Skip to main content
Log in

Towards a Deeper Understanding of the Einstein–Podolsky–Rosen Problem

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Most of the nearly innumerable attempts to provide for a sound understanding of the gedanken experiment of Einstein, Podolsky, and Rosen (EPR) contain additional ideas, notions or features imposed on pioneer or traditional quantum mechanics (TQM). In the present paper the problem is analyzed without employing any new or philosophically contested concept. We do even without referring to the probability calculus, and we especially avoid any admixture of realistic ideas. Neither entanglement nor special features of “states” are used. Instead, formulating strictly within the framework of TQM and using an ensemble approach, the crucial point is boiled down to the decision between separability and non-separability. The corresponding second-order correlation functions Δs and Δn−s, resp., which predict the experimental outcome, may differ by a factor of 2 if certain operator pairs are maximally non-commuting. Even in the case of commuting pairs, an experimentally relevant difference between the Δ-functions might exist. Taking into account the experimental evidence, it is unavoidable to accept that the sub-ensembles involved in EPR-type experiments are in fact non-separable. This result has been obtained without resort to Bell's inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).

    Google Scholar 

  2. N. Bohr, Phys. Rev. 48, 696 (1935).

    Google Scholar 

  3. A. Avramesco, ``The Einstein–Bohr Debate,” lecture presented at the International Conference on ``Microphysical Reality and Quantum Formalism” (Urbino, Italy, 1985).

    Google Scholar 

  4. K. Goö del, Monatshefte Math. Phys. 38, 173 (1931). [Goö del's theorem states that every for-malized theory contains essential prerequisites which in itself are not elements of said theory. These extra-theoretical ingredients take care of the self-consistency of the theory. They cannot be explained by the theory. Instead they are responsible that the theory itself can explain anything at all.]

    Google Scholar 

  5. B. d'Espagnat, Conceptual Foundations of Quantum Mechanics (Benjamin, Reading, 1976), Chap. 8.

    Google Scholar 

  6. D. Bohm and Y. Aharonov, Phys. Rev. 108, 1070 (1957).

    Google Scholar 

  7. J. S. Bell, Physics 1, 195 (1964).

    Google Scholar 

  8. J. S. Bell, Rev. Mod. Phys. 38, 447 (1966).

    Google Scholar 

  9. E. Schroö dinger, Naturwiss. 23, 807, 823, and 844 (1935).

    Google Scholar 

  10. L. Hardy, Phys. Rev. Lett. 71, 1665 (1993).

    Google Scholar 

  11. T. Krüger, in Waves and Particles in Light and Matter, A. van der Merwe and A. Garuccio, eds. (Plenum, New York, 1994), pp. 369ff. 1889 Towards a Deeper Understanding of the EPR Problem

    Google Scholar 

  12. J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Phys. Rev. Lett. 23, 880 (1969).

    Google Scholar 

  13. J. F. Clauser and M. A. Horne, Phys. Rev. D 10, 526 (1974).

    Google Scholar 

  14. A. Aspect, P. Grangier, and G. Roger, Phys. Rev. Lett. 49, 91 (1982).

    Google Scholar 

  15. A. Aspect, J. Dalibard, and G. Roger, Phys. Rev. Lett. 49, 1804 (1982).

    Google Scholar 

  16. W. Perrie, A. J. Duncan, H. J. Beyer, and H. Kleinpoppen, Phys. Rev. Lett. 54, 1790 (1985).

    Google Scholar 

  17. D. Home and F. Selleri, Riv. Nuovo Cimento 14, No. 9 (1991).

  18. L. De Caro and A. Garuccio, Phys. Rev. A 50, R2803 (1994).

    Google Scholar 

  19. P. R. Tapster, J. G. Rarity, and P. C. M. Owens, Phys. Rev. Lett. 73, 1923 (1994).

    Google Scholar 

  20. B. J. Oliver and C. R. Stroud, Jr., J. Opt. Soc. Am. B 4, 1426 (1987).

    Google Scholar 

  21. C. H. Bennett, G. Brassard, C. Creé peau, R. Jozsa, A. Peres, and W. K. Wootters, Phys. Rev. Lett. 70, 1895 (1993).

    Google Scholar 

  22. L. Davidovich, N. Zagury, M. Brune, J. M. Raimond, and S. Haroche, Phys. Rev. A 50, R895 (1994).

    Google Scholar 

  23. J. I. Cirac and P. Zoller, Phys. Rev. A 50, R2799 (1994).

    Google Scholar 

  24. S. Haroche, Ann. N. Y. Acad. Sci. 755, 73 (1995).

    Google Scholar 

  25. C. C. Gerry, Phys. Rev. A 53, 2857 (1996).

    Google Scholar 

  26. E. Hagley, X. Maître, G. Nogues, C. Wunderlich, M. Brune, J.M. Raimond, and S. Haroche, Phys. Rev. Lett. 79,1 (1997).

    Google Scholar 

  27. T. Kruü ger, Int. J. Quant. Chem. 64, 679 (1997).

    Google Scholar 

  28. A. Shimony, in Sixty-Two Years of Uncertainty, NATO ASI Series B, Vol. 226, A. I. Miller, ed. (Plenum, New York, 1990), pp. 33ff.

    Google Scholar 

  29. R. F. Bordley, Phys. Essays 10, 401 (1997).

    Google Scholar 

  30. H. P. Stapp, Phys. Rev. A 46, 6860 (1992).

    Google Scholar 

  31. H. P. Stapp, Phys. Rev. A 49, 3182 (1994).

    Google Scholar 

  32. M. Dickson and R. Clifton, Phys. Rev. A 49, 4251 (1994).

    Google Scholar 

  33. H. P. Stapp, Phys. Rev. A 49, 4257 (1994).

    Google Scholar 

  34. L. E. Ballentine, Rev. Mod. Phys. 42, 358 (1970).

    Google Scholar 

  35. J. S. Bell, in Sixty-Two Years of Uncertainty, NATO ASI Series B, Vol. 226, A. I. Miller, ed. (Plenum, New York, 1990), pp. 17ff.

    Google Scholar 

  36. R. F. Werner, Phys. Rev. A 40, 4277 (1989).

    Google Scholar 

  37. A. Peres, Phys. Rev. Lett. 77, 1413 (1996).

    Google Scholar 

  38. A. Peres, LANL e-print archive, quant-ph/9707026 (1997).

  39. M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Lett. A 223, 1 (1996).

    Google Scholar 

  40. N. J. Cerf, C. Adami, and R. M. Gingrich, Phys. Rev. A 60, 898 (1999).

    Google Scholar 

  41. O. Rudolph, J. Phys. A 33, 3951 (2000).

    Google Scholar 

  42. E. P. Wigner, Am. J. Phys. 38, 1005 (1970).

    Google Scholar 

  43. V. Capasso, D. Fortunato, and F. Selleri, Int. J. Theor. Phys. 7, 319 (1973).

    Google Scholar 

  44. L. J. Landau, Phys. Lett. A 120, 54 (1987).

    Google Scholar 

  45. D. Bohm, B. J. Hiley, and P. N. Kaloyerou, Phys. Reports 144, 321 (1987).

    Google Scholar 

  46. Q. Zheng and T. Kobayashi, Phys. Essays 9, 447 (1996).

    Google Scholar 

  47. E. Bitsakis, Phys. Essays 9, 487 (1996).

    Google Scholar 

  48. A. Jabs, Phys. Essays 9, 36 (1996).

    Google Scholar 

  49. D. Athearn, Phys. Essays 10, 558 (1997).

    Google Scholar 

  50. D. Canals-Frau, Phys. Essays 11, 46 (1998).

    Google Scholar 

  51. D. Athearn, On the Loss and Recovery of Physical Explanation (State University of New York Press, New York, 1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krüger, T. Towards a Deeper Understanding of the Einstein–Podolsky–Rosen Problem. Foundations of Physics 30, 1869–1890 (2000). https://doi.org/10.1023/A:1003758305043

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003758305043

Keywords

Navigation