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Semantical Considerations on Modal Logic

SauL A. KRIPKE

This paper gives an exposition of some features of a semantical
theory of modal logics1. For a certain quantified extension of S5,
this theory was presented in [1], and it has been summarized in [2].
The present paper will concentrate on one aspect of the theory —
the introduction of quantifiers — and it will restrict itself in the
main to one method of achieving this end. The emphasis of the paper
will be purely semantical, and hence it will omit the use of semantic
tableaux, which'is essential to a full presentation of the theory.
(For these, see [1] and [11].) Proofs, also, will largely be suppressed.

We consider four modal systems. Formulae A, B, C, ... are built
out of atomic formulae P, Q, R, ..., using the connectives A, ~,
and []. The system M has the following axiom schemes and rules:

Al.[JAD A

A2.[J(A>B)y>.[JA>[]B
Rl. A,A> BB
R2. A [[JA

If we add the following axiom scheme, we get S4:
OAa>0O04A

We get the Brouwersche system if we add to M:
AD[]JOA
S5, if we add:

CAL[oA4A

1 The theory given here has points of contact with many authors:
For lists of these, see [11] and Hintikka [6]. The authors closest to the
present theory appear to be Hintikka and Kanger. The present treat-
ment of quantification, however, is unique as far as I know, although

it derives some inspiration from acquaintance with the very different
methods of Prior and Hintikka.
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Modal systems whose theorems are closed under the rules R1
and R2, and include all theorems of M, are called “normal”’. Although
we have developed a theory which applies to such non-normal systems
as Lewis’s S2 and S3, we will restrict ourselves here to normal systems.

To get a semantics for modal logic, we introduce the notion of a
(normal) model structure. A model structure (m.s.) is an ordered
triple (G, K, R) where K is a set, R is a reflexive relation on K,
and G ¢ K. Intuitively, we look at matters thus: K is the set of all
“possible worlds;” G is the ‘real world.” If H, and H, are two
worlds, H; R H,; means intuitively that H, is “possible relative to”
H,; i.e., that every proposition frue in H, is possible in H;. Clearly,
then, the relation R should indeed be reflexive; every world H is
possible relative to itself, since every proposition frue in H is, a for-
tiori, possible in H. Reflexivity is thus an intuitively natural require-
ment. We may impose additional requirements, corresponding
to various “reduction axioms’ of modal logic: If R is transitive,
we call (G, K, R) an S4-m.s.; if R is symmetric, (G, K, R) is a Brou-
wersche m.s.; and if R is an equivalence relation, we call (G, K, R)
an S5-m.s. A model structure without restriction is also called an
M-model structure.

To complete the picture, we need the notion of model. Given
a model structure (G, K, R), a model assigns to each atomic formula
(propositional variable) P a truth-value T or F in each world H ¢ K.
Formally, a model ¢ on a m.s. (G, K, R) is a binary function ¢(P, H),
where P varies over atomic formulae and H varies over elements
of K, whose range is the set {T, F} Given a model, we can define
the assignments of truth-values to non-atomic formulae by induction.
Assume ¢(A, H) and ¢(B, H) have already been defined for all
H e K. Then if ¢(A, H) = ¢(B, H) = T, define ¢(A A B, H) = T;
otherwise, ¢(A A B, H) =F. ¢(~ A, H) is defined to be F iff
@(A, H) = T; otherwise, ¢(~ A, H) = T. Finally, we define
o((JA, H) = T iff ¢(A, H) =T for every H ¢ K such that
H R H’; otherwise, ¢([_] A, H) = F. Intuitively, this says that A
is necessary in H iff A is true in all worlds H’ possible relative to H.

Completeness theorem. A in M (S4, S5, the Brouwersche system)
if and only if ¢(A4, G) = T for every model ¢ on an M- (S4-, S5-,
Brouwersche) model structure (G, K, R).

(For a proof, see [11].)

This completeness theorem equates the syntactical notion of
provability in a modal system with a semantical notion of validity.

The rest of this paper concerns, with the exception of some con-
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cluding remarks, the introduction of quantifiers. To do this, we
must associate with each world a domain of individuals, the indi-
viduals that exist in that world. Formally, we define a quantificational
model structure (q.m.s.) as a model structure (G, K, R), together
with a function ¢ which assigns to each He K a set ¢(H), called
the domain of H. Intuitively y(H) is the set of all individuals exist-
ing in H. Notice, of course, that ¢(H) need not be the same set for
different arguments H, just as, intuitively, in worlds other than
the real one, some actually existing individuals may be absent,
while new individuals, like Pegasus, may appear.

We may then add, to the symbols of modal logic, an infinite list
of individual variables z, y, z, ..., and, for each nonnegative in-
teger n, a list of n-adic predicate letters P%®, Q=,..., where the
superscripts will sometimes be understood from the context. We
count propositional variables (atomic formulae) as ‘“0-adic” predi-
cate letters. We then build up well-formed formulae in the usual man-
ner, and can now prepare ourselves to define a quantificational model.

To define a quantificational model, we must extend the original
notion, which assigned a truth-value to each atomic formula in
each world. Analogously, we must suppose that in each world a
given n-adic predicate letter determines a certain set of ordered
n-tuples, its exfension in that world. Consider, for example, the
case of a monadic predicate letter P(x). We would like to say that,
in the world H, the predicate P(z) is true of some individuals
in v (H) and false of others; formally, we would say that, relative
to certain assignments of elements of y(H) to z, ¢(P(z), H) =T
and relative to others ¢(P(z), H) = F. The set of all individuals
of which P is true is called the exfension of P in H. But there is a
problem: should ¢@(P(x), H) be given a truth-value when z is as-
signed a value in the domain of some other world H’, and not in
the domain of H? Intuitively, suppose P(z) means “zx is bald” —
are we to assign a truth-value to the substitution instance ‘“Sherlock
Holmes is bald”? Holmes does not exist, but in other states of
affairs, he would have existed. Should we assign a definite truth-
value to the statement that he is bald, or not? Frege [3] and Straw-
son [4] would not assign the statement a truth-value; Russell [5]
would 1. For the purposes of modal logic we hold that different

1 Russell, however, would conclude that ‘Sherlock Holmes’’ is there-
fore not a genuine name; and Frege would eliminate such empty names
by an artifact.
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answers to this question represent alternative conventions. All are
tenable. The only existing discussions of this problem I have seen
— those of Hintikka [6] and Prior [7] — adopt the Frege-Strawson
view. This view necessarily must lead to some modification of the
usual modal logic. The reason is that the semantics for modal prop-
ositional logic, which we have already given, assumed that every
formula must take a truth-value in each world; and now, for a
formula A(x) containing a free variable z, the Frege-Strawson view
requires that it not be given a truth-value in a world H when the
variable x is assigned an individual not in the domain of that world.
We thus can no longer expect that the original laws of modal
propositional logic hold for statements containing free variables,
and are faced with an option: either revise modal propositional logic
or restrict the rule of substitution. Prior does the former, Hintikka
the latter. There are further alternatives the Frege-Strawson choice
involves: Should we take [ | A (in H) to mean that A is true in
all possible worlds (relative to H), or just not false in any such world?
The second alternative merely demands that A be either true or lack
a truth-value in each world. Prior, in his system Q, in effect admits
both types of necessity, one as “L” and the other as “NMN”.
A similar question arises for conjunction: if A is false and B has no
truth-value, should we take A A B to be false or truth-valueless?

In a full statement of the semantical theory, we would explore
all these variants of the Frege-Strawson view. Here we will take
the other option, and assume that a statement containing free
variables has a truth-value in each world for every assignment to
its free variables . Formally, we state the matter as follows: Let
U = ;Y w(H). U"is the nth Cartesian product of U with itself.
We define a quantificational model on a q.m.s. (G, K, R) as a binary

1 Jt is natural to assume that an atomic predicate should be false
in a world H of all those individuals not existing in that world; that is,
that the extension of a predicate letter must consist of actually existing
individuals. We can do this by requiring semantically that ¢ (P", H)
be a subset of [y (H)}*; the semantical treatment below would other-
wise suffice without change. We would have to add to the axiom system
below all closures of formulae of the form PR (xz, ..., xy) A (Y)A®Y).
> .A(x;) (1 £i=<n). We have chosen not to do this because the
rule of substitution would no longer hold; theorems would hold for
atomic formulae which would not hold when the atomic formulae are
replaced by arbitrary formulae. (This answers a question of Putnam
and Kalmar.)
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function @(P", H), where the first variable ranges over n-adic
predicate letters, for arbitrary n, and H ranges over elements of K.
Ifn=0,¢P" H)y=TorF; if n 21, ¢(P", H) is a subset of U
We now define, inductively, for every formula A and HeK, a
truth-value ¢ (A, H), relative to a given assignment of elements of
U to the free variables of A. The case of a propositional variable

is obvious. For an atomic formula P%z,,...,x,), where P" is
an n-adic predicate letter and n > 1, given an assignment of ele-
ments a,,...,a, of U to z,,...,x, we define ¢ (P*(xy, ..., T,),

H) = T if the n-tuple (a,, . . ., a,) is a member of ¢(P", H); other-
wise, p(P"(2y, . .., x,), H) =F, relative to the given assignment.
Given these assignments for atomic formulae, we can build up the
assignments for complex formulae by induction. The induction steps
for the propositional connectives A, ~, [ |, have already been
given. Assume we have a formula A(z, y,, ..., Yy,), where x and
the y, are the only free variables present, and that a truth-value
®(A (%, Yy - - -5 Yn), H) has been defined for each assignment to
the free variables of Az, y,,...,y,). Then we define ¢((x)A

(®, ¥y -y, H) =T relative to an assignment of b,,..., b,
to ¥y, . . ., Y, (where the b; are elements of U), if ¢((A(z, yy, ..., Up)s
H) = T for every assignment of a, by, ..., 0, to x, Yy, ..., Y,

respectively, where a & yp(H); otherwise, @((x)A(x, Yy, -.., Yp)
H) = F relative to the given assignment. Notice that the restriction
a ¢ y(H) means that, in H, we quantify only over the objects actu-
ally existing in H.

To illustrate the semantics, we give counterexamples to two
familiar proposals for laws of modal quantification theory —
the ¢Barcan formula” (x) [ JA(zx) > [] (x)A(xr) and its converse
J@)A(zx) © (x) [ JA(x). For each we consider a model structure
(G, K, R), where K = {G, H}, G # H, and R is simply the Cartesian
product K2 Clearly R is reflexive, transitive, and symmetric, so
our considerations apply even to S5.

For the Barcan formula, we extend (G, K, R) to a quantificational
model structure by defining 9(G) = {a}, pH) = {a, b}, where
a and b are distinct. We then define, for a monadic predicate letter P,
a model ¢ in which (P, G) = {a}, ¢(P, H) ={a}. Then clearly
[] P(x) is true in G when x is assigned a; and since a is the only
object in the domain of G, so is (2)[ |P(x). But, (x)P(z) is clearly
false in H (for ¢(P(x), H) = F when x is assigned b), and hence
(J(z)P(x) is false in G. So we have a counterexample to the Barcan
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formula. Notice that this counterexample is quite independent of
whether b is assigned a truth-value in G or not, so also it applies
to the systems of Hintikka and Prior. Such counterexamples can
be disallowed, and the Barcan formula reinstated, only if we require
a model structure to satisfy the condition that y(H') < y(H)
whenever HR H' (H, H' ¢ K).

For the converse of the Barcan formula, set y(G) = {a, b},
y(H) = {a}, where again a # b. Define ¢(P, G) = {a, b}, (P, H)
= {a}, where P is a given monadic predicate letter. Then clearly
(x)P(z) holds in both G and H, so that ¢((l(x)P(x), G) = T.
But @(P (z), H) = F when z is assigned b, so that, when x is assigned
@(JP(x), G) = F. Hence ¢((x)JP(z), G) = F, and we have the
desired counterexample to the converse of the Barcan formula.
This counterexample, however, depends on asserting that, in H,
P(x) is actually false when z is assigned b; it might thus disappear
if, for this assignment, P(x) were declared to lack truth-value in H.
In this case, we will still have a counterexample if we require a ne-
cessary statement to be frue in all possible worlds (Prior’s “L”),
but not if we merely require that it never be false (Prior’s “NMN"’).
On our present convention, we can eliminate the counterexample
only by requiring, for each q.m.s., that v (H) < y (H’) whenever
HRH'

These counterexamples lead to a peculiar difficulty: We have
given countermodels, in quantified S5, to both the Barcan formula
and its converse. Yet Prior appears to have shown in [8] that the
Barcan formula is derivable in quantified S5; and the converse
seems derivable even in quantified M by the following argument:

(A) (x)A(x) > A(y) (by quantification theory)

(B) [J((x)A(zx) > A(y)) (by necessitation)

©) (@A) = A@m) = @A) = [ Aly) (Axiom A2)
(D) [J(®)A(x) > [J A(y) (from (B) and (C))

(E) (9) (O (®A(@) > [] A(y)) (generalizing on (D))

(F) [J (@®A(x) @ (y) [] A(y) (by quantification theory, and (E))

We seem to have derived the conclusion using principles that
should all be valid in the model-theory. Actually, the flaw lies in the
application of necessitation to (A). In a formula like (A), we give
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the free variables the generality interpretation:  When (A) is asser-
ted as a theorem, it abbreviates assertion of its ordinary universal
closure

A) @) (0)A) = A®@))

Now if we applied necessitation to (A’), we would get
B) @) (@A > A®@))

On the other hand, (B) itself is interpreted as asserting
B") @ Ll (@A) = A®y)

To infer (B”) from (B’), we would need a law of the form [ ] (y)C(y)
> (y) []C(y), which is just the converse Barcan formula that we
are trying to prove. In fact, it is readily checked that (B”) fails in
the countermodel given above for the converse Barcan formula,
if we replace A(x) by P(x).

We can avoid this sort of difficulty if, following Quine [15], we
formulate quantification theory so that only closed formulae are
asserted. Assertion of formulae containing free variables is at best a
convenience; assertion of A(x) with free x can always be replaced
by assertion of (r)A(x).

If A is a formula containing free variables, we define a closure
of A to be any formula without free variables obtained by prefixing
universal quantifiers and necessity signs, in any order, to A. We
then define the axioms of quantified M to be the closures of the
following schemata:

(0) Truth-functional tautologies

1) []JA> 4

2 [J(A=>B).>.[]JA>[]B

(3) A > (x)A, where x is not free in A.
4 ((A>B).>.(x)A > (v)B

G) @ (AR = A®)

1 It is not asserted that the generality interpretation of theorems
with free variables is the only possible one. One might wish a formula A
to be provable iff, for each model ¢, (4, G) = T for every assignment
to the free variables of A. But then (x)A(x) > A(y) will not be a
theorem; in fact, in the countermodel above to the Barcan formula,
¢ (x)P(x) o P(y), G)= F if y is assigned b. Thus quantification theory
would have to be revised along the lines of [9] or [10]. This proce-
dure has much to recommend it, but we have not adopted it since we
wished to show that the difficulty can be solved without revising quan-
tification theory or modal propositional logic.
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The rule of inference is detachment for material implication.
Necessitation can be obtained as a derived rule.

To obtain quantified extensions of S4, S5, the Brouwersche system,
simply add to the axiom schemata all closures of the appropriate
reduction axiom.

The systems we have obtained have the following properties:
They are a straightforward extension of the modal propositional
logics, without the modifications of Prior’s Q; the rule of substitu-
tion holds without restriction, unlike Hintikka’s presentation; and
nevertheless neither the Barcan formula nor its converse is derivable.
Further, all the laws of quantification theory — modified to admit
the empty domain — hold. The semantical completeness theorem
we gave for modal propositional logic can be extended to the new
systems.

We can introduce existence as a predicate in the present system
if we like. Semantically, existence is a monadic predicate FE(x)
satisfying, for each model ¢ on a m.s. (G, K, R), the identity ¢ (E, H)
= y (H) for every H ¢ K. Axiomatically, we can introduce it through
the postulation of closures of formulae of the form: (x)A(x) A E(y).
> . A(y), and (x)E(x). The predicate P used above in the counter-
example to the converse Barcan formula can now be recognized as
simply existence. This fact shows how existence differs from the
tautological predicate A(x) v ~ A(x) even though [ |(z)E(z) is
provable. For although (x)[] (A(x) v ~ A(x)) is valid, (x)[]E(x)
is not; although it is necessary that every thing exists, it does not
follow that everything has the property of necessary existence.

We can introduce identity semantically in the model theory by
defining * = y to be true in a world H when x and y are assigned
the same value and otherwise false; existence could then be defined
in terms of identity, by stipulating that E(x) means (3y) (x = y).
For reasons not given here, a broader theory of identity could be
obtained if we complicated the notion of quantificational model
structure.

We conclude with some brief and sketchy remarks on the ‘“prov-
ability”’ interpretations of modal logics, which we give in each case
for propositional calculus only. The reader will have obtained the
main point of this paper if he omits this section. Provability inter-
pretations are based on a desire to adjoin a necessity operator to
a formal system, say Peano arithmetic, in such a way that, for any
formula A of the system, [ ] A will be interpreted as true iff A is
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provable in the system. It has been argued that such ‘“provability”
interpretations of a modal operator are dispensable in favor of a
provability predicate, attaching to the Godel number of A4; but
Professor Montague’s contribution to the present volume casts at
least some doubt on this viewpoint.

Let us consider the formal system PA of Peano arithmetic, as
formalized in Kleene [12]. We adjoin to the formation rules oper-
ators A, ~, and [] (the conjunction and negation adjoined are to
be distinct from those of the original system), operating on closed
formulae only. In the model theory we gave above, we took atomic
formulae to be propositional variables, or predicate letters followed
by parenthesized individual variables; here we take them to be
simply the closed well-formed formulae of PA (not just the atomic
formulae of PA). We define a model structure (G, K, R), where K
is the set of all distinct (non-isomorphic) countable models of PA,G
is the standard model in the natural numbers, and R is the Cartesian
product K% We define a model ¢ by requiring that, for any atomic
formula P and He K, ¢(P, H) = T (F) iff P is true (false) in the
model H. (Remember, P is a wif of PA, and H is a countable model
of PA.) We then build up the evaluation for compound formulae
as before.1 To say that A is true is to say it is true in the real world G;
and, for any atomic P, ([ ] P,G) = T iff P is provable in PA.
(Notice that ¢ (P, G) = T iff P is true in the intuitive sense.) Since
(G, K, R) is an S5-m.s., all the laws of S5 will be valid on this inter-
pretation; and we can show that only the laws of S5 are generally
valid. (For example, if P is Godel’s undecidable formula, (] P v
[] ~P,G) =F, which is a counterexample to the “law” [] A v
O ~A4)

Another provability interpretation is the following: Again we
take the atomic formulae to be the closed wifs of PA, and then
build up new formulae using the adjoined connectives A, ~, and [].

1 It may be protested that PA already contain symbols for con-
junction and negation, say “&” and “="; so why do we adjoin new
symbols “A” and “~’’? The answer is that if P and Q are atomic
formulae, then P & Q is also atomic in the present sense, since it is
well-formed in PA; but P A Q is not. In order to be able to apply the
previous theory, in which the conjunction of atomic formulae is not
atomic, we need “A”’. Nevertheless, for any H ¢ K and atomic P and Q,
o(P&Q, H) = ¢(P A Q, H), so that confusion of “&” with “A” causes
no harm in practice. Similar remarks apply to negation, and to the
provability interpretation of S4 in the next paragraph.
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Let K be the set of all ordered pairs (E, ¢), where E is a consistent
extension of PA, and « is a (countable) model of the system E.
Let G = (PA, a,), where ¢, is the standard model of PA. We say
(E, @) R (E', ¢'), where (E, ) and (E’, a’) are in K, iff E’ is an ex-
tension of E. For atomic P, define ¢(P, (E, «)) = T (F) iff P is
true (false) in @. Then we can show, for atomic P, that ¢(] P,
(E,@)) = T iff P is provable in E; in particular, (] P,G) =T
iff P is provable in PA. Since (G, K, R) is an S4-m.s., all the laws
of S4 hold. But not all the laws of S5 hold; if P is Godel’s undecid-
able formula, ¢((~[JP =[] ~[]P), G)=F. But some laws
are valid which are not provable in S4; in particular, we can prove
for any A, ¢((] ~[J(CAAO ~A), G) = T, which yields the
theorems of McKinsey’s S4.1 (cf. [13]). By suitable modifications this
difficulty could be removed; but we do not go into the matter here.

Similar interpretations of M and the Brouwersche system could
be stated; but, in the present writer’s opinion, they have less interest
than those given above. We mention one more class of provability
interpretations, the “reflexive” extensions of PA. Let E be a formal
system containing PA, and whose well-formed formulae are formed
out of the closed formulae of PA by use of the connectives &, -,
and []. (I say “ &” and ““~" to indicate that I am using the same
conjunction and negation as in PA itself, not introducing new ones.
See footnote 1, p. 91.) Then E is called a reflexive extension of PA iff:
(1) It is an inessential extension of PA; (2) [ ] A is provable in E
iff A is; (3) there is a valuation &, mapping the closed formulae of E
into the set {T, F}, such that conjunction and negation obey the
usual truth tables, all the true closed formulae of PA get the value T,
a((]A) = T iff A is provable in E, and all the theorems of E get
the value T. It can be shown that there are reflexive extensions of
PA containing the axioms of S4 or even S4.1, but none containing S5.

Finally, we remark that, using the usual mapping of intuitionistic
logic into S4, we can get a model theory for the intuitionistic predi-
cate calculus. We will not give this model theory here, but instead
will mention, for propositional calculus only, a particular useful
interpretation of intuitionistic logic that results from the model
theory. Let E be any consistent extension of PA. We say a formula
P of PA is verified in E iff it is provable in E. We take the closed
wifs P of PA as atomic, and build formulae out of them using the
intuitionistic connectives A, v, -, and . We then stipulate in-
ductively: A A B is verified in E iff A and B are; A v B is verified
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in E iff A or B is; - A is verified in E iff there is no consistent
extension of E verifying A4; A > B is verified in E iff every consistent
extension E’ of E verifying A also verifies B.

Then every instance of a law of intuitionistic logic is verified in
PA; but, e.g., A v— A is not, if A is the Godel undecidable formula.
In future work, we will extend this interpretation further, and show
that using it we can find an interpretation for Kreisel’s system FC
of absolutely free choice sequences (cf. [14]). It is clear, incidentally,
that PA can be replaced in the provability interpretations of S4
and S5 by any truth functional system (i.e., by any system whose
models determine each closed formula as true or false); while the
interpretation of intuitionism applies to any formal system what-
soever.

Harvard University.
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