

Let \mathcal{L} be a propositional language with a set $P V$ of propositional variables; standard Boolean connectives \&, \vee and \neg; and one modal operator, \square. And let \mathcal{L}_{12} be like \mathcal{L}, except with two modal operators, \square_{1} and \square_{2}. We use standard definitions of the Boolean connectives \supset and \equiv and the modal operators \diamond in \mathcal{L} and \diamond_{1} and \diamond_{2} in \mathcal{L}_{12}.

There are several ways to combine two normal modal $\operatorname{logics}{ }^{1} \mathrm{~L}_{1}$ and L_{2} formulated in the language \mathcal{L} to get a bimodal logic formulated in the language \mathcal{L}_{12}. The simplest is to define $\mathrm{L}_{1} \otimes \mathrm{~L}_{2}$, the fusion of L_{1} and L_{2}, as

[^0]follows: let $\mathrm{L}_{1}^{\prime}\left[\mathrm{L}_{2}^{\prime}\right]$ be the set of formulas of \mathcal{L}_{12} got by replacing each occurrence of \square in each formula in $\mathrm{L}_{1}\left[\mathrm{~L}_{2}\right]$ by $\square_{1}\left[\square_{2}\right]$; and let $\mathrm{L}_{1} \otimes \mathrm{~L}_{2}$ be the smallest set of formulas of \mathcal{L}_{12} that contains $\mathrm{L}_{1}^{\prime} \cup \mathrm{L}_{2}^{\prime}$ and that is closed under modus ponens, necessitation for \square_{1} and for \square_{2}, and substitution. ${ }^{2}$ Thus, $\mathrm{S} 4 \otimes \mathrm{~S} 4[\mathrm{~S} 4 \otimes \mathrm{~S} 5, \mathrm{~S} 5 \otimes \mathrm{~S} 5]$ is the bimodal logic axiomatized by S 4 -axioms [S4-axioms, S5-axioms] for \square_{1} and S4-axioms [S5-axioms, S5-axioms] for \square_{2}, as well as the rules of modus ponens, necessitation for \square_{1} and for \square_{2}, and substitution.

Shehtman [19] uses Kripke semantics to produce combinations, stronger than fusions, of modal logics. He defines the product of two Kripke frames, as a particular birelational Kripke frame. The frame product of logics L_{1} and L_{2}, denoted $L_{1} \times L_{2}$, is then the set of formulas in the language \mathcal{L}_{12} validated by every product of a Kripke frame validating L_{1} with a Kripke frame validating $\mathrm{L}_{2} .{ }^{3}$ We always have $\mathrm{L}_{1} \otimes \mathrm{~L}_{2} \subseteq \mathrm{~L}_{1} \times \mathrm{L}_{2}$ and almost always $\mathrm{L}_{1} \otimes \mathrm{~L}_{2} \subsetneq \mathrm{~L}_{1} \times \mathrm{L}_{2} ;{ }^{4}$ and for many popular modal logics, $\mathrm{L}_{1} \times \mathrm{L}_{2}$ is the result of adding the following three axioms to $\mathrm{L}_{1} \otimes \mathrm{~L}_{2}$ (see Theorem 7.12 of [5] and Theorem 1.2, below):

For modal logics stronger than S4, the McKinsey-Tarski topological semantics $([15,16,18])$ for the unimodal language \mathcal{L} generalizes the Kripke semantics. In the topological semantics, interpretations of \mathcal{L} are based on topological spaces rather than Kripke frames. Van Benthem, Bezhanishvili, ten Cate and Sarenac [21] generalize Shehtman's products of frames to products of topological spaces: given topological spaces \mathcal{X}_{1} and \mathcal{X}_{2}, they define a bitopological space, $\mathcal{X}_{1} \times \mathcal{X}_{2}$, equipped with two topologies. They define the topological product of logics L_{1} and L_{2}, denoted $\mathrm{L}_{1} \times_{t} \mathrm{~L}_{2}$, as the set of formulas in the language \mathcal{L}_{12} validated by all bitopological spaces of the form

[^1]$\mathcal{X}_{1} \times \mathcal{X}_{2}$, where \mathcal{X}_{1} is a space validating L_{1} and \mathcal{X}_{2} is a space validating L_{2}. In general,
$$
\mathrm{L}_{1} \otimes \mathrm{~L}_{2} \subseteq \mathrm{~L}_{1} \times_{t} \mathrm{~L}_{2} \subseteq \mathrm{~L}_{1} \times \mathrm{L}_{2}
$$

It is a nontrivial theorem of [21] that

$$
\mathrm{S} 4 \otimes \mathrm{~S} 4=\mathrm{S} 4 \times_{t} \mathrm{~S} 4 \subsetneq \mathrm{~S} 4 \times \mathrm{S} 4
$$

Once the definitions are on the table, we will see (Theorem 2.1) that,

$$
\mathrm{S} 5 \otimes \mathrm{~S} 5 \quad \subsetneq \mathrm{~S} 5 \times_{t} \mathrm{~S} 5=\mathrm{S} 5 \times \mathrm{S} 5
$$

and that

$$
\mathrm{S} 4 \otimes \mathrm{~S} 5 \quad \subsetneq \mathrm{~S} 4 \times_{t} \mathrm{~S} 5 \quad \subsetneq \mathrm{~S} 4 \times \mathrm{S} 5
$$

Our main result is an axiomatization of $\mathrm{S} 4 \times_{t} \mathrm{~S} 5$. In [14], Kurucz and Zakharyaschev define the logic $\left[\mathrm{L}_{1}, \mathrm{~L}_{2}\right]^{\mathrm{EX}}$ for any normal modal logics L_{1} and L_{2}, by adding two axioms to $\mathrm{L}_{1} \otimes \mathrm{~L}_{2}$, namely com $_{\supset}$ and chr. Shehtman [20] suggests the term semiproducts for such logics. Note the absence of com_{C}, the converse of com $_{\supset}$. We show that $\mathrm{S} 4 \times_{t} \mathrm{~S} 5=[\mathrm{S} 4, \mathrm{~S} 5]^{\mathrm{EX}}$, i.e., that $\mathrm{S} 4 \times_{t} \mathrm{~S} 5$ can be axiomatized by adding com_{\supset} and $c h r$ to $\mathrm{S} 4 \otimes \mathrm{~S} 5$. We appeal to a special case of Theorem 6 in [14] (Theorem 49 in [13]): [S4, S5] ${ }^{\mathrm{EX}}$ is identical to the expanding relativized product of S4 and S5, denoted ($\mathrm{S} 4 \times$ $\mathrm{S} 5)^{\mathrm{EX}}$: this is defined as the logic of all expanding relativized product frames (see subsection 3.3, below), i.e., special subframes of product frames. We note here that Kurucz and Zakharyaschev reduce the decidability of a large class of expanding relativized product logics to the the decidability of the corresponding product logics ([14], Theorem 7). In particular since $\mathrm{S} 4 \times \mathrm{S} 5$ is decidable ([5], Theorem 12.12), so is $\mathrm{S} 4 \times_{t} \mathrm{~S} 5=(\mathrm{S} 4 \times \mathrm{S} 5)^{\mathrm{EX}}$.

Our proof that $[\mathrm{S} 4, \mathrm{~S} 5]^{\mathrm{EX}}$ axiomatizes $\mathrm{S} 4 \times_{t} \mathrm{~S} 5$ proceeds by showing that $[\mathrm{S} 4, \mathrm{~S} 5]^{\mathrm{EX}}$, and hence $\mathrm{S} 4 \times_{t} \mathrm{~S} 5$, is sound and complete wrt a particular bitopological space: $\mathbb{Q} \times \mathbb{N}$, where \mathbb{Q} is the rational line equipped with the standard topology and \mathbb{N} is the set of natural numbers equipped with the trivial topology. ${ }^{5}$ Thus we get a kind of bitopological analogue to the classic result of [16] that unimodal $S 4$ is sound and complete wrt the rational line, \mathbb{Q}.

Our proof technique can be generalized. Van Benthem et al ask what the bimodal logic is of the products of Alexandrov spaces ${ }^{6}$ with arbitrary

[^2]topological spaces, conjecturing that it is $(\mathrm{S} 4 \otimes \mathrm{~S} 4)+$ com $_{\subset}+c h r$. This is equivalent to the mirror image claim that the bimodal logic of the products of arbitrary topological spaces with Alexandrov spaces is $[\mathrm{S} 4, \mathrm{~S} 4]^{\mathrm{EX}}=(\mathrm{S} 4 \otimes$ $\mathrm{S} 4)+\mathrm{com}_{\supset}+$ chr. We prove not only this claim, but also that $[\mathrm{S} 4, \mathrm{~S} 4]^{\mathrm{EX}}$ is sound and complete for a particular product of a topological space with an Alexandrov space: $\mathbb{Q} \times \mathbb{N}^{*}$, where \mathbb{Q} is the rational line equipped with the standard topology and where \mathbb{N}^{*} is the set of finite sequences of natural numbers, equipped with the following Alexandrov topology: a set $O \subseteq \mathbb{N}^{*}$ is open iff, for each $\bar{a}, \bar{b} \in \mathbb{N}^{*}$, if $\bar{a} \in O$ and \bar{a} is an initial segment of \bar{b}, then $\bar{b} \in O$.

We take the current paper to be part of a larger project, initiated by van Benthem, Bezhanishvili, ten Cate and Sarenac in [21], of getting clear on topological products of modal logics in general. It often helps to start with relatively basic cases. [21] investigates the most basic topological product, $\mathrm{S} 4 \times{ }_{t} \mathrm{~S} 4$, showing it to be identical to $\mathrm{S} 4 \otimes \mathrm{~S} 4$. Arguably the second most basic topological product is $\mathrm{S} 5 \times_{t} \mathrm{~S} 5$: it is easy to show this is identical to the frame product $\mathrm{S} 5 \times \mathrm{S} 5$ (see Theorem 2.1, below). The topic of the current paper, $\mathrm{S} 4 \times_{t} \mathrm{~S} 5$, can be seen as the third most basic topological product.

1 Background definitions

1.1 Unirelational and birelational semantics

A unirelational (Kripke) frame (uniframe) is a pair $\mathcal{U}=\langle W, R\rangle$, where W is a nonempty set and R is a relation on W. We say that \mathcal{U} is reflexive [transitive, symmetric] iff R is, and that $r \in W$ is a root of \mathcal{U} iff $\forall w \in W, r R w$. We say that \mathcal{U} is rooted iff \mathcal{U} has at least one root. A unirelational model is a triple $\mathcal{M}=\langle W, R, V\rangle$, where $\langle W, R\rangle$ is a uniframe and $V: P V \rightarrow \mathcal{P}(W)$. We extend V to all formulas of \mathcal{L} as follows:

$$
\begin{aligned}
V(\neg A) & =W-V(A) \\
V(A \& B) & =V(A) \cap V(B) \\
V(A \vee B) & =V(A) \cup V(B) \\
V(\square A) & =\{w \in W: \forall v \in W(w R v \Rightarrow v \in V(A))\} .
\end{aligned}
$$

(We will call the first three clauses standard Boolean clauses.) We say that $\mathcal{M} \vDash A$ iff $V(A)=W$. Given a uniframe $\mathcal{U}=\langle W, R\rangle$, we say that $\mathcal{U} \vDash A$ iff $\mathcal{M} \vDash A$ for every unirelational model $\mathcal{M}=\langle W, R, V\rangle$. And if Γ is a set of
formulas of \mathcal{L}, we say that $\mathcal{U} \vDash \Gamma$ iff $\mathcal{U} \vDash A$ for each $A \in \Gamma$. We read \vDash as validates.

A birelational frame (biframe) is a triple $\mathcal{B}=\left\langle W, R_{1}, R_{2}\right\rangle$, where W is a nonempty set and R_{1} and R_{2} are relations on $W . \mathcal{B}$ is 1-reflexive iff R_{1} is reflexive. Similarly for 1-transitive, 2 -symmetric, etc. \mathcal{B} is bireflexive iff \mathcal{B} is both 1-reflexive and 2-reflexive, and similarly for bitransitive and bisymmetric. A birelational model is a quartuple $\mathcal{M}=\left\langle W, R_{1}, R_{2}, V\right\rangle$, where $\left\langle W, R_{1}, R_{2}\right\rangle$ is a biframe and $V: P V \rightarrow \mathcal{P}(W)$. We extend V to all formulas of \mathcal{L}_{12} with standard Boolean clauses for $\neg, \&$, and \vee; and with the following clauses for \square_{1} and \square_{2} :

$$
\begin{aligned}
& V\left(\square_{1} A\right)=\left\{w \in W: \forall v \in W\left(w R_{1} v \Rightarrow v \in V(A)\right)\right\} \\
& V\left(\square_{2} A\right)=\left\{w \in W: \forall v \in W\left(w R_{2} v \Rightarrow v \in V(A)\right)\right\} .
\end{aligned}
$$

The definitions of $\mathcal{M} \vDash A$, of $\mathcal{B} \vDash A$, and of $\mathcal{B} \vDash \Gamma$ are analogous to the unirelational case. The proof of the following theorem is a straightforward generalization of the unimodal case for S4 and for S5.

Theorem 1.1. $A \in \mathrm{~S} 4 \otimes \mathrm{~S} 4[\mathrm{~S} 4 \otimes \mathrm{~S} 5, \mathrm{~S} 5 \otimes \mathrm{~S} 5]$ iff $\mathcal{B} \vDash A$ for every bireflexive bitransitive [bireflexive bitransitive 2-symmetric, bireflexive bitransitive bisymmetric] biframe \mathcal{B}.

1.2 Products of uniframes, and frame products of unimodal logics

Shehthman [19] initiates the study of a particular class of biframes, those that are the products of uniframes: he uses these to introduce products of modal logics. Given two uniframes $\mathcal{U}_{1}=\left\langle W_{1}, R_{1}\right\rangle$ and $\mathcal{U}_{2}=\left\langle W_{2}, R_{2}\right\rangle$, define the biframe $\mathcal{U}_{1} \times \mathcal{U}_{2}={ }_{\mathrm{df}}\left\langle W_{1} \times W_{2}, R_{1}^{\prime}, R_{2}^{\prime}\right\rangle$ where

$$
\begin{aligned}
& \langle w, v\rangle R_{1}^{\prime}\langle x, y\rangle \quad \text { iff } \quad w R_{1} x \text { and } v=y ; \text { and } \\
& \langle w, v\rangle R_{2}^{\prime}\langle x, y\rangle \quad \text { iff } \quad w=x \text { and } v R_{2} y .
\end{aligned}
$$

A biframe of the form $\mathcal{U}_{1} \times \mathcal{U}_{2}$ is a product frame.
Given two normal modal logics L_{1} and L_{2}, define the frame product of L_{1} and L_{2} as follows:

$$
\begin{aligned}
& \mathrm{L}_{1} \times \mathrm{L}_{2} \quad=_{\mathrm{df}} \quad\left\{A: \mathcal{U}_{1} \times \mathcal{U}_{2} \vDash A\right. \text { for any two uniframes } \\
& \left.\mathcal{U}_{1} \text { and } \mathcal{U}_{2} \text { such that } \mathcal{U}_{1} \vDash \mathrm{~L}_{1} \text { and } \mathcal{U}_{2} \vDash \mathrm{~L}_{2}\right\} \text {. }
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\mathrm{S} 4 \times \mathrm{S} 4 & =\left\{A: \mathcal{U}_{1} \times \mathcal{U}_{2} \vDash A, \text { where } \mathcal{U}_{1} \text { and } \mathcal{U}_{2} \text { are reflexive and transitive }\right\}, \\
\mathrm{S} 4 \times \mathrm{S} 5 & =\left\{A: \mathcal{U}_{1} \times \mathcal{U}_{2} \vDash A, \text { where } \mathcal{U}_{1} \text { and } \mathcal{U}_{2}\right. \text { are reflexive and transitive } \\
& \text { and } \left.\mathcal{U}_{2} \text { is symmetric }\right\}, \text { and } \\
\mathrm{S} 5 \times \mathrm{S} 5 & =\begin{array}{l}
\left\{A: \mathcal{U}_{1} \times \mathcal{U}_{2} \vDash A, \text { where } \mathcal{U}_{1} \text { and } \mathcal{U}_{2}\right. \text { are reflexive, } \\
\\
\text { transitive and symmetric }\} .
\end{array}
\end{aligned}
$$

For any bimodal logic L and any formulas A_{1}, \ldots, A_{n}, define the new bimodal logic $\mathrm{L}+A_{1}+\ldots+A_{n}$ as the smallest bimodal logic L^{\prime} such that $\mathrm{L} \cup\left\{A_{1}, \ldots, A_{n}\right\} \subseteq \mathrm{L}^{\prime}$ and such that L^{\prime} is closed under modus ponens, necessitation for \square_{1} and for \square_{2}, and substitution. For any normal unimodal logics L_{1} and L_{2}, define the the commutator of L_{1} and L_{2} as follows:

$$
\left[\mathrm{L}_{1}, \mathrm{~L}_{2}\right]=\mathrm{L}_{1} \otimes \mathrm{~L}_{2}+\text { com }_{\supset}+\text { com }_{\subset}+\text { chr. }
$$

The following is an immediate corollary to Theorem 7.12 in [5]:
Theorem 1.2. $\mathrm{S} 4 \times \mathrm{S} 4=[\mathrm{S} 4, \mathrm{~S} 4] . \mathrm{S} 4 \times \mathrm{S} 5=[\mathrm{S} 4, \mathrm{~S} 5] . \mathrm{S} 5 \times \mathrm{S} 5=[\mathrm{S} 5, \mathrm{~S} 5]$.

1.3 Topological and bitopological semantics

For modal logics stronger than S4, the McKinsey-Tarski topological semantics $([15,16,18])$ for the unimodal language \mathcal{L} generalizes the unirelational Kripke semantics. A topological space (or simply space) is an ordered pair $\mathcal{X}=\langle X, \tau\rangle$, where X is a nonempty set and τ is a topology on X : i.e., $\tau \subseteq \mathcal{P}(X) ; \emptyset, X \in \tau ;$ and τ is closed under arbitrary unions and finite intersections. The sets in τ are the open sets, and their complements are the closed sets. Given any $S \subseteq X, \operatorname{Int}(S)$ is the interior of S, i.e., the largest open subset of S. We say that a space $\mathcal{X}=\langle X, \tau\rangle$ is Alexandrov iff τ is closed under arbitrary intersections, is almost discrete (AD) iff X is the union of disjoint open sets, and is trivial iff $\tau=\{\emptyset, X\}$. Note that every trivial space is AD , and that every AD space is Alexandrov.

A topological model is a triple $\mathcal{M}=\langle X, \tau, V\rangle$, where $\langle X, \tau\rangle$ is a space and $V: P V \rightarrow \mathcal{P}(X)$. We extend V to all formulas of \mathcal{L} with standard Boolean clauses for \neg, \& , and \vee; and with the following clause for \square :

$$
V(\square A)=\operatorname{Int}(V(A))
$$

We sometimes write $x \Vdash A$ instead of $x \in V(A)$. We say that $\mathcal{M} \vDash A$ iff $V(A)=X$. Given a space $\mathcal{X}=\langle X, \tau\rangle$, we say that $\mathcal{X} \vDash A$ iff $\mathcal{M} \vDash A$ for every topological model $\mathcal{M}=\langle X, \tau, V\rangle$. And if Γ is a set of formulas of \mathcal{L}, we say that $\mathcal{X} \vDash \Gamma$ iff $\mathcal{X} \vDash A$ for each $A \in \Gamma$.

Here's why, for logics stronger than S4, the topological semantics generalizes the unirelational Kripke semantics. Given any reflexive transitive uniframe $\mathcal{U}=\langle W, R\rangle$, let $\mathcal{X}_{\mathcal{U}}$ be the following space: $\mathcal{X}_{\mathcal{U}}={ }_{\mathrm{df}}\left\langle W, \tau_{\mathcal{U}}\right\rangle$ where $O \in \tau_{\mathcal{U}}$ iff $\forall w \in O \forall w^{\prime} \in W\left(w R w^{\prime} \Rightarrow w^{\prime} \in O\right)$. Note that a space is Alexandrov iff it is of the form $\mathcal{X}_{\mathcal{U}}$ for some uniframe \mathcal{U}. Note also that the clauses for $V(\square A)$ for the uniframe \mathcal{U} and for the space $\mathcal{X}_{\mathcal{U}}$ coincide, since $\operatorname{Int}(S)$ (in $\left.\mathcal{X}_{\mathcal{U}}\right)=\{w \in W: \forall v \in W(w R v \Rightarrow v \in S)\}$. So we can identify any reflexive transitive frame \mathcal{U} with the Alexandrov space $\mathcal{X}_{\mathcal{U}}$. So, if L is a logic stronger than S 4 , every uniframe \mathcal{U} that validates L (i.e., $\mathcal{U} \vDash \mathrm{L}$) can be identified with an Alexandrov space $\mathcal{X}_{\mathcal{U}}$ that also validates L . But since every space validates S 4 (which is easily checked), and since there are non-Alexandrov spaces (such as \mathbb{Q} and \mathbb{R}), there are topological models of S 4 (for example) that cannot be identified with any uniframes.

The first four clauses of the following theorem are classic results of [16], and the last three are easily proved:

Theorem 1.3. 1. $A \in \mathrm{~S} 4$ iff for every space $\mathcal{X}, \mathcal{X} \vDash A$;
2. $A \in \mathrm{~S} 4$ iff, for every Alexandrov space $\mathcal{X}, \mathcal{X} \vDash A$;
3. $A \in \mathrm{~S} 4$ iff $\mathrm{Q} \vDash A$;
4. $A \in \mathrm{~S} 4$ iff $\mathbb{R} \vDash A$;
5. If \mathcal{X} is a space and $\mathcal{X} \vDash \mathrm{S} 5$, then \mathcal{X} is $A D$ (almost discrete);
6. $A \in \mathrm{~S} 5$ iff, for every $A D$ space $\mathcal{X}, \mathcal{X} \vDash A$; and
7. $A \in \mathrm{~S} 5$ iff, for every trivial space $\mathcal{X}, \mathcal{X} \vDash A$.

Remark 1.4. Theorem 1.3 (2) follows immediately from the analogous claim about unimodal frames, together with the identification of unimodal frames and Alexandrov spaces. (1) follows from (2) and from the soundness of S4 in the topological semantics (which can easily be checked). (3) is much easier to prove than (4): although a proof of (4) was published in 1944 ([16]), a fair amount of recent work has gone into giving (4) more perspicuous proofs ($[1,3,12,17]$). Given (5) and the fact that every AD space is Alexandrov, the topological semantics for logics stronger than S 5 is a notational variant, rather than a true generalization, of the Kripke semantics.

The topological semantics for the language \mathcal{L} generalizes naturally to a bitopological semantics for the language \mathcal{L}_{12}. A bitopological space (bispace) is a triple $\mathcal{X}=\left\langle X, \tau_{1}, \tau_{2}\right\rangle$, where X is a nonempty set and each of τ_{1} and τ_{2} is a topology on X. Given any $S \subseteq X$, we can consider two interiors of S, $\operatorname{Int} t_{1}(S)$ and $\operatorname{Int}_{2}(S)$, associated with the topologies τ_{1} and τ_{2} respectively. The sets in τ_{1} are the 1-open sets, and the sets in τ_{2} are the 2-open sets. We say that a bispace $\mathcal{X}=\left\langle X, \tau_{1}, \tau_{2}\right\rangle$ is 1-Alexandrov [2-Alexandrov] iff the space $\left\langle X, \tau_{1}\right\rangle\left[\left\langle X, \tau_{2}\right\rangle\right]$ is Alexandrov. Similarly for $1-\mathrm{AD}$ and $2-\mathrm{AD}$. We say that a bispace is biAlexandrov [biAD], iff it is 1-Alexandrov and 2-Alexandrov [1-AD and 2-AD].

A bitopological model is a quartuple $\mathcal{M}=\left\langle X, \tau_{1}, \tau_{2}, V\right\rangle$, where $\left\langle X, \tau_{1}, \tau_{2}\right\rangle$ is a bispace and $V: P V \rightarrow \mathcal{P}(X)$. We extend V to all formulas of \mathcal{L}_{12} with standard Boolean clauses for $\neg, \&$, and \vee; and with the following clauses for \square_{1} and \square_{2} :

$$
\begin{aligned}
V\left(\square_{1} A\right) & =\operatorname{Int}_{1}(V(A)) \\
V\left(\square_{2} A\right) & =\operatorname{Int}_{2}(V(A))
\end{aligned}
$$

We sometimes write $x \Vdash A$ instead of $x \in V(A)$. We say that $\mathcal{M} \vDash A$ iff $V(A)=X$. Given a bispace $\mathcal{X}=\left\langle X, \tau_{1}, \tau_{2}\right\rangle$, we say that $\mathcal{X} \vDash A$ iff $\mathcal{M} \vDash A$ for every bitopological model $\mathcal{M}=\left\langle X, \tau_{1}, \tau_{2}, V\right\rangle$. And if Γ is a set of formulas of \mathcal{L}, we say that $\mathcal{X} \vDash \Gamma$ iff $\mathcal{X} \vDash A$ for each $A \in \Gamma$.

The following theorem generalizes Theorem 1.1 and Theorem 1.3, above:
Theorem 1.5. 1. $A \in \mathrm{~S} 4 \otimes \mathrm{~S} 4$ iff $\mathcal{X} \vDash A$, for every bispace \mathcal{X};
2. If \mathcal{X} is a bispace and $\mathcal{X} \vDash \mathrm{S} 4 \otimes \mathrm{~S} 5$, then \mathcal{X} is 2- $A D$;
3. $A \in \mathrm{~S} 4 \otimes \mathrm{~S} 5$ iff $\mathcal{X} \vDash A$, for every 2-AD bispace \mathcal{X};
4. If \mathcal{X} is a bispace and $\mathcal{X} \vDash \mathrm{S} 5 \otimes \mathrm{~S} 5$, then \mathcal{X} is biAD; and
5. $A \in \mathrm{~S} 5 \otimes \mathrm{~S} 5$ iff $\mathcal{X} \vDash A$, for every biAD bispace \mathcal{X}.

1.4 Products of topological spaces, and topological products of unimodal logics

Van Benthem, Bezhanishvili, ten Cate and Sarenac [21] define product spaces: these are generalizations of Shehtman's product frames ([19]; and subsection 1.2 , above). Given two spaces $\mathcal{X}_{1}=\left\langle X_{1}, \tau_{1}\right\rangle$ and $\mathcal{X}_{2}=\left\langle X_{2}, \tau_{2}\right\rangle$, define the
bispace $\mathcal{X}_{1} \times \mathcal{X}_{2}={ }_{\mathrm{df}}\left\langle X_{1} \times X_{2}, \tau_{1}^{\prime}, \tau_{2}^{\prime}\right\rangle$ where the following two families of subsets of $X_{1} \times X_{2}$ form bases for the topologies τ_{1}^{\prime} and τ_{2}^{\prime}, respectively:

$$
\begin{array}{ll}
\text { Basis for } \tau_{1}^{\prime}: & \left\{O \times\{x\}: O \in \tau_{1} \& x \in X_{2}\right\} \\
\text { Basis for } \tau_{2}^{\prime}: & \left\{\{x\} \times O: x \in X_{1} \& O \in \tau_{2}\right\}
\end{array}
$$

A bispace of the form $\mathcal{X}_{1} \times \mathcal{X}_{2}$ is a product space. ${ }^{7}$ [21] refers to the induced topologies τ_{1}^{\prime} and τ_{2}^{\prime} as the horizontal and vertical topologies, respectively.

Given two normal modal $\operatorname{logics} \mathrm{L}_{1}$ and L_{2} stronger than S 4 , define the topological product of L_{1} and L_{2} as follows:

$$
\begin{aligned}
& \mathrm{L}_{1} \times{ }_{t} \mathrm{~L}_{2}={ }_{\mathrm{df}} \quad\left\{A: \mathcal{X}_{1} \times \mathcal{X}_{2} \vDash A\right. \text { for any two topological spaces } \\
&\left.\mathcal{X}_{1} \text { and } \mathcal{X}_{2} \text { such that } \mathcal{X}_{1} \vDash \mathrm{~L}_{1} \text { and } \mathcal{X}_{2} \vDash \mathrm{~L}_{2}\right\} .
\end{aligned}
$$

Thus,
$\mathrm{S} 4 \times_{t} \mathrm{~S} 4=\left\{A: \mathcal{X}_{1} \times \mathcal{X}_{2} \vDash A\right.$, where \mathcal{X}_{1} and \mathcal{X}_{2} are topological spaces $\}$,
$\mathrm{S} 4 \times_{t} \mathrm{~S} 5=\left\{A: \mathcal{X}_{1} \times \mathcal{X}_{2} \vDash A\right.$, where \mathcal{X}_{2} is AD$\}$, and
$\mathrm{S} 5 \times_{t} \mathrm{~S} 5=\left\{A: \mathcal{X}_{1} \times \mathcal{X}_{2} \vDash A\right.$, where \mathcal{X}_{1} and \mathcal{X}_{2} are AD$\}$.

2 Results

Not much is known about topological products of modal logics. As noted on page 3, we have the following:

Theorem 2.1.

1. For any normal logics L_{1} and L_{2} stronger than S 4 , $\mathrm{L}_{1} \otimes \mathrm{~L}_{2} \subseteq \mathrm{~L}_{1} \times_{t} \mathrm{~L}_{2} \subseteq \mathrm{~L}_{1} \times \mathrm{L}_{2}$.
2. $\mathrm{S} 4 \otimes \mathrm{~S} 4=\mathrm{S} 4 \times{ }_{t} \mathrm{~S} 4 \subsetneq \mathrm{~S} 4 \times \mathrm{S} 4$.
3. $\mathrm{S} 5 \otimes \mathrm{~S} 5 \subsetneq \mathrm{~S} 5 \times{ }_{t} \mathrm{~S} 5=\mathrm{S} 5 \times \mathrm{S} 5$.
4. $\mathrm{S} 4 \otimes \mathrm{~S} 5 \subsetneq \mathrm{~S} 4 \times{ }_{t} \mathrm{~S} 5 \subsetneq \mathrm{~S} 4 \times \mathrm{S} 5$.
[^3]Proof. 1. To see that $\mathrm{L}_{1} \otimes \mathrm{~L}_{2} \subseteq \mathrm{~L}_{1} \times_{t} \mathrm{~L}_{2}$, suppose that \mathcal{X}_{1} and \mathcal{X}_{2} are spaces such that $\mathcal{X}_{1} \vDash \mathrm{~L}_{1}$ and $\mathcal{X}_{2} \vDash \mathrm{~L}_{2}$. To see that $\mathcal{X}_{1} \times \mathcal{X}_{2} \vDash \mathrm{~L}_{1} \otimes \mathrm{~L}_{2}$, it suffices to note that $\mathcal{X}_{1} \times \mathcal{X}_{2} \vDash \mathrm{~L}_{1}^{\prime}\left[\mathrm{L}_{2}^{\prime}\right]$, where $\mathrm{L}_{1}^{\prime}\left[\mathrm{L}_{2}^{\prime}\right]$ is the set of formulas of \mathcal{L}_{12} got by replacing each occurrence of \square in each formula in $\mathrm{L}_{1}\left[\mathrm{~L}_{2}\right]$ by $\square_{1}\left[\square_{2}\right]$.

To see that $\mathrm{L}_{1} \times_{t} \mathrm{~L}_{2} \subseteq \mathrm{~L}_{1} \times \mathrm{L}_{2}$, it suffices to recall that every uniframe can be identified with an Alexandrov space. Thus, if $A \notin \mathrm{~L}_{1} \times \mathrm{L}_{2}$, there are Alexandrov spaces \mathcal{X}_{1} and \mathcal{X}_{2} such that $\mathcal{X}_{1} \vDash \mathrm{~L}_{1}$ and $\mathcal{X}_{2} \vDash \mathrm{~L}_{2}$ and $\mathcal{X}_{1} \times \mathcal{X}_{2} \not \models A$. Thus $A \notin \mathrm{~L}_{1} \times_{t} \mathrm{~L}_{2}$.
2. A good deal of [21] is devoted to showing that $\mathrm{S} 4 \otimes \mathrm{~S} 4=\mathrm{S} 4 \times{ }_{t} \mathrm{~S} 4$. To see that $\mathrm{S} 4 \otimes \mathrm{~S} 4 \subsetneq \mathrm{~S} 4 \times \mathrm{S} 4$, it suffices to construct a bireflexive bitransitive biframe that does not validate com $_{\supset}$. We leave this to the reader.
3. Given (1), $\mathrm{S} 5 \times{ }_{t} \mathrm{~S} 5 \subseteq \mathrm{~S} 5 \times \mathrm{S} 5$. To see that $\mathrm{S} 5 \times \mathrm{S} 5 \subseteq \mathrm{~S} 5 \times{ }_{t} \mathrm{~S} 5$, suppose that $A \notin \mathrm{~S} 5 \times_{t} \mathrm{~S} 5$. Then, by Theorem 1.3 (5) and (6), there are AD spaces $\mathcal{X}_{1}=\left\langle X_{1}, \tau_{1}\right\rangle$ and $\mathcal{X}_{2}=\left\langle X_{2}, \tau_{2}\right\rangle$ such that $\mathcal{X}_{1} \times \mathcal{X}_{2} \not \nexists A$. Since \mathcal{X}_{1} and \mathcal{X}_{2} are AD , they are Alexandrov. So $\mathcal{X}_{1}=\mathcal{X}_{\mathcal{U}_{1}}$ and $\mathcal{X}_{2}=\mathcal{X}_{\mathcal{U}_{2}}$ for some reflexive transitive uniframes $\mathcal{U}_{1}=\left\langle X_{1}, R_{1}\right\rangle$ and $\mathcal{U}_{2}=\left\langle X_{2}, R_{2}\right\rangle$. Note that \mathcal{U}_{1} and \mathcal{U}_{2} will be symmetric, since \mathcal{X}_{1} and \mathcal{X}_{2} are AD. Indeed $\mathcal{U}_{1} \times \mathcal{U}_{2}$ validates the same formulas as $\mathcal{X}_{1} \times \mathcal{X}_{2}$. So $\mathcal{U}_{1} \times \mathcal{U}_{2} \not \models A$. So $A \notin \mathrm{~S} 5 \times \mathrm{S} 5$.

To see that $\mathrm{S} 5 \otimes \mathrm{~S} 5 \subsetneq \mathrm{~S} 5 \times \mathrm{S} 5$, it suffices to construct a bireflexive bitransitive bisymmetric biframe that does not validate com $_{\supset}$. We leave this to the reader.
4. To show that $\mathrm{S} 4 \otimes \mathrm{~S} 5 \subsetneq \mathrm{~S} 4 \times_{t} \mathrm{~S} 5$, we note two things: (4.1) com col $_{\supset} \notin$ $\mathrm{S} 4 \otimes \mathrm{~S} 5$; and (4.2) com $\mathrm{cos} \in \mathrm{S} 4 \times_{t}$ S5. For (4.1), it suffices to construct a bireflexive bitransitive 2 -symmetric biframe that does not validate com ${ }_{\supset}$. We leave this to the reader. For (4.2), recall that every space \mathcal{X} with $\mathcal{X} \vDash \mathrm{S} 5$ is AD (Theorem 1.3 (3)) and that every AD space is Alexandrov. So (4.2) follows from Proposition 4.15 in [21]. ((4.2) could also be checked directly.)

To show that $\mathrm{S} 4 \times{ }_{t} \mathrm{~S} 5 \subsetneq \mathrm{~S} 4 \times \mathrm{S} 5$, it suffices, given Theorem 1.2, to show that $\operatorname{com}_{\subset} \notin \mathrm{S} 4 \times_{t} \mathrm{~S} 5$. We will identify the set, \mathbb{Q}, of rational numbers with the topological space $\left\langle\mathbb{Q}, \tau_{\mathbb{Q}}\right\rangle$, where τ_{Q} is the standard topology on \mathbb{Q}; and the set, \mathbb{N}, of natural numbers with the topological space $\left\langle\mathbb{N}, \tau_{\mathbb{N}}\right\rangle$, where $\tau_{\mathbb{N}}$ is the trivial topology on $\mathbb{N} .^{8}$ Thus $\mathbb{Q} \vDash \mathrm{S} 4$ and $\mathbb{N} \vDash \mathrm{S} 5$. For each $n \in \mathbb{N}$, let

$$
O_{n}=\left\{x \in \mathbb{Q}: \frac{-\pi}{n+1}<x<\frac{\pi}{n+1}\right\} .
$$

Note that each O_{n} is an open subset of \mathbb{Q} (and, incidentally, a closed subset of $\mathbb{Q})$. And let \mathcal{M} be the bitopological model $\left\langle\mathbb{Q} \times \mathbb{N}, \tau_{\mathbb{Q}}^{\prime}, \tau_{\mathbb{N}}^{\prime}, V\right\rangle$, where $\tau_{\mathbb{Q}}^{\prime}$

[^4]

Figure 1: A countermodel for $\operatorname{com}_{\subset}: V(p)$ is in grey.
and $\tau_{\mathbb{N}}^{\prime}$ are the horizontal and vertical topologies induced on $\mathbb{Q} \times \mathbb{N}$, and where

$$
V(p)=\bigcup_{n \in \mathbb{N}} O_{n} \times\{n\}
$$

Thus $V(p)$ is a 1 -open but not 2 -open subset of $\mathbb{Q} \times \mathbb{N}$. See Figure 1 for a picture. Note the following:

$$
\begin{aligned}
V\left(\square_{1} p\right) & =V(p)=\bigcup_{n \in \mathbb{N}} O_{n} \times\{n\} . \\
V\left(\square_{2} p\right) & =\{0\} \times \mathbb{N} . \\
V\left(\square_{2} \square_{1} p\right) & =\{0\} \times \mathbb{N} . \\
V\left(\square_{1} \square_{2} p\right) & =\emptyset .
\end{aligned}
$$

So $\langle 0,0\rangle \Vdash\left(\square_{2} \square_{1} p \supset \square_{1} \square_{2} p\right)$. So $\mathbb{Q} \times \mathbb{N} \not \vDash \operatorname{com}_{\subset}$. So $\operatorname{com}_{\subset} \notin \mathrm{S} 4 \times_{t} \mathrm{~S} 5$.
For any normal unimodal $\operatorname{logics} \mathrm{L}_{1}$ and L_{2}, define the the e-commutator of L_{1} and L_{2} as in [14] and [13]:

$$
\left[\mathrm{L}_{1}, \mathrm{~L}_{2}\right]^{\mathrm{EX}}=\mathrm{L}_{1} \otimes \mathrm{~L}_{2}+\text { com }_{\supset}+\text { chr. }
$$

Our main result is as follows:
Theorem 2.2. $\mathrm{S} 4 \times_{t} \mathrm{~S} 5=[\mathrm{S} 4, \mathrm{~S} 5]^{\mathrm{EX}}$.
Theorem 2.2 is, in effect, a soundness and completeness theorem for the logic $[\mathrm{S} 4, \mathrm{~S} 5]^{\mathrm{EX}}$ wrt the class of product spaces of the form $\mathcal{X}_{1} \times \mathcal{X}_{2}$, where \mathcal{X}_{2} is AD : we will call these the vertically AD product spaces. Establishing soundness, i.e., that $[\mathrm{S} 4, \mathrm{~S} 5]^{\mathrm{EX}} \subseteq \mathrm{S} 4 \times_{t} \mathrm{~S} 5$, requires checking that com ${ }_{\supset}$ and
$c h r$ are validated by every vertically AD product space. We leave this to the reader. To establish completeness, i.e., that $\mathrm{S} 4 \times_{t} \mathrm{~S} 5 \subseteq[\mathrm{~S} 4, \mathrm{~S} 5]^{\mathrm{EX}}$, we specify a particular vertically AD , indeed vertically trivial, product space wrt which $[\mathrm{S} 4, \mathrm{~S} 5]^{\mathrm{EX}}$ is sound and complete: $\mathbb{Q} \times \mathbb{N}$. This suffices:

Theorem 2.3. $\mathbb{Q} \times \mathbb{N} \vDash A$ iff $A \in[\mathrm{~S} 4, \mathrm{~S} 5]^{\mathrm{EX}}$.
Of course, the (\Leftarrow) direction is simply soundness (again). Section 3, below, is devoted to proving the (\Rightarrow) direction, i.e., completeness.

Theorem 2.3 is of interest independently of its utility in establishing Theorem 2.2. In the unimodal topological semantics, not only is S 4 sound and complete wrt the class of all topological spaces, but wrt the particular spaces Q and \mathbb{R}. By definition, $\mathrm{S} 4 \times_{t} \mathrm{~S} 5$ is complete wrt the class of all vertically AD spaces. The fact that $\mathrm{S} 4 \times{ }_{t} \mathrm{~S} 5$ is complete wrt the particular space $\mathbb{Q} \times \mathbb{N}$ is a kind of generalization of the completeness of S 4 wrt \mathbb{Q}.

In the unimodal case, the result for \mathbb{Q} transfers to \mathbb{R} : Does anything like Theorem 2.3 transfer to \mathbb{R} ? It seems not:

Theorem 2.4. There is a formula A of \mathcal{L}_{12} such that $A \notin \mathrm{~S} 4 \times_{t} \mathrm{~S} 5$, and such that, for each Alexandrov space $\mathcal{X}, \mathbb{R} \times \mathcal{X} \vDash A$.

Proof. Let A be the following formula, a cousin of $\operatorname{com}_{\subset}$:

$$
\square_{2} \square_{1} p \supset\left(\square_{1} \square_{2} p \vee \diamond_{1} \diamond_{2}\left(\diamond_{1} p \& \diamond_{1} \neg p\right)\right) .
$$

We will show (1) that $\mathbb{Q} \times \mathbb{N} \not \forall A$, from which it follows that $A \notin \mathrm{~S} 4 \times{ }_{t} \mathrm{~S} 5$; and (2) that $\mathbb{R} \times \mathcal{X} \vDash A$, for each Alexandrov space \mathcal{X}. For (1), let $\mathcal{M}=$ $\left\langle\mathbb{Q} \times \mathbb{N}, \tau_{\mathbb{Q}}^{\prime}, \tau_{\mathbb{N}}^{\prime}, V\right\rangle$ be the model specified in the proof of Theorem 2.1 (4) and pictured in Figure 1. We noted in that proof that

$$
\begin{aligned}
V\left(\square_{1} p\right) & =V(p)=\bigcup_{n \in \mathbb{N}} O_{n} \times\{n\}, \\
V\left(\square_{2} p\right) & =\{0\} \times \mathbb{N}, \\
V\left(\square_{2} \square_{1} p\right) & =\{0\} \times \mathbb{N}, \text { and } \\
V\left(\square_{1} \square_{2} p\right) & =\emptyset .
\end{aligned}
$$

Recall the sets $O_{n}=\left\{x \in \mathbb{Q}: \frac{-\pi}{n+1}<x<\frac{\pi}{n+1}\right\}$ used to specify $V(p)$: each O_{n} is of the form $(a, b) \cap \mathbb{Q}$, where (a, b) is an open interval on the real line with irrational endpoints. Thus O_{n} is not only an open subset of \mathbb{Q}, but is also a closed subset of Q . Thus,

$$
\begin{aligned}
V\left(\diamond_{1} p\right) & =V(p)=\bigcup_{n \in \mathbb{N}} O_{n} \times\{n\} . \\
V\left(\diamond_{1} \neg p\right) & =V(\neg p)=(\mathbb{Q} \times \mathbb{N})-V(p) . \\
V\left(\diamond_{1} p \& \diamond_{1} \neg p\right) & =\emptyset . \\
V\left(\diamond_{1} \diamond_{2}\left(\diamond_{1} p \& \diamond_{1} \neg p\right)\right) & =\emptyset .
\end{aligned}
$$

So $\langle 0,0\rangle \Vdash \square_{1} \square_{2} p \vee \diamond_{1} \diamond_{2}\left(\diamond_{1} p \& \diamond_{1} \neg p\right)$. But $\langle 0,0\rangle \Vdash \square_{2} \square_{1} p$. So $\langle 0,0\rangle \Vdash A$. So $\mathbb{Q} \times \mathbb{N} \not \vDash A$, as desired.

To show (2), suppose that $\mathcal{X}=\langle X, \tau\rangle$ is an Alexandrov space and that for some bitopological model $\mathcal{M}=\left\langle\mathbb{R} \times X, \tau_{\mathbb{R}}^{\prime}, \tau^{\prime}, V\right\rangle$, where $\tau_{\mathbb{R}}^{\prime}$ and τ^{\prime} are the horizontal and vertical topologies induced on $\mathbb{R} \times X$, we have $\mathcal{M} \not \vDash A$. Then we have $\langle a, x\rangle \Vdash A$, for some $a \in \mathbb{R}$ and $x \in X$. Since \mathcal{X} is Alexandrov, there is a smallest open set O such that $x \in O$.

Since $\langle a, x\rangle \Vdash A$, we have the following:

$$
\begin{gather*}
\langle a, x\rangle \Vdash \square_{2} \square_{1} p . \tag{2.1}\\
\langle a, x\rangle \Vdash \diamond_{1} \diamond_{2} \neg p . \tag{2.2}\\
\langle a, x\rangle \Vdash \square_{1} \square_{2}\left(\square_{1} \neg p \vee \square_{1} p\right) . \tag{2.3}
\end{gather*}
$$

Given (2.3), there is an open interval $I \subseteq \mathbb{R}$ such that $a \in I$ and

$$
\begin{equation*}
\forall b \in I,\langle b, x\rangle \Vdash \square_{2}\left(\square_{1} \neg p \vee \square_{1} p\right) \tag{2.4}
\end{equation*}
$$

Given (2.2), there is a $c \in I$ and a $y \in O$ such that

$$
\begin{equation*}
\langle c, y\rangle \Vdash \neg p . \tag{2.5}
\end{equation*}
$$

Given (2.3), $\langle c, x\rangle \Vdash \square_{2}\left(\square_{1} \neg p \vee \square_{1} p\right)$. So $\langle c, y\rangle \Vdash\left(\square_{1} \neg p \vee \square_{1} p\right)$. So, given (2.5), we get

$$
\begin{equation*}
\langle c, y\rangle \Vdash \square_{1} \neg p \tag{2.6}
\end{equation*}
$$

Also, given (2.1),

$$
\begin{equation*}
\langle a, y\rangle \Vdash \square_{1} p . \tag{2.7}
\end{equation*}
$$

Finally, by (2.4),

$$
\begin{equation*}
\forall b \in I,\langle b, y\rangle \Vdash \square_{1} \neg p \text { or }\langle b, y\rangle \Vdash \square_{1} p . \tag{2.8}
\end{equation*}
$$

Define two subsets of \mathbb{R} as follows:

$$
\begin{aligned}
& O^{-} \quad=_{\mathrm{df}} \quad\left\{d \in I:\langle d, y\rangle \vDash \square_{1} \neg p\right\} . \\
& O^{+} \quad=\mathrm{d}_{\mathrm{df}} \quad\left\{d \in I:\langle d, y\rangle \vDash \square_{1} p\right\} .
\end{aligned}
$$

Figure 2: The model from Remark 2.5: $V(p)$ is indicated in grey, in the triangles above and below the horizontal axis, and along the horizontal axis.

Note that $O^{-} \times\{y\}$ and $O^{+} \times\{y\}$ are 1-open subsets of $\mathbb{R} \times X$, so that O^{-} and O^{+}are open subsets of \mathbb{R}. By (2.6) and (2.7), O^{-}and O^{+}are nonempty. Clearly O^{-}and O^{+}are disjoint. Finally, by (2.8), $I=O^{-} \cup O^{+}$. So the open interval $I \subseteq \mathbb{R}$ is the union of two disjoint nonempty open sets. But this cannot be.

Remark 2.5. In proving that $\mathbb{R} \times \mathcal{X} \vDash \square_{2} \square_{1} p \supset\left(\square_{1} \square_{2} p \vee \diamond_{1} \diamond_{2}\left(\diamond_{1} p \& \diamond_{1} \neg p\right)\right)$ for every Alexandrov space \mathcal{X}, we needed the assumption that \mathcal{X} is Alexandrov. For there are non-Alexandrov spaces \mathcal{X} such that $\mathbb{R} \times \mathcal{X} \not \vDash \square_{2} \square_{1} p \supset$ $\left(\square_{1} \square_{2} p \vee \diamond_{1} \diamond_{2}\left(\diamond_{1} p \& \diamond_{1} \neg p\right)\right)$. For example, $\mathbb{R} \times \mathbb{R} \not \vDash \square_{2} \square_{1} p \supset\left(\square_{1} \square_{2} p \vee\right.$ $\left.\diamond_{1} \diamond_{2}\left(\diamond_{1} p \& \diamond_{1} \neg p\right)\right)$. To see this, let \mathcal{M} be the model $\left\langle\mathbb{R} \times \mathbb{R}, \tau_{1}, \tau_{2}, V\right\rangle$, where τ_{1} and τ_{2} are the horizontal and vertical topologies induced by the standard topology on \mathbb{R} and where

$$
V(p)=\{\langle x, y\rangle: x, y \in \mathbb{R} \&|x|<|y|\} \cup\{\langle x, 0\rangle: x \in \mathbb{R}\} .
$$

See Figure 2 for a picture of this model. Note: $\langle 0,0\rangle \Vdash \square_{2} \square_{1} p$, but $\langle 0,0\rangle \Vdash$ $\square_{1} \square_{2} p$ and $\langle 0,0\rangle \Vdash \diamond_{1} \diamond_{2}\left(\diamond_{1} p \& \diamond_{1} \neg p\right)$.

2.1 The standard product topology

Van Benthem et al [21] also consider a language $\mathcal{L}_{\square 12}$ with three modalities, \square, \square_{1} and \square_{2} : they interpret \square with the standard product topology. More precisely, given any two topological space $\mathcal{X}_{1}=\left\langle X_{1}, \tau_{1}\right\rangle$ and $\mathcal{X}_{2}=\left\langle X_{1}, \tau_{1}\right\rangle$, they consider the tritopological space $\left(\mathcal{X}_{1} \times \mathcal{X}_{2}\right)^{+}={ }_{\mathrm{df}}\left\langle X_{1} \times X_{2}, \tau_{12}, \tau_{1}^{\prime}, \tau_{2}^{\prime}\right\rangle$, where τ_{1}^{\prime} and τ_{2}^{\prime} are the horizontal and vertical topologies already defined, and τ_{12} is the standard product topology with the basis,

$$
\left\{O_{1} \times O_{2}: O_{1} \in \tau_{1} \& O_{2} \in \tau_{2}\right\}
$$

The modality \square is then interpreted via τ_{12} :

$$
V(\square A)=\operatorname{Int}_{12}(V(A)),
$$

where Int_{12} is the interior operator associated with the topology τ_{12}. Given any two unimodal logics L_{1} and L_{2}, define the trimodal logic

$$
\begin{aligned}
\left(\mathrm{L}_{1} \times_{t} \mathrm{~L}_{2}\right)^{+}={ }_{\mathrm{df}} & \left\{A \text { is a formula of } \mathcal{L}_{\square 12}:\left(\mathcal{X}_{1} \times \mathcal{X}_{2}\right)^{+} \vDash A,\right. \\
& \text { for any two topological spaces } \left.\mathcal{X}_{1} \vDash \mathrm{~L}_{1} \& \mathcal{X}_{2} \vDash \mathrm{~L}_{2}\right\}
\end{aligned}
$$

Van Benthem et al show that

$$
\left(\mathrm{S} 4 \times_{t} \mathrm{~S} 4\right)^{+}=(\mathrm{S} 4 \otimes \mathrm{~S} 4 \otimes \mathrm{~S} 4)+\left(\square p \supset\left(\square_{1} p \& \square_{2} p\right)\right){ }^{9}
$$

and that \square cannot be defined, in $\left(\mathrm{S} 4 \times{ }_{t} \mathrm{~S} 4\right)^{+}$, in terms of \square_{1} and \square_{2}. Indeed, they show that the axiomatization $(\mathrm{S} 4 \otimes \mathrm{~S} 4 \otimes \mathrm{~S} 4)+\left(\square p \supset \square_{1} p \& \square_{2} p\right)$ is complete for the tritopological space $(\mathbb{Q} \times \mathbb{Q})^{+}$.

Life is easier in the case of $\left(\mathrm{S} 4 \times_{t} \mathrm{~S} 5\right)^{+}$. If $\mathcal{X}_{1}=\left\langle X_{1}, \tau_{1}\right\rangle$ is any topological space and if $\mathcal{X}_{2}=\left\langle X_{2}, \tau_{2}\right\rangle$ is any almost disjoint space (i.e., any space that validates S5), then in the tritopological space $\left(\mathcal{X}_{1} \times \mathcal{X}_{2}\right)^{+}=\left\langle X_{1} \times X_{2}, \tau_{12}, \tau_{1}^{\prime}, \tau_{2}^{\prime}\right\rangle$ we have $\operatorname{Int}_{12}(S)=\operatorname{Int}_{1}\left(\operatorname{Int} t_{2}(S)\right)$ for any $S \subseteq X_{1} \times X_{2}$. So $\left(\square p \equiv \square_{1} \square_{2} p\right) \in$ $\left(\mathrm{S} 4 \times{ }_{t} \mathrm{~S} 5\right)^{+}$. Indeed, given Theorem 2.2,

$$
\begin{aligned}
\left(\mathrm{S} 4 \times_{t} \mathrm{~S} 5\right)^{+} & =\left(\mathrm{S} 4 \otimes[\mathrm{~S} 4, \mathrm{~S} 5]^{\mathrm{EX}}\right)+\left(\square p \equiv \square_{1} \square_{2} p\right)^{10} \\
& =(\mathrm{S} 4 \otimes \mathrm{~S} 4 \otimes \mathrm{~S} 5)+\mathrm{com}_{\supset}+\operatorname{chr}+\left(\square p \equiv \square_{1} \square_{2} p\right)
\end{aligned}
$$

[^5]We can do better, given Theorem 2.3: the trimodal logic $\left(\mathrm{S} 4 \otimes[\mathrm{~S} 4, \mathrm{~S} 5]^{\mathrm{EX}}\right)+$ $\left(\square p \equiv \square_{1} \square_{2} p\right)$ is complete for the tritopological space $(\mathbb{Q} \times \mathbb{N})^{+}$. To see this, suppose that $(\mathbb{Q} \times \mathbb{N})^{+} \vDash A$. Let A^{\prime} be the result of replacing, in A, every occurrence of \square with $\square_{1} \square_{2}$. Then $(\mathbb{Q} \times \mathbb{N})^{+} \vDash A^{\prime}$, since Int $t_{12}=$ Int $_{1} \circ$ Int $_{2}$. So $\mathbb{Q} \times \mathbb{N} \vDash A^{\prime}$, since \square does not occur in A^{\prime}. So $A^{\prime} \in[\mathrm{S} 4, \mathrm{~S} 5]^{\mathrm{EX}}$, by Theorem 2.3. So $A \in\left(\mathrm{~S} 4 \otimes[\mathrm{~S} 4, \mathrm{~S} 5]^{\mathrm{EX}}\right)+\left(\square p \equiv \square_{1} \square_{2} p\right)$, as desired.

3 Proof of Theorem 2.3

3.1 p-morphisms

Suppose that $\mathcal{X}=\langle X, \tau\rangle$ and $\mathcal{Y}=\langle Y, \sigma\rangle$ are topological spaces and that $f: X \rightarrow Y$. We say that f is continuous iff the preimage of every open set is open; that f is open iff the image of every open set is open; that f is a homeomorphism iff f is a continuous open bijection; and that f is a topological p-morphism (or simply p-morphism) iff f is a continuous open surjection. Since we are identifying any reflexive transitive uniframe \mathcal{U} with the Alexandrov space $\mathcal{X}_{\mathcal{U}}$, we can meaningfully talk about continuous functions, etc., from a topological space \mathcal{X} to a reflexive transitive uniframe \mathcal{U}. The proof of following theorem is standard:

Theorem 3.1. For any topological spaces \mathcal{X} and \mathcal{Y},

1. if there is a homeomorphism from \mathcal{X} to \mathcal{Y} then, for every formula A of $\mathcal{L}, \mathcal{X} \vDash A$ iff $\mathcal{Y} \vDash A$; and
2. if there is a topological p-morphism from \mathcal{X} to \mathcal{Y} then, for every formula A of \mathcal{L}, if $\mathcal{X} \vDash A$ then $\mathcal{Y} \vDash A$.

Suppose that $\mathcal{X}=\left\langle X, \tau_{1}, \tau_{2}\right\rangle$ and $\mathcal{Y}=\left\langle Y, \sigma_{1}, \sigma_{2}\right\rangle$ are bispaces and that $f: X \rightarrow Y$. We say that f is 1 -continuous [2-continuous] iff the preimage of every 1-open [2-open] set is 1 -open [2-open]; and we say that f is 1 -open [2-open] iff the image of every 1 -open [2-open] set is 1 -open [2-open]. We say that f is bicontinuous [biopen] iff f is both 1- and 2-continuous [-open]. We give similar definitions of the following: 1- and 2-homeomorphism and 1 - and 2-p-morphism; and bihomeomorphism and bi-p-morphism. Just as we

[^6]are identifying any reflexive transitive uniframe \mathcal{U} with the Alexandrov space $\mathcal{X}_{\mathcal{U}}$, we can identify any bireflexive bitransitive biframe $\mathcal{B}=\left\langle W, R_{1}, R_{2}\right\rangle$ with the biAlexandrov bispace $\mathcal{X}_{\mathcal{B}}=\left\langle W, \tau_{1}, \tau_{2}\right\rangle$, where for $i=1,2, O \in \tau_{i}$ iff $\forall w \in O, \forall w^{\prime} \in W\left(w R_{i} w^{\prime} \Rightarrow w^{\prime} \in O\right)$. Thus, we can meaningfully talk about bicontinuous functions, etc., from a bispace \mathcal{X} to a bireflexive bitransitive biframe \mathcal{B}. The proof of following theorem is standard:

Theorem 3.2. For any bispaces \mathcal{X} and \mathcal{Y},

1. if there is a bihomeomorphism from \mathcal{X} to \mathcal{Y} then, for every formula A of $\mathcal{L}_{12}, \mathcal{X} \vDash A$ iff $\mathcal{Y} \vDash A$; and
2. if there is a bi-p-morphism from \mathcal{X} to \mathcal{Y} then, for every formula A of \mathcal{L}_{12}, if $\mathcal{X} \vDash A$ then $\mathcal{Y} \vDash A$.

3.2 Completeness of S4 wrt Q

The core of many proofs that S 4 is complete wrt the topological space \mathbb{Q} is the construction, for every finite rooted (see page 4) uniframe \mathcal{U}, of a p-morphism from \mathbb{Q} to \mathcal{U} or of some other dense linear ordering without endpoints to \mathcal{U}. Given such a construction, the completeness argument goes as follows. Suppose that A is a formula of \mathcal{L} and that $A \notin \mathrm{~S} 4$. By the finite frame property for $S 4$, there is some finite rooted uniframe \mathcal{U} such that $\mathcal{U} \not \forall A$. Since there is a p-morphism from \mathbb{Q} to \mathcal{U}, we conclude that $\mathbb{Q} \not \forall A$, by Theorem 3.1. QED. (See, e.g., [21] and [12].)

In fact, we can generalize most of the constructions in the literature to construct, for every countable rooted uniframe \mathcal{U}, a a p-morphism from \mathbb{Q} to \mathcal{U} :

Theorem 3.3. For every countable rooted uniframe \mathcal{U}, there is a p-morphism from \mathbb{Q} to \mathcal{U}.

Proof. There are any number of constructions of p-morphisms from Q to arbitrary finite rooted uniframes: these are often generalizable to countable roote uniframes. See the appendix in [11].

We introduce some notions we will use below. An open \mathbb{Q}-interval is any set of the form $\mathbb{Q} \cap(a, b)$, where (a, b) is some open interval in \mathbb{R}. We write $(a, b)_{\mathrm{Q}}$ for this open \mathbb{Q}-interval. Note that a or b could be irrational: if both a and b are irrational then we say that $(a, b)_{\mathbb{Q}}$ is an irrational interval:

Note that every irrational interval is both an open and a closed subset of \mathbb{Q}. Suppose that $\mathcal{U}=\langle W, R\rangle$ is a countable rooted uniframe, and that f is a p-morphism from \mathbb{Q} to \mathcal{U}. If $w \in W$, we say that an open \mathbb{Q}-interval I is a w-interval iff the image of I under f is $[w]={ }_{\mathrm{df}}\left\{w^{\prime} \in W: w R w^{\prime}\right\}$. We will make use of the following lemma below:

Lemma 3.4. Suppose that f is a p-morphism from \mathbb{Q} to a uniframe $\mathcal{U}=$ $\langle W, R\rangle$. Then for every $x \in \mathbb{Q}$, there is an irrational $f(x)$-interval I such that $x \in I$.

Proof. Choose any $x \in \mathbb{Q}$, and let $w=f(x)$. Since $[w]$ is an open subset of W and since f is continuous, there is a Q-interval J such that $x \in J$ and $f(y) \in[w]$ for every $y \in J$. Let I be any irrational \mathbb{Q}-interval such that $x \in I \subseteq J$. Then $x \in I$ and $f(y) \in[w]$ for every $y \in I$. Let O be the image of I under f : then $w=f(x) \in O$ and $O \subseteq[w]$. Since f is an open function, the image of I is open, so that O is open. So $O=[w]$.

3.3 Expanding relativized product frames

A biframe $\mathcal{B}=\left\langle W, R_{1}, R_{2}\right\rangle$ is a subframe of a biframe $\mathcal{B}^{\prime}=\left\langle W^{\prime}, R_{1}^{\prime}, R_{2}^{\prime}\right\rangle$ iff $W^{\prime} \subseteq W$ and $R_{1}=R_{1}^{\prime} \cap(W \times W)$ and $R_{2}=R_{2}^{\prime} \cap(W \times W)$. Following [14] and [13], we say that a biframe $\mathcal{B}=\left\langle W, R_{1}, R_{2}\right\rangle$ is an expanding relativized product frame (ERPF) iff there are uniframes $\mathcal{U}_{1}=\left\langle W_{1}, S_{1}\right\rangle$ and $\mathcal{U}_{2}=\left\langle W_{1}, S_{2}\right\rangle$ such that

- \mathcal{B} is a subframe of $\mathcal{U}_{1} \times \mathcal{U}_{2}$, and
- for all $\left\langle w_{1}, w_{2}\right\rangle \in W$ and $w \in W_{1}$, if $w_{1} S_{1} w$ then $\left\langle w, w_{2}\right\rangle \in W$.

Figure 3 represents a product space $\mathcal{U}_{1} \times \mathcal{U}_{2}$ together with a subspace which is an ERPF. Again, following [14] and [13], define EX to be the class of all ERPF's; and for normal unimodal $\operatorname{logics} L_{1}$ and L_{2}, define the logic $\left(L_{1} \times\right.$ $\left.\mathrm{L}_{2}\right)^{\mathrm{EX}}$ as follows:

$$
\begin{aligned}
\left(\mathrm{L}_{1} \times \mathrm{L}_{2}\right)^{\mathrm{EX}}={ }_{\mathrm{df}} \quad \begin{array}{l}
\{A: \mathcal{B} \vDash A \text { for each ERPF } \mathcal{B} \text { which is a subframe of } \\
\\
\\
\text { some } \left.\mathcal{U}_{1} \times \mathcal{U}_{2} \text { where } \mathcal{U}_{1} \vDash \mathrm{~L}_{1} \text { and } \mathcal{U}_{1} \vDash \mathrm{~L}_{2}\right\}
\end{array}
\end{aligned}
$$

The following is a special case of Theorem 6 in [14], where $\left[\mathrm{L}_{1}, \mathrm{~L}_{2}\right]^{\mathrm{EX}}$ is the e-commutator of L_{1} and L_{2} defined on page 11, above:

Theorem 3.5. $(\mathrm{S} 4 \times \mathrm{S} 5)^{\mathrm{EX}}=[\mathrm{S} 4, \mathrm{~S} 5]^{\mathrm{EX}}$.

Figure 3: To the left is an example of a product space of the form $\mathcal{U}_{1} \times \mathcal{U}_{2}=$ $\left\langle W_{1} \times W_{2}, S_{1}^{\prime}, S_{2}^{\prime}\right\rangle . S_{1}^{\prime}$ is the reflexive transitive closure of the relation given by the thin diagonal arrows, and S_{2}^{\prime} is the reflexive transitive symmetric closure of the relation given by the thick vertical lines. A copy of \mathcal{U}_{1} is shaded in grey. To the right is an expanding relativized product frame that is a subframe of $\mathcal{U}_{1} \times \mathcal{U}_{2}$.

Theorem 3.5 is, in effect, a soundness and completeness theorem for the logic $[\mathrm{S} 4, \mathrm{~S} 5]^{\mathrm{EX}}$ wrt the following subclass of EX:
$\mathrm{EX}^{\prime}={ }_{\mathrm{df}} \quad\left\{\mathcal{B} \in \mathrm{EX}: \mathcal{B}\right.$ is a subspace of $\mathcal{U}_{1} \times \mathcal{U}_{2}$ where \mathcal{U}_{1} is reflexive and transitive and \mathcal{U}_{2} is reflexive, transitve and symmetric $\}$.

If $\mathcal{B}=\left\langle W, R_{1}, R_{2}\right\rangle$ is any biframe, say that $r \in W$ is a root of \mathcal{B} iff $\forall w \in$ $W, \exists w^{\prime} \in W, r R_{1} w^{\prime} \& w^{\prime} R_{2} w$. And say that \mathcal{B} is rooted iff \mathcal{B} has a root. Example: the ERPF represented on the right side of Figure 3 is rooted. By standard methods, we can show that $[\mathrm{S} 4, \mathrm{~S} 5]^{\mathrm{EX}}$ is complete wrt the class of rooted biframes in $E X^{\prime}$. By the methods in Section 5 of [5], we can do even better. Define

$$
\mathrm{EX}^{\prime \prime}={ }_{\mathrm{df}} \quad\left\{\mathcal{B} \in \mathrm{EX}^{\prime}: \mathcal{B} \text { is countable and rooted }\right\}
$$

Theorem 3.6. $A \in[\mathrm{~S} 4, \mathrm{~S} 5]^{\mathrm{EX}}$ iff $\mathcal{B} \vDash A$ for every $\mathcal{B} \in \mathrm{EX}^{\prime \prime}$.

3.4 The proof of Theorem 2.3

Recall that we want to prove the (\Rightarrow) direction of Theorem 2.3. Given Theorems 3.2 and 3.6, it suffices to prove the following:

Theorem 3.7. For each $\mathcal{B} \in \mathrm{EX}^{\prime \prime}$, there is a bi-p-morphism from $\mathbb{Q} \times \mathbb{N}$ to \mathcal{B}.

Proof. Suppose that $\mathcal{B}=\left\langle W, R_{1}, R_{2}\right\rangle \in \mathrm{EX}{ }^{\prime \prime}$. It will suffice to find a countable set X and a a bi-p-morphism from $\mathbb{Q} \times \mathcal{X}$ to \mathcal{B}, where $\mathcal{X}=\langle X, \tau\rangle$ and τ is the trivial topology on \mathcal{X}. Since \mathcal{B} is countable and rooted, there is

1. a countable rooted reflexive transitive uniframe $\mathcal{U}_{1}=\left\langle W_{1}, S_{1}\right\rangle$ with root $r_{1} \in W_{1}$, and
2. a countable universal uniframe $\mathcal{U}_{2}=\left\langle W_{2}, S_{2}\right\rangle$, such that
3. \mathcal{B} is a subframe of $\mathcal{U}_{1} \times \mathcal{U}_{2}=\left\langle W_{1} \times W_{2}, S_{1}^{\prime}, S_{2}^{\prime}\right\rangle$; and
4. for some $r_{2} \in W_{2}$,
(a) $\left\langle r_{1}, r_{2}\right\rangle$ is a root of \mathcal{B}, and
(b) $W_{1} \times\left\{r_{2}\right\} \subseteq W$; and
5. $\forall v \in W_{2}, \exists u \in W_{1},\langle u, v\rangle \in W$.

For each $u \in W_{1}$, recall the definition $[u]=_{\mathrm{df}}\left\{w \in W_{1}: u S_{1} w\right\}$. For each $\langle u, v\rangle \in W$, note that the set $\left(W_{1} \times\left\{r_{2}\right\}\right) \cup([u] \times\{v\})=\left(\left[r_{1}\right] \times\left\{r_{2}\right\}\right) \cup([u] \times$ $\{v\})$ is 1 -open in \mathcal{B}.

Let f be a p-morphism from \mathbb{Q} to \mathcal{U}_{1} (see Theorem 3.3). Let $X=\{\langle x, v\rangle \in$ $\left.\mathrm{Q} \times W_{2}:\langle f(x), v\rangle \in W\right\}$. Note that X is countable. Let τ be the trivial topology on X, i.e., $\tau=\{\emptyset, X\}$; and let $\mathcal{X}=\langle X, \tau\rangle$. Shortly, we define a function $F: \mathbb{Q} \times X \rightarrow W$. First, for every $x \in \mathbb{Q}$, choose an irrational $f(x)$-interval I_{x} such that $x \in I_{x}$ (see Lemma 3.4). Define F as follows:

$$
F(\langle y,\langle x, v\rangle\rangle)=\left\{\begin{array}{l}
\langle f(y), v\rangle \text { if } y \in I_{x} \\
\left\langle f(y), r_{2}\right\rangle \text { if } y \notin I_{x}
\end{array}\right.
$$

We must ensure that $F(\langle y,\langle x, v\rangle\rangle) \in W$ whenever $y \in \mathbb{Q}$ and $\langle f(x), v\rangle \in W$. If $y \notin I_{x}$, then $F(\langle y,\langle x, v\rangle\rangle)=\left\langle f(y), r_{2}\right\rangle \in W$, since $W_{1} \times\left\{r_{2}\right\} \subseteq W$. Suppose, on the other hand, that that $y \in I_{x}$. Note that $f(x) S_{1} f(y)$, since I_{x} is an $f(x)$-interval and since $y \in I_{x}$. So $\langle f(y), v\rangle \in W$, by the second clause of the definition of expanding relativized product frames and by the fact that $\langle f(x), v\rangle \in W$.

All we have left is to prove that F is a bi-p-morphism from $\mathbb{Q} \times \mathcal{X}$ to \mathcal{B}, i.e., that F is bicontinuous, biopen and onto.
F is onto. Suppose that $\langle u, v\rangle \in W$. Choose any $x \in \mathbb{Q}$ such that $f(x)=u$. Recall that $x \in I_{x}$. So $F(x,\langle x, v\rangle)=\langle f(x), v\rangle=\langle u, v\rangle$.
F is 1-continuous. Suppose that O is a 1-open subset of W, i.e., O is closed under the relation R_{1}. We want to show that the preimage of O under F, say O^{\prime}, is a 1 -open subset of $\mathrm{Q} \times \mathcal{X}$. We can assume that O is of the form $[u] \times\{v\}$ for some $u \in W_{1}$ and $v \in W_{2}$ with $\langle u, v\rangle \in W$, since sets of this form form a basis for the topology on \mathcal{B} induced by the relation R_{1}. Let $O^{\prime \prime}$ be the preimage of the set $[u] \subseteq W_{1}$ under the p-morphism f. The set $O^{\prime \prime} \subseteq \mathbb{Q}$ is open, since f is continuous. Given the definition of F,

$$
\begin{aligned}
\langle y,\langle x, w\rangle\rangle \in O^{\prime} \quad & \text { iff }
\end{aligned} \begin{aligned}
& F(\langle y,\langle x, w\rangle\rangle) \in[u] \times\{v\} \\
& \text { iff }\left\{\begin{array}{l}
\langle f(y), w\rangle \in[u] \times\{v\} \& y \in I_{x}, \text { or } \\
\left\langle f(y), r_{2}\right\rangle \in[u] \times\{v\} \& y \notin I_{x} ;
\end{array}\right. \\
& \text { iff }\left\{\begin{array}{l}
f(y) \in[u] \& w=v \& y \in I_{x}, \text { or } \\
f(y) \in[u] \& v=r_{2} \& y \notin I_{x} ;
\end{array}\right. \\
& \text { iff }\left\{\begin{array}{l}
y \in O^{\prime \prime} \& w=v \& y \in I_{x}, \text { or } \\
y \in O^{\prime \prime} \& v=r_{2} \& y \notin I_{x} ;
\end{array}\right. \\
& \text { iff }\left\{\begin{array}{l}
y \in O^{\prime \prime} \cap I_{x} \& w=v, \text { or } \\
y \in O^{\prime \prime}-I_{x} \& v=r_{2} .
\end{array}\right.
\end{aligned}
$$

So if $v=r_{2}$, then

$$
O^{\prime}=\bigcup_{\left\langle x, r_{2}\right\rangle \in X}\left(O^{\prime \prime} \cap I_{x}\right) \times\left\{\left\langle x, r_{2}\right\rangle\right\} \cup \bigcup_{\langle x, w\rangle \in X}\left(O^{\prime \prime}-I_{x}\right) \times\{\langle x, w\rangle\}
$$

And if $v \neq r_{2}$, then

$$
O^{\prime}=\bigcup_{\langle x, v\rangle \in X}\left(O^{\prime \prime} \cap I_{x}\right) \times\{\langle x, v\rangle\}
$$

To show that O^{\prime} is 1 -open, it is enough to show that, whether or not $v=r_{2}, O^{\prime}$ is a union of 1-open subsets of $\mathbb{Q} \times X$. Recall that I_{x} is both open and closed in \mathbb{Q}, for every $x \in \mathbb{Q}$. So $O^{\prime \prime} \cap I_{x}$ and $O^{\prime \prime}-I_{x}$ are open in \mathbb{Q},
for every $x \in \mathbb{Q}$. So the following are 1-open in $\mathrm{Q} \times X$ for any $\langle x, w\rangle \in X$: $\left(O^{\prime \prime} \cap I_{x}\right) \times\{\langle x, w\rangle\}$ and $\left(O^{\prime \prime}-I_{x}\right) \times\{\langle x, w\rangle\}$. So O^{\prime} is a union of 1-open subsets of $\mathbb{Q} \times X$.
F is 1-open. Suppose that O is a 1 -open subset of $\mathbb{Q} \times \mathcal{X}$. We want to show that the image of O under F, say O^{\prime}, is a 1 -open subset of W. We can assume that O is of the form $I \times\{\langle x, v\rangle\}$ for some open \mathbb{Q}-interval I and some $\langle x, v\rangle \in X$ since sets of this form form a basis for the horizontal topology on $\mathbb{Q} \times \mathcal{X}$.

Let $O_{1}=I \cap I_{x}$ and $O_{2}=I-I_{x}$. Note that each O_{i} is open in \mathbb{Q}, since I_{x} is both open and closed in \mathbb{Q}; and that $I=O_{1} \cup O_{2}$. Let O_{i}^{*} be the image of O_{i} under $f: O_{i}^{*}$ is open since f is a p-morphism. And let O_{i}^{\prime} be the image of $O_{i} \times\{\langle x, v\rangle\}$ under F. It will suffice to show that each O_{i}^{\prime} is open since $O^{\prime}=O_{1}^{\prime} \cup O_{2}^{\prime}$.

Re O_{1}^{\prime}. It will suffice to show that $O_{1}^{\prime}=O_{1}^{*} \times\{v\}$. To see that $O_{1}^{\prime} \subseteq$ $O_{1}^{*} \times\{v\}$, suppose that $\langle y,\langle z, w\rangle\rangle \in O_{1} \times\{\langle x, v\rangle\}$. Then $y \in I \cap I_{x}$ and $\langle z, w\rangle=\langle x, v\rangle$. So $F(\langle y,\langle z, w\rangle\rangle)=\langle f(y), v\rangle \in O_{i}^{*} \times\{v\}$, as desired. To see that $O_{1}^{*} \times\{v\} \subseteq O_{1}^{\prime}$, suppose that $\langle w, v\rangle \in O_{1}^{*} \times\{v\}$. Then $w \in O_{1}^{*}$, so that $w=f(c)$ for some $c \in O_{1}=I \cap I_{x}$. So $F(\langle c,\langle x, v\rangle\rangle)=\langle f(c), v\rangle=\langle w, v\rangle$. So $\langle w, v\rangle \in O_{1}^{\prime}$, as desired.

Re O_{2}^{\prime}. It will suffice to show that $O_{2}^{\prime}=O_{2}^{*} \times\left\{r_{2}\right\}$. To see that $O_{2}^{\prime} \subseteq O_{2}^{*} \times\left\{r_{2}\right\}$, suppose that $\langle y,\langle z, w\rangle\rangle \in O_{2} \times\{\langle x, v\rangle\}$. Then $y \in I-I_{x}$ and $\langle z, w\rangle=\langle x, v\rangle$. So $F(\langle y,\langle z, w\rangle\rangle)=\left\langle f(y), r_{2}\right\rangle \in O_{2}^{*} \times\left\{r_{2}\right\}$, as desired. To see that $O_{2}^{*} \times\left\{r_{2}\right\} \subseteq O_{2}^{\prime}$, suppose that $\left\langle w, r_{2}\right\rangle \in O_{2}^{*} \times\left\{r_{2}\right\}$. Then $w \in O_{2}^{*}$, so that $w=f(c)$ for some $c \in O_{2}=I-I_{x}$. So $F(\langle c,\langle x, v\rangle\rangle)=\left\langle f(c), r_{2}\right\rangle=\left\langle w, r_{2}\right\rangle$. So $\left\langle w, r_{2}\right\rangle \in O_{2}^{\prime}$, as desired.
F is 2-continuous. For this it will suffice to show that, for every $y \in \mathbb{Q}$ and every $\langle z, u\rangle,\langle x, v\rangle \in X$, we have

$$
F(y,\langle z, u\rangle) \quad R_{2} \quad F(y,\langle x, v\rangle) .
$$

Note: $F(y,\langle z, u\rangle)=\langle f(y), w\rangle$, where $w=r_{2}$ or u and $\langle f(y), w\rangle \in W \subseteq W_{1} \times$ W_{2}. Likewise, $F(y,\langle x, v\rangle)=\left\langle f(y), w^{\prime}\right\rangle$, where $w^{\prime}=r_{2}$ or v and $\left\langle f(y), w^{\prime}\right\rangle \in$ $W \subseteq W_{1} \times W_{2}$. Now, $\langle f(y), w\rangle S_{2}^{\prime}\left\langle f(y), w^{\prime}\right\rangle$. So $\langle f(y), w\rangle R_{2}\left\langle f(y), w^{\prime}\right\rangle$, since \mathcal{B} is a subframe of $\mathcal{U}_{1} \times \mathcal{U}_{2}$. So $F(y,\langle z, u\rangle) R_{2} F(y,\langle x, v\rangle)$, as desired.
F is 2-open. For this it will suffice to show that, for every $y \in \mathbb{Q}$, every $\langle x, v\rangle \in X$ and every $\left\langle w_{1}, w_{2}\right\rangle \in W$,

$$
\text { if } F(\langle y,\langle x, v\rangle\rangle) R_{2}\left\langle w_{1}, w_{2}\right\rangle \text { then } \exists\left\langle x^{\prime}, v^{\prime}\right\rangle \in X, F\left(\left\langle y,\left\langle x^{\prime}, v^{\prime}\right\rangle\right\rangle\right)=\left\langle w_{1}, w_{2}\right\rangle .
$$

So suppose that $F(\langle y,\langle x, v\rangle\rangle) R_{2}\left\langle w_{1}, w_{2}\right\rangle$. Then $f(y)=w_{1}$. Note that $F\left(\left\langle y,\left\langle y, w_{2}\right\rangle\right\rangle\right)=\left\langle f(y), w_{2}\right\rangle$, since $y \in I_{y}$. Let $x^{\prime}=y$ and $v^{\prime}=w_{2}$. Then $F\left(\left\langle y,\left\langle x^{\prime}, v^{\prime}\right\rangle\right\rangle\right)=\left\langle f(y), w_{2}\right\rangle=\left\langle w_{1}, w_{2}\right\rangle$, as desired.

4 The bimodal logic of products of arbitrary spaces and Alexandrov spaces

Van Benthem et al [21] note that, since Alexandrov spaces are identified with reflexive transitive frames (see subsection 1.3), the bimodal logic of the products of Alexandrov spaces is simply the frame product $\mathrm{S} 4 \times \mathrm{S} 4$. They ask what the bimodal logic is of the products of Alexandrov spaces with arbitrary topological spaces, conjecturing that it is $(\mathrm{S} 4 \otimes \mathrm{~S} 4)+$ com $_{\subset}+c h r$. Their conjecture follows from its mirror image, i.e., that the bimodal logic of the products of arbitrary spaces with Alexandrov spaces is $(\mathrm{S} 4 \otimes \mathrm{~S} 4)+$ com ${ }_{\supset}+c h r$. In this section, we prove this last claim.

For another way to put this, let $\mathfrak{T o p}$ be the class of all topological spaces and let $\mathfrak{A l e x}$ be the class of Alexandrov spaces. For any classes \mathfrak{X} and \mathfrak{Y} of topological spaces, let $\mathfrak{X} \times \mathfrak{Y}={ }_{\mathrm{df}}\{\mathcal{X} \times \mathcal{Y}: \mathcal{X} \in \mathfrak{X} \& \mathcal{Y} \in \mathfrak{Y}\}$. And for any class \mathfrak{X} of bitopological spaces and any formula A of \mathcal{L}_{12}, say that $\mathfrak{X} \vDash A$ iff $\mathcal{X} \vDash A$, for every $\mathcal{X} \in \mathfrak{X}$. Then we have

Theorem 4.1. $A \in[\mathrm{~S} 4, \mathrm{~S} 4]^{\mathrm{EX}}$ iff $\mathfrak{T o p} \times \mathfrak{A l e x} \vDash A$.
We leave soundness, i.e., the (\Rightarrow) direction of the biconditional, to the reader. Completeness, i.e., the (\Leftarrow) direction, follows from the completeness of $[\mathrm{S} 4, \mathrm{~S} 4]^{\mathrm{EX}}$ for the space $\mathrm{Q} \times \mathbb{N}^{*}$, where Q is the rational line equipped with the standard topology and where \mathbb{N}^{*} is the set of finite sequences of natural numbers, equipped with the following Alexandrov topology: a set $O \subseteq \mathbb{N}^{*}$ is open iff, for each $\bar{a}, \bar{b} \in \mathbb{N}^{*}$, if $\bar{a} \in O$ and \bar{a} is an initial segment of \bar{b}, then $\bar{b} \in O$:

Theorem 4.2. If $\mathbb{Q} \times \mathbb{N}^{*} \vDash A$ then $A \in[\mathrm{~S} 4, \mathrm{~S} 4]^{\mathrm{EX}}$.
Proof. Some notation. For $\bar{a} \in \mathbb{N}^{*}$, we write $\bar{a}=\bar{a}_{0}, \ldots, \bar{a}_{l n(\bar{a})-1}$, where $\ln (\bar{a})$ is the length of \bar{a}. For $\bar{a}, \bar{b} \in \mathbb{N}^{*}$, we write $\bar{a} \bar{b}$ for \bar{a} concatenated with \bar{b}. And for $\bar{a} \in \mathbb{N}^{*}$ and $n \in \mathbb{N}$, we write $\bar{a} n$ for \bar{a} concatenated with n. We use Λ for the empty sequence in \mathbb{N}^{*}. We define $S={ }_{\mathrm{df}}\{\langle\bar{a}, \bar{b}\rangle: \bar{a}$ is an initial segment
of $\bar{b}\}$. Note that S is a reflexive transitive relation, and that our topology on \mathbb{N}^{*} is the Alexandrov topology induced by S. Finally, if $\langle u, v\rangle$ is any ordered pair (usually of worlds), we define $l f t(\langle u, v\rangle)={ }_{\mathrm{df}} u$ and $r t(\langle u, v\rangle)==_{\mathrm{df}} v$.

Suppose that $A \notin[\mathrm{~S} 4, \mathrm{~S} 4]^{\mathrm{EX}}$. It is a special case of Theorem 6 in [14] that $[\mathrm{S} 4, \mathrm{~S} 4]^{\mathrm{EX}}=(\mathrm{S} 4 \times \mathrm{S} 4)^{\mathrm{EX}}$. So there is some reflexive transitive unary frame $\mathcal{U}_{1}=\left\langle W_{1}, S_{1}\right\rangle$ and some reflexive transitive unary frame $\mathcal{U}_{2}=\left\langle W_{2}, S_{2}\right\rangle$ and some expanding relativized product frame, $\mathcal{B}=\left\langle W, R_{1}, R_{2}\right\rangle$, that is a subframe of $\mathcal{U}_{1} \times \mathcal{U}_{2}=\left\langle W_{1} \times W_{2}, S_{1}^{\prime}, S_{2}^{\prime}\right\rangle$, such that $\mathcal{B} \not \vDash A$. We can assume that both \mathcal{U}_{1} and \mathcal{U}_{2} are countable and rooted, with roots r_{1} and r_{2}, respectively, with $\left\langle r_{1}, r_{2}\right\rangle \in W$. We can also assume that, for every $w_{2} \in W_{2}$, there is a $w_{1} \in W_{1}$ such that $\left\langle w_{1}, w_{2}\right\rangle \in W$. To see that $\mathbb{Q} \times \mathbb{N}^{*} \not \models A$, it suffices to specify a bi-p-morphism from $\mathbb{Q} \times \mathbb{N}^{*}$ to \mathcal{B}.

Let

$$
\left\langle x_{0}, v_{0}\right\rangle,\left\langle x_{1}, v_{1}\right\rangle,\left\langle x_{2}, v_{2}\right\rangle, \ldots,\left\langle x_{n}, v_{n}\right\rangle, \ldots
$$

be an enumeration of $\mathbb{Q} \times W_{2}$. And let f be a p-morphism from \mathbb{Q} to \mathcal{U}_{1} (see Theorem 3.3). For every $\bar{a} \in \mathbb{N}^{*}$, we will shortly define a function $f_{\bar{a}}: \mathbb{Q} \rightarrow W_{1} \times W_{2}$. First, for every $x \in \mathbb{Q}$, choose an irrational $f(x)$-interval I_{x} such that $x \in I_{x}$ (see Lemma 3.4 and the proof of Theorem 3 in subsection 3.4). The important thing is that each I_{x} is both open and closed.

Now we define the $f_{\bar{a}}$'s, by recursion on the construction of \bar{a}. First define

$$
f_{\wedge}(x)=\left\langle f(x), r_{2}\right\rangle, \text { for each } x \in \mathbb{Q} .
$$

Assuming that $f_{\bar{a}}$ has been defined, define $f_{\bar{a} n}$ as follows:

$$
f_{\bar{a} n}(x)=\left\{\begin{array}{l}
\left\langle f(x), v_{n}\right\rangle, \text { if }\left\langle f\left(x_{n}\right), v_{n}\right\rangle \in W \& r t\left(f_{\bar{a}}\left(x_{n}\right)\right) S_{2} v_{n} \& x \in I_{x_{n}} \\
f_{\bar{a}}(x), \text { otherwise } .
\end{array}\right.
$$

We now state and prove three useful claims about the $f_{\bar{a}}$'s.
Claim 1. Each $f_{\bar{a}}: \mathbb{Q} \rightarrow W \subseteq W_{1} \times W_{2}$. Proof. By induction on the length of \bar{a}. In the base case ($\bar{a}=\Lambda$), it suffices to note that $\left\langle r_{1}, r_{2}\right\rangle \in W$, that $r_{1} S_{1} f(x)$ for each $x \in \mathbb{Q}$, and that \mathcal{B} is an expanding relativized product frame. For the inductive step, our inductive hypothesis (IH) is that $f_{\bar{a}}: \mathbb{Q} \rightarrow W$. We want to show that $f_{\bar{a} n}: \mathbb{Q} \rightarrow W$. So choose $x \in \mathbb{Q}$ and consider $f_{\bar{a} n}(x)$. If either $\left\langle f\left(x_{n}\right), v_{n}\right\rangle \notin W$ or not $r t\left(f_{\bar{a}}\left(x_{n}\right)\right) S_{2} v_{n}$ or $x \in I_{x_{n}}$, then $f_{\bar{a} n}(x)=f_{\bar{a}}(x) \in W$, as desired. So suppose that $\left\langle f\left(x_{n}\right), v_{n}\right\rangle \in W \& r t\left(f_{\bar{a}}\left(x_{n}\right)\right) S_{2} v_{n} \& x \in I_{x_{n}}$. Since $I_{x_{n}}$ is an $f\left(x_{n}\right)$-interval, we have $f\left(x_{n}\right) S_{1} f(x)$. Thus, since \mathcal{B} is an expanding relativized product model, we have $f_{\bar{a} n}(x)=\left\langle f(x), v_{n}\right\rangle \in W$, as
desired.

Claim 2. Each $f_{\bar{a}}: \mathbb{Q} \rightarrow W$ is a continuous function from \mathbb{Q} to the unary frame $\mathcal{U}^{\prime}=\left\langle W, R_{1}\right\rangle$. Proof. By induction on the length of \bar{a}. In the base case $(\bar{a}=\Lambda)$, the continuity of f from \mathbb{Q} to \mathcal{U}_{1} suffices to guarantee the continuity of f_{\wedge} from \mathbb{Q} to \mathcal{U}^{\prime}. For the inductive step, our inductive hypothesis (IH) is that $f_{\bar{a}}$ is a continuous function. We want to show that $f_{\bar{a} n}$ is a continuous function.

Suppose that O is an open subset of the unary frame \mathcal{U}^{\prime}, i.e., O is closed under the relation R_{1}. We want to show that the preimage of O under $f_{\bar{a} n}$, say O^{\prime}, is an open subset of \mathbb{Q}. We can assume that O is of the form $[u] \times\{v\}$ for some $u \in W_{1}$ and $v \in W_{2}$ with $\langle u, v\rangle \in W$, since sets of this form form a basis for the topology on \mathcal{U}^{\prime} induced by the relation R_{1}. (Here, $[u]={ }_{\mathrm{df}}\left\{u^{\prime} \in W_{1}: u S_{1} u^{\prime}\right\}$. .) Let $O^{\prime \prime}$ be the preimage of the set $[u] \subseteq W_{1}$ under the p-morphism f. And let $O^{\prime \prime \prime}$ be the preimage of the set $[u] \times\{v\}$ under the function $f_{\bar{a}}$. The set $O^{\prime \prime} \subseteq \mathbb{Q}$ is open, since f is continuous; and the set $O^{\prime \prime \prime} \subseteq \mathbb{Q}$ is open by (IH).

Then, given the definition of $f_{\bar{a} n}$, for every $x \in \mathbb{Q}$, we have

$$
x \in O^{\prime}
$$

iff $f_{\bar{a} n}(x) \in[u] \times\{v\}$
iff $\left\{\begin{array}{l}\left\langle f(x), v_{n}\right\rangle \in[u] \times\{v\} \&\left\langle f\left(x_{n}\right), v_{n}\right\rangle \in W \& r t\left(f_{\bar{a}}\left(x_{n}\right)\right) S_{2} v_{n} \& x \in I_{x_{n}} \text { or } \\ f_{\bar{a}}(x) \in[u] \times\{v\} \&\left(\left\langle f\left(x_{n}\right), v_{n}\right\rangle \notin W \text { or } \neg\left(r t\left(f_{\bar{a}}\left(x_{n}\right)\right) S_{2} v_{n}\right) \text { or } x \notin I_{x_{n}}\right)\end{array}\right.$ iff $\left\{\begin{array}{l}f(x) \in[u] \& v_{n}=v \&\left\langle f\left(x_{n}\right), v_{n}\right\rangle \in W \& r t\left(f_{\bar{a}}\left(x_{n}\right)\right) S_{2} v_{n} \& x \in I_{x_{n}} \text { or } \\ x \in O^{\prime \prime \prime} \&\left(\left\langle f\left(x_{n}\right), v_{n}\right\rangle \notin W \text { or } \neg\left(r t\left(f_{\bar{a}}\left(x_{n}\right)\right) S_{2} v_{n}\right) \text { or } x \notin I_{x_{n}}\right)\end{array}\right.$ iff $\left\{\begin{array}{l}x \in O^{\prime \prime} \& v_{n}=v \&\left\langle f\left(x_{n}\right), v_{n}\right\rangle \in W \& r t\left(f_{\bar{a}}\left(x_{n}\right)\right) S_{2} v_{n} \& x \in I_{x_{n}} \text { or } \\ x \in O^{\prime \prime \prime} \&\left(\left\langle f\left(x_{n}\right), v_{n}\right\rangle \notin W \text { or } \neg\left(r t\left(f_{\bar{a}}\left(x_{n}\right)\right) S_{2} v_{n}\right) \text { or } x \notin I_{x_{n}}\right)\end{array}\right.$ iff $\left\{\begin{array}{l}x \in O^{\prime \prime} \& v_{n}=v \&\left\langle f\left(x_{n}\right), v_{n}\right\rangle \in W \& r t\left(f_{\bar{a}}\left(x_{n}\right)\right) S_{2} v_{n} \& x \in I_{x_{n}} \text { or } \\ \left.x \in O^{\prime \prime \prime} \&\left\langle f\left(x_{n}\right), v_{n}\right\rangle \notin W \text { or } \neg\left(r t\left(f_{\bar{a}}\left(x_{n}\right)\right) S_{2} v_{n}\right)\right) \text { or } \\ x \in O^{\prime \prime \prime} \& x \notin I_{x_{n}}\end{array}\right.$ iff $\left\{\begin{array}{l}x \in O^{\prime \prime} \cap I_{x_{n}} \& v_{n}=v \&\left\langle f\left(x_{n}\right), v_{n}\right\rangle \in W \& r t\left(f_{\bar{a}}\left(x_{n}\right)\right) S_{2} v_{n} \text { or } \\ \left.x \in O^{\prime \prime \prime} \&\left\langle f\left(x_{n}\right), v_{n}\right\rangle \notin W \text { or } \neg\left(r t\left(f_{\bar{a}}\left(x_{n}\right)\right) S_{2} v_{n}\right)\right) \text { or } \\ x \in O^{\prime \prime \prime}-I_{x_{n}}\end{array}\right.$

So either $O^{\prime}=\left(O^{\prime \prime} \cap I_{x_{n}}\right) \cup\left(O^{\prime \prime \prime}-I_{x_{n}}\right)$ or $O^{\prime}=O^{\prime \prime \prime}$ or $O^{\prime}=O^{\prime \prime \prime}-I_{x_{n}}$. In
any case, O^{\prime} is open, as desired.
Claim 3. Each $f_{\bar{a}}: \mathbb{Q} \rightarrow W$ is an open function from \mathbb{Q} to the unary frame $\mathcal{U}^{\prime}=\left\langle W, R_{1}\right\rangle$. Proof. By induction on the length of \bar{a}. In the base case, the openness of f from \mathbb{Q} to \mathcal{U}_{1} suffices to guarantee the openness of f_{Λ} from \mathbb{Q} to \mathcal{U}^{\prime}. For the inductive step, our inductive hypothesis (IH) is that $f_{\bar{a}}$ is an open function. We want to show that $f_{\bar{a} n}$ is an open function. If either $\left\langle f\left(x_{n}\right), v_{n}\right\rangle \notin W$ or $\neg\left(r t\left(f_{\bar{a}}\left(x_{n}\right)\right) S_{2} v_{n}\right)$, then $f_{\bar{a} n}=f_{\bar{a}}$, and we are done. So suppose that $\left\langle f\left(x_{n}\right), v_{n}\right\rangle \in W$ and $r t\left(f_{\bar{a}}\left(x_{n}\right)\right) S_{2} v_{n}$.

Suppose that O is an open subset of Q . We want to show that the image of O under $f_{\bar{a} n}$, say O^{\prime}, is an open subset of the unary frame $\mathcal{U}^{\prime}=\left\langle W, R_{1}\right\rangle$. Let $O_{1}=O \cap I_{x_{n}}$ and $O_{2}=O-I_{x_{n}}$. Note that each O_{i} is open in \mathbb{Q}, since $I_{x_{n}}$ is both open and closed in Q ; and that $O=O_{1} \cup O_{2}$. Let O_{i}^{\prime} be the image of O_{i} under $f_{\bar{a} n}$. It will suffice to show that each O_{i}^{\prime} is open since $O^{\prime}=O_{1}^{\prime} \cup O_{2}^{\prime}$. Re O_{1}^{\prime}. Let $O_{1}^{*} \subseteq W_{1}$ be the image of O_{1} under f. O_{1}^{*} is open since f is an open function. Note that $f_{\bar{a} n}(x)=\left\langle f(x), v_{n}\right\rangle \in W$ for every $x \in O_{1}$. So $O_{1}^{\prime}=O_{1}^{*} \times\left\{v_{n}\right\}$, which is open in \mathcal{U}^{\prime}. Re O_{2}^{\prime}. Note that $f_{\bar{a} n}(x)=f_{\bar{a}}(x)$ for every $x \in O_{2}$. So O_{2}^{\prime} is open by IH.

Summary. Each $f_{\bar{a}}: \mathbb{Q} \rightarrow W$ is a continuous open function from \mathbb{Q} to the unary frame $\mathcal{U}^{\prime}=\left\langle W, R_{1}\right\rangle$.

We add one more claim, which has an easy inductive proof:
Claim 4. For each $f_{\bar{a}}: \mathbb{Q} \rightarrow W$ and each $x \in \mathbb{Q}$, we have $l f t\left(f_{\bar{a}}(x)\right)=f(x)$.
Now define

$$
F(x, \bar{a})=f_{\bar{a}}(x) .
$$

All we have left is to prove that F is a bi-p-morphism from $\mathbb{Q} \times \mathbb{N}^{*}$ to \mathcal{B}, i.e., that F is bicontinuous, biopen and onto. First note that F is 1 -continuous and 1-open, since each $f_{\bar{a}}$ is both continuous and open from \mathbb{Q} to \mathcal{U}_{1}. We now prove that F is onto, 2-continuous, and 2-open.
F is onto. Suppose that $\langle u, v\rangle \in W$. Choose any $x \in \mathbb{Q}$ such that $f(x)=u$. And choose n so that $x_{n}=x$ and $v_{n}=v$. We will identify n with the singleton sequence with one member, n. Note that $\left\langle f\left(x_{n}\right), v_{n}\right\rangle \in W$; and $r t\left(f_{\wedge}\left(x_{n}\right)\right) S_{2} v_{n}$, since $r t\left(f_{\wedge}\left(x_{n}\right)\right)=r_{2}$; and $x_{n} \in I_{x_{n}}$. So $F(x, n)=f_{n}(x)=$
$\left\langle f(x), v_{n}\right\rangle=\left\langle f\left(x_{n}\right), v_{n}\right\rangle=\langle u, v\rangle$, as desired.
F is 2-continuous. For this it will suffice to show that, for every $x \in \mathbb{Q}$ and every $\bar{a}, \bar{b} \in \mathbb{N}^{*}$, if $\bar{a} S \bar{b}$, then

$$
F(\langle x, \bar{a}\rangle) \quad R_{2} \quad F(\langle x, \bar{b}\rangle) .
$$

For this, in turn, it will suffice to show that, for every $x \in \mathbb{Q}$ and every $\bar{a} \in \mathbb{N}^{*}$ and $n \in \mathbb{N}$,

$$
f_{\bar{a}}(x) \quad R_{2} \quad f_{\bar{a} n}(x) .
$$

This comes to the same thing as

$$
f_{\bar{a}}(x) \quad S_{2}^{\prime} \quad f_{\bar{a} n}(x),
$$

since \mathcal{B} is a subframe of $\mathcal{U}_{1} \times \mathcal{U}_{2}$. So choose $x \in \mathbb{Q}, \bar{a} \in \mathbb{N}^{*}$ and $n \in \mathbb{N}$. If either $\left\langle f\left(x_{n}\right), v_{n}\right\rangle \notin W$ or $\neg\left(r t\left(f_{\bar{a}}\left(x_{n}\right)\right) S_{2} v_{n}\right)$ or $x \notin I_{x_{n}}$, then $f_{\bar{a} n}(x)=f_{\bar{a}}(x)$, and we are done. So assume that $\left\langle f\left(x_{n}\right), v_{n}\right\rangle \in W \& r t\left(f_{\bar{a}}\left(x_{n}\right)\right) S_{2} v_{n} \& x \in I_{x_{n}}$. Then $f_{\bar{a} n}(x)=\left\langle f(x), v_{n}\right\rangle$. So $f_{\bar{a}}(x) S_{2}^{\prime} f_{\bar{a} n}(x)$, given that $l f t\left(f_{\bar{a}}(x)\right)=f(x)$ (by Claim 4) and $r t\left(f_{\bar{a}}\left(x_{n}\right)\right) S_{2} v_{n}$.
F is 2-open. For this it will suffice to show that, for every $x \in \mathbb{Q}$, every $\bar{a} \in \mathbb{N}^{*}$ and every $\langle u, v\rangle \in W$, if $F(\langle x, \bar{a}\rangle) R_{2}\langle u, v\rangle$ then for some $\bar{b} \in \mathbb{N}^{*}$, we have $\bar{a} S \bar{b}$ (i.e., \bar{a} is an initial segment of \bar{b}) and

$$
F(\langle x, \bar{b}\rangle)=\langle u, v\rangle
$$

So suppose that $F(\langle x, \bar{a}\rangle) R_{2}\langle u, v\rangle$. So $F(\langle x, \bar{a}\rangle) S_{2}^{\prime}\langle u, v\rangle$, since \mathcal{B} is a subspace of $\mathcal{U}_{1} \times \mathcal{U}_{2}$. So $f_{\bar{a}}(x) S_{2}^{\prime}\langle u, v\rangle$. So $f(x)=l f t\left(f_{\bar{a}}(x)\right)=u$ and $r t\left(f_{\bar{a}}(x)\right) S_{2} v$. Choose $n \in \mathbb{N}$ so that $x_{n}=x$ and $v_{n}=v$, and let $\bar{b}=\bar{a} n$. Clearly, $\bar{a} S \bar{b}$. Also note that $F(\langle x, \bar{b}\rangle)=f_{\bar{a} n}(x)=\left\langle f(x), v_{n}\right\rangle$, by the definition of $f_{\bar{a} n}(x)$, $=\langle u, v\rangle$.

Thanks to Guram Bezhanishvili for introducing this topic to me and for directing my attention to his co-written [21]; Valentin Shehtman for incredibly helpful emails and encouragement; Agi Kurucz for references on e-commutator logics; and Johan van Benthem for constant encouragement.

References

[1] M. Aiello, J. van Benthem, and G. Bezhanishvili, 'Reasoning about space: the modal way', Journal of Logic and Computation 13:889-920, 2003. http://logcom.oxfordjournals.org/cgi/reprint/13/6/889.pdf
[2] S. Awodey and K. Kishida, 'Topology and modality: the topological intepretation of first-order modal logic', Review of Symbolic Logic, 1:146-166, 2008. A preprint of this paper is available here:
http://www.hss.cmu.edu/philosophy/techreports/180_Awodey.pdf
[3] G. Bezhanishvili and M. Gehrke, 'Completeness of S4 with respect to the real line: revisited', Annals of Pure and Applied Logic 131:287-301, 2005. doi:10.1016/j.apal.2004.06.003
[4] D.M. Gabbay, A. Kurucz, F. Wolter and M. Zakharyaschev, Manydimensional modal logics: theory and applications, Studies in Logic and the Foundations of Mathematics, Volume 148, Elsevier, 2003.
[5] D. M. Gabbay and V. B. Shehtman, 'Products of modal logics, part 1', Logic Journal of the IGPL 1:73-146, 1998.
http://jigpal.oxfordjournals.org/cgi/reprint/6/1/73
[6] D. M. Gabbay, V. B. Shehtman, and D. Skvortsov, Quantification in nonclassical logic, Volume 1, Elsevier, 2009.
[7] G.E. Hughes and M.J. Cresswell, A New Introduction to Modal Logic, 1996.
[8] Kohei Kishida, Topological Semantics for First-Order Modal Logic, MSc Thesis, Carnegi-Mellon University, 2006.
[9] P. Kremer, 'The incompleteness of $\mathrm{S} 4 \oplus \mathrm{~S} 4$ for the product space $\mathbb{R} \times \mathbb{R}$ ', forthcoming in Studia Logica. A preprint of this paper is available here: http://www.individual.utoronto.ca/philipkremer/onlinepapers/RxR.pdf
[10] P. Kremer, 'The modal logic of continuous functions on the rational numbers', Archive for Mathematical Logic 49:519-527, 2010. A preprint of this paper is available here:
http://www.individual.utoronto.ca/philipkremer/onlinepapers/
rationals.pdf
[11] P. Kremer, 'Quantified modal logic on the rational line', manuscript, 2011. http://www.individual.utoronto.ca/philipkremer/onlinepapers/ QS4rationals.pdf
[12] P. Kremer and G. Mints, 'Dynamic topological logic', in Handbook of Spatial Logics (M. Aiello, I. Pratt-Hartmann and J. van Benthem, eds), Springer, 2007, 565-606.
[13] A. Kurucz, 'Combining modal logics', in Handbook of Modal Logic (J. van Benthem, P. Blackburn, and F. Wolter, eds), Studies in Logic and Practical Reasoning 3, Elsevier, 2007, 869-926.
http://www.dcs.kcl.ac.uk/staff/kuag/publi/combi.ps
[14] A. Kurucz and M. Zakharyaschev, 'A note on relativised products of modal logics', in Advances in Modal Logic, Volume 4 (P. Balbiani, N.-Y. Suzuki, F.Wolter, and M.Zakharyaschev, eds), King's College Publications, 2003, 221-242.
http://www.aiml.net/volumes/volume4/Kurucz-Zakharyaschev.ps
[15] J. C. C. McKinsey, 'A solution of the decision problem for the Lewis systems S2 and S4, with an application to topology', The Journal of Symbolic Logic 6:117-134, 1941.
http://links.jstor.org/sici?sici=0022-4812\(194112\)6\%3A4\<117\% 3AASOTDP\%3E2.0.CO\%3B2-E
[16] J. C. C. McKinsey and A. Tarski, 'The algebra of topology', Annals of Mathematics 45:141-191, 1944.
http://links.jstor.org/sici?sici=0022-4812 $\% 28194412 \% 299 \% 3 A 4 \% 3 C 96 \%$ 3ATAOT\%3E2.0.C0\%3B2-W
[17] G. Mints and T. Zhang, 'A proof of topological completeness for S4 in $(0,1)$ ', Annals of Pure and Applied Logic 133:231-245, 2005.
http://www.springerlink.com/content/w020405973p62434/
doi:10.1016/j.apal.2004.10.010
[18] H. Rasiowa and R. Sikorski, The Mathematics of Metamathematics, Państowowe Wydawnictwo Naukowe, Warsaw, 1963.
[19] V.B. Shehtman, 'Two-dimensional modal logics' (in Russian), Matematicheskie Zametki 23:773-781, 1978. English translation, Mathematical Notes 23:417-424, 1978.
http://www.springerlink.com/content/u032125210714g71/ doi:10.1007/BF01789012
[20] V.B. Shehtman, 'Two-dimensional modal logics and relativized quantifiers', Advances in Modal Logic '98, Extended Abstracts, Uppsala 1998, 226-373.
[21] J. van Benthem, G. Bezhanishvili, B. ten Cate, D. Sarenac, 'Multimodal logics of products of topologies', Studia Logica 84:369-392, 2006.
http://www.springerlink.com/content/247h10x473883235/fulltext.pdf doi:10.1007/s11225-006-9014-9
A preprint of this paper, under the title 'Modal logics for products of topologies', can be found here:
http://www.illc.uva.nl/Publications/ResearchReports/PP-2004-15.text. pdf

[^0]: *Dept. of Philosophy, University of Toronto Scarborough, kremer@utsc.utoronto.ca.
 ${ }^{1}$ A set L of formulas of \mathcal{L} is a normal modal logic iff every propositional tautology is in $\mathrm{L},(\square(p \supset q) \supset(\square p \supset q)) \in \mathrm{L}$, and L is closed under modus ponens, necessitation for \square, and substitution.

[^1]: ${ }^{2}$ We are following the notation in [4] and [13] for \otimes, though other notation is used: [21] uses ' \oplus ' and [5] uses ' $*$ '.
 ${ }^{3}$ As noted in [21], a systematic study of multi-dimensional modal logics of products of Kripke frames can be found in [5], and an up-to-date account of the most important results in the field can be found in [4].
 ${ }^{4}$ But not always. Suppose that one of L_{1} or L_{2} is either the modal logic Triv $=$ $\mathrm{S} 4+(p \supset \square p)$ or the modal logic Verum $=\mathrm{K}+\square p$, and that the other is Kripke complete, i.e., is determined by some class of Kripke frames. Then $\mathrm{L}_{1} \otimes \mathrm{~L}_{2}=\mathrm{L}_{1} \times \mathrm{L}_{2}$.

[^2]: ${ }^{5}$ A trivial topology allows exactly two open sets: see subsection 1.3 , below.
 ${ }^{6}$ A topological space is Alexandrov iff arbitrary intersections of open sets are open. See subsection 1.3.

[^3]: ${ }^{7}$ This terminology is at odds with the standard terminology in topology, where the product space $\mathcal{X}_{1} \times \mathcal{X}_{2}$ is a topological space with a single topology defined in terms of τ_{1} and τ_{2}. The current notion of a product space as a bitopological space is the analog of the notion of a product frame, as defined above, as a birelational frame. We consider the standard product topology in subsection 2.1, below.

[^4]: ${ }^{8}$ This is a little careless, but will not get us into trouble.

[^5]: ${ }^{9}$ Given any three logics L and L_{1} and L_{2} formulated in the language \mathcal{L}, define the trimodal logic $\mathrm{L} \otimes \mathrm{L}_{1} \otimes \mathrm{~L}_{2}$, formulated in $\mathcal{L}_{\square 12}$, as follows: let L_{1}^{\prime} [L_{2}^{\prime}] be the set of formulas of $\mathcal{L}_{\square 12}$ got by replacing each occurrence of \square in each formula in $\mathrm{L}_{1}\left[\mathrm{~L}_{2}\right]$ by \square_{1} $\left[\square_{2}\right]$; and let $\mathrm{L} \otimes \mathrm{L}_{1} \otimes \mathrm{~L}_{2}$ be the smallest set of formulas, of $\mathcal{L}_{\square 12}$, that contains $\mathrm{L} \cup \mathrm{L}_{1}^{\prime} \cup \mathrm{L}_{2}^{\prime}$ and that is closed under modus ponens; necessitation for \square, for \square_{1}, and for \square_{2}; and substitution.

[^6]: ${ }^{10}$ Given any unimodal logic L formulated in \mathcal{L} and any bimodal logic L^{\prime} formulated in \mathcal{L}_{12}, define the trimodal logic $\mathrm{L} \otimes \mathrm{L}^{\prime}$, formulated in $\mathcal{L}_{\square 12}$, in the obvious way.

