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ABSTRACT. This paper is dedicated to the memory of Mike Dunn. His untimely
death is a loss not only to logic, computer science, and philosophy, but to all of
us who knew and loved him. The paper gives an argument for closure under γ in
standard systems of relevance logic (first proved by Meyer and Dunn [3]). For defi-
niteness, I chose the example of R. The proof also applies to E and to the quantified
systems RQ and EQ. The argument uses semantic tableaux (with one exceptional
rule not satisfying the subformula property). It avoids the previous arguments’ use
of cutting down inconsistent sets of formulas to consistent sets. Like all tableau ar-
guments, it extends partial valuations to total valuations.
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This note gives a new proof of the closure of such systems as R, E, RQ, and EQ
under Ackermann’s rule γ , based on the idea of a semantic tableau.* The usual proofs
of γ , beginning with Meyer and Dunn [3], all “cut down” an “inconsistent valuation”
to a “consistent” one. The present proof proceeds dually: no inconsistent valuation
is used, but rather a partial valuation is extended to a total valuation, as is usual with
tableau completeness proofs. The proof is in fact very similar in flavor to the usual
completeness proofs of tableau procedures.

For convenience, we fix our attention on R. We assume a usual axiomatization of
R, with modus ponens for the relevant conditional and adjunction as the only rules.
The system obtained by adjoining γ as an additional rule is called Rγ .

We assume the reader is thoroughly familiar with semantic tableaux, originally
introduced by Beth [1]. However, we will informally sketch the idea of a tableau
construction in the present context. Following Smullyan [4], we use signed formulae:
ordered pairs 〈A,T 〉 and 〈A,F〉, where A is a formula of R, representing in Beth’s
terminology that A appears on the left or the right, respectively. A tableau is then
simply a set S of signed formulae. A rule extends a tableau S to one (or two) immediate
descendants, S′ (S′ and S′′) such that S⊆ S′ (and S⊆ S′′).

The rules for conjunction and negation are usual:
∧T Set S′ = S∪{〈A,T 〉,〈B,T 〉}, where 〈A∧B,T 〉 ∈ S.
∧F Set S′ = S∪{〈A,F〉} and S′′ = S∪{〈B,F〉}, where 〈A∧B,F〉 ∈ S.
∼T Set S′ = S∪{〈A,F〉}, where 〈∼A,T 〉 ∈ S.
∼F Set S′ = S∪{〈A,T 〉}, where 〈∼A,F〉 ∈ S.
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The rules for disjunction are dual to those for conjunction. As for→:
→ T Set S′ = S∪{〈A,F〉} and S′′ = S∪{〈B,T 〉}, where 〈A→ B,T 〉 ∈ S.
Mpon Set S′ = S∪{〈A,F〉} and S′′ = S∪{〈A→ B,F〉}, where 〈B,F〉 ∈ S.

Mpon is rather different from the usual tableau rules in that it does not decompose
a formula into subformulas.

A construction proceeds in stages. The initial stage is the unit set of tableaux {S}.
Each stage consists in a finite set of tableaux {S1, . . . ,Sn}. The n+ 1th stage comes
from the nth by replacing some set Si by its immediate descendant or its two immediate
descendants according to one of the rules. As usual in tableau constructions, the pro-
cedure can be diagrammed as a tree, where binary branching occurs in connection
with the rules ∧F , ∨T ,→ T , and Mpon. A tableau S is closed if and only if for some
formula A, 〈A,F〉 ∈ S and either 〈A,T 〉 ∈ S or A is an axiom of R. A stage {S1, . . . ,Sn}
is closed if and only if each Si is closed.

We can stipulate a fixed priority ordering for applying rules if we wish. The point
is to make the stages of a construction determinate, given the initial stage. We assume
that the ordering is such that every applicable rule is eventually applied. The con-
struction for A is the construction whose initial stage is {{〈A,F〉}}. A construction is
closed if some one of its stages is closed.

A valuation is a map ν whose domain is the set of formulae of R, and whose range
is {T,F}. A valuation is admissible if and only if:

(i) It respects the usual conditions for truth functions.
(ii) If ν(A→ B) = ν(A) = T , then ν(B) = T (equivalently, given (i): if ν(A→

B) = T , ν(A⊃B) = T ).
(iii) If A is an axiom of R, ν(A) = T .

A formula A is valid if and only if for every admissible valuation ν , ν(A) = T .

Theorem 1. If A is a theorem of Rγ , A is a theorem of R.

Proof. The theorem follows from Lemmas 2–4. The crucial step is Lemma 3. /

Lemma 2. If A is a theorem of Rγ , A is valid.

Proof. The axioms of Rγ are valid, and the rules preserve validity. /

Lemma 3. If A is valid, the construction for A is closed.

Proof. We prove the contrapositive. Suppose the construction for A is not closed.
Then by the usual argument from König’s Lemma, there is an infinite set S of signed
formulae such that:1

(i) S is closed under the rules (e.g., for ∧F , if 〈B∧C,F〉 ∈ S, either 〈B,F〉 ∈ S or
〈C,F〉 ∈ S; for ∧T , if 〈B∧C,T 〉 ∈ S, 〈B,T 〉 ∈ S and 〈C,T 〉 ∈ S; for Mpon, if
〈B,F〉 ∈ S, then for any C, either 〈C→ B,F〉 ∈ S or 〈C,F〉 ∈ S; etc.).

(ii) 〈A,F〉 ∈ S.
(iii) For no formula B are both 〈B,T 〉 and 〈B,F〉 ∈ S.
(iv) If B is an axiom of R, 〈B,F〉 /∈ S.
Define a valuation ν(B) by induction on the complexity of B. If B is atomic, set

ν(B) = T (F) if and only if 〈B,T 〉 ∈ S (〈B,T 〉 /∈ S). For truth-functional formulas,
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define ν so as to respect the truth-functions. ν(B→C) = T if and only if ν(B) = F
or ν(C) = T , and 〈B→C,F〉 /∈ S; otherwise, ν(B→C) = F .

We needed to show that A is not valid. This will follow if ν(A) = F and ν is an
admissible valuation. That ν(A) = F follows from Sublemma 3.1, given that 〈A,F〉 ∈
S. ν obviously satisfies conditions (i) and (ii) for admissibility. Condition (iii) is
Sublemma 3.2.

Sublemma 3.1. For any formula B, if 〈B,T 〉 ∈ S, then ν(B) = T ; if 〈B,F〉 ∈ S,
then ν(B) = F .

Proof. This is the usual lemma for the completeness of a tableau procedure. It is
proved by induction on the number of connectives in A. If A is atomic and 〈A,T 〉 ∈ S,
the result follows by the definition of ν . If 〈A,F〉 ∈ S, then 〈A,T 〉 /∈ S. So by the
definition of ν , ν(A) = F . Suppose B is C∧D, and the lemma holds for C and D.
Then if 〈B,T 〉 ∈ S, then by the closure of S under the rules, 〈C,T 〉 ∈ S and 〈D,T 〉 ∈ S,
so ν(C) = ν(D) = T . So ν(B) = ν(C∧D) = T . If 〈B,F〉 ∈ S, then either 〈C,F〉 ∈ S
or 〈D,F〉 ∈ S, so by inductive hypothesis ν(C) = F or ν(D) = F , so ν(C∧D) = F .
Similarly, for the other truth functional formulas. If B is C → D and 〈B,T 〉 ∈ S,
then either 〈C,F〉 ∈ S or 〈D,T 〉 ∈ S. So, by inductive hypothesis, either ν(C) = F
or ν(D) = T . Also, since 〈C→ D,T 〉 ∈ S, 〈C→ D,F〉 /∈ S, so by definition of ν ,
ν(B) = ν(C→ D) = T . If 〈C→ D,F〉 ∈ S, then by definition of ν , ν(C→ D) = F .

Sublemma 3.2. If B is an axiom of R, ν(B) = T .
Proof. This goes case by case. We give two sample cases. The reader can verify

the others.
Suppose B is (C→ (C→D))→ (C→D). To show ν(B) = T , suppose for reductio

that ν(B) = F . Then by definition of ν , since B is an implicational formula, either
〈B,F〉 ∈ S, or ν(C→ (C→D)) = T and ν(C→D) =F . Since B is an axiom, 〈B,F〉 ∈
S is impossible, so ν(C→ (C→ D)) = T and ν(C→ D) = F . Since ν(C→ D) = F ,
either 〈C→D,F〉 ∈ S, or ν(C) = T and ν(D) = F . Suppose 〈C→D,F〉 ∈ S. Then by
closure of S under Mpon, either 〈(C→ (C→ D))→ (C→ D),F〉 ∈ S or 〈C→ (C→
D),F〉 ∈ S. But the first alternative is impossible, as already observed, and the second
is impossible, since ν(C→ (C→ D)) = T . So ν(C) = T and ν(D) = F . But then, by
definition of ν , ν(C→ (C→ D)) = F . This is a contradiction.

Suppose B is (C→ (D→ E))→ (D→ (C→ E)). Suppose ν(B) = F . 〈B,F〉 ∈ S is
impossible, so ν(C→ (D→E)) = T and ν(D→ (C→E)) =F . So either 〈D→ (C→
E),F〉 ∈ S or ν(D) = T and ν(C→E) =F . In the former case, by Mpon, either 〈(C→
(D→ E))→ (D→ (C→ E)),F〉 ∈ S, or 〈C→ (D→ E),F〉 ∈ S. Both are already
ruled out, since the first is an axiom and the second contradicts ν(C→ (D→ E)) = T .
So 〈D→ (C→ E),F〉 /∈ S, so ν(D) = T and ν(C→ E) = F . Since ν(C→ E) = F ,
either 〈C → E,F〉 ∈ S, or ν(C) = T and ν(E) = F . If 〈C → E,F〉 ∈ S, by Mpon,
either 〈D→ (C→ E),F〉 ∈ S or 〈D,F〉 ∈ S. But 〈D→ (C→ E),F〉 ∈ S has already
been ruled out, and 〈D,F〉 ∈ S is impossible, since then, by Sublemma 2.1, ν(D) = F ,
which has already been ruled out. So, 〈C→ E,F〉 /∈ S, hence ν(C) = T and ν(E) = F .
Also we already have ν(D) = T . Hence by definition of ν , ν(C→ (D→ E)) = F .
This is a contradiction. /
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Lemma 4. If the construction for A is closed, A is a theorem of R.

Proof. Any of the usual methods of proving that a tableau procedure is contained in a
corresponding axiomatic system will do. For example, let a tableau S = {〈B1,T 〉, . . . ,
〈Bm,T 〉,〈C1,F〉, . . . ,〈Cn,F〉} (m or n may = 0). Then define the characteristic for-
mula of S as ¬B1∨·· ·∨¬Bm∨C1∨·· ·∨Cn. Note that if S is closed, its characteristic
formula is provable in R, since either it has two disjuncts of the forms B and ¬B, or
some disjunct is an axiom of R. If a stage of a construction is {S1, . . . ,Sq}with charac-
teristic formulae D1, . . . ,Dq, let the characteristic formula of the stage be D1∧·· ·∧Dq.
Then the characteristic formula of a closed stage is provable in R. By inspection of
the various tableau rules, if C is the characteristic formula of a non-initial stage of
a construction and C′ is the characteristic formula of the preceding stage, C→ C′ is
provable in R. Hence by transitivity of →, if C is the characteristic formula of any
stage of a construction and D is the characteristic formula of the initial stage, C→D is
provable in R. Note that the characteristic formula of the initial stage of the construc-
tion for A is A itself. So, if the construction for A is closed, and C is the characteristic
formula of the closed stage, C→ A and C are both theorems of R. Thus, A is. /

The proof above, except for its treatment of→ and the axioms of R, is very close to
the usual completeness proofs of tableau procedures. It is shown that the theorems of
R, of Rγ , and the valid formulae are all coextensive, though the semantical notion of
validity used is of little independent interest. In Lemma 3, the partial function defined
by ν(A) = T if 〈A,T 〉 ∈ S, and ν(A) = F if 〈A,F〉 ∈ S, and undefined otherwise, is
shown to extend to an admissible valuation defined on all formulae.

Although for definiteness the theorem was stated for R, the proof applies equally
well, for example, to E. If quantifiers are added, as in RQ or EQ, the proof extends
readily. Here we define an admissible valuation over a nonempty domain D, and the
quantifiers are evaluated in the usual way. For the tableaux, quantifier rules of the
usual kind are added.
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Notes
* Unfortunately, the original handwritten manuscript of this paper was undated. Mike Dunn,
however, recalled that I verbally reported this result to him in the summer of 1978 at Oxford.
In an email to the Saul Kripke Center, dated February 6th, 2017, Dunn said: “Saul’s commu-
nication to me was verbal without much detail. We were both visitors at Oxford in the spring
of 1978 and [I] know that I at least stayed through mid-summer. I think that early summer/late
spring at Oxford might be when/where he told me about his proof, but my memory is not clear
on this. Anyway, I wrote up his proof, probably within a couple of months after he told me
about it, and sent him a copy. I attach what I sent him. It is dated July 23, 1978, and I think was
sent to him shortly after then.” (See also Dunn and Meyer [2, §5].)

I originally thought that I was influenced by the result in Dunn and Meyer [2] connecting the
proofs of γ to a method of proving Gentzen’s cut elimination, but in the email mentioned above,
Dunn said: “I sent him [me] a copy of ‘Gentzen’s cut . . . ’ Feb. 12, 1980. It wasn’t published
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until 1989, because of delay in publication of the Norman–Sylvan volume.” So unless I had
seen another copy or heard them give a talk, it is unlikely that I was influenced by their paper.

Other proofs of γ in relevance logic had long been around since the original paper by Meyer
and Dunn [3], some of them making it much simpler. However, the present proof was novel in
that it was based on the usual completeness proofs of tableau (cut-free) methods, and it is not
based on cutting down an inconsistent set of statements to a consistent set.
1 S is not a tableau of the construction but is the union of an increasing sequence of non-closed
tableaux, each of which is an immediate descendant of its predecessor in the sequence.
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