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A simpler puzzle of ground 

(Word count: 1892; Category: Logic) 

 

Abstract: Metaphysical grounding is standardly taken to be irreflexive: nothing grounds itself. 

Kit Fine has presented some puzzles that appear to contradict this principle. I construct a 

particularly simple variant of those puzzles that is independent of several of the assumptions 

required by Fine, instead employing quantification into sentence position. Various possible 

responses to Fine’s puzzles thus turn out to apply only in a restricted range of cases. 

 

In the recent debate on metaphysical grounding and its logic,1 it has generally been accepted 

that grounding is irreflexive, i.e. that nothing grounds itself, and that true existential 

quantifications are grounded in their true instances. Call this second principle EG (Existential 

Grounding). Kit Fine (2010) has shown that given a number of plausible auxiliary 

assumptions, EG yields counterexamples to irreflexivity.2 It turns out that an extremely 

simple derivation of a counterexample to irreflexivity from EG is available if we (i) take 

grounding to be expressed by an operator on sentences (or lists of sentences), (ii) avail 

ourselves of (non-substitutional3) quantification into sentence position, and (iii) assume that 

EG extends to this kind of quantification. It is safe to assume that 

(1) ∃p p 

                                                           
1 I am thinking in particular of Fine 2010, 2012a, 2012b, Schnieder 2011, Correia 2011, Rosen 2009. 

2 Fine’s paper also establishes analogous points for a counterpart to EG for universal quantifications. 

3 This qualification will be taken as understood henceforth. 



– a theorem of any standard logic with sentential quantification. Now note that (1) is a true 

instance of itself, so that by EG, we immediately obtain a case of self-grounding (writing ‘≺’ 

for partial4 grounding): 

(2) ∃p p ≺ ∃p p 

Fine’s own arguments differ from this one in that they do not rely on sentential quantification, 

but instead quantify first-order over facts, sentences, or propositions, and additionally appeal 

to a number of principles relating grounding to these kinds of entities. A Finean counterpart to 

the present puzzle might go as follows.5 In place of (1), we assume that some proposition is 

true (read the variables as restricted to propositions): 

(F1) ∃x x is true 

Next, we assume a claim of Propositional Existence: that there is such a thing as the 

proposition that some proposition is true. Letting ‘<p>’ abbreviate ‘the proposition that p’: 

(PE) ∃y y = <∃x x is true> 

Now let ‘s’ abbreviate ‘∃x x is true’, i.e. sentence (F1). Using the suitable instance of a Truth-

Introduction principle 

(TI) If p & ∃x x=<p>, then <p> is true 

we infer from (F1) and (PE): 

                                                           
4 All of the grounding claims to follow are standardly taken to hold for both partial and complete 

grounding. For simplicity, take ‘≺’ as binary; arguably, for some purposes we need an operator that 

takes an arbitrary number of sentences in the left-hand argument place (cf. e.g. Fine 2012a, 46f). 

5 Fine does not state or discuss this exact argument, which is something of a hybrid of Fine’s Particular 

Argument for Facts and his Universal Argument for Propositions. The latter rests on essentially the 

same premises as the present one, except that in place of (F1), it assumes that every proposition is 

either true or false. See Fine 2010, sec. 5. 



(F2) <s> is true 

Next, we make use of the following plausible principle, which is often associated with 

Aristotle (cf. e.g. Schnieder 2006, 35f): 

(A) If <p> is true then p ≺ <p> is true 

We infer from (F2) and the relevant instance of (A): 

(F3) s ≺ <s> is true 

But ‘[s] is true’ is a true instance of ‘∃x x is true’, i.e. ‘s’. So from (F2) and EG we obtain: 

(F4) <s> is true ≺ s 

The claims (F3) and (F4) jointly violate the principle that grounding is asymmetric. If we 

assume moreover the Transitivity of Grounding 

(TG) If p ≺ q and q ≺ r then p ≺ r 

we obtain a violation of irreflexivity. 

The only responses to this Finean argument that straightforwardly apply to my version 

of the puzzle as well are to reject irreflexivity or EG. Some possible reasons for denying (F1) 

may also motivate a rejection of (1), but since both moves appear extremely unattractive I 

shall set them aside. Since none of the other auxiliary assumptions (PE), (TI), (A), and (TG) 

are used in my argument, rejecting any of these will not by itself help with the latter.6 

I shall now briefly comment on the assumptions (i)—(iii), stated at the beginning of 

the paper, that are required in my, but not Fine’s argument. I have nothing interesting to say 

here about the claim (i) that grounding is adequately expressed by a sentential operator. Like 
                                                           
6 Correia (forthcoming), in the context of this puzzle, argues that irreflexivity should be given up. 

Skiles (ms.) advocates rejecting (A) as well as my assumption (i) from the beginning of the paper. I 

should also note that Correia 2011, 7f formulates a version of the Finean puzzle that, like mine, 

employs sentential quantification, but also assumes a version of (A) and of (TI).  



Fine and many others, I accept the claim, but it is not uncontroversial – dissenters include, e.g. 

Rosen (2009) and Audi (2012). 

 Re (ii): If one thinks that quantification into sentence position is meaningless one can 

of course very simply reject the purported counterinstance to irreflexivity on that ground. If 

one thinks that quantification into sentence position is meaningless unless understood as 

merely abbreviating first-order quantification over proposition, the argument will turn out to 

be a notational variant on its Finean counterpart, tacitly relying on the same premises. Both 

claims are highly controversial, though, so it is interesting to see what happens if they are 

denied. Moreover, given (i), there are special reasons for friends of grounding not to dismiss 

quantification into sentence position. For some interesting and important structural theses 

about grounding – like irreflexivity, transitivity, and well-foundedness – then seem most 

naturally expressed by means of such quantification. The most natural statement of 

transitivity, for instance, is as the claim that ∀p ∀q ∀r ((p ≺ q & q ≺ r) → p ≺ r) rather than 

the schematic (TG) above. For in contrast to the schema, the quantificational claim can be 

properly embedded, and its import does not inappropriately depend on the linguistic resources 

available to instantiate it. By way of analogy, expressing the irreflexivity of grounding by 

saying that every instance of ‘p ≺ p’ is false seems as unsatisfactory as stating the reflexivity 

of identity by saying that every instance of ‘a = a’ is true, instead of saying that ∀x x=x. 

 Re (iii): Here is a natural statement of a rule capturing EG for the case of sentential 

quantification (‘α’ stands for an arbitrary sentence, ‘ϕ( )’ for a suitable sentential context): 

(EG-S) From ϕ(α), infer ϕ(α) ≺ ∃p ϕ(p). 

The notion of (1) being an instance of itself may perhaps seem weird, so let me try to briefly 

dispel that impression. The instance of (EG-S) that legitimizes the move from (1) to (2) – i.e.  

(X) From ∃p p, infer ∃p p ≺ ∃p p. 



– can be obtained by putting ‘∃p p’ for α and the null context, i.e. nothing, for ϕ. Note that it 

seems perfectly appropriate to take (EG-S) as allowing the null instantiation of ϕ, for an 

analogous reading is required for the corresponding rule of existential generalization – from 

ϕ(α), infer ∃p ϕ(p) – if it is to legitimize the clearly valid inference to ‘∃p p’ from an atomic 

sentence letter as a premise. Moreover, on the standard conception of how to construct an 

instance of a given quantification, we proceed by deleting the initial quantifier phrase and 

then systematically replacing, in the remaining expression, the formerly bound variable by an 

expression of the suitable grammatical category. Deleting the ‘∃p’ from’∃p p’ yields ‘p’, and 

systematically replacing ‘p’ in ‘p’ by the sentence ‘∃p p’ then yields ‘∃p p’, as desired.  

 So let us look for reasons to reject (EG-S) while still accepting a rule capturing EG for 

the case of first-order quantification. Simply rejecting (EG-S) and insisting that EG holds for 

first-order quantification is unsatisfactory, for the motivation usually offered for EG is not 

specific to the case of first-order quantification. The principle is sometimes held to command 

intuitive support (cf. e.g. Rosen 2009, 117); to the extent that it does so, it seems to me, it 

does so equally for any sort of quantification. More substantively, the principle is sometimes 

motivated by appeal to the highly plausible principle of disjunctive grounding – if p, then p ≺ 

(p ∨ q) – and the analogy between existential quantification and disjunction (cf. e.g. Schnieder 

2011, 460; Fine 2012a, 60). This analogy extends to the case of sentential quantification.  

 Can we give reasons to reject (X) while retaining a restricted version of (EG-S)? The 

only potentially plausible suggestion I can think of is to blame the impredicativity exhibited 

by (X). Thus we might say, firstly, that in the sense that is relevant to EG, being an instance of 

a quantification is not a purely syntactic matter. Rather, the expression generalized upon also 

has to satisfy a semantic condition: roughly, that of determining, or picking out, a value in the 

range of the corresponding existential quantifier. Secondly, we say that a sentence that itself 

contains a given sentential quantifier does not determine a value in the range of that 

quantifier. A simple implementation of that idea restricts (EG-S) to cases in which α is free of 



sentential quantifiers; a less restrictive option is to introduce a hierarchy of sentential 

quantifiers and postulating a version of (EG-S) for each of them, requiring in each case that α 

contain only quantifiers lower in the hierarchy. 

 A rejection of impredicative definition is also one of the possible motivations to reject 

(PE) in Fine’s arguments. So in this way the predicativists’ response to Fine’s puzzles may 

also generalize to my version. But if my contention is correct and impredicativity provides the 

only potentially plausible ground for rejecting instance (X) of (EG-S), then there are simply 

no analogues available to the rejection of (TI), (A), or (TG) above. A wholesale rejection of 

EG, a ban on at least certain sorts of impredicative instances of EG, and the admission of  

counterexamples to irreflexivity then are the only options left.7 
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