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Abstract

The most obvious bimodal logic generated from unimodal logics L1

and L2 is their fusion, L1 ⊗L2, axiomatized by the theorems of L1 for
�1 and of L2 for �2, and by the rules of modus ponens, substitution
and necessitation for �1 and for �2. Shehtman introduced the frame

product L1×L2, as the logic of the products of certain Kripke frames.
Typically, L1 ⊗ L2 ( L1 × L2, e.g. S4⊗ S4 ( S4× S4. Van Benthem,
Bezhanishvili, ten Cate and Sarenac generalized Shehtman’s idea and
introduced the topological product L1 ×t L2, as the logic of the prod-
ucts of certain topological spaces: they showed, in particular, that
S4 ×t S4 = S4 ⊗ S4. In this paper, we axiomatize S4 ×t S5, which is
strictly between S4 ⊗ S5 and S4 × S5. We also apply our techniques
to proving a conjecture of van Benthem et al concerning the logic of
products of Alexandrov spaces with arbitrary topological spaces.

Keywords: Bimodal logic, multimodal logic, topological semantics,
topological product, product space.

Let L be a propositional language with a set PV of propositional variables;
standard Boolean connectives &, ∨ and ¬; and one modal operator, �. And
let L12 be like L, except with two modal operators, �1 and �2. We use
standard definitions of the Boolean connectives ⊃ and ≡ and the modal
operators ♦ in L and ♦1 and ♦2 in L12.

There are several ways to combine two normal modal logics1 L1 and L2

formulated in the language L to get a bimodal logic formulated in the lan-
guage L12. The simplest is to define L1 ⊗ L2, the fusion of L1 and L2, as

∗Dept. of Philosophy, University of Toronto Scarborough, kremer@utsc.utoronto.ca.
1A set L of formulas of L is a normal modal logic iff every propositional tautology is in

L, (�(p ⊃ q) ⊃ (�p ⊃ q)) ∈ L, and L is closed under modus ponens, necessitation for �,
and substitution.
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follows: let L′
1 [L′

2] be the set of formulas of L12 got by replacing each oc-
currence of � in each formula in L1 [L2] by �1 [�2]; and let L1 ⊗ L2 be the
smallest set of formulas of L12 that contains L

′
1∪L′

2 and that is closed under
modus ponens, necessitation for �1 and for �2, and substitution.2 Thus,
S4 ⊗ S4 [S4 ⊗ S5, S5 ⊗ S5] is the bimodal logic axiomatized by S4-axioms
[S4-axioms, S5-axioms] for �1 and S4-axioms [S5-axioms, S5-axioms] for �2,
as well as the rules of modus ponens, necessitation for �1 and for �2, and
substitution.

Shehtman [19] uses Kripke semantics to produce combinations, stronger
than fusions, of modal logics. He defines the product of two Kripke frames,
as a particular birelational Kripke frame. The frame product of logics L1

and L2, denoted L1 × L2, is then the set of formulas in the language L12

validated by every product of a Kripke frame validating L1 with a Kripke
frame validating L2.

3 We always have L1 ⊗ L2 ⊆ L1 × L2 and almost always
L1⊗L2 ( L1 ×L2;

4 and for many popular modal logics, L1×L2 is the result
of adding the following three axioms to L1 ⊗L2 (see Theorem 7.12 of [5] and
Theorem 1.2, below):

com⊃ (left commutativity) �1�2p ⊃ �2�1p

com⊂ (right commutativity) �2�1p ⊃ �1�2p

chr (Church-Rosser) ♦1�2p ⊃ �2♦1p.

For modal logics stronger than S4, the McKinsey-Tarski topological se-
mantics ([15, 16, 18]) for the unimodal language L generalizes the Kripke
semantics. In the topological semantics, interpretations of L are based on
topological spaces rather than Kripke frames. Van Benthem, Bezhanishvili,
ten Cate and Sarenac [21] generalize Shehtman’s products of frames to prod-
ucts of topological spaces: given topological spaces X1 and X2, they define
a bitopological space, X1 × X2, equipped with two topologies. They define
the topological product of logics L1 and L2, denoted L1 ×t L2, as the set of
formulas in the language L12 validated by all bitopological spaces of the form

2We are following the notation in [4] and [13] for ⊗, though other notation is used: [21]
uses ‘⊕’ and [5] uses ‘∗’.

3As noted in [21], a systematic study of multi-dimensional modal logics of products
of Kripke frames can be found in [5], and an up-to-date account of the most important
results in the field can be found in [4].

4But not always. Suppose that one of L1 or L2 is either the modal logic Triv =
S4+(p ⊃ �p) or the modal logic Verum = K + �p, and that the other is Kripke complete,
i.e., is determined by some class of Kripke frames. Then L1 ⊗ L2 = L1 × L2.
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X1 × X2, where X1 is a space validating L1 and X2 is a space validating L2.
In general,

L1 ⊗ L2 ⊆ L1 ×t L2 ⊆ L1 × L2.

It is a nontrivial theorem of [21] that

S4⊗ S4 = S4×t S4 ( S4× S4.

Once the definitions are on the table, we will see (Theorem 2.1) that,

S5⊗ S5 ( S5×t S5 = S5× S5,

and that
S4⊗ S5 ( S4 ×t S5 ( S4× S5.

Our main result is an axiomatization of S4 ×t S5. In [14], Kurucz and
Zakharyaschev define the logic [L1,L2]

EX for any normal modal logics L1 and
L2, by adding two axioms to L1 ⊗ L2, namely com⊃ and chr . Shehtman
[20] suggests the term semiproducts for such logics. Note the absence of
com⊂, the converse of com⊃. We show that S4 ×t S5 = [S4, S5]EX, i.e., that
S4×t S5 can be axiomatized by adding com⊃ and chr to S4⊗S5. We appeal
to a special case of Theorem 6 in [14] (Theorem 49 in [13]): [S4, S5]EX is
identical to the expanding relativized product of S4 and S5, denoted (S4 ×
S5)EX: this is defined as the logic of all expanding relativized product frames

(see subsection 3.3, below), i.e., special subframes of product frames. We
note here that Kurucz and Zakharyaschev reduce the decidability of a large
class of expanding relativized product logics to the the decidability of the
corresponding product logics ([14], Theorem 7). In particular since S4 × S5
is decidable ([5], Theorem 12.12), so is S4×t S5 = (S4× S5)EX.

Our proof that [S4, S5]EX axiomatizes S4×t S5 proceeds by showing that
[S4, S5]EX, and hence S4×tS5, is sound and complete wrt a particular bitopo-
logical space: Q×N, where Q is the rational line equipped with the standard
topology and N is the set of natural numbers equipped with the trivial topol-
ogy.5 Thus we get a kind of bitopological analogue to the classic result of
[16] that unimodal S4 is sound and complete wrt the rational line, Q.

Our proof technique can be generalized. Van Benthem et al ask what
the bimodal logic is of the products of Alexandrov spaces6 with arbitrary

5A trivial topology allows exactly two open sets: see subsection 1.3, below.
6A topological space is Alexandrov iff arbitrary intersections of open sets are open. See

subsection 1.3.
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topological spaces, conjecturing that it is (S4 ⊗ S4) + com⊂ + chr . This is
equivalent to the mirror image claim that the bimodal logic of the products
of arbitrary topological spaces with Alexandrov spaces is [S4, S4]EX = (S4⊗
S4) + com⊃ + chr . We prove not only this claim, but also that [S4, S4]EX

is sound and complete for a particular product of a topological space with
an Alexandrov space: Q × N∗, where Q is the rational line equipped with
the standard topology and where N∗ is the set of finite sequences of natural
numbers, equipped with the following Alexandrov topology: a set O ⊆ N∗ is
open iff, for each a, b ∈ N∗, if a ∈ O and a is an initial segment of b, then
b ∈ O.

We take the current paper to be part of a larger project, initiated by van
Benthem, Bezhanishvili, ten Cate and Sarenac in [21], of getting clear on
topological products of modal logics in general. It often helps to start with
relatively basic cases. [21] investigates the most basic topological product,
S4 ×t S4, showing it to be identical to S4 ⊗ S4. Arguably the second most
basic topological product is S5×tS5: it is easy to show this is identical to the
frame product S5 × S5 (see Theorem 2.1, below). The topic of the current
paper, S4×t S5, can be seen as the third most basic topological product.

1 Background definitions

1.1 Unirelational and birelational semantics

A unirelational (Kripke) frame (uniframe) is a pair U = 〈W,R〉, whereW is a
nonempty set and R is a relation on W . We say that U is reflexive [transitive,
symmetric] iff R is, and that r ∈ W is a root of U iff ∀w ∈ W, rRw. We
say that U is rooted iff U has at least one root. A unirelational model is a
triple M = 〈W,R, V 〉, where 〈W,R〉 is a uniframe and V : PV → P(W ).
We extend V to all formulas of L as follows:

V (¬A) = W − V (A)
V (A & B) = V (A) ∩ V (B)
V (A ∨B) = V (A) ∪ V (B)

V (�A) = {w ∈ W : ∀v ∈ W (wRv ⇒ v ∈ V (A))}.

(We will call the first three clauses standard Boolean clauses.) We say that
M � A iff V (A) = W . Given a uniframe U = 〈W,R〉, we say that U � A iff
M � A for every unirelational model M = 〈W,R, V 〉. And if Γ is a set of
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formulas of L, we say that U � Γ iff U � A for each A ∈ Γ. We read � as
validates.

A birelational frame (biframe) is a triple B = 〈W,R1, R2〉, where W is
a nonempty set and R1 and R2 are relations on W . B is 1-reflexive iff R1

is reflexive. Similarly for 1-transitive, 2-symmetric, etc. B is bireflexive

iff B is both 1-reflexive and 2-reflexive, and similarly for bitransitive and
bisymmetric. A birelational model is a quartuple M = 〈W,R1, R2, V 〉, where
〈W,R1, R2〉 is a biframe and V : PV → P(W ). We extend V to all formulas
of L12 with standard Boolean clauses for ¬, &, and ∨; and with the following
clauses for �1 and �2:

V (�1A) = {w ∈ W : ∀v ∈ W (wR1v ⇒ v ∈ V (A))}
V (�2A) = {w ∈ W : ∀v ∈ W (wR2v ⇒ v ∈ V (A))}.

The definitions of M � A, of B � A, and of B � Γ are analogous to the
unirelational case. The proof of the following theorem is a straightforward
generalization of the unimodal case for S4 and for S5.

Theorem 1.1. A ∈ S4 ⊗ S4 [S4 ⊗ S5, S5 ⊗ S5] iff B � A for every bireflex-

ive bitransitive [bireflexive bitransitive 2-symmetric, bireflexive bitransitive

bisymmetric] biframe B.

1.2 Products of uniframes, and frame products of uni-

modal logics

Shehthman [19] initiates the study of a particular class of biframes, those
that are the products of uniframes: he uses these to introduce products of
modal logics. Given two uniframes U1 = 〈W1, R1〉 and U2 = 〈W2, R2〉, define
the biframe U1 × U2 =df 〈W1 ×W2, R

′
1, R

′
2〉 where

〈w, v〉R′
1〈x, y〉 iff wR1x and v = y; and

〈w, v〉R′
2〈x, y〉 iff w = x and vR2y.

A biframe of the form U1 × U2 is a product frame.
Given two normal modal logics L1 and L2, define the frame product of L1

and L2 as follows:

L1 × L2 =df {A : U1 × U2 � A for any two uniframes
U1 and U2 such that U1 � L1 and U2 � L2}.

Thus,
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S4× S4 = {A : U1 × U2 � A,where U1 and U2 are reflexive and transitive},
S4× S5 = {A : U1 × U2 � A,where U1 and U2 are reflexive and transitive

and U2 is symmetric}, and
S5× S5 = {A : U1 × U2 � A,where U1 and U2 are reflexive,

transitive and symmetric}.

For any bimodal logic L and any formulas A1, . . . , An, define the new
bimodal logic L + A1 + . . . + An as the smallest bimodal logic L′ such that
L ∪ {A1, . . . , An} ⊆ L′ and such that L′ is closed under modus ponens, ne-
cessitation for �1 and for �2, and substitution. For any normal unimodal
logics L1 and L2, define the the commutator of L1 and L2 as follows:

[L1,L2] = L1 ⊗ L2 + com⊃ + com⊂ + chr .

The following is an immediate corollary to Theorem 7.12 in [5]:

Theorem 1.2. S4× S4 = [S4, S4]. S4× S5 = [S4, S5]. S5× S5 = [S5, S5].

1.3 Topological and bitopological semantics

For modal logics stronger than S4, the McKinsey-Tarski topological seman-
tics ([15, 16, 18]) for the unimodal language L generalizes the unirelational
Kripke semantics. A topological space (or simply space) is an ordered pair
X = 〈X, τ〉, where X is a nonempty set and τ is a topology on X : i.e.,
τ ⊆ P(X); ∅, X ∈ τ ; and τ is closed under arbitrary unions and finite in-
tersections. The sets in τ are the open sets, and their complements are the
closed sets. Given any S ⊆ X , Int(S) is the interior of S, i.e., the largest
open subset of S. We say that a space X = 〈X, τ〉 is Alexandrov iff τ is closed
under arbitrary intersections, is almost discrete (AD) iff X is the union of
disjoint open sets, and is trivial iff τ = {∅, X}. Note that every trivial space
is AD, and that every AD space is Alexandrov.

A topological model is a triple M = 〈X, τ, V 〉, where 〈X, τ〉 is a space and
V : PV → P(X). We extend V to all formulas of L with standard Boolean
clauses for ¬, &, and ∨; and with the following clause for �:

V (�A) = Int(V (A))

We sometimes write x  A instead of x ∈ V (A). We say that M � A iff
V (A) = X . Given a space X = 〈X, τ〉, we say that X � A iff M � A for
every topological model M = 〈X, τ, V 〉. And if Γ is a set of formulas of L,
we say that X � Γ iff X � A for each A ∈ Γ.
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Here’s why, for logics stronger than S4, the topological semantics gen-
eralizes the unirelational Kripke semantics. Given any reflexive transitive
uniframe U = 〈W,R〉, let XU be the following space: XU =df 〈W, τU〉 where
O ∈ τU iff ∀w ∈ O∀w′ ∈ W (wRw′ ⇒ w′ ∈ O). Note that a space is Alexan-
drov iff it is of the form XU for some uniframe U . Note also that the clauses
for V (�A) for the uniframe U and for the space XU coincide, since Int(S) (in
XU) = {w ∈ W : ∀v ∈ W (wRv ⇒ v ∈ S)}. So we can identify any reflexive
transitive frame U with the Alexandrov space XU . So, if L is a logic stronger
than S4, every uniframe U that validates L (i.e., U � L) can be identified
with an Alexandrov space XU that also validates L. But since every space
validates S4 (which is easily checked), and since there are non-Alexandrov
spaces (such as Q and R), there are topological models of S4 (for example)
that cannot be identified with any uniframes.

The first four clauses of the following theorem are classic results of [16],
and the last three are easily proved:

Theorem 1.3. 1. A ∈ S4 iff for every space X , X � A;

2. A ∈ S4 iff, for every Alexandrov space X , X � A;

3. A ∈ S4 iff Q � A;

4. A ∈ S4 iff R � A;

5. If X is a space and X � S5, then X is AD (almost discrete);

6. A ∈ S5 iff, for every AD space X , X � A; and

7. A ∈ S5 iff, for every trivial space X , X � A.

Remark 1.4. Theorem 1.3 (2) follows immediately from the analogous claim
about unimodal frames, together with the identification of unimodal frames
and Alexandrov spaces. (1) follows from (2) and from the soundness of S4 in
the topological semantics (which can easily be checked). (3) is much easier
to prove than (4): although a proof of (4) was published in 1944 ([16]), a
fair amount of recent work has gone into giving (4) more perspicuous proofs
([1, 3, 12, 17]). Given (5) and the fact that every AD space is Alexandrov,
the topological semantics for logics stronger than S5 is a notational variant,
rather than a true generalization, of the Kripke semantics.
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The topological semantics for the language L generalizes naturally to a
bitopological semantics for the language L12. A bitopological space (bispace)
is a triple X = 〈X, τ1, τ2〉, where X is a nonempty set and each of τ1 and τ2
is a topology on X . Given any S ⊆ X , we can consider two interiors of S,
Int1(S) and Int2(S), associated with the topologies τ1 and τ2 respectively.
The sets in τ1 are the 1-open sets, and the sets in τ2 are the 2-open sets. We
say that a bispace X = 〈X, τ1, τ2〉 is 1-Alexandrov [2-Alexandrov ] iff the space
〈X, τ1〉 [〈X, τ2〉] is Alexandrov. Similarly for 1-AD and 2-AD. We say that
a bispace is biAlexandrov [biAD ], iff it is 1-Alexandrov and 2-Alexandrov
[1-AD and 2-AD].

A bitopological model is a quartuple M = 〈X, τ1, τ2, V 〉, where 〈X, τ1, τ2〉
is a bispace and V : PV → P(X). We extend V to all formulas of L12 with
standard Boolean clauses for ¬, &, and ∨; and with the following clauses for
�1 and �2:

V (�1A) = Int1(V (A))
V (�2A) = Int2(V (A))

We sometimes write x  A instead of x ∈ V (A). We say that M � A iff
V (A) = X . Given a bispace X = 〈X, τ1, τ2〉, we say that X � A iffM � A for
every bitopological model M = 〈X, τ1, τ2, V 〉. And if Γ is a set of formulas
of L, we say that X � Γ iff X � A for each A ∈ Γ.

The following theorem generalizes Theorem 1.1 and Theorem 1.3, above:

Theorem 1.5. 1. A ∈ S4 ⊗ S4 iff X � A, for every bispace X ;

2. If X is a bispace and X � S4⊗ S5, then X is 2-AD;

3. A ∈ S4⊗ S5 iff X � A, for every 2-AD bispace X ;

4. If X is a bispace and X � S5⊗ S5, then X is biAD; and

5. A ∈ S5⊗ S5 iff X � A, for every biAD bispace X .

1.4 Products of topological spaces, and topological prod-

ucts of unimodal logics

Van Benthem, Bezhanishvili, ten Cate and Sarenac [21] define product spaces :
these are generalizations of Shehtman’s product frames ([19]; and subsection
1.2, above). Given two spaces X1 = 〈X1, τ1〉 and X2 = 〈X2, τ2〉, define the
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bispace X1 × X2 =df 〈X1 × X2, τ
′
1, τ

′
2〉 where the following two families of

subsets of X1 ×X2 form bases for the topologies τ ′1 and τ ′2, respectively:

Basis for τ ′1: {O × {x} : O ∈ τ1 & x ∈ X2}
Basis for τ ′2: {{x} × O : x ∈ X1 & O ∈ τ2}

A bispace of the form X1 ×X2 is a product space.7 [21] refers to the induced
topologies τ ′1 and τ ′2 as the horizontal and vertical topologies, respectively.

Given two normal modal logics L1 and L2 stronger than S4, define the
topological product of L1 and L2 as follows:

L1 ×t L2 =df {A : X1 × X2 � A for any two topological spaces
X1 and X2 such that X1 � L1 and X2 � L2}.

Thus,

S4×t S4 = {A : X1 ×X2 � A, where X1 and X2 are topological spaces},
S4×t S5 = {A : X1 ×X2 � A, where X2 is AD}, and
S5×t S5 = {A : X1 ×X2 � A, where X1 and X2 are AD}.

2 Results

Not much is known about topological products of modal logics. As noted on
page 3, we have the following:

Theorem 2.1.

1. For any normal logics L1 and L2 stronger than S4,
L1 ⊗ L2 ⊆ L1 ×t L2 ⊆ L1 × L2.

2. S4⊗ S4 = S4×t S4 ( S4× S4.

3. S5⊗ S5 ( S5×t S5 = S5× S5.

4. S4⊗ S5 ( S4×t S5 ( S4× S5.

7This terminology is at odds with the standard terminology in topology, where the
product space X1 ×X2 is a topological space with a single topology defined in terms of τ1
and τ2. The current notion of a product space as a bitopological space is the analog of
the notion of a product frame, as defined above, as a birelational frame. We consider the
standard product topology in subsection 2.1, below.
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Proof. 1. To see that L1⊗L2 ⊆ L1×t L2, suppose that X1 and X2 are spaces
such that X1 � L1 and X2 � L2. To see that X1 ×X2 � L1 ⊗ L2, it suffices to
note that X1×X2 � L′

1[L
′
2], where L

′
1 [L

′
2] is the set of formulas of L12 got by

replacing each occurrence of � in each formula in L1 [L2] by �1 [�2].
To see that L1 ×t L2 ⊆ L1 × L2, it suffices to recall that every uniframe

can be identified with an Alexandrov space. Thus, if A 6∈ L1 × L2, there are
Alexandrov spaces X1 and X2 such that X1 � L1 and X2 � L2 and X1×X2 6� A.
Thus A 6∈ L1 ×t L2.

2. A good deal of [21] is devoted to showing that S4⊗ S4 = S4×t S4. To
see that S4 ⊗ S4 ( S4× S4, it suffices to construct a bireflexive bitransitive
biframe that does not validate com⊃. We leave this to the reader.

3. Given (1), S5×t S5 ⊆ S5×S5. To see that S5×S5 ⊆ S5×t S5, suppose
that A 6∈ S5 ×t S5. Then, by Theorem 1.3 (5) and (6), there are AD spaces
X1 = 〈X1, τ1〉 and X2 = 〈X2, τ2〉 such that X1 × X2 6� A. Since X1 and X2

are AD, they are Alexandrov. So X1 = XU1
and X2 = XU2

for some reflexive
transitive uniframes U1 = 〈X1, R1〉 and U2 = 〈X2, R2〉. Note that U1 and
U2 will be symmetric, since X1 and X2 are AD. Indeed U1 ×U2 validates the
same formulas as X1 ×X2. So U1 × U2 6� A. So A 6∈ S5× S5.

To see that S5 ⊗ S5 ( S5 × S5, it suffices to construct a bireflexive
bitransitive bisymmetric biframe that does not validate com⊃. We leave this
to the reader.

4. To show that S4 ⊗ S5 ( S4 ×t S5, we note two things: (4.1) com⊃ 6∈
S4 ⊗ S5; and (4.2) com⊃ ∈ S4 ×t S5. For (4.1), it suffices to construct a
bireflexive bitransitive 2-symmetric biframe that does not validate com⊃.
We leave this to the reader. For (4.2), recall that every space X with X � S5
is AD (Theorem 1.3 (3)) and that every AD space is Alexandrov. So (4.2)
follows from Proposition 4.15 in [21]. ((4.2) could also be checked directly.)

To show that S4×t S5 ( S4× S5, it suffices, given Theorem 1.2, to show
that com⊂ 6∈ S4×t S5. We will identify the set, Q, of rational numbers with
the topological space 〈Q, τQ〉, where τQ is the standard topology on Q; and
the set, N, of natural numbers with the topological space 〈N, τN〉, where τN
is the trivial topology on N.8 Thus Q � S4 and N � S5. For each n ∈ N, let

On = {x ∈ Q :
−π

n + 1
< x <

π

n + 1
}.

Note that each On is an open subset of Q (and, incidentally, a closed subset
of Q). And let M be the bitopological model 〈Q × N, τ ′Q, τ

′
N, V 〉, where τ ′Q

8This is a little careless, but will not get us into trouble.
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...
...

Q× {0}

Q× {1}

Q× {2}

Q× {3}

Q× {4}

( )

( )

( )

( )

( )

Figure 1: A countermodel for com⊂: V (p) is in grey.

and τ ′N are the horizontal and vertical topologies induced on Q × N, and
where

V (p) =
⋃

n∈N

On × {n}.

Thus V (p) is a 1-open but not 2-open subset of Q × N. See Figure 1 for a
picture. Note the following:

V (�1p) = V (p) =
⋃

n∈NOn × {n}.
V (�2p) = {0} ×N.

V (�2�1p) = {0} ×N.
V (�1�2p) = ∅.

So 〈0, 0〉 6 (�2�1p ⊃ �1�2p). So Q×N 6� com⊂. So com⊂ 6∈ S4×t S5. �

For any normal unimodal logics L1 and L2, define the the e-commutator

of L1 and L2 as in [14] and [13]:

[L1,L2]
EX = L1 ⊗ L2 + com⊃ + chr .

Our main result is as follows:

Theorem 2.2. S4×t S5 = [S4, S5]EX.

Theorem 2.2 is, in effect, a soundness and completeness theorem for the
logic [S4, S5]EX wrt the class of product spaces of the form X1 × X2, where
X2 is AD: we will call these the vertically AD product spaces. Establishing
soundness, i.e., that [S4, S5]EX ⊆ S4 ×t S5, requires checking that com⊃ and
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chr are validated by every vertically AD product space. We leave this to the
reader. To establish completeness, i.e., that S4×t S5 ⊆ [S4, S5]EX, we specify
a particular vertically AD, indeed vertically trivial, product space wrt which
[S4, S5]EX is sound and complete: Q×N. This suffices:

Theorem 2.3. Q×N � A iff A ∈ [S4, S5]EX.

Of course, the (⇐) direction is simply soundness (again). Section 3, below,
is devoted to proving the (⇒) direction, i.e., completeness.

Theorem 2.3 is of interest independently of its utility in establishing The-
orem 2.2. In the unimodal topological semantics, not only is S4 sound and
complete wrt the class of all topological spaces, but wrt the particular spaces
Q and R. By definition, S4 ×t S5 is complete wrt the class of all vertically
AD spaces. The fact that S4×tS5 is complete wrt the particular space Q×N

is a kind of generalization of the completeness of S4 wrt Q.
In the unimodal case, the result for Q transfers to R: Does anything like

Theorem 2.3 transfer to R? It seems not:

Theorem 2.4. There is a formula A of L12 such that A 6∈ S4 ×t S5, and
such that, for each Alexandrov space X , R×X � A.

Proof. Let A be the following formula, a cousin of com⊂:

�2�1p ⊃ (�1�2p ∨ ♦1♦2(♦1p & ♦1¬p)).

We will show (1) that Q×N 6� A, from which it follows that A 6∈ S4 ×t S5;
and (2) that R × X � A, for each Alexandrov space X . For (1), let M =
〈Q×N, τ ′Q, τ

′
N, V 〉 be the model specified in the proof of Theorem 2.1 (4) and

pictured in Figure 1. We noted in that proof that

V (�1p) = V (p) =
⋃

n∈NOn × {n},
V (�2p) = {0} ×N,

V (�2�1p) = {0} ×N, and
V (�1�2p) = ∅.

Recall the sets On = {x ∈ Q : −π
n+1

< x < π
n+1

} used to specify V (p): each
On is of the form (a, b) ∩ Q, where (a, b) is an open interval on the real line
with irrational endpoints. Thus On is not only an open subset of Q, but is
also a closed subset of Q. Thus,
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V (♦1p) = V (p) =
⋃

n∈N On × {n}.
V (♦1¬p) = V (¬p) = (Q×N)− V (p).

V (♦1p & ♦1¬p) = ∅.
V (♦1♦2(♦1p & ♦1¬p)) = ∅.

So 〈0, 0〉 6 �1�2p ∨ ♦1♦2(♦1p & ♦1¬p). But 〈0, 0〉  �2�1p. So 〈0, 0〉 6 A.
So Q×N 6� A, as desired.

To show (2), suppose that X = 〈X, τ〉 is an Alexandrov space and that
for some bitopological model M = 〈R × X, τ ′R, τ

′, V 〉, where τ ′R and τ ′ are
the horizontal and vertical topologies induced on R × X , we have M 6� A.
Then we have 〈a, x〉 6 A, for some a ∈ R and x ∈ X . Since X is Alexandrov,
there is a smallest open set O such that x ∈ O.

Since 〈a, x〉 6 A, we have the following:

〈a, x〉  �2�1p. (2.1)

〈a, x〉  ♦1♦2¬p. (2.2)

〈a, x〉  �1�2(�1¬p ∨�1p). (2.3)

Given (2.3), there is an open interval I ⊆ R such that a ∈ I and

∀b ∈ I, 〈b, x〉  �2(�1¬p ∨�1p). (2.4)

Given (2.2), there is a c ∈ I and a y ∈ O such that

〈c, y〉  ¬p. (2.5)

Given (2.3), 〈c, x〉  �2(�1¬p ∨ �1p). So 〈c, y〉  (�1¬p ∨ �1p). So, given
(2.5), we get

〈c, y〉  �1¬p. (2.6)

Also, given (2.1),
〈a, y〉  �1p. (2.7)

Finally, by (2.4),

∀b ∈ I, 〈b, y〉  �1¬p or 〈b, y〉  �1p. (2.8)

Define two subsets of R as follows:

O− =df {d ∈ I : 〈d, y〉 � �1¬p}.
O+ =df {d ∈ I : 〈d, y〉 � �1p}.
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V (p)

Figure 2: The model from Remark 2.5: V (p) is indicated in grey, in the
triangles above and below the horizontal axis, and along the horizontal axis.

Note that O− × {y} and O+ × {y} are 1-open subsets of R×X , so that O−

and O+ are open subsets of R. By (2.6) and (2.7), O− and O+ are nonempty.
Clearly O− and O+ are disjoint. Finally, by (2.8), I = O−∪O+. So the open
interval I ⊆ R is the union of two disjoint nonempty open sets. But this
cannot be. �

Remark 2.5. In proving thatR×X � �2�1p ⊃ (�1�2p∨♦1♦2(♦1p& ♦1¬p))
for every Alexandrov space X , we needed the assumption that X is Alexan-
drov. For there are non-Alexandrov spaces X such that R × X 6� �2�1p ⊃
(�1�2p ∨ ♦1♦2(♦1p & ♦1¬p)). For example, R × R 6� �2�1p ⊃ (�1�2p ∨
♦1♦2(♦1p & ♦1¬p)). To see this, let M be the model 〈R×R, τ1, τ2, V 〉, where
τ1 and τ2 are the horizontal and vertical topologies induced by the standard
topology on R and where

V (p) = {〈x, y〉 : x, y ∈ R & |x| < |y|} ∪ {〈x, 0〉 : x ∈ R}.

See Figure 2 for a picture of this model. Note: 〈0, 0〉  �2�1p, but 〈0, 0〉 6
�1�2p and 〈0, 0〉 6 ♦1♦2(♦1p & ♦1¬p).
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2.1 The standard product topology

Van Benthem et al [21] also consider a language L�12 with three modalities,
�, �1 and �2: they interpret � with the standard product topology. More
precisely, given any two topological space X1 = 〈X1, τ1〉 and X2 = 〈X1, τ1〉,
they consider the tritopological space (X1 × X2)

+ =df 〈X1 × X2, τ12, τ
′
1, τ

′
2〉,

where τ ′1 and τ ′2 are the horizontal and vertical topologies already defined,
and τ12 is the standard product topology with the basis,

{O1 × O2 : O1 ∈ τ1 & O2 ∈ τ2}.

The modality � is then interpreted via τ12:

V (�A) = Int12(V (A)),

where Int12 is the interior operator associated with the topology τ12. Given
any two unimodal logics L1 and L2, define the trimodal logic

(L1 ×t L2)
+ =df {A is a formula of L�12 : (X1 ×X2)

+ � A,
for any two topological spaces X1 � L1 & X2 � L2}

Van Benthem et al show that

(S4×t S4)
+ = (S4⊗ S4⊗ S4) + (�p ⊃ (�1p & �2p)),

9

and that � cannot be defined, in (S4×t S4)
+, in terms of �1 and �2. Indeed,

they show that the axiomatization (S4 ⊗ S4 ⊗ S4) + (�p ⊃ �1p & �2p) is
complete for the tritopological space (Q×Q)+.

Life is easier in the case of (S4×t S5)
+. If X1 = 〈X1, τ1〉 is any topological

space and ifX2 = 〈X2, τ2〉 is any almost disjoint space (i.e., any space that val-
idates S5), then in the tritopological space (X1×X2)

+ = 〈X1×X2, τ12, τ
′
1, τ

′
2〉

we have Int12(S) = Int1(Int2(S)) for any S ⊆ X1×X2. So (�p ≡ �1�2p) ∈
(S4×t S5)

+. Indeed, given Theorem 2.2,

(S4×t S5)
+ = (S4⊗ [S4, S5]EX) + (�p ≡ �1�2p)

10

= (S4⊗ S4⊗ S5) + com⊃ + chr + (�p ≡ �1�2p).

9Given any three logics L and L1 and L2 formulated in the language L, define the
trimodal logic L ⊗ L1 ⊗ L2, formulated in L�12, as follows: let L′

1
[L′

2
] be the set of

formulas of L�12 got by replacing each occurrence of � in each formula in L1 [L2] by �1

[�2]; and let L⊗L1⊗L2 be the smallest set of formulas, of L�12, that contains L∪L′

1∪L′

2

and that is closed under modus ponens; necessitation for �, for �1, and for �2; and
substitution.
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We can do better, given Theorem 2.3: the trimodal logic (S4⊗[S4, S5]EX)+
(�p ≡ �1�2p) is complete for the tritopological space (Q×N)+. To see this,
suppose that (Q × N)+ � A. Let A′ be the result of replacing, in A, every
occurrence of � with �1�2. Then (Q×N)+ � A′, since Int12 = Int1 ◦ Int2.
So Q×N � A′, since � does not occur in A′. So A′ ∈ [S4, S5]EX, by Theorem
2.3. So A ∈ (S4⊗ [S4, S5]EX) + (�p ≡ �1�2p), as desired.

3 Proof of Theorem 2.3

3.1 p-morphisms

Suppose that X = 〈X, τ〉 and Y = 〈Y, σ〉 are topological spaces and that
f : X → Y . We say that f is continuous iff the preimage of every open
set is open; that f is open iff the image of every open set is open; that f

is a homeomorphism iff f is a continuous open bijection; and that f is a
topological p-morphism (or simply p-morphism) iff f is a continuous open
surjection. Since we are identifying any reflexive transitive uniframe U with
the Alexandrov space XU , we can meaningfully talk about continuous func-
tions, etc., from a topological space X to a reflexive transitive uniframe U .
The proof of following theorem is standard:

Theorem 3.1. For any topological spaces X and Y,

1. if there is a homeomorphism from X to Y then, for every formula A of

L, X � A iff Y � A; and

2. if there is a topological p-morphism from X to Y then, for every formula

A of L, if X � A then Y � A.

Suppose that X = 〈X, τ1, τ2〉 and Y = 〈Y, σ1, σ2〉 are bispaces and that
f : X → Y . We say that f is 1-continuous [2-continuous ] iff the preimage
of every 1-open [2-open] set is 1-open [2-open]; and we say that f is 1-open
[2-open] iff the image of every 1-open [2-open] set is 1-open [2-open]. We
say that f is bicontinuous [biopen] iff f is both 1- and 2-continuous [-open].
We give similar definitions of the following: 1- and 2-homeomorphism and
1- and 2-p-morphism; and bihomeomorphism and bi-p-morphism. Just as we

10Given any unimodal logic L formulated in L and any bimodal logic L′ formulated in
L12, define the trimodal logic L⊗ L′, formulated in L�12, in the obvious way.
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are identifying any reflexive transitive uniframe U with the Alexandrov space
XU , we can identify any bireflexive bitransitive biframe B = 〈W,R1, R2〉 with
the biAlexandrov bispace XB = 〈W, τ1, τ2〉, where for i = 1, 2, O ∈ τi iff
∀w ∈ O, ∀w′ ∈ W (wRiw

′ ⇒ w′ ∈ O). Thus, we can meaningfully talk about
bicontinuous functions, etc., from a bispace X to a bireflexive bitransitive
biframe B. The proof of following theorem is standard:

Theorem 3.2. For any bispaces X and Y,

1. if there is a bihomeomorphism from X to Y then, for every formula A

of L12, X � A iff Y � A; and

2. if there is a bi-p-morphism from X to Y then, for every formula A of

L12, if X � A then Y � A.

3.2 Completeness of S4 wrt Q

The core of many proofs that S4 is complete wrt the topological space Q

is the construction, for every finite rooted (see page 4) uniframe U , of a
p-morphism from Q to U or of some other dense linear ordering without
endpoints to U . Given such a construction, the completeness argument goes
as follows. Suppose that A is a formula of L and that A 6∈ S4. By the
finite frame property for S4, there is some finite rooted uniframe U such that
U 6� A. Since there is a p-morphism from Q to U , we conclude that Q 6� A,
by Theorem 3.1. QED. (See, e.g., [21] and [12].)

In fact, we can generalize most of the constructions in the literature to
construct, for every countable rooted uniframe U , a a p-morphism from Q to
U :

Theorem 3.3. For every countable rooted uniframe U , there is a p-morphism

from Q to U .

Proof. There are any number of constructions of p-morphisms from Q to
arbitrary finite rooted uniframes: these are often generalizable to countable
roote uniframes. See the appendix in [11]. �

We introduce some notions we will use below. An open Q-interval is
any set of the form Q ∩ (a, b), where (a, b) is some open interval in R. We
write (a, b)Q for this open Q-interval. Note that a or b could be irrational: if
both a and b are irrational then we say that (a, b)Q is an irrational interval :
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Note that every irrational interval is both an open and a closed subset of Q.
Suppose that U = 〈W,R〉 is a countable rooted uniframe, and that f is a
p-morphism from Q to U . If w ∈ W , we say that an open Q-interval I is a
w-interval iff the image of I under f is [w] =df {w

′ ∈ W : wRw′}. We will
make use of the following lemma below:

Lemma 3.4. Suppose that f is a p-morphism from Q to a uniframe U =
〈W,R〉. Then for every x ∈ Q, there is an irrational f(x)-interval I such

that x ∈ I.

Proof. Choose any x ∈ Q, and let w = f(x). Since [w] is an open subset of
W and since f is continuous, there is a Q-interval J such that x ∈ J and
f(y) ∈ [w] for every y ∈ J . Let I be any irrational Q-interval such that
x ∈ I ⊆ J . Then x ∈ I and f(y) ∈ [w] for every y ∈ I. Let O be the image
of I under f : then w = f(x) ∈ O and O ⊆ [w]. Since f is an open function,
the image of I is open, so that O is open. So O = [w]. �

3.3 Expanding relativized product frames

A biframe B = 〈W,R1, R2〉 is a subframe of a biframe B′ = 〈W ′, R′
1, R

′
2〉 iff

W ′ ⊆ W and R1 = R′
1∩(W×W ) and R2 = R′

2∩(W×W ). Following [14] and
[13], we say that a biframe B = 〈W,R1, R2〉 is an expanding relativized product

frame (ERPF) iff there are uniframes U1 = 〈W1, S1〉 and U2 = 〈W1, S2〉 such
that

• B is a subframe of U1 × U2, and

• for all 〈w1, w2〉 ∈ W and w ∈ W1, if w1S1w then 〈w,w2〉 ∈ W .

Figure 3 represents a product space U1 ×U2 together with a subspace which
is an ERPF. Again, following [14] and [13], define EX to be the class of all
ERPF’s; and for normal unimodal logics L1 and L2, define the logic (L1 ×
L2)

EX as follows:

(L1 × L2)
EX =df {A : B � A for each ERPF B which is a subframe of

some U1 × U2 where U1 � L1 and U1 � L2}

The following is a special case of Theorem 6 in [14], where [L1,L2]
EX is the

e-commutator of L1 and L2 defined on page 11, above:

Theorem 3.5. (S4× S5)EX = [S4, S5]EX.
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Figure 3: To the left is an example of a product space of the form U1 ×U2 =
〈W1×W2, S

′
1, S

′
2〉. S

′
1 is the reflexive transitive closure of the relation given by

the thin diagonal arrows, and S ′
2 is the reflexive transitive symmetric closure

of the relation given by the thick vertical lines. A copy of U1 is shaded in grey.
To the right is an expanding relativized product frame that is a subframe of
U1 × U2.

Theorem 3.5 is, in effect, a soundness and completeness theorem for the
logic [S4, S5]EX wrt the following subclass of EX:

EX
′ =df {B ∈ EX : B is a subspace of U1 × U2 where U1 is reflexive and

transitive and U2 is reflexive, transitve and symmetric}.

If B = 〈W,R1, R2〉 is any biframe, say that r ∈ W is a root of B iff ∀w ∈
W, ∃w′ ∈ W, rR1w

′ & w′R2w. And say that B is rooted iff B has a root.
Example: the ERPF represented on the right side of Figure 3 is rooted. By
standard methods, we can show that [S4, S5]EX is complete wrt the class of
rooted biframes in EX

′. By the methods in Section 5 of [5], we can do even
better. Define

EX
′′ =df {B ∈ EX

′ : B is countable and rooted}.

Theorem 3.6. A ∈ [S4, S5]EX iff B � A for every B ∈ EX
′′.

3.4 The proof of Theorem 2.3

Recall that we want to prove the (⇒) direction of Theorem 2.3. Given
Theorems 3.2 and 3.6, it suffices to prove the following:
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Theorem 3.7. For each B ∈ EX
′′, there is a bi-p-morphism from Q×N to

B.

Proof. Suppose that B = 〈W,R1, R2〉 ∈ EX
′′. It will suffice to find a countable

set X and a a bi-p-morphism from Q× X to B, where X = 〈X, τ〉 and τ is
the trivial topology on X . Since B is countable and rooted, there is

1. a countable rooted reflexive transitive uniframe U1 = 〈W1, S1〉 with
root r1 ∈ W1, and

2. a countable universal uniframe U2 = 〈W2, S2〉, such that

3. B is a subframe of U1 × U2 = 〈W1 ×W2, S
′
1, S

′
2〉; and

4. for some r2 ∈ W2,

(a) 〈r1, r2〉 is a root of B, and

(b) W1 × {r2} ⊆ W ; and

5. ∀v ∈ W2, ∃u ∈ W1, 〈u, v〉 ∈ W .

For each u ∈ W1, recall the definition [u] =df {w ∈ W1 : uS1w}. For each
〈u, v〉 ∈ W , note that the set (W1×{r2})∪ ([u]×{v}) = ([r1]×{r2})∪ ([u]×
{v}) is 1-open in B.

Let f be a p-morphism fromQ to U1 (see Theorem 3.3). LetX = {〈x, v〉 ∈
Q × W2 : 〈f(x), v〉 ∈ W}. Note that X is countable. Let τ be the trivial
topology on X , i.e., τ = {∅, X}; and let X = 〈X, τ〉. Shortly, we define
a function F : Q × X → W . First, for every x ∈ Q, choose an irrational
f(x)-interval Ix such that x ∈ Ix (see Lemma 3.4). Define F as follows:

F (〈y, 〈x, v〉〉) =

{

〈f(y), v〉 if y ∈ Ix

〈f(y), r2〉 if y 6∈ Ix

We must ensure that F (〈y, 〈x, v〉〉) ∈ W whenever y ∈ Q and 〈f(x), v〉 ∈ W .
If y 6∈ Ix, then F (〈y, 〈x, v〉〉) = 〈f(y), r2〉 ∈ W , since W1 × {r2} ⊆ W .
Suppose, on the other hand, that that y ∈ Ix. Note that f(x)S1f(y), since
Ix is an f(x)-interval and since y ∈ Ix. So 〈f(y), v〉 ∈ W , by the second
clause of the definition of expanding relativized product frames and by the
fact that 〈f(x), v〉 ∈ W .

All we have left is to prove that F is a bi-p-morphism from Q×X to B,
i.e., that F is bicontinuous, biopen and onto.
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F is onto. Suppose that 〈u, v〉 ∈ W . Choose any x ∈ Q such that f(x) = u.
Recall that x ∈ Ix. So F (x, 〈x, v〉) = 〈f(x), v〉 = 〈u, v〉.

F is 1-continuous. Suppose that O is a 1-open subset of W , i.e., O is
closed under the relation R1. We want to show that the preimage of O under
F , say O′, is a 1-open subset of Q × X . We can assume that O is of the
form [u] × {v} for some u ∈ W1 and v ∈ W2 with 〈u, v〉 ∈ W , since sets of
this form form a basis for the topology on B induced by the relation R1. Let
O′′ be the preimage of the set [u] ⊆ W1 under the p-morphism f . The set
O′′ ⊆ Q is open, since f is continuous. Given the definition of F ,

〈y, 〈x, w〉〉 ∈ O′ iff F (〈y, 〈x, w〉〉) ∈ [u]× {v}

iff

{

〈f(y), w〉 ∈ [u]× {v} & y ∈ Ix, or

〈f(y), r2〉 ∈ [u]× {v} & y 6∈ Ix;

iff

{

f(y) ∈ [u] & w = v & y ∈ Ix, or

f(y) ∈ [u] & v = r2 & y 6∈ Ix;

iff

{

y ∈ O′′ & w = v & y ∈ Ix, or

y ∈ O′′ & v = r2 & y 6∈ Ix;

iff

{

y ∈ O′′ ∩ Ix & w = v, or

y ∈ O′′ − Ix & v = r2.

So if v = r2, then

O′ =
⋃

〈x,r2〉∈X

(O′′ ∩ Ix)× {〈x, r2〉} ∪
⋃

〈x,w〉∈X

(O′′ − Ix)× {〈x, w〉}

And if v 6= r2, then

O′ =
⋃

〈x,v〉∈X

(O′′ ∩ Ix)× {〈x, v〉}

To show that O′ is 1-open, it is enough to show that, whether or not
v = r2, O

′ is a union of 1-open subsets of Q×X . Recall that Ix is both open
and closed in Q, for every x ∈ Q. So O′′ ∩ Ix and O′′ − Ix are open in Q,
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for every x ∈ Q. So the following are 1-open in Q ×X for any 〈x, w〉 ∈ X :
(O′′ ∩ Ix) × {〈x, w〉} and (O′′ − Ix) × {〈x, w〉}. So O′ is a union of 1-open
subsets of Q×X .

F is 1-open. Suppose that O is a 1-open subset of Q × X . We want
to show that the image of O under F , say O′, is a 1-open subset of W . We
can assume that O is of the form I × {〈x, v〉} for some open Q-interval I
and some 〈x, v〉 ∈ X since sets of this form form a basis for the horizontal
topology on Q× X .

Let O1 = I ∩ Ix and O2 = I − Ix. Note that each Oi is open in Q, since
Ix is both open and closed in Q; and that I = O1 ∪O2. Let O

∗
i be the image

of Oi under f : O
∗
i is open since f is a p-morphism. And let O′

i be the image
of Oi × {〈x, v〉} under F . It will suffice to show that each O′

i is open since
O′ = O′

1 ∪O′
2.

Re O′
1. It will suffice to show that O′

1 = O∗
1 × {v}. To see that O′

1 ⊆
O∗

1 × {v}, suppose that 〈y, 〈z, w〉〉 ∈ O1 × {〈x, v〉}. Then y ∈ I ∩ Ix and
〈z, w〉 = 〈x, v〉. So F (〈y, 〈z, w〉〉) = 〈f(y), v〉 ∈ O∗

i × {v}, as desired. To see
that O∗

1 × {v} ⊆ O′
1, suppose that 〈w, v〉 ∈ O∗

1 × {v}. Then w ∈ O∗
1, so that

w = f(c) for some c ∈ O1 = I ∩ Ix. So F (〈c, 〈x, v〉〉) = 〈f(c), v〉 = 〈w, v〉. So
〈w, v〉 ∈ O′

1, as desired.
Re O′

2. It will suffice to show that O′
2 = O∗

2 × {r2}. To see that
O′

2 ⊆ O∗
2×{r2}, suppose that 〈y, 〈z, w〉〉 ∈ O2×{〈x, v〉}. Then y ∈ I−Ix and

〈z, w〉 = 〈x, v〉. So F (〈y, 〈z, w〉〉) = 〈f(y), r2〉 ∈ O∗
2 ×{r2}, as desired. To see

that O∗
2×{r2} ⊆ O′

2, suppose that 〈w, r2〉 ∈ O∗
2×{r2}. Then w ∈ O∗

2, so that
w = f(c) for some c ∈ O2 = I − Ix. So F (〈c, 〈x, v〉〉) = 〈f(c), r2〉 = 〈w, r2〉.
So 〈w, r2〉 ∈ O′

2, as desired.

F is 2-continuous. For this it will suffice to show that, for every y ∈ Q

and every 〈z, u〉, 〈x, v〉 ∈ X , we have

F (y, 〈z, u〉) R2 F (y, 〈x, v〉).

Note: F (y, 〈z, u〉) = 〈f(y), w〉, where w = r2 or u and 〈f(y), w〉 ∈ W ⊆ W1×
W2. Likewise, F (y, 〈x, v〉) = 〈f(y), w′〉, where w′ = r2 or v and 〈f(y), w′〉 ∈
W ⊆ W1 ×W2. Now, 〈f(y), w〉S ′

2〈f(y), w
′〉. So 〈f(y), w〉R2〈f(y), w

′〉, since
B is a subframe of U1 × U2. So F (y, 〈z, u〉)R2F (y, 〈x, v〉), as desired.

F is 2-open. For this it will suffice to show that, for every y ∈ Q, ev-
ery 〈x, v〉 ∈ X and every 〈w1, w2〉 ∈ W ,
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if F (〈y, 〈x, v〉〉) R2 〈w1, w2〉 then ∃〈x′, v′〉 ∈ X, F (〈y, 〈x′, v′〉〉) = 〈w1, w2〉.

So suppose that F (〈y, 〈x, v〉〉) R2 〈w1, w2〉. Then f(y) = w1. Note that
F (〈y, 〈y, w2〉〉) = 〈f(y), w2〉, since y ∈ Iy. Let x′ = y and v′ = w2. Then
F (〈y, 〈x′, v′〉〉) = 〈f(y), w2〉 = 〈w1, w2〉, as desired. �

4 The bimodal logic of products of arbitrary

spaces and Alexandrov spaces

Van Benthem et al [21] note that, since Alexandrov spaces are identified
with reflexive transitive frames (see subsection 1.3), the bimodal logic of the
products of Alexandrov spaces is simply the frame product S4×S4. They ask
what the bimodal logic is of the products of Alexandrov spaces with arbitrary
topological spaces, conjecturing that it is (S4 ⊗ S4) + com⊂ + chr . Their
conjecture follows from its mirror image, i.e., that the bimodal logic of the
products of arbitrary spaces with Alexandrov spaces is (S4⊗S4)+com⊃+chr .
In this section, we prove this last claim.

For another way to put this, let Top be the class of all topological spaces
and let Alex be the class of Alexandrov spaces. For any classes X and Y of
topological spaces, let X ×Y =df {X × Y : X ∈ X & Y ∈ Y}. And for any
class X of bitopological spaces and any formula A of L12, say that X � A iff
X � A, for every X ∈ X. Then we have

Theorem 4.1. A ∈ [S4, S4]EX iff Top× Alex � A.

We leave soundness, i.e., the (⇒) direction of the biconditional, to the
reader. Completeness, i.e., the (⇐) direction, follows from the complete-
ness of [S4, S4]EX for the space Q×N∗, where Q is the rational line equipped
with the standard topology and where N∗ is the set of finite sequences of
natural numbers, equipped with the following Alexandrov topology: a set
O ⊆ N∗ is open iff, for each a, b ∈ N∗, if a ∈ O and a is an initial segment of
b, then b ∈ O:

Theorem 4.2. If Q×N∗ � A then A ∈ [S4, S4]EX.

Proof. Some notation. For a ∈ N∗, we write a = a0, . . . , aln(a)−1, where ln(a)

is the length of a. For a, b ∈ N∗, we write ab for a concatenated with b. And
for a ∈ N∗ and n ∈ N, we write an for a concatenated with n. We use Λ for
the empty sequence in N∗. We define S =df {〈a, b〉 : a is an initial segment
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of b}. Note that S is a reflexive transitive relation, and that our topology on
N∗ is the Alexandrov topology induced by S. Finally, if 〈u, v〉 is any ordered
pair (usually of worlds), we define lft(〈u, v〉) =df u and rt(〈u, v〉) =df v.

Suppose that A 6∈ [S4, S4]EX. It is a special case of Theorem 6 in [14]
that [S4, S4]EX = (S4 × S4)EX. So there is some reflexive transitive unary
frame U1 = 〈W1, S1〉 and some reflexive transitive unary frame U2 = 〈W2, S2〉
and some expanding relativized product frame, B = 〈W,R1, R2〉, that is
a subframe of U1 × U2 = 〈W1 × W2, S

′
1, S

′
2〉, such that B 6� A. We can

assume that both U1 and U2 are countable and rooted, with roots r1 and r2,
respectively, with 〈r1, r2〉 ∈ W . We can also assume that, for every w2 ∈ W2,
there is a w1 ∈ W1 such that 〈w1, w2〉 ∈ W . To see that Q × N∗ 6� A, it
suffices to specify a bi-p-morphism from Q×N∗ to B.

Let
〈x0, v0〉, 〈x1, v1〉, 〈x2, v2〉, . . . , 〈xn, vn〉, . . .

be an enumeration of Q × W2. And let f be a p-morphism from Q to U1

(see Theorem 3.3). For every a ∈ N∗, we will shortly define a function
fa : Q → W1 ×W2. First, for every x ∈ Q, choose an irrational f(x)-interval
Ix such that x ∈ Ix (see Lemma 3.4 and the proof of Theorem 3 in subsection
3.4). The important thing is that each Ix is both open and closed.

Now we define the fa’s, by recursion on the construction of a. First define

fΛ(x) = 〈f(x), r2〉, for each x ∈ Q.

Assuming that fa has been defined, define fan as follows:

fan(x) =

{

〈f(x), vn〉, if 〈f(xn), vn〉 ∈ W & rt(fa(xn))S2vn & x ∈ Ixn

fa(x), otherwise.

We now state and prove three useful claims about the fa’s.

Claim 1. Each fa : Q → W ⊆ W1×W2. Proof. By induction on the length of
a. In the base case (a = Λ), it suffices to note that 〈r1, r2〉 ∈ W , that r1S1f(x)
for each x ∈ Q, and that B is an expanding relativized product frame. For the
inductive step, our inductive hypothesis (IH) is that fa : Q → W . We want
to show that fan : Q → W . So choose x ∈ Q and consider fan(x). If either
〈f(xn), vn〉 6∈ W or not rt(fa(xn))S2vn or x ∈ Ixn

, then fan(x) = fa(x) ∈ W ,
as desired. So suppose that 〈f(xn), vn〉 ∈ W & rt(fa(xn))S2vn & x ∈ Ixn

.
Since Ixn

is an f(xn)-interval, we have f(xn)S1f(x). Thus, since B is an
expanding relativized product model, we have fan(x) = 〈f(x), vn〉 ∈ W , as
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desired.

Claim 2. Each fa : Q → W is a continuous function from Q to the unary
frame U ′ = 〈W,R1〉. Proof. By induction on the length of a. In the base case
(a = Λ), the continuity of f from Q to U1 suffices to guarantee the continuity
of fΛ from Q to U ′. For the inductive step, our inductive hypothesis (IH) is
that fa is a continuous function. We want to show that fan is a continuous
function.

Suppose that O is an open subset of the unary frame U ′, i.e., O is closed
under the relation R1. We want to show that the preimage of O under
fan, say O′, is an open subset of Q. We can assume that O is of the form
[u] × {v} for some u ∈ W1 and v ∈ W2 with 〈u, v〉 ∈ W , since sets of this
form form a basis for the topology on U ′ induced by the relation R1. (Here,
[u] =df {u

′ ∈ W1 : uS1u
′}.) Let O′′ be the preimage of the set [u] ⊆ W1 under

the p-morphism f . And let O′′′ be the preimage of the set [u] × {v} under
the function fa. The set O′′ ⊆ Q is open, since f is continuous; and the set
O′′′ ⊆ Q is open by (IH).

Then, given the definition of fan, for every x ∈ Q, we have

x ∈ O′

iff fan(x) ∈ [u]× {v}

iff

{

〈f(x), vn〉 ∈ [u]× {v} & 〈f(xn), vn〉 ∈ W & rt(fa(xn))S2vn & x ∈ Ixn
or

fa(x) ∈ [u]× {v} & (〈f(xn), vn〉 6∈ W or ¬(rt(fa(xn))S2vn) or x 6∈ Ixn
)

iff

{

f(x) ∈ [u] & vn = v & 〈f(xn), vn〉 ∈ W & rt(fa(xn))S2vn & x ∈ Ixn
or

x ∈ O′′′ & (〈f(xn), vn〉 6∈ W or ¬(rt(fa(xn))S2vn) or x 6∈ Ixn
)

iff

{

x ∈ O′′ & vn = v & 〈f(xn), vn〉 ∈ W & rt(fa(xn))S2vn & x ∈ Ixn
or

x ∈ O′′′ & (〈f(xn), vn〉 6∈ W or ¬(rt(fa(xn))S2vn) or x 6∈ Ixn
)

iff











x ∈ O′′ & vn = v & 〈f(xn), vn〉 ∈ W & rt(fa(xn))S2vn & x ∈ Ixn
or

x ∈ O′′′ & 〈f(xn), vn〉 6∈ W or ¬(rt(fa(xn))S2vn)) or

x ∈ O′′′ & x 6∈ Ixn

iff











x ∈ O′′ ∩ Ixn
& vn = v & 〈f(xn), vn〉 ∈ W & rt(fa(xn))S2vn or

x ∈ O′′′ & 〈f(xn), vn〉 6∈ W or ¬(rt(fa(xn))S2vn)) or

x ∈ O′′′ − Ixn

So either O′ = (O′′ ∩ Ixn
) ∪ (O′′′ − Ixn

) or O′ = O′′′ or O′ = O′′′ − Ixn
. In
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any case, O′ is open, as desired.

Claim 3. Each fa : Q → W is an open function from Q to the unary
frame U ′ = 〈W,R1〉. Proof. By induction on the length of a. In the base
case, the openness of f from Q to U1 suffices to guarantee the openness of fΛ
from Q to U ′. For the inductive step, our inductive hypothesis (IH) is that fa
is an open function. We want to show that fan is an open function. If either
〈f(xn), vn〉 6∈ W or ¬(rt(fa(xn))S2vn), then fan = fa, and we are done. So
suppose that 〈f(xn), vn〉 ∈ W and rt(fa(xn))S2vn.

Suppose that O is an open subset of Q. We want to show that the image
of O under fan, say O′, is an open subset of the unary frame U ′ = 〈W,R1〉.
Let O1 = O∩Ixn

and O2 = O−Ixn
. Note that each Oi is open in Q, since Ixn

is both open and closed in Q; and that O = O1 ∪O2. Let O
′
i be the image of

Oi under fan. It will suffice to show that each O′
i is open since O′ = O′

1∪O′
2.

Re O′
1. Let O∗

1 ⊆ W1 be the image of O1 under f . O∗
1 is open since f is

an open function. Note that fan(x) = 〈f(x), vn〉 ∈ W for every x ∈ O1. So
O′

1 = O∗
1 × {vn}, which is open in U ′. Re O′

2. Note that fan(x) = fa(x) for
every x ∈ O2. So O′

2 is open by IH.

Summary. Each fa : Q → W is a continuous open function from Q to
the unary frame U ′ = 〈W,R1〉.

We add one more claim, which has an easy inductive proof:

Claim 4. For each fa : Q → W and each x ∈ Q, we have lft(fa(x)) = f(x).

Now define
F (x, a) = fa(x).

All we have left is to prove that F is a bi-p-morphism from Q×N∗ to B, i.e.,
that F is bicontinuous, biopen and onto. First note that F is 1-continuous
and 1-open, since each fa is both continuous and open from Q to U1. We
now prove that F is onto, 2-continuous, and 2-open.

F is onto. Suppose that 〈u, v〉 ∈ W . Choose any x ∈ Q such that f(x) = u.
And choose n so that xn = x and vn = v. We will identify n with the
singleton sequence with one member, n. Note that 〈f(xn), vn〉 ∈ W ; and
rt(fΛ(xn))S2vn, since rt(fΛ(xn)) = r2; and xn ∈ Ixn

. So F (x, n) = fn(x) =
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〈f(x), vn〉 = 〈f(xn), vn〉 = 〈u, v〉, as desired.

F is 2-continuous. For this it will suffice to show that, for every x ∈ Q

and every a, b ∈ N∗, if aSb, then

F (〈x, a〉) R2 F (〈x, b〉).

For this, in turn, it will suffice to show that, for every x ∈ Q and every
a ∈ N∗ and n ∈ N,

fa(x) R2 fan(x).

This comes to the same thing as

fa(x) S ′
2 fan(x),

since B is a subframe of U1×U2. So choose x ∈ Q, a ∈ N∗ and n ∈ N. If either
〈f(xn), vn〉 6∈ W or ¬(rt(fa(xn))S2vn) or x 6∈ Ixn

, then fan(x) = fa(x), and
we are done. So assume that 〈f(xn), vn〉 ∈ W & rt(fa(xn))S2vn & x ∈ Ixn

.
Then fan(x) = 〈f(x), vn〉. So fa(x)S

′
2fan(x), given that lft(fa(x)) = f(x) (by

Claim 4) and rt(fa(xn))S2vn.

F is 2-open. For this it will suffice to show that, for every x ∈ Q, ev-
ery a ∈ N∗ and every 〈u, v〉 ∈ W , if F (〈x, a〉)R2〈u, v〉 then for some b ∈ N∗,
we have aSb (i.e., a is an initial segment of b) and

F (〈x, b〉) = 〈u, v〉.

So suppose that F (〈x, a〉)R2〈u, v〉. So F (〈x, a〉)S ′
2〈u, v〉, since B is a subspace

of U1 × U2. So fa(x)S
′
2〈u, v〉. So f(x) = lft(fa(x)) = u and rt(fa(x))S2v.

Choose n ∈ N so that xn = x and vn = v, and let b = an. Clearly, aSb.
Also note that F (〈x, b〉) = fan(x) = 〈f(x), vn〉, by the definition of fan(x),
= 〈u, v〉. �

Thanks to Guram Bezhanishvili for introducing this topic to me and for directing
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