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Abstract 47 

Complex cognitive functions are widely recognized to be the result of a number of brain regions 48 

working together as large-scale networks. Recently, complex network analysis has been used to 49 

characterize various structural properties of the large scale network organization of the brain. For 50 

example, the human brain has been found to have a modular architecture i.e. regions within the 51 

network form communities (modules) with more connections between regions within the 52 

community compared to regions outside it.  53 

The aim of this study was to examine the modular and overlapping modular architecture of the 54 

brain networks using complex network analysis. We also examined the association between 55 

neighborhood level deprivation and brain network structure – modularity and grey nodes. We 56 

compared network structure derived from anatomical MRI scans of 42 middle-aged 57 

neurologically healthy men from the least (LD) and the most deprived (MD) neighborhoods of 58 

Glasgow with their corresponding random networks. Cortical morphological covariance 59 

networks were constructed from the cortical thickness derived from the MRI scans of the brain.   60 

For a given modularity threshold, networks derived from the MD group showed similar number 61 

of modules compared to their corresponding random networks, while networks derived from the 62 

LD group had more modules compared to their corresponding random networks. The MD group 63 

also had fewer grey nodes – a measure of overlapping modular structure. These results suggest 64 

that apparent structural difference in brain networks groups may be driven by differences in 65 

cortical thicknesses between groups. This demonstrates a structural organization that is 66 

consistent with a system that is less robust and less efficient in information processing. These 67 

findings provide some of evidence of the relationship between socioeconomic deprivation and 68 

brain network topology. 69 
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1. Introduction 78 

Overlapping large-scale networks that are organised across the cortex form the anatomical and 79 

functional foundations of complex cognitive processes (Bressler and Menon, 2010). Complex 80 

network analysis based on graph theory has been recently used on neuroimaging data (MRI, 81 

MEG and EEG) to explore different properties of these large-scale cortical network organization 82 

(Sporns, 2011a). These studies have shown that human brain networks are optimally functioning 83 

systems that demonstrate small world properties, and a modular architecture (He et al., 84 

2007;Bassett et al., 2008;Chen et al., 2008a;Bullmore and Sporns, 2012). Modularity is an index 85 

of community structure within a large-scale network (Newman, 2006). That is, these networks 86 

have a tendency to form modules or communities with more connections between nodes within 87 

the module than between modules. Structurally, modules represent discrete entities whose 88 

functions are separable from those of other modules (Hartwell et al., 1999).  89 

While modularity is usually associated with robustness of the network in biological systems, 90 

complex cognitive processes (an index of performance of the network) are unlikely to occur 91 

optimally within isolated modules (Hintze and Adami, 2008). Rather, they are likely to be 92 

dependent on the coordinated activity between several modules within the large-scale network. 93 

Indeed, most biological networks that survive in nature are those that achieve some balance 94 

between robustness and performance. Intuitively, it would be beneficial if the human brain 95 

network demonstrated modularity – increasing its robustness - but also had an architecture that 96 

facilitates efficient information transfer between modules – thereby improving performance. 97 

Therefore, while maintaining the advantages of having a modular architecture, we propose that 98 

the human brain will also demonstrate an overlapping modular architecture, where certain nodes 99 

(we call grey nodes) are included in many modules at the same time (Figure 1) (Zhao et al., 100 

2011). Within an information processing system, such architecture, will improve information 101 
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transfer between modules thereby increasing efficiency and performance of the network in terms 102 

of having lesser number of edges and shorter average path lengths. In short, while modularity 103 

represents the community architecture within a network, grey nodes represents an index of 104 

overlapping communities. Survival in adverse environments may be associated with changes in 105 

network structure that make them less robust and reduce their performance. Neighborhood level 106 

socioeconomic status (SES) is associated with adversity and the presence of risk factors for 107 

reduced physical and neurocognitive health (Diez Roux and Mair, 2010;Srireddy et al., 2012). If 108 

indeed, cognitive functions are dependent on optimal functioning (and hence structure and 109 

topology) of large-scale brain networks, it is possible SES is associated with changes in large-110 

scale network structure. A small number of neuroimaging studies have shown SES to be 111 

associated with variations in individual brain anatomy and functional connectivity in adults 112 

(Gianaros et al., 2007;Gianaros et al., 2008). While network structure and topology have been 113 

found to be disrupted in a number of mental illnesses, no study has examined the relationship 114 

between neighborhood socioeconomic deprivation and brain network structure in humans.  115 

The aim of the present study was to apply complex network analysis to examine the structural 116 

characteristics – modularity and grey nodes – of cortical networks derived from cortical 117 

morphology correlation (Figure 1). We also examined these structural characteristics in relation 118 

to socioeconomic deprivation. There is growing evidence that cortical morphology covariation is 119 

an indicator of connectivity between different regions of the brain (Worsley et al., 2005;Lerch et 120 

al., 2006;He et al., 2007;Bassett et al., 2008;Zalesky et al., 2010;Alexander-Bloch et al., 2013). 121 

Graph-theoretical network analyses based on morphological correlations have been used to 122 

examine brain network structure in healthy and clinical samples (He et al., 2007;Bassett et al., 123 

2008;He et al., 2009).  124 
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Using complex network analysis of magnetic resonance imaging (MRI) surface-based 125 

morphometry we investigated the topological features of whole cortical anatomical networks in 126 

42 neurologically healthy men from the most deprived (MD) and least deprived (LD) 127 

neighborhoods of Glasgow (Sporns, 2011b). The connectivity matrices in the present study were 128 

derived from region-wise cortical thickness correlations between 68 anatomical parcellations and 129 

subjected to complex network analyses. We propose that the brain networks derived thus will 130 

show an overlapping modular architecture – by the presence of modules and grey nodes. We also 131 

examined to determine if these structural properties differed significantly between neurologically 132 

healthy people living in the most deprived (with higher risk of reduced mental health cognitive 133 

functioning) and the least deprived regions of Glasgow. Throughout the paper, “structural” refers 134 

to the network structure (e.g. modularity or proportion of grey nodes). We have used the term 135 

“anatomical” to refer to brain anatomy.  136 

137 
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2. Materials and Methods  138 

2.1 Participants 139 

Participants were recruited as part of a larger study (Psychological, social and biological 140 

determinants of ill health (pSoBid). Details of the design of pSoBid have been described 141 

elsewhere (Velupillai et al., 2008;Deans et al., 2009;Knox et al., 2012;McGuinness et al., 142 

2012;McLean et al., 2012). Selection of participants was based on the Scottish Index of Multiple 143 

Deprivation 2004 (SIMD), which ranks small areas on the basis of multiple deprivation 144 

indicators across six domains, namely: income; employment; health; education, skills, and 145 

training; geographic access and telecommunications; and housing. Sampling was stratified to 146 

achieve an approximately equal distribution of the 666 participants across males and females and 147 

age groups (35–44, 45–54 and 55–64 years) within the most (bottom 5% of SIMD score) and LD 148 

areas (top 20% of SIMD score). Participants could opt-in for the neuroimaging component of the 149 

study. This paper presents the analysis from 42 male individuals who were randomly selected. 150 

This included 21 people from the most deprived regions and 21 from the least deprived regions, 151 

who were age matched.  152 

2.2 Image acquisition 153 

All MR imaging were performed using GE Medical systems, 3T Signa Excite HD system 154 

(Milwaukee, USA) using an eight channel phased array (receive only) head coil. An axial 3D 155 

T1-weighted IR-FSPGR was acquired with TR = 6.8ms; TE = 1.5ms, Inversion Preparation time 156 

= 500ms; Flip angle=12º; FOV = 26cm; Phase FOV= 70%; matrix: 320 x 320; 160 slices; 157 

Bandwidth 31.25 kHz; Slab thickness = 1mm. The acquisition time for this scan was 8min 54s.  158 

 159 

 160 
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Cortical thickness measurements and parcellations  161 

Cortical reconstruction was performed with the FreeSurfer image analysis suite, which is 162 

documented and freely available for download online (http://surfer.nmr.mgh.harvard.edu/). (Dale 163 

et al., 1999;Fischl et al., 1999;Fischl and Dale, 2000) Briefly, following skull-stripping and 164 

correction of inhomogeneity artifact, constrained region growing was used to create a unitary 165 

white matter volume for each hemisphere. The grey-matter/white-matter boundary for each 166 

cortical hemisphere was determined using tissue intensity and neighborhood constraints. The 167 

white matter surface was tessellated by assigning 2 triangles to the square face of each surface 168 

voxel. This process yielded approximately 160000 vertices per hemisphere. The white matter 169 

surfaces were deformed towards the grey matter/pial boundary, with a point to point 170 

correspondence at each vertex. Cortical thickness was computed as the distance between the 171 

white and the pial surfaces at each vertex. Cross-subject registration of hemispheric cortical 172 

surfaces was performed by projecting them onto the spherical representations. The maps 173 

produced are not restricted to the voxel resolution of the original images and are thus capable of 174 

detecting sub-millimeter differences between groups. The parcellations were obtained using the 175 

Desikan sulcogyral-based atlas, which follows the anatomical conventions of Duvernoy. The FS 176 

image-processing pipeline was visually inspected and corrected at critical points in order to 177 

avoid errors permeating through the subsequent analyses. Procedures for the measurement of 178 

cortical thickness have been validated against histological analysis and manual measurements. 179 

The Desikan Killiany atlas produces 68 parcellations based on gyri and sulci (Desikan et al., 180 

2006). In addition to the Desikan Killiany atlas parcellation scheme, we also used fine-grained 181 

parcellation schemes based on anatomical sulcogyral boundaries including the Destrieux atlas, 182 

(148 parcellations) and fine-grained parcellation schemes (200, and 1000 parcellations) that did 183 

http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/
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not follow anatomical conventions described in Echtermeyer et al (Destrieux et al., 184 

2010;Echtermeyer et al., 2011). The pipeline of the analysis and the parcellation are shown in 185 

figure 2. 186 

2.3 Cortical thickness – between group comparison 187 

Statistical comparisons of global data and surface maps were generated by computing a general 188 

linear model (GLM) of the effect of neighbourhood deprivation (independent variable) on 189 

thickness (dependent variable) at each vertex in the cortical mantle, using the Query, Design, 190 

Estimate, Contrast (QDEC) interface of FreeSurfer. Age was used as nuisance covariate in the 191 

model. QDEC is a single-binary application included in the FreeSurfer distribution that is used to 192 

perform group averaging and inference on the cortical morphometric data produced by the 193 

FreeSurfer processing stream. (http://surfer.nmr.mgh.harvard.edu/fswiki/Qdec). Maps were 194 

created using statistical thresholds of p=.05 and were smoothed to a full width half maximum 195 

(FWHM) level of 20mm. Since this analysis involved performing a GLM analysis at 160000 196 

vertices, these maps were corrected for multiple comparisons by means of a cluster-wise 197 

procedure using the Monte Carlo Null-Z simulation method adapted for cortical surface analysis 198 

and incorporated into the QDEC processing stream. For these analyses, a total of 10,000 199 

iterations of simulation were performed for each comparison, using a threshold of p=.05. 200 

2.4 Network construction  201 

Network construction was based on parcellations of cortical thickness as described by He et al. 202 

(He et al., 2007) We defined an anatomical connection (edge) as statistical associations in 203 

cortical thickness between cortical parcellations based on the Desikan Killiany atlas included in 204 

the FreeSurfer pipeline (nodes). The statistical similarity in cortical thickness between 2 regions 205 

was measured by computing the Pearson’s correlation coefficient across subjects to create an 206 

http://surfer.nmr.mgh.harvard.edu/fswiki/Qdec
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interregional correlation matrix (N × N, where N is the number of brain regions based on Desikan 207 

cortical parcellation atlas, here N = 68). In order to keep the analysis as close as possible to 208 

previous reports, prior to the correlation analysis, a linear regression was performed at every 209 

region to remove the effects of age, and mean overall cortical thickness; the residuals of this 210 

regression were then substituted for the raw cortical thickness values (He et al., 2006;Chen et al., 211 

2008b).  In order to be consistent with the cortical thickness group difference analysis presented 212 

above, the complex network analyses were repeated without mean overall cortical thickness in 213 

the model, but the results of our analysis did not differ significantly (results not shown).   A 214 

separate matrix was produced for the MD (21 subjects) and the LD (21 subjects). As a first step, 215 

all negative correlations were discarded.  As the correlation analysis was performed for all 68 × 216 

68/2 = 1431 pairs of regions, we performed a multiple comparisons correction to test the 217 

significance of these correlations.  218 

We applied the false discovery rate (FDR) procedure separately to each matrix in order to correct 219 

the multiple comparisons at a q value of 0.2 (this was chosen as at 0.05, both matrices were very 220 

sparse). (Genovese et al., 2002) Using this threshold, we constructed a symmetric connection 221 

matrix (Figures 5 and 6), whose element was 1 if the cortical thickness correlation between 2 222 

regions was statistically significant and 0 otherwise. This binarized connection matrix captures 223 

the underlying anatomical connection patterns of the human brain common to the population 224 

sample under study. We repeated all the analyses on matrices derived from the fine grained 225 

parcellation schemes described above, in order to validate our findings using multiple 226 

parcellation schemes.  227 

2.5 Modularity 228 
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All the modularity metrics were calculated on the above two adjacency matrices separately and 229 

compared to corresponding random networks.  Modularity is an intuitional concept and there are 230 

variations in the mathematical definitions, where each has its own advantages and disadvantages. 231 

One common property among the various ways of defining modularity, however, is accounting 232 

for the agreed intuition about modularity, i.e. a module is a subset of nodes in a graph, whose 233 

connections among the elements within the subset are much denser than the ones to nodes 234 

outside the subset. Newman suggested the following modularity measure,Q : 235 

Bss
m

Q T

Ss 4

1
max


 , 236 

where s  is a column vector and element of the set S , S  is the set of all column vectors whose 237 

dimension are equal to the number of nodes in the graph, n , and each component of the vector is 238 

either -1 or +1,  T  is the transpose. B  is equal to   mkkA T 2/ , A  is the adjacency matrix, 239 

whose dimension is nn , and the i -th column (or row) and j -th row (or column) element is 1 240 

(or 0) if i -th and j -th nodes are connected by an edge (or if there is no edge), k is a column 241 

vector whose element is the number of edges connected for each node, i.e. the degree of node, 242 

and m  is the total number of edges. Roughly speaking, B quantifies the difference between the 243 

number of edges found in a subset of the given network structure, i.e. A , and the expected 244 

average from the random graphs, whose nodes degree is the same as the one of the given graph, 245 

i.e.  mkkT 2/ . Hence, positive Q  values imply that there are more edges found than the 246 

expected and it is, therefore, a module. 247 

By obtaining  that maximizes the modularity, Q , the nodes are divided into two groups, i.e. 248 

modules, depending on the corresponding values in the maximizing vector, s . The maximization 249 

problem, however, is the integer quadratic programming problem, which is NP-hard. It is even 250 
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computationally very difficult to obtain the true solution, which gives the global maximum value 251 

ofQ . Note that Q  is always less than or equal to 1. If the condition for s  is relaxed so that it can 252 

take any real numbers, then the problem becomes finding maximum eigenvalue and the 253 

corresponding eigenvector of the matrix, . This can be solved efficiently using the power-254 

iteration, i.e. choosing an arbitrary initial vector, 0s , and recursively updating the vector using 255 

kk Bss 1  until it converges. Then, s  maximizing Q  is calculated simply by taking the sign of 256 

converged ks . To increase the chance of finding the global solution, these procedures are 257 

repeated a number of times with a different random initial vector, 0s . If the calculated maximum 258 

value, Q , is positive (or negative), then the graph is divided (or declared indivisible). 259 

Once the graph is divided into two modules, then each module is inspected whether it can be 260 

further divided by solving the following the maximization problem: 261 

rBr
m

Q gT

Sr g 4

1
max


 , 262 

where r  is an element of the set gs , gs  is the set of gn -dimension column vectors whose 263 

element is either +1 or -1, gn  is the number of nodes in the module, which is found in the 264 

previous step, gB is equal to  gij kB diag , ijB  is a matrix constructed by a part of , where the 265 

rows and columns belong to the module, gk  is the degree of each nodes only concerning gB , 266 

and  diag  is the diagonal matrix, where the diagonal terms are given by the vector in the 267 

argument and the other elements are zero. Again, if 0Q (or 0Q ), then the module is 268 

divided into two smaller modules (or declared indivisible). The above procedures are repeated on 269 

every module recursively until all modules are declared indivisible. By definition, the divisibility 270 

of a module is determined based on whether the modularity measure is positive or not. Very 271 
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often, it is, hard to justify whether some subgroups of a graph are modules if the modularity 272 

contribution, i.e. Q  or Q , is very close to zero. As the mathematically possible maximum 273 

value is 1, the modular structure is much clearer if the modularity is closer to 1. Hence, the 274 

number of modules is calculated for various Q -threshold, which decides when modules are 275 

declared as indivisible. 276 

2.5 Grey Nodes 277 

A network, in general, is not a simple collection of modules but a combination of complicated 278 

overlapped modular structures, i.e. it demonstrates a hierarchical modular architecture. The 279 

overlapped modular structures are hard to decipher into elementary modules that pertain to the 280 

whole network. There are several methods to unravel the overlapping modular structure. In order 281 

to use a consistent measure with the modular calculation, an extended modularity ( eQ ) is defined 282 

as follows: 283 

e

T

e
Ss

e Bss
m

Q
ee 4

1
max


 , 284 

where es  is an element of the set, eS , and the set eS  is the collection of vector, es , whose 285 

dimension is again, n , i.e. , the number of nodes, and its element is either -1, +1, or 0. Compare 286 

to the vector s  in S , es  has one more degree of freedom in possible values(Zhao et al., 2011). 287 

The nodes corresponding to zero are called grey nodes, which are included in multiple modules 288 

at the same time or are not included in any module. eQ  is defined in the similar manner.  Grey 289 

node is a similar concept to that of connector hub and hierarchical or overlapping modular 290 

structure. While connector hubs are defined as nodes with greater than average degree of the 291 

network and distributed between both local and long range connections, grey nodes are defined 292 

as nodes that are shared by modules. It is an index of overlapping modular architecture of the 293 
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network. Previous literature has described such overlapping architecture based on a prior 294 

definition of modularity by Newman (2004) (Newman and Girvan, 2004;Nicosia et al., 295 

2009;Lazar et al., 2010;Wang et al., 2012). On the other hand, “grey nodes” are a unified way to 296 

define the structure in the more recent modularity definition by Newman (Newman, 2006). This 297 

provides an advantage that we measure modular architecture, and the overlapping architecture 298 

using a consistent measure without requiring significant changes in the algorithm (Newman, 299 

2006).  300 

All calculations presented in this paper are based on Monte-Carlo simulations performed 1000 301 

times. The distributions of all calculations are confirmed to be similar to Gaussian distributions 302 

(data not shown). Hence, there is no danger that the analyses based on the mean and the variance 303 

may give any false interpretations of the true distribution of the data. All graphs were compared 304 

to random graphs (with the same number of nodes and degree distribution as the corresponding 305 

brain networks). 306 

307 
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3. Results 308 

Demographic details, differences in risk factors and performance on cognitive tests of the 309 

participants are shown in Table 1. In general, participants in the MD group had higher 310 

inflammatory and metabolic risk markers, poorer GHQ scores and performed poorly on a 311 

number of cognitive tests. Supplemental file shows the details of how early life and current 312 

individual level SES were derived. Table S2 shows that individual level SES covaried 313 

significantly with the neighborhood level deprivation status, and hence were not included in our 314 

data analysis.  315 

3.1 Cortical thickness differences between groups 316 

Initial analysis of cortical thickness across groups showed that those from the most deprived 317 

population had significant cortical thinning pertaining to bilateral perisylvian cortices. (Figure 3)  318 

3.2 Network analysis 319 

We conducted all analyses on binarised matrices derived from interregional correlations of 320 

cortical thickness. Initial examination of number of isolated modules showed that for a given 321 

correlation threshold, the least deprived group had greater number of isolated groups compared 322 

to the deprived group (figure 4). The raw networks and FDR filtered networks are shown in 323 

figure 5 and 6. The distribution of the groups’ correlation coefficients is shown in figure 7. A 324 

direct comparison of the networks derived from the above populations, was not possible, as for a 325 

given correlation threshold, the sparsity (density) of the two networks were significantly 326 

different (figure 8). In addition, the FDR procedure thresholded the two networks significantly 327 

differently. This method of thresholding resulted in different number of edges - k - (sparsity) in 328 

the networks of the two groups because of differences in their inter-regional cortical thickness 329 
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correlations. We therefore compared the network structure derived from the groups to their 330 

corresponding random networks. The results of this analysis are shown in figure 9 and 10.  331 

3.2. 1 Modularity and grey nodes  332 

Firstly, the networks derived from both groups showed a modular architecture, and the presence 333 

of grey nodes. Towards a modularity of 0.3 (strong modularity), the least deprived network had 334 

more modules, compared to its corresponding random network. However, the most deprived 335 

network, showed no difference from its random counterpart. 336 

With regards the grey nodes, for a given a modularity towards 0.3, the least deprived network 337 

showed significantly greater number of grey nodes compared to the corresponding random 338 

network. However, the most deprived network showed significantly smaller proportion of grey 339 

nodes compared to its random counterpart. While the differences between groups were 340 

maintained in the Destreaux atlas (148 parcels) that followed the sulcogyral boundaries, these 341 

differences were not seen with the finer grain parcellations of 200 and 1000 parcels that did not 342 

follow the sulcogyral scheme. (Figure 11 a, b,c)343 
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Discussion 344 

We have shown here that brain networks derived from cortical morphological correlations show 345 

a modular organization, and indeed an overlapping modular architecture as demonstrated by the 346 

presence of grey nodes. We have also shown that neurologically healthy subjects from the MD 347 

regions of Glasgow differ significantly in their brain network structure from those from the LD 348 

regions in comparison to their corresponding random networks on relatively coarse parcellations 349 

schemes that followed the sulcogyral boundaries. Brain networks in the MD group showed same 350 

number of modules and smaller proportion of grey nodes compared to their corresponding 351 

random network. These differences however disappeared at fine-grained parcellation schemes 352 

that did not follow the sulcogyral schemes.  353 

A number of recent studies have shown that human brain network structure derived from 354 

anatomical covariance demonstrates a modular architecture (Chen et al., 2008a;Chen et al., 355 

2011). There are a number of advantages in having a modular architecture. Kaiser et al suggest 356 

that this feature allows for low wiring costs; are time scale separable; allows for the coexistence 357 

of integration and segregation within a network; transient chimera states of desynchronisation 358 

and synchronization; and also allows for rapid and robust assembly (Kaiser, 2007). In addition, a 359 

modular architecture is robust against random attacks on the network and helps to contain the 360 

effects of these attacks to the module, rather than spreading through the network. 361 

 We compared the brain network graphs with random graphs that had similar degree to the 362 

corresponding brain network. For both the LD and MD groups, at lower modularity thresholds, 363 

the brain network graphs had fewer modules compared to their corresponding random graphs. 364 

However, this phenomenon was reversed at higher thresholds. This is possibly because within 365 
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the constraints of fixed resources (nodes/edges), brain networks enhance a few specific modules 366 

by rewiring and sacrificing unwanted modules.  367 

In our study, for a given number of modules, the brain networks in the LD group showed 368 

stronger modular organization than their corresponding random graphs. In other words, the 369 

networks derived from the most deprived group had more edges between modules, which 370 

weakened the modular architecture. Previous work by Chen et al using a similar technique 371 

showed that modules derived using correlations of cortical thickness, broadly gave out six 372 

functionally relevant modules (Chen et al., 2008a). Using the same number (six modules) as 373 

Chen et al, the modules were functionally more relevant in the LD population (data not shown). 374 

For example, all anatomical regions pertaining to language function were integrated together 375 

within a given module. However, this was not the case with the MD. Anatomical regions 376 

pertaining to similar function were distributed across several modules, consistent poor functional 377 

modular organization at a given threshold. While these modularity differences may be due to 378 

anatomical differences between groups that we have shown, these may have functional 379 

implications, as anatomical networks have been found to overlap with functional networks 380 

(Alexander-Bloch et al., 2013). If we consider these networks as information processing systems, 381 

then such a difference in network structure could contribute to greater noise and less efficient 382 

information processing within the system. However, a direct interpolation of the results of our 383 

study is not possible due to the static nature of our data.  384 

We describe a new metric – grey node – as a measure of overlapping modular organization. 385 

While modularity improves the robustness within a system, it is unlikely that our brain network 386 

achieves optimal performance by operating as a number of different isolated modules. As stated 387 

previously, cognitive processes are likely to be the result of a number of modules interacting 388 
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with each other in a fast and efficient way. The overlapping modular architecture – represented 389 

here by the presence of grey nodes - is beneficial in that given a fixed number of resources it 390 

provides the best modular architecture, maximizing the communication between modules 391 

thereby achieving a balance between robustness and optimal performance. Grey nodes have two 392 

implications in the network structure: i) efficient usage of resources and ii) shorter average 393 

distance between nodes. Recycling existing nodes and edges to combine multiple modules saves 394 

limited resources to construct an efficient network. It is believed that reducing wiring resources 395 

is one of the major selection pressures on the brain network evolution. Our results suggest that 396 

the networks derived from the MD group show much lower efficiency compared to their 397 

corresponding random network (Achard and Bullmore, 2007;Bullmore and Sporns, 2009). While 398 

metrics describing overlapping modules have been outlined previously, grey nodes have the 399 

advantage that it was derived from Newman (2006) and integrates well with the given 400 

modularity metric (Newman, 2006). 401 

While the structural differences may be driven by the difference in cortical thickness between the 402 

two groups, the reason for the anatomical difference between the two groups is not clear. It 403 

should be noted that the groups differed on a number of variables that could potentially explain 404 

the observed difference. For example, those from the most deprived had poorer mental health 405 

and also had higher levels of inflammation. (See Table 1) We have previously shown 406 

inflammatory markers to be associated with cortical thickness (Krishnadas et al., 2013). We were 407 

however underpowered to explore the role of potential mediators that could explain the 408 

difference between groups in structural properties. Previous studies have demonstrated age 409 

related changes to modularity (Chen et al., 2011). Our groups were matched for age. Similarly, 410 

mental illnesses have shown to be associated with disruption to the modular architecture. A few 411 
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studies have also examined this property in medical conditions like MS and epilepsy (He et al., 412 

2009;Vaessen et al., 2012). A number of studies have shown an association between 413 

socioeconomic deprivation and brain anatomy and function in both children and adults, though 414 

none have examined the association with network structure (Gianaros et al., 2011;Hanson et al., 415 

2011;Jednorog et al., 2012). A key question that remains is how these anatomical differences 416 

could contribute to poorer cognitive functioning and mental health. Interestingly, the MD group 417 

performed poorly on all cognitive tests, including NART (National adult reading test) – a test 418 

that is relatively stable through age, and often considered a test of measure of the peak achieved 419 

intellectual functioning. We did not examine if less modularity was directly associated with 420 

poorer cognitive functioning as utilizing correlation coefficients to construct the matrix meant 421 

that indices of modularity could not be calculated at an individual level. However, change in 422 

network structure is a potential mechanism by which regional anatomical brain deficits may 423 

contribute to global network topology, thereby resulting in poorer cognitive function. Previous 424 

studies have examined the relationship between intelligence quotient (IQ) and network 425 

properties. For example Li et al found a significant positive correlation between number of edges 426 

and IQ. They also found that those with greater IQ had shorter path lengths, greater clustering 427 

coefficient (similar to our findings) and in general greater global efficiency of structural 428 

networks in the brain (Li et al., 2009). Similarly using resting state fMRI to examine the overall 429 

organization of the brain network using graph analysis, van den Heuvel et al showed a strong 430 

negative association between characteristic path length of the resting-state brain network and IQ 431 

(van den Heuvel et al., 2009). They suggest that human intellectual performance is likely to be 432 

related to how efficiently the brain integrates information between various brain regions. 433 

Neighbourhood level vs Individual level SES. 434 
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Socio-economic status (SES) refers to a multidimensional construct that is usually measured 435 

using a number of economic (e.g. income) and noneconomic (e.g. education) indicators 436 

(Hackman et al., 2010). SES can be measured at an individual/household or at a neighbourhood 437 

level. Regardless of the level of measurement (individual/neighbourhood), SES has been 438 

associated with significant health disparities (Diez Roux and Mair, 2010). Most of the studies 439 

previously mentioned have examined the association between individual level SES and brain 440 

morphology. But individual level explanations for poor health do not capture significant social 441 

and structural determinants of ill health (Diez Roux and Mair, 2010). It is well established that 442 

social circumstances have direct biological consequences, as well as impact on health 443 

behaviours. (See Diez Roux and Mair for a detailed review on neighbourhood deprivation). 444 

However, relatively small number of studies have explored the contributions of individual level 445 

SES indicators with neighbourhood level indicators to health inequalities. Neighbourhood level 446 

deprivation has been associated with poor health outcomes due to inequalities in resource 447 

distribution. These neighbourhoods have physical (e.g. access to food) and social (e.g. violence) 448 

attributes that are contributors to health outcomes. However, individual and neighbourhood 449 

deprivation are likely to interact significantly. For example,  Stafford and Marmot found that 450 

living in a deprived neighbourhood has the most adverse impacts on poorer individuals possibly 451 

because they are more dependent on collective resources of the neighbourhood (Stafford and 452 

Marmot, 2003). In our study, individual level SES covaried significantly with neighbourhood 453 

level SES. (For details of this analysis see table 2 in supplement) Due to the nature of the 454 

sampling technique, people from the most deprived neighbourhoods also had poorer individual 455 

SES. This is partly because neighbourhood deprivation scores (SIMD) are derived from data 456 

pertaining to individuals in the area. Since our groups differed inherently in their individual SES, 457 
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it was deemed inappropriate to co-vary for the effects of individual SES(Miller and Chapman, 458 

2001).  Our relatively small sample size was also not sufficiently powered to examine if 459 

individual SES contributed significant variance over and above that explained by neighbourhood 460 

SES or vice versa. The extreme group sampling technique prevented us from examining any 461 

dose-response effect of either individual or neighbourhood level deprivation in our sample. 462 

Effect of parcellation scheme on network structure 463 

Zalesky et al have previously shown that network topology vary considerably as a function of the 464 

spatial scale of the atlas used (Zalesky et al., 2010).  Previous reports that have examined cortical 465 

thickness covariance network structure in clinical and nonclinical populations have used the 466 

same parcellation scheme (Desikan-Killiany atlas) used in our study (Raj et al., 2010;Hanggi et 467 

al., 2011;Romero-Garcia et al., 2012;Yang et al., 2012). Of note,  Romero-Garcia et al in order to 468 

examine the effect of network resolution on topological properties, compared the Desikan-469 

Killiany atlas based parcellation with finer parcellation schemes of up to 1494 parcellations 470 

(Romero-Garcia et al., 2012).  Interestingly they found that highly grained cortical scales showed 471 

enhanced local connectivity (clustering coefficient), and local efficiency, but increased path 472 

length and decreased global efficiency. Our findings resonate that of Romero-Garcia et al, in 473 

that, at different parcellation schemes, the network topologies differed (Romero-Garcia et al., 474 

2012). For fine-grained parcellation schemes that did not follow sulcogyral boundaries, the LD 475 

brain network and MD brain network were similar. At a modularity threshold of around 0.3, both 476 

network structural properties looked similar to their random counterparts (suggesting a decrease 477 

in global properties at more fine grained schemes). (figure 1 a and 1b) 478 

Anatomically, since cortical thickness is a continuous measure, regions that lie close to each 479 

other will show very similar cortical thickness and hence high correlation. Here, a fine 480 
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parcellation schemes, may uncover local connection (or a forking-U fiber connection), while a 481 

coarse may not (see figure 1 in Zalesky et al)(Zalesky et al., 2010). In addition, regions close to 482 

each other are likely to be anatomically connected by the tangential neurons and dendrites. It is 483 

possible that in our case, the group differences disappeared when geometrically close 484 

connections were exposed at the finer parcellation schemes. In addition, at finer parcellation, 485 

where the number of parcels far exceed the number of subjects in the study, the study may have 486 

been significantly underpowered to show significant differences between groups (Zalesky et al., 487 

2010).  488 

It is also possible that network structure derived from relatively coarse parcellations are more 489 

representative of large scale cortical networks, while the networks derived from the fine-grained 490 

parcellations also include the meso/microscale connections representing regional/local 491 

connections. Whatever the case, it is clear that the granularity of chosen parcellations may affect 492 

the results of the network analysis. Our data suggest that when exploring connectivity, choosing 493 

the right granularity that is best suited to answer the question of interest is vital. However clear 494 

cut guidelines pertaining to this are absent. One suggestion is that in order to answer clinical 495 

questions, anatomically relevant atlases like AAL or the sulcogyral parcellations (FreeSurfer) as 496 

used in our study may be more relevant.  Interestingly for a finer (than Desikan atlas) 497 

parcellation that follows the sulcogyral boundaries (the Destreaux atlas - 149 parcellations), the 498 

difference between the brain and random networks in the most deprived group disappear at 499 

around a modularity threshold of around 0.2 (figure 11a).  500 

 501 

Sparsity (density) and modularity 502 
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Although we found significant differences between the networks and their corresponding random 503 

graphs, we did not perform a direct comparison of the network structure between the two groups, 504 

as the thresholds imposed by the FDR correction led to matrices that were significantly different 505 

in their sparsity (density). Thresholding a matrix is a problem when comparing networks that 506 

have different sparsity for a given correlation coefficient (van Wijk et al., 2010). While the 507 

reason for the sparsity difference between the groups is not known, revealing topological 508 

differences gives deeper insights into the difference in networks than just revealing the sparsity 509 

difference.  One recommended way to solve this problem is by fixing the sparsity (density) of a 510 

matrix, and comparing the networks at the same fixed sparsity threshold (Hanggi et al., 2011). 511 

This approach will however increase the false negative or false positive correlations at a given 512 

threshold.  For instance, in our case, at more than 90% of correlation thresholds, the LD network 513 

was more sparse (less edges – k) than the MD. i.e. for a given correlation threshold, the networks 514 

from both the groups were different in their size (the number of edges). The difference in 515 

modularity between groups may therefore be k dependent. This difference in correlation 516 

threshold may have arisen from anatomical difference in the bilateral perisylvian cortical 517 

thickness we found between groups. While these morphological differences could have led to a 518 

reduction in correlation between regions that are actually connected, this could also have led to 519 

an increase in the number of spurious correlations (false positive), between regions that are not 520 

biologically connected, thereby contributing to noise within the network. Therefore, introducing 521 

false edges by fixing the sparsity was not thought to be meaningful.  522 

Cortical thickness correlation as a measure of connectivity 523 

While the biological meaning of structural covariance is not clear, structural covariance networks 524 

have been found to be genetically heritable, associated with cognitive function, recapitulate 525 
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functional networks, and change over the life span. See Alexander-Bloch (2012)  for a detailed 526 

recent review of this literature (Alexander-Bloch et al., 2013). Cortical volume is a construct that 527 

is derived from two distinct properties of the cortical sheet: cortical thickness and surface area 528 

and have distinct cellular and genetic basis.(Rakic, 2007;2009) Rakic’s radial unit hypothesis 529 

proposes that symmetrical cell division within the neural stem cell pool in the ventricular zone 530 

causes an exponential increase in the number of radial columns – that result in surface area (SA) 531 

expansion. This is independent of asymmetrical cell division in the founder cells that is 532 

responsible for a linear increase in the number of neurons within a radial column, contributing to 533 

cortical thickness (CT) (Rakic, 2007). Complex network analysis using graph theory using 534 

cortical structural covariance networks derived from CT and cortical SA shows different 535 

structural properties, suggesting that they contribute to different properties within cortical 536 

networks (Sanabria-Diaz et al., 2010). Cortical grey matter volume is almost entirely driven by 537 

differences in the cortical SA rather than CT.  (Im et al., 2006)  Secondly, recent large scale 538 

studies have shown that these two parameters – CT and SA- have independent genetic basis 539 

(Panizzon et al., 2009). Thirdly, life course trajectories of these cortical parameters seem to be 540 

different. While gyrification – a ratio of total SA to pial SA remains fairly stable post childhood 541 

through to early adulthood, CT changes dynamically through this period (Rathbone et al., 542 

2011;Raznahan et al., 2011a;Salinas et al., 2012a). However, more recent studies suggest that the 543 

relation between age and cortical parameters in adulthood, are complex (Hogstrom et al., 2012). 544 

CT in addition appears to be highly susceptible to various environmental influences over the life 545 

course such as smoking, alcohol dependence, and marijuana use while SA appears to be 546 

influenced by various unique developmental factors (Kuhn et al., 2010;Lopez-Larson et al., 547 

2011;Momenan et al., 2012). This highlights the importance of studying volume and thickness 548 
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independently in morphometric studies (Winkler et al., 2010). Surface area appears to be 549 

influenced by various unique developmental factors and is less susceptible to age-related 550 

differences in later life (ref). These and other findings suggest that while cortical surface areas 551 

increase significantly prenatally and remain fairly stable post childhood, cortical thickness 552 

changes dynamically across the lifespan (Raznahan et al., 2011b;Salinas et al., 2012b;Shaw et 553 

al., 2012). We restricted our analysis to cortical thickness as we were examining the association 554 

between what an environmental variable (deprivation) and a cortical parameter (cortical 555 

thickness) that has previously shown to be influenced by environmental factors. Further analysis 556 

using other parameters may reveal differences in structural properties that are contributed by 557 

factors that may be influenced early in life.  558 

Limitations 559 

While the positive features of this study include a well-characterized community based cohort, 560 

there are limitations to be acknowledged: the cross-sectional design limits our ability to attribute 561 

causation and there is some selection bias in that the participants opted in. We did not include 562 

any sub-cortical regions particularly those that are relevant to physiological stress response. 563 

Smaller sample size meant that there was a potential for type 2 error, especially with regards the 564 

fine grain parcellations. We excluded female subjects in order to reduce variance in cortical 565 

morphology pertaining to gender. Further work would involve replication of the study in a larger 566 

population, including younger population, targeting critical periods of brain growth. Finally, 567 

future work to develop a clearer biological framework of a more comprehensive investigation of 568 

metabolic and inflammatory markers may be more informative.  569 

In summary, people from the MD population show less modular and overlapping modular 570 

architecture of the brain networks derived from cortical morphology compared to their 571 
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corresponding random graphs at a coarse sulcogyral parcellation scheme. At fine grained 572 

parcellation scheme that did not follow sulcogyral boundaries, this difference disappeared. While 573 

the difference in network structure at the coarse level may be the result of anatomical differences 574 

at a large scale level, the exact etiopathogenesis and the consequence of this difference is not 575 

clear. Taken together we propose that brain networks associated with MD group may be less 576 

efficient in information and signal processing at a large scale level. Future studies should look at 577 

longitudinal functional and effective connectivity studies using MRI and EEG/MEG to explore 578 

the effect of socioeconomic status on development. 579 

580 
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Table 1: Demographic and clinical characteristics of study participants 802 

 Least deprived 

n = 21 

mean (s.d.) 

Most Deprived 

n=21 

mean (s.d.) 

 

t 

 

p 

Age (years) 51.18 (8.7) 50.70 (8.75) 0.224 0.82 

Alcohol units per 

week 

15.81 (9.39) 18.61 (21.32) -0.55 0.58 

Diet score 95.24 (48.55) 40.66 (32.92) 4.26 <0.001 

GHQ 28 score 1.48 (2.71) 5.00 (5.59) -2.59 0.015 

NART errors 5.33 (3.719) 12.43 (6.66) -4.26 <0.001 

Choice reaction time 860.14 (115.66) 1064.48 (168.6) -4.5 <0.001 

Trail making test A 28.55 (7.59) 35.86 (12.97) -2.18 0.035 

Trail making test B 61.74 (20.81) 90.42 (29.98) -3.4 0.002 

RAVLT – trial 5 12.05 (1.74) 11.52 (2.06) 0.88 0.52 

Cortisol (nmol/l) 354.37 (103.29) 398.63(124.06) -1.19 0.24 

CRP (mg/L)  1.17 (1.34) 3.40 (2.94) -3.16 0.004 

ICAM (ng/ml) 234.48 (25.72) 309.67 (84.19) -3.81 0.001 
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IL6 (pg/ml) 2.6235 (5.42) 2.5320 (1.76) 0.07 0.94 

Fibrogen (g/L) 2.94 (0.61) 3.17 (0.95) -0.89 0.37 

D-dimer 89.81 (47.35) 150.32 (104.27) -2.32 0.029 

Glucose (mmol/L) 5.42 (0.57) 5.31(1.15) 0.38 0.70 

HDL (mmol/l) 1.22 (0.20) 1.26 (0.36) -0.46 0.64 

Triglycerides 

(mmol/l) 

1.71 (0.72) 2.29 (2.23) -1.14 0.26 

Insulin (uIU/ml) 7.1820 (4.82) 9.857 (6 8.43) -1.23 0.22 

Systolic BP (mmHg) 139.90 (17.03) 142.47 (20.96) -0.43 0.66 

Diastolic BP (mmHg) 81.28 (8.53) 82.85 (11.33) -0.50 0.62 

BMI (kg/m
2
) 27.02 (2.69) 28.42 (5.86) -0.99 0.33 

Waist-Hip ratio 0.90 (0.05) 0.97 (0.072) -3.6 .001 

Intracranial volume 

(cc) 

1572.94 

(143.52) 

1542.66 (161.72) 0.642 0.525 

t – unpaired t test ; BMI – body mass index; C-reactive protein (CRP), interleukin-6 (IL-6) 

and intercellular adhesion molecule (ICAM-1) 
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Figure legends 807 

Figure 1: Shows the modular architecture (top Figure) and grey nodes (bottom Figure), Grey 808 

nodes: Consider two fully connected networks (bottom Figure), with four nodes each and are 809 

fully connected. The two networks can be connected in two different ways. If they are connected 810 

as the first left in the bottom, then one additional edge is used. On the other hand, if they share 811 

the two nodes depicted in grey, then the combined module saves resources, i.e. there are two 812 

nodes and two edges less than the first combination. In addition, the average path lengths are 813 

shortened than the one of non-sharing combination. 814 

Figure 2: Shows the pipeline of analysis, including the parcellation schemes – Desikan atlas and 815 

Destrieux atlas showing the sulcogyral parcellations and the Finegrain 200 and 1000 atlas as in 816 

(Echtermeyer et al., 2011) 817 

Figure 3: Shows the difference in cortical thickness between the most deprived and the least 818 

deprived groups. Red regions pertain to regions where the most deprived group showed cortical 819 

thinning. Covariates in the model – Age and alcohol use. 820 

Figure 4: The correlation values in the matrices are distributed between 0.1 to 0.9. By changing 821 

the correlation threshold from 0.2 to 0.85, the number of isolated groups are counted for the both 822 

groups. The least deprived has more isolated groups than the deprived over the almost all values 823 

of the correlation threshold. 824 

Figure 5: The raw correlation matrix for each group shows that two groups have almost equal 825 

number of non-zero components in the matrix. The correlation matrix for each group is given by 826 

a 68x68 matrix, where each value in the matrix is calculated from the cortical thickness 827 

correlation measured in 21 individuals. 828 
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Figure 6: In the correlation matrix for each group, all values below the FDR threshold are set to 829 

zero, where. About three-times more edges survived the FDR procedure in the most deprived 830 

than the least deprived group 831 

Figure 7: The distributions of correlation coefficients for both groups. The vertical red lines are 832 

the FDR threshold values for each group. 833 

Figure 8: Correlation and sparsity (Number of zeros divided by Maximum possible number of 834 

edges) relations in cortical thickness network. The most deprived have more edges (denser 835 

network) than the least deprived for a fixed correlation threshold. On the other hand the least 836 

deprived would have more false positive edges than the deprived and/or the deprived would have 837 

more false negative edges than the least deprived for a fixed sparsity.  838 

Figure 9: Number of modules and the corresponding random graphs (indicated by “(R)”) with 839 

respect to various modularity ( ) threshold. Error bars represent the -bound for each case. In 840 

the module calculation algorithm, if the module contribution,  or , is less than the 841 

threshold, it was declared indivisible. Higher thresholds imply strong modules. 842 

Figure 10: Shows the proportion of grey nodes  with respect to the corresponding Modularity 843 

threshold. Error bars represent the -bound for each case. In the module calculation algorithm, 844 

if the module contribution,  or , is less than the threshold, it was declared indivisible. 845 

Higher thresholds imply strong modules. Grey nodes have two implications in the network 846 

structure: i) efficient usage of resources and ii) shorter average distance between nodes. Recycle 847 

of existing nodes and edges to combine multiple modules saves limited resources to construct the 848 

network. It is believed that reducing wiring resources is one of the major selection pressure on 849 

the brain network evolution 850 
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Figure 11: Shows the number of modules and proportion of grey nodes at a fine grain level – a) 851 

parcellation following sulcogyral boundaries – Destrieux atlas (148 parcels) and b) a parcellation 852 

scheme that does not follow the sulcogyral boundaries (b. 200 parcels and c. 1000 parcels).853 
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