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Abstract: On its intended interpretation, logical, mathematical, and metaphysical

discourse sometimes seems to involve absolutely unrestricted quanti�cation. Yet

our standard semantic theories do not allow for interpretations of a language as

expressing absolute generality. A prominent strategy for defending absolute gen-

erality, in�uentially proposed by Timothy Williamson in his paper `Everything'

(2003), avails itself of a hierarchy of quanti�ers of ever increasing orders to develop

non-standard semantic theories that do provide for such interpretations. However,

as emphasized by Øystein Linnebo and Agustín Rayo (2012), there is pressure on

this view to extend the quanti�cational hierarchy beyond the �nite levels, and,

relatedly, to allow for a cumulative conception of the hierarchy. In his recent

book Modal Logic as Metaphysics (2013), Williamson yields to that pressure. I show

that the emerging cumulative higher-orderist theory has implications of a strongly

generality-relativist �avour and consequently undermines much of the spirit of

generality absolutism that Williamson set out to defend.

∗ [Acknowledgements.]
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1 Introduction

In ordinary discourse, most of our quanti�cations are restricted to a set of contextually

relevant objects. I say `there is no beer', meaning not that there is absolutely no beer

in the entire universe, but that there is no beer in my fridge, and thus no contextually

relevant beer. In logical, metaphysical, and mathematical discourse, in contrast, we

often seem to generalize without any such restrictions. In typical utterances of `nothing

has contradictory properties', `everything is self-identical', `everything is either abstract

or concrete', or `nothing is a member of the empty set', it seems, absolutely nothing is

excluded as contextually irrelevant.

However, the appearance that absolute generality can thus be expressed comes under

pressure from a number of theoretical considerations.1 The one that is most important

for our purposes is that in our most successful and best understood semantic theories,

quanti�cation is always interpreted with respect some set that constitutes the presumed

domain of discourse. Since there is no universal set, these semantic theories do not

allow for absolute generality. Some philosophers hold that this apparent limitation

of such theories cannot be overcome in a satisfactory manner, and have therefore em-

braced (Generality) Relativism, the view that initial appearances notwithstanding, there

can be no such thing as absolutely general discourse.2

In his paper `Everything' (2003), Timothy Williamson mounts a forceful defence of

the opposition to Relativism, i.e. (Generality) Absolutism. As part of this defence, he

proposes an alternative kind of semantics in which object language quanti�ers need

not be interpreted as restricted to a set.3 The crucial move that enables him to avoid

this limitation is the employment of higher-order quanti�cation in the meta-language.4

1 For an excellent overview of the debate, including a discussion of other arguments against the
possibility of absolute generality, see the editors' introduction to Rayo and Uzquiano, 2006 as well
as Florio, 2014.

2 Sometimes in the debate over absolute generality a distinction is made between a metaphysical ques-
tion � roughly, whether there is an all-inclusive domain of discourse � and a linguistic or availability
question � roughly, whether we could quantify over such a domain, if it exists (cp. e.g. Rayo and
Uzquiano, 2006, 2, who credit Kit Fine with having �rst emphasized this point). The distinction,
if it can be made, is not of particular importance for our present purposes. As I understand the
distinction, our discussion concerns the availability question throughout.

3 It may be objected that familiar truth-theoretic semantics formulated in the Davidson-Tarski style
have no need to interpret object language quanti�ers as restricted to a set. That is of course correct;
the dif�culty arises when we try to formulate a theory that speci�es the truth-conditions of the
object-language sentences for arbitrary interpretations of the language. We shall come back to this
point shortly.

4 The same kind of move was already employed for a similar objective by George Boolos (1985) and,
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As Williamson notes, the obvious generalization of his proposal requires the use of

at least the whole �nite hierarchy of orders of quanti�cation. Moreover, as Øystein

Linnebo and Agustín Rayo (2012) have shown, given a number of plausible further

assumptions, we need to countenance even quanti�cation of trans�nite and cumulative

orders. And when Williamson returns to the issue in his Modal Logic as Metaphysics

(2013), he explicitly avails himself of such quanti�ers.

The purpose of this paper is to show that the move to trans�nite, cumulative or-

ders of quanti�cation undermines much of the spirit, if not the letter, of the Absolutist

picture that Williamson wishes to defend. Moreover, since the relevant components

of Williamson's view are dif�cult or impossible to reject given his basic approach of

using higher-order resources to defend absolute generality, the argument also presents

a severe challenge for any view following this general approach. I �rst present the cur-

rent state of the debate. §2 describes the problem that Absolutists face when trying

to formulate an adequate semantics for absolutely general quanti�cation. §3 presents

Williamson's higher-orderist solution to the problem and then explains both the no-

tion of quanti�cation at trans�nite and cumulative orders and why Williamson avails

himself of such quanti�ers. §4 develops my argument that the cumulative higher-order

picture has implications strongly reminiscent of Relativism. I �rst state the argument

in informal terms and indicate the obstacles to formalizing it in the non-cumulative

higher-orderist's canonical language. I then show how the introduction of cumulative

resources allow us to overcome these obstacles. The crucial bit of cumulative ideology

that we need is a higher-order, cumulative analogue of the notion of identity. That

notion is discussed in more detail in §5. Finally, I ask to what extent the problems

Williamson raises for Relativism have counterparts that apply to his own cumulative

higher-orderist version of Absolutism. §6 points out that cumulative higher-orderism

faces a similar dif�culty as standard Relativism concerning the adequate formulation of

its apparent Relativist commitments. §7 turns to the criticism of standard Relativism

that its restricted interpretations often seem to constitute weird misinterpretations of

relevant object-language discourse. I show that this criticism also applies on the cumu-

lative higher-orderist picture, though in a somewhat less dramatic form. I conclude in

§8 that Williamson's cumulative higher-orderist Absolutism is a lot closer to Relativism

than it �rst appears.

further developing Boolos's suggestions, by in Rayo and Uzquiano, 1999.
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2 The semantic challenge for absolutism

A peculiar feature of the dispute over absolute generality is that it is not very easy to

say just what it takes to be an Absolutist, or a Relativist, who is worthy of the name.5

Take Absolutism. It is not enough to say: `It is possible to quantify over absolutely

everything', or even:

(1) I am now quantifying over absolutely everything.

The reason is that everyone can say that, since any utterance of (1) will express a truth.

For whatever the quanti�er phrase `absolutely everything' ranges over in such an utter-

ance, what the speaker then claims is merely that they are quantifying over everything

in that range, which cannot fail to be true. However, if the quanti�er phrase ranges

over only a restricted domain, the claim made by the speaker, though true, is irrelevant

to the spirit, if perhaps not the letter, of Absolutism. It is only if the quanti�er phrase

ranges over absolutely everything that the speaker makes a claim that is relevant to the

debate, and such that accepting it makes one an Absolutist proper.

If our speaker is to count as an Absolutist, therefore, we shall require them to back

up their utterance of (1) by insisting, in a meta-linguistic utterance, on an interpreta-

tion of their utterance on which it generalizes over everything. And while our speaker

remained �rmly on the safe side with their utterance of (1), once they back it up in

this way in the meta-language, as Williamson shows, they face a real threat of contra-

diction. First, let us shift our focus slightly by considering formal languages instead

of utterances of English sentences like (1). Presumably, if it can be consistently main-

tained of an utterance of (1) that it generalizes over everything, then it is possible to

specify a formal language of which it can be consistently maintained that its quanti�ers

range over everything. We shall therefore assume that the Absolutist commits to the

following claim:

(GA) It is possible to specify a formal language containing quanti�ers that, from the

point of view of a suitable meta-language, range over absolutely everything.

A language L′ is a suitable meta-language for a formal language L if it is possible to

develop an adequate semantic theory for L in L′.

5 On this issue, cf. Williamson, 2003, §V, Florio, 2014, 2, Rayo and Uzquiano, 2006, 2f, and the
references given there.
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A second assumption we shall make has to do with the kind of semantic theorizing

about the object language that we want to be possible in our meta-language. We shall

assume that for any formal language, it is possible to construct what we may call a

generalized semantics6 for that language. A generalized semantics for a language is a

semantic theory which provides an inductive characterization of the truth-conditions

of the object-language sentences, relative to arbitrary ways of interpreting (at least) their

non-logical constants. (A generalized semantics is therefore exactly the kind of theory

we require as the basis for a broadly model-theoretic theory of logical consequence.)

Our second assumption can thus be described as a principle of Semantic Optimism:

(SO) For any formal language L, it is in principle possible to construct a theory ad-

equately specifying the truth-conditions of sentences of L relative to arbitrary

ways of interpreting L's non-logical constants.

This principle is by no means trivial. Still, in the debate about absolute generality, it is

standardly assumed that the principle at least enjoys a high degree of initial plausibility

(cf. e.g. Linnebo, 2006, 150, Linnebo and Rayo, 2012, 276f). For the purposes of

this paper, I shall therefore take it for granted. The challenge for the Absolutist is

then to specify a formal language, and to formulate a generalized semantics for that

language, so that from the point of view of the meta-language, the quanti�ers of the

object-language range over absolutely everything. Unfortunately, there is a powerful

argument purporting to show that this cannot be done.7

Suppose that the Absolutist has described a formal language L1 whose (�rst-order)

quanti�ers they wish to maintain express absolute generality. The Absolutist must now

formulate a generalized semantics for L1 in a suitable meta-language. A generalized

semantics is supposed to specify the truth-conditions of the sentences of L1 relative to

arbitrary ways of interpreting (the non-logical constants of) L1. It therefore needs to

generalize over (things that model) ways of interpreting L1. For simplicity, assume that

`i ' is a meta-language variable that ranges over whatever the semantics uses to model

ways of interpreting L1.

Now take some monadic predicate P of L1. It seems very plausible that we can in

principle use any contentful monadic predicate of the meta-language to interpret P . If

6 The way I here set up the dispute is indebted to Linnebo 2006 and Linnebo and Rayo 2012, from
where I have also borrowed my terminology.

7 Except for minor details, the argument to follow is Williamson's (2003, 425ff).
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so, then any instance of the following Comprehension schema for Predicate Interpreta-

tions obtained by replacing `F ' with such a meta-language predicate should be true.

(CPI Informal) Under at least one way of interpreting the non-logical constants of L1,

P applies to all and only the F s in the range of L1's quanti�ers.

The semantics should then imply a suitable regimentation of (CPI Informal) in the

meta-language. For brevity, we add copies `∀o' and `∃o' of L1's �rst-order quanti�ers to

the meta-language. We may then formulate a suitable regimentation of (CPI Informal)

as follows, using `appliesi ' to abbreviate `applies under interpretation i ':8

(CPI Formal 1) ∃i ∀o x (P appliesi to x ↔ F x)

The Absolutist also has to include in their theory an expression of the claim that from

the point of the semantics, L1's quanti�ers range over absolutely everything. An obvi-

ous way to formalize that claim is:

(GA1) ∀y ∃o x x = y

However, these assumptions jointly entail a contradiction. For consider the following

instance of (CPI Formal 1):

(2) ∃i ∀o x (P appliesi to x iff ¬ P appliesx to x)

Assuming that some interpretation i ′ veri�es (2), we have:

(3) ∀o x (P appliesi ′ to x iff ¬ P appliesx to x)

By (GA1), the range of `∀o' comprises everything. So in particular, it includes i ′. We

may therefore instantiate (3) with i ′ to obtain:

(4) P appliesi ′ to i ′ iff ¬ P appliesi ′ to i ′

But (4) is equivalent in classical logic to an explicit contradiction.

The Relativist maintains that it is the Absolutist's claim (GA1) which is to blame for

the contradiction, and concludes that there is more than is dreamt of by L1's quanti�ers:

(MORE1) ∃y ∀o x x 6= y

To be an Absolutist, in contrast, one must keep (GA1), and thus �nd some other way

out. The next section explains how Williamson proposes to do that.

8 The variable `i ' is not allowed to occur free in a substituend for `F '.
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3 Higher-orderist absolutism

Our above regimentation of (CPI Informal) by (CPI Formal 1) embodies a tacit as-

sumption to the effect that the informal talk of ways of interpreting an object language

predicate is to be understood in �rst-order quanti�cational terms. After all, (CPI For-

mal 1) uses a �rst-order quanti�er `∃i ' presumed to range over objects of some sort that

are identi�ed with, or taken to represent, ways of interpreting object language predi-

cates. Williamson suggests that this tacit assumption is mistaken; it is more plausible,

according to him, to represent ways of interpreting predicates by means of a second-

order variable (cf. 2003, 452ff). In effect, his proposal has us replace (CPI Formal 1)

with a second-order analogue, in which the �rst-order variable `i ' and the quanti�er

binding it have been replaced by a second-order variable and quanti�er:9

(CPI Formal 2) ∃I ∀o x (P appliesI to x ↔ F x)

The semantic predicate `appliesI ' may be thought of as de�ned by:

(Df. appliesI ) P appliesI to x ↔ I (P, x)

Note that from the standard (full) axiom scheme of comprehension for second-order

logic, we obtain every instance of the schema

(5) ∃I ∀o x (I (P, x)↔ F x)

in which the expression replacing `F ' does not contain `I ' free. This in turn guarantees

the validity of (CPI Formal 2).

At least at �rst glance, it seems to me, this approach to the semantic challenge for

Absolutism � call it the higher-orderist approach � has a lot to be said for it. What

the Russell-paradoxical argument from (2) to (4) shows, we might say, is that there are

always strictly more ways to interpret a predicate with respect to a domain of objects

than there are objects in that domain, and thus ways to interpret a �rst-order variable

with respect to that domain.10 As a result, not every way to interpret a predicate

with respect to a given domain can be represented by an object in that domain. The

Relativist concludes from this that there must always be objects outside any domain

9 Similarly as for (CPI Formal 1), instantiation of `F ' with a predicate in which `I ' is free is not
allowed.

10 The talk of domains is not to be taken too literally. There is no need to assume that the objects
that a predicate is interpreted as true or false of are members of some further object that we call a
domain.
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with respect to which a predicate can be interpreted. The higher-orderist approach,

in contrast, concludes that it is a mistake to try to represent ways of interpreting a

predicate by the values of �rst-order variables. Instead, the thought goes, we should use

second-order variables for that purpose. For crucially, there is no obstacle to holding

that there are always at most as many ways to interpret a predicate with respect to a

domain of objects as there are ways to interpret a predicate variable with respect to that

domain.

It is important to note, however, that the proposal depends on a very speci�c view

� call it higher-orderism � of second- and higher-order quanti�cation. Before stating

the view, let me clarify my talk of quanti�ers of �rst, second, and higher orders. For

present purposes, that classi�cation is to be thought of in syntactic terms. On this

understanding, what makes the familiar quanti�ers `∃x' and `∀x' of L1 �rst-order is

that they bind variables that stand in the syntactic position of singular terms. What we

shall call second-order quanti�ers are then quanti�ers that bind variables standing in the

syntactic position of expressions that form sentences when combined with one or more

singular terms as their arguments, i.e. ordinary predicates. A third-order quanti�er, by

analogy, is a quanti�er binding variables that take the position of expressions forming

sentences when combined with ordinary predicates as their arguments. The hierarchy

extends in the obvious way to quanti�ers and variables of order n for any �nite n.

Higher-orderism can now be de�ned as the conjunction of the following three theses

concerning this syntactic hierarchy: (1) Quanti�cation of any �nite order is a legitimate

linguistic device. (2) Quanti�cations of a given order are not in general paraphrasable by

quanti�cations of a lower order. (3) For any �nite n, adequate semantic clauses for n'th-

order quanti�cations themselves employ n'th-order quanti�ers of the meta-language in

the way standard clauses for �rst-order quanti�ers employ �rst-order quanti�ers of the

meta-language.11

To get an idea why the Williamsonian proposal requires the full strength of higher-

orderism, note �rst that if second-order quanti�cation were in general paraphrasable

by �rst-order quanti�cation, then in particular (CPI Formal 2) could be paraphrased

in �rst-order terms. But such a paraphrase would reintroduce the inconsistency engen-

dered by (CPI Formal 1). Moreover, given (SO), we can develop a generalized semantics

11 I am not claiming that the three theses are independent, but it is a non-trivial question what entail-
ment relations may obtain between them, and so it seems best to stay neutral with respect to that
question in characterizing higher-orderism.
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for our second-order meta-language. If we were to do that in a �rst-order meta-language,

perhaps by construing second-order quanti�ers as ranging over properties, we should

again run into a version of Russell's Paradox. Indeed, by a higher-order analogue of

the above Russell-style argument, it can be shown that a generalized semantics for a

second-order language cannot be given even in a second-order language: we need to

use third-order resources.12 So Williamson's higher-orderist approach depends on the

legitimacy and irreducibility of quanti�cation of every �nite order.

The irreducibilism embodied in higher-orderism has important implications for how

we can read second- and higher-order quanti�cations in natural language. For example,

at �rst glance the second-order quanti�cation `∃X ∀x ¬X x' might naturally be read as

`some property is had by no object'. However, although often useful and appropriate

for heuristic purposes, such a reading cannot be considered strictly adequate on the

higher-orderist view. The reason is that the English quanti�er here used to interpret

the formal higher-order quanti�er is itself �rst-order. This can be seen from the fact that

if we ask for a witnessing instance of the quanti�cation, grammar demands that the

answer consist in a singular noun phrase like `the property of being self-distinct' rather

than a predicate.

It is controversial whether one can translate second-order quanti�cation into natural

language in a way that �ts higher-orderism.13 For our purposes, it does not matter too

much, for even if this is possible, it seems clear that natural languages do not provide

us with the resources needed to appropriately translate quanti�ers of arbitrarily high

�nite orders. So higher-orderists must hold that we can, at least in principle, somehow

come to understand third-, fourth-, and higher-order quanti�cation without the bene�t

of a translation into vocabulary that we independently understand.14 In what follows,

to avoid excessive formalism and for heuristic purposes, we shall make use of various

natural language constructions to approximate the higher-orderists' intended interpre-

tation of their vocabulary, bearing in mind, though, that these may occasionally yield a

12 Strictly speaking, the situation is slightly more complicated; it is examined in detail in Rayo, 2006.
The essential point remains, however. Semantic optimism forces the higher-orderist up the hi-
erarchy of meta-languages, and if they are to permit the formulation of a generalized semantics
in accordance with the higher-orderist approach, the meta-languages must include quanti�cational
devices of ever increasing �nite orders.

13 George Boolos famously proposed a translation using English plural quanti�cation (1984, 1985);
an alternative, more predicational reading was �rst suggested by Arthur Prior (1971, ch. 3) and
recently developed in more detail by Rayo and Yablo, 2001.

14 Compare Williamson, 2003, 457ff, Linnebo, 2006, 152ff.

8



slightly misleading picture of the higher-orderist view. We shall grant, moreover, both

the truth of higher-orderism, and the claim that higher-orderism provides suf�cient ex-

pressive resources to formulate a generalized semantics for any language of �nite order,

i.e. such that for some �nite n, it contains no quanti�ers of an order higher than n.

So far, I have merely described the explicit key commitments of the higher-orderist

defence of absolute generality as described for example in Williamson 2003 and Rayo

2006. We now turn to two crucial further claims that Williamson endorses, implicitly

at least, in his recent book (2013). The �rst claim is that in addition to the languages

of �nite order that we have already canvassed, there is also a legitimate language that

contains quanti�ers of every �nite order. With respect to the ordering of languages of

higher and higher �nite orders, this language would occupy the level of the �rst limit

ordinal ω, so we may call it Lω. Williamson uses a language like this as his favoured

background language for metaphysical theorizing and so is obviously committed to

considering such a language legitimate.15

The question whether the higher-orderist defence of absolute generality on its own

is committed to this claim is more dif�cult to answer. Certainly, the legitimacy of Lω
does not follow logically from anything the higher-orderist has said so far. Nevertheless,

it would seem prima facie quite implausible to disallow it.16 For every bit of vocabulary

we �nd in Lω has already been deemed legitimate, since it is also found in some `suc-

cessor' language in the higher-orderist's hierarchy. And it is hard to see how pooling

all these individually coherent and legitimate linguistic resources together into a single

language could somehow fail to produce an equally coherent and legitimate language.

The burden of proof, therefore, would seem to lie with anyone wishing to deny the

legitimacy of the limit language Lω.

If a Lω is allowed, then by (SO), it is possible to give a generalized semantics for

it. The second crucial claim of Williamson's is that such a semantics can be stated

using quanti�cation of trans�nite orders. Note �rst that higher-orderism, as de�ned

above, does not by itself provide suf�cient resources to formulate a semantics for Lω
in accordance with the higher-orderist approach. For on this approach, to interpret

expressions of order n, we need to make use of an interpretation variable of at least

order n. But every kind of variable higher-orderism provides us with belongs to some

15 The modal higher-order language MLP that Williamson proposes in 2013, ch. V contains quanti�ers
of every �nite order and is thus relevantly like Lω.

16 On this point, see also Linnebo and Rayo, 2012, 275f and Rayo, 2006, 246ff.

9



�nite order n. And for every �nite order n, since Lω contains quanti�ers and variables

of every �nite order, it contains variables of order n+1. So no interpretation variable of

a �nite order can be used to interpret all the expressions of Lω. What Williamson does,

therefore, in specifying a semantics for a limit language, is avail himself of predicates,

and quanti�able predicate variables, of trans�nite orders.17

Aside from their trans�nite character, Williamson's predicates and predicate variables

of trans�nite order have a further striking feature that sets them apart from any of the

expressions we have encountered so far. That feature concerns what expressions they

accept as arguments. Usually, a predicate or predicate variable accepts as arguments

expressions of the next lower order: a �rst-order predicate accepts singular terms, a

second-order predicate accepts �rst-order predicates, and so on. This rule cannot extend

to our new predicates, though. For these are of order ω, and there is no next lower

order to ω. Instead, these predicates accept expressions of any lower, i.e. �nite order

in their argument place. I shall therefore describe these new predicates as syntactically

cumulative. It turns out that a syntactically cumulative ω-order predicate variable is

just what is needed, and just what Williamson uses, for an interpretation variable in a

generalized semantics for Lω.
18

Let me stress that for the purposes of this paper, the admission of cumulative re-

sources is the important point. The admission of Lω and trans�nite orders of quan-

ti�cation matter only in virtue of their bearing on this point. And while the above

consideration provides perhaps the most principled and compelling case for the legit-

imacy of cumulativity, it should be noted that even independently of limit languages

and trans�nite orders of quanti�cation, higher-orderists may have reason to be sym-

pathetic to this claim. For since they allow quanti�cation of every �nite order, they

are already committed to a fairly liberal standard for admissible linguistic devices. And

17 See Williamson, 2013, 236ff. I do not know whether the move to trans�nite orders is strictly
the only way to give a generalized semantics for a language like Lω, as seems to be suggested by the
discussion in Linnebo and Rayo, 2012, 275, and appendix B. For all I know, it might also be possible
to use separate interpretation variables for every order, which could then themselves all be of �nite
order. However, we would then have to relativize satisfation to in�nitely many parameters, so we
should have to introduce predicates with in�nitely many argument places, as well as quanti�ers
binding an in�nite set of variables. I do not know how a semantics would have to look like that is
adequate for this kind of in�nitary language. I cannot rule out entirely, however, that there might
be a coherent version of higher-orderism that allows Lω but no trans�nite orders of quanti�cation.
Thanks here to [blinded] and [blinded].

18 The construction is given in Williamson, 2013, 236ff. A more detailed presentation and discussion
of similar constructions is given in the appendices ofLinnebo and Rayo 2012.
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from a logico-mathematical point of view, cumulative resources make perfect sense and

have a principled and well-behaved logic.19 So it is not at all clear that there is a defen-

sible standard of intelligibility that could serve to rule out cumulative devices, without

at the same time ruling out quanti�ers of very high �nite orders.

4 Cumulative higher-orderism and the spirit of absolutism

Let us return from the dizzy heights of ω-order quanti�cation to the �rst and simplest

stage in the higher-orderist's hierarchy of languages and semantic theories: the gen-

eralized semantics for the �rst-order language L1, formulated in a second-order meta-

language. Recall the sentence that started us off on the whole higher-order journey,

our formalization of the claim that L1's quanti�ers are, from the point of view of the

semantics for L1, absolutely general:

(GA1) ∀y ∃o x x = y

This section develops an argument that according to cumulative higher-orderism, even

though the higher-order semantics for L1 includes (GA1), it does not make the quan-

ti�ers of L1 absolutely general. More precisely, I argue that for a cumulative higher-

orderist, there is a good sense in which

(MORE) From the point of view of the higher-order semantics for L1, there is more

than is quanti�ed over in L1.

I shall begin by sketching the argument in informal terms.

In the setting of the original, �rst-order semantics for L1, (GA1) constitutes an ad-

equate formalization of the claim that L1's quanti�ers are absolutely general. For the

quanti�er `∀y' ranges over absolutely every bit of reality that is countenanced in that

semantics, and so (GA1) says of absolutely everything countenanced in the semantics

that it is in the reach of the quanti�ers of L1. However, that situation changes when the

higher-orderist proceeds to extend the language of the semantics by second-order quan-

ti�ers. Since the higher-orderist insists that these are in no way reducible to �rst-order

ones, we have to see them as concerned with new bits of reality that are not in the range

19 On this point, see also Linnebo and Rayo, 2012, 278. For an in-depth discussion of the logico-
mathematical properties of cumulative higher-order logic, see Degen and Johannsen 2000.
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of the semantics' �rst-order quanti�ers. But then `∀y' no longer ranges over absolutely

every bit of reality that is countenanced in that semantics. Consequently, (GA1) is no

longer a plausible formalization of the absolute generality of L1's quanti�ers. Even on

the higher-orderist picture, there is more than is dreamt of by L1's quanti�ers � what

sets the picture apart from the Relativist's is only that what's more is not in the range

of the semantics' �rst-order quanti�ers but their second-order cousins. So the higher-

orderist version of Absolutism is not really worthy of the name. In subscribing to

(GA1), it preserves the letter of Absolutism, but in implying (MORE), it gives up on

its spirit.

Cast as it is in informal terms, the objection so far inspires limited con�dence. After

all, the higher-orderist has warned us that informal, natural language approximations of

their higher-order quanti�cations can be misleading. Can we put the informal objection

on a more rigorous footing by reproducing it in a formal setting congenial to higher-

orderism? More speci�cally, can we �nd a plausible formalization of (MORE) which is

a consequence of the higher-orderist semantics?

Here is a somewhat �at-footed argument that we cannot: To say, as the objection

alleges, that there is more, on the higher-orderist view, than is included in the range of

L1's quanti�ers, we should have to say that there is something which is distinct from

everything in that range. The condition of being distinct from everything in that range

is expressed by

( 6=1) ∀o x __ 6= x

Now to say that there is something satisfying that condition, one has to put a variable

into the gap of (6=1), and bind it by an existential quanti�er. If the result is to be well-

formed, however, we can only put a �rst-order variable into the gap of (6=1). But the

putative extra bits of reality countenanced by the higher-orderist are supposed to be

introduced only by second-order quanti�ers. Such a quanti�er, however, cannot bind

the �rst-order variable in the gap of ( 6=1). So there is no sense in which, according to

higher-orderism, there is something more than is ranged over by the quanti�ers in L1.

Any attempt to even formulate that claim in the higher-orderist's canonical language

produces an ill-formed string. In that language, as Williamson puts it, `quanti�cation

into predicate position is simply incommensurable with quanti�cation into name po-

sition; the former presents no coherent threat to the absolute generality of the latter'

(Williamson, 2003, 458).
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As I have stated it, this line of reasoning depends on the following assumption:

(DIST) A regimentation of (MORE) contradicts the spirit of Absolutism only if it uses

( 6=1) to express distinctness from anything in the range of the object-language

quanti�er.

I shall argue that this assumption is implausible, and that once we are allowed to make

use of cumulative higher-order resources, second-order quanti�cation ceases to be in-

commensurable with �rst-order quanti�cation, and does present a serious threat to the

latter's absolute generality. In a �rst step, I show that (DIST) should be rejected even in-

dependently of any issues to do with cumulativity. In a second step, I present a number

of relatively modest ways to extend the higher-orderist's second-order meta-language

with cumulative vocabulary, and show that in this extended cumulative higher-orderist

setting, we can formulate and prove a well-formed regimentation of (MORE) that

clashes with the spirit Absolutism.

It will help if I �rst set up a system of grammatical types that allows us to describe

the syntax of cumulative as well as non-cumulative expressions. For ease of comparison

of the resources I employ to those used by Williamson, I base my system on the one

he uses (cf. 2013, 221). It has just one basic type e , which is the type of singular

terms. Then whenever t1, . . . , tn are types, 〈t1, . . . , tn〉 is the derived (functional)

type of expressions that form sentences when combined with n further expressions of

types t1, . . . , tn , respectively. As a limiting case, we allow 〈〉 as the type of sentences,
i.e. expressions forming sentences when combined with zero further expressions. We

also add a category of cumulative types: whenever t1, t2, . . . are types, [t1, t2, . . .]
is the cumulative type including all expressions belonging to any of t1, t2, . . ..20 We

write `〈e∗〉' to abbreviate the in�nite string `〈e〉, 〈e , e〉, 〈e , e , e〉, . . .' and similarly for

other types. So [〈e∗〉] is the cumulative type including every (�rst-order) predicate, of

whatever adicity. Since cumulative types are types, the recursive clause for functional

types now also yields new functional types. There is, for example, the functional type

〈e , [e , 〈e∗〉]〉 of expressions forming sentences when combined with a name as their

�rst argument and an expression of type [e , 〈e∗〉] as their second argument. Since

20 For the meta-language of his limit language, Williamson adds only one cumulative type, namely
a cumulative in�nite limit type λ, that comprises exactly the expressions belonging to any �nite
type (cf. ibid). For my purposes, it is simpler to use only smaller cumulative types at �nite orders.
There should be no objection to this. If we can form a cumulative in�nite limit type like λ and use
expressions of types derived from it, surely we can also form a cumulative type comprising, say,
only names and �rst-order predicates, and use expressions of types derived from it.
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among the latter, there are both names and predicates, such expressions accept, in the

same argument place, both names and predicates.

We use this system of types to describe, in the �rst step, an ordinary, non-cumulative

second-order language L2. It includes for each type τ among e , 〈e∗〉 a countably in�nite
stock of constants and variables. We write the constants using lowercase letters from

the beginning of the alphabet, augmented with subscripts as required, and marking

their type by a superscript. We adopt the same convention for variables except for

choosing letters from the end of the alphabet. L2 also includes the identity-predicate

`=〈e ,e〉', the usual quanti�er symbols, connectives, and parentheses. Type-superscripts

may be omitted if there is no risk of ambiguity, and parentheses may be omitted or

added according as readability is improved.

L2 does not include any cumulative devices, so we may call it a pure second-order

language. In all relevant ways, it is exactly the kind of language the higher-orderist needs

to formulate his generalized semantics for the �rst-order language L1. If we extend it

by copies `∀o x e ' and `∃o x e ' of the quanti�ers in L1, we can formulate this version of

(GA1):

(GA1*) ∀y e ∃o x e x e = y e

Given the requisite amount of syntax and set-theory, we can go on to formulate in L2

a higher-orderist generalized semantics for L1 that includes (GA1*).

I shall now argue that independently of the admissibility of cumulative expressions,

(DIST) should be rejected. The reason is that although the identity-predicate `=' itself
does not apply at the level of second- and higher-order quanti�cation, higher-order ana-

logues of that predicate do apply. Using these higher-analogues of the identity-predicate,

we can construct higher-order counterparts of (6=1) and thereby obtain higher-order

analogues of (MORE1). I maintain that these are similar enough to (MORE1) that they

should be taken to contradict the spirit of Absolutism.

Wewish to extend L2 by non-cumulative higher-order cousins of the identity-predicate

connecting predicates and predicate variables of a given adicity. These expressions

should then belong to the types 〈〈e〉, 〈e〉〉, 〈〈e , e〉, 〈e , e〉〉, etc. We shall of�cially

write them `=〈〈e〉, 〈e〉〉', `=〈〈e , e〉, 〈e , e〉〉', etc., but often let context �x the type. What

should we take these predicates to mean? For present purposes, we can think of them

in either of three ways. Firstly, we can take them as primitive expressions subject to the

inference rules analogous to the standard rules for identity. Where `a' and `b ' belong
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to some type τ among 〈e〉, 〈e , e〉, . . . and Φa/b is the result of replacing zero or more

occurrences of `b ' in Φ by `a':

(=1) ` a=〈τ,τ〉 a

(=2) ` a=〈τ,τ〉 b→ (Φ→Φa/b )

Secondly, we can extend L2 by third-order variables of type 〈〈e〉〉 (〈〈e , e〉〉, . . .) and

quanti�ers binding them. The expression `x〈e〉 = y〈e〉' can then be taken to abbrevi-

ate the corresponding indiscernibility condition: ∀z〈〈e〉〉 (z〈〈e〉〉(x〈e〉)↔ z〈〈e〉〉(y〈e〉)),
and similarly for the other types. Thirdly, since L2 is an extensional language, co-

extensiveness implies indiscernibility, so we can take the predicates simply to abbrevi-

ate the relevant co-extensiveness condition, so that, for example, `x〈e〉= y〈e〉' abbreviates

`∀x e (x〈e〉(x e )↔ y〈e〉(x e ))'. Under both the second and third option, the rules (=1) and

(=2) are derivable.

Now suppose we include in L2 a copy `∀o x〈e〉' of a monadic second-order quanti-

�er of some second-order language. We may wonder whether from the perspective of

L2, that quanti�er expresses an unrestricted, absolute form of monadic second-order

generality. Roughly speaking, that is, we may wonder whether there is something in

the range of L2's monadic second-order quanti�er that is distinct from anything in the

range of `∀o x〈e〉'. The informal talk of being distinct from anything in that range here

can be regimented by means of `=〈〈e〉, 〈e〉〉':

( 6=2) ∀o x〈e〉 __ 6=〈〈e〉, 〈e〉〉 x〈e〉

By putting a monadic second-order variable in the empty argument place and binding

it with an existential quanti�er, we obtain

(MORE2) ∃y〈e〉 ∀o x〈e〉 y〈e〉 6=〈〈e〉, 〈e〉〉 x〈e〉

It seems to me that it would be very implausible to discount this claim as irrelevant

to the spirit of Absolutism on the grounds that it does not operate with the notion

of distinctness as it occurs in (GA1) and (MORE1). It seems much more plausible to

interpret this sentence as saying, in a sense that is relevant to the spirit of Absolutism,

that the quanti�er `∀o x〈e〉' expresses only a restricted form of (monadic, second-order)

generality. If so, then (DIST) should be rejected. Analogues of the ordinary identity-
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predicate allow for the formulation of analogues of (MORE1) that contradict the spirit

of Absolutism.21

We may thus turn to the second step in my argument. I shall argue that once we

are allowed to use cumulative resources, we can formulate another variant on (6=1),

employing a cumulative higher-order counterpart of the identity-predicate. We can

then use that expression to formulate a cumulative higher-order version of (MORE1)

as our regimentation of (MORE). Just as we took (MORE2) to contradict the spirit of

Absolutism, it seems to me, we should take that regimentation to do so as well. And

since it turns out to be derivable in the semantics of the cumulative higher-orderist,

the introduction of cumulative resources into higher-orderism is in this way seen to

undermine the spirit of Absolutism.

We form the language L2≡ by extending L2 with an identity-like symbol of type

〈[e , 〈e∗〉], [e , 〈e∗〉]〉, which we shall write `≡' to make it easier to distinguish from the

previous ones. In contrast to these, `≡' is cumulative in both its argument places: it

accepts both singular terms and predicates of any adicity as arguments.

What should we take `≡' to mean? For present purposes, we may either take it as

a new primitive expression, subject to certain inference rules, or we may take it as

given an explicit de�nition. If we introduce `≡' as a primitive, it should be governed

by whatever rules render it as identity-like as possible, consistent with its non-standard

syntax. It seems clear then, that it should satisfy at least the following two rules. Where

`a' and `b ' belong to [e ,〈e∗〉]:

(≡1) ` a≡ a

(≡2) ` a≡ b→ (Φ→Φa/b )

(When `a' and `b ' belong to different types, substituting one for the other sometimes

produces ill-formed results. The rule (≡2) is therefore to be understood as restricted to

well-formed instances.22)

21 Could a higher-orderist dig their heels in and simply insist that (MORE2) and its ilk are irrelevant to
Absolutism? Although such a view would seem very unattractive, I know of no reason to think that
it would have to somehow turn out to be internally incoherent. However, I think that Williamson
could not happily resort to such a position, since he himself exploits the analogy between the
identity-predicate and its higher-order counterparts in a way similar to how I have just used it; cf.
e.g. Williamson, 2013, 263ff.

22 Absent contexts other than `≡' in which expressions of different types can be exchanged without
loss of grammaticality, our rules leave open the truth-value of any speci�c sentences in which `≡'
connects expressions of different types. We consider these in more detail in the next section.
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If we wish to instead introduce `≡' by de�nition, we can extend L2≡ by variables

of type 〈[e , 〈e∗〉]〉 and allow these to be bound by quanti�ers. We may then let

`a ≡ b ' simply abbreviate the indiscernibility condition: ∀z〈[e , 〈e∗〉]〉 (z〈[e , 〈e∗〉]〉(a)↔
z〈[e , 〈e∗〉]〉(b )). Given a suitable comprehension scheme for the new quanti�ers, the

rules (≡1) and (≡2) are then derivable.23

We now use `≡' to formulate a regimentation of (MORE). Let us include in L2≡
copies `∀o x e ' and `∃o x e ' of the �rst-order quanti�ers of L1. We can then formulate a

cumulative variant on (6=1) to express a condition of distinctness from anything in the

range of L1's quanti�er:

( 6=C ) ∀o x e __ 6≡ x e

Since `≡' accepts expressions of type 〈e〉 as arguments, we can now put a monadic

second-order variable in its empty argument place in (6=C ), and bind it with an existen-

tial quanti�er. We then obtain the following regimentation of (MORE):

(MOREC ) ∃y〈e〉 ∀o x e y〈e〉 6≡ x e

Given (≡1) and (≡2), this sentence is derivable by broadly standard Russell-style rea-

soning in second-order logic.24 I maintain that like (MORE2), it is similar enough to

(MORE1) that it should be taken to contradict the spirit of Absolutism.

23 Absent a meaningful notion of co-extensiveness de�ned for [e ,〈e∗〉] and thus names and predi-
cates alike, unlike its non-cumulative cousins, `≡' cannot be introduced as an abbreviation of a
co-extensiveness condition.

24 Proof: We de�ne a �rst-order predicate `r 〈e〉' as follows, with `x e ' ranging over everythingo :

r 〈e〉(x e )↔d f ∀x〈e〉 (x〈e〉≡ x e→¬x〈e〉(x e )). Assume for reductio that for someo object r e , r 〈e〉≡ r e .

Now r 〈e〉(r e )∨¬r 〈e〉(r e ). Assume r 〈e〉(r e ). Then by de�nition ∀x〈e〉 (x〈e〉 ≡ r e →¬x〈e〉(r e )), so
in particular r 〈e〉 ≡ r e →¬r 〈e〉(r e ). By assumption, r 〈e〉 ≡ r e , so ¬r 〈e〉(r e ), contradicting our as-
sumption of r 〈e〉(r e ). So ¬r 〈e〉(r e ). Then by de�nition, ¬∀x〈e〉 (x〈e〉≡ r e→¬x〈e〉(r e )). However,
assume x〈e〉 ≡ r e . Since r 〈e〉 ≡ r , it follows by (≡1) and (≡2) that x〈e〉 ≡ r 〈e〉. Since ¬r 〈e〉(r e ),
by another application of (≡2), ¬x〈e〉(r e ). So x〈e〉 ≡ r e →¬x〈e〉(r e ). Since x〈e〉 was arbitrary,
∀x〈e〉 (x〈e〉 ≡ r e →¬x〈e〉(r e )). But then by de�nition, r 〈e〉(r e ). Contradiction. So r 〈e〉 6≡ r e , and
since r e was arbitrary, ∀o x e r 〈e〉 6≡ x e . (MOREC ) follows by existential generalization on r 〈e〉. �
The proof assumes that the comprehension scheme for the second-order quanti�ers of L2≡ allows

impredicative instances including our new `≡'. Speci�cally, the legitimacy of the de�nition of `r 〈e〉'
and/or the subsequent existential generalization on it depend in effect on this impredicative in-
stance of the comprehension schema: ∃y〈e〉 ∀x e (y〈e〉(x e )↔∀z〈e〉 (z〈e〉≡ x e→¬z〈e〉(x e ))). Could
the higher-orderist reject such impredicative instances of comprehension? I think not; such a move
would appear to undermine the whole motivation for higher-orderism, since the initial Russell-style
argument depends on an impredicative instance of (CPI Formal 1).
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5 Cumulative identity

The extent to which cumulative higher-orderism's commitment to (MOREC ) is a de-

parture from the spirit of Absolutism depends on the strength of the analogy between

`≡' and `=', and thus (MOREC ) and (MORE1). Given the unfamiliarity of cumulative

devices in general and `≡' in particular, it may not be very easy to get a clear sense of

the strength of this analogy. This section therefore examines the behaviour of `≡' and
its relation to `=' in more detail. I argue that there is no dissimilarity between `≡' and
`=' that could undermine the analogy between (MOREC ) and (MORE1).

We note �rst that `≡' shares the distinctive structural features of the identity relation.
In particular, it expresses an equivalence relation in the sense that in addition to the

re�exivity rule (≡1), symmetry and transitivity rules are derivable for `a', `b ', `c ' in

[e , 〈e∗〉]:

(≡3) ` a≡ b→ b ≡ a

(≡4) ` (a≡ b ∧ b ≡ c)→ a≡ c

The proofs are exactly analogous to the corresponding proofs for `='.
Admittedly, the re�exivity, transitivity, and symmetry of the ordinary identity-

relation can also be expressed in a non-schematic way by means of quanti�cations like

∀x x = x and ∀x ∀y (x = y→ y = x). The structural features of `≡' are not thus ex-
pressible in L2≡. The reason is that we do not have any variables that range over an

entire cumulative type. So although we can express the re�exivity of ≡ with respect to

type e by `∀x e x e ≡ x e ', and with respect to type 〈e〉 by `∀x〈e〉 x〈e〉≡ x〈e〉', and so on,

we cannot express by a single sentence the re�exivity of ≡ tout court.

We can remove even this disanalogy by moving to a new language L2C extending L2≡
by what I shall call semantically cumulative variables. These are variables that belong

to a cumulative type [t1, t2, . . .] without belonging to any of the accumulated types

t1, t2, . . .. Roughly speaking, they are intended to range over the entirety of values

of the variables from the accumulated types. We may use underlined lowercase letters

from the end of the alphabet for these variables, and express, for example, the re�exivity

of ≡ in L2C as follows:25

25 Although the introduction of such variables could perhaps in principle be rejected by a cumulative
higher-orderist, it is important to see how natural their introduction is once syntactically cumu-
lative expressions have been introduced. For absent semantically cumulative variables, we have
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(≡5) ∀x[e , 〈e∗〉] x[e , 〈e∗〉]≡ x[e , 〈e∗〉]

With respect to their structural features, then, `≡' and `=' seem exactly analogous.

Moreover, whenever `≡' connects two singular terms, the resulting sentence is true

iff the corresponding sentence with `=' is true. More generally, any given sentence in

which `≡' connects two expressions of the same non-cumulative type is true just in case

the result of replacing `≡' with a suitable non-cumulative identity-like predicate is true.

That is, for τ among e , 〈e∗〉:

(≡6) ` aτ ≡ bτ↔ aτ =〈τ, τ〉 bτ

Let us then turn to the somewhat stranger contexts of `≡' in which it connects

expressions of different types; call them cross-type identi�cations. Our derivation of

(MOREC ) has shown that in conjunction with the rest of the higher-orderist's logic,

(≡1) and (≡2) already have substantive general implications concerning cross-type iden-

ti�cations: roughly speaking, at least one item in type 〈e〉 cannot be identi�ed with any

item in type e . The truth-values of all speci�c cross-type identi�cations, however, are

left open by our theory. That is, where τ and σ are different types among e , 〈e∗〉, no
sentence of the form paτ≡ bσq is either derivable or refutable from our rules.26 This is

exactly parallel to the situation for the logic of `=': where a and b are distinct singular

terms, pa= bq is neither derivable nor refutable from the logical rules alone. Of course,

if we are given some sentences pΦ(a)q, p¬Φ(b )q as premises, we can infer pa 6= bq from

them. But in just the same way, for a and b in [e , 〈e∗〉] and given sentences pΦ(a)q,
p¬Φ(b )q as premises, we may also infer pa 6≡ bq from them. So far then, no relevant

disanalogy between `=' and `≡' has emerged.

cumulative predicates with application conditions de�ned for a range of items that cannot be swept
out by a single variable. It seems more than odd to think that it should be impossible to add vari-
ables that can take values from the entire application range of the predicates. I shall henceforth
assume that semantically cumulative variables are no more problematic than syntactically cumula-
tive expressions.

26 It is clear that our rules do not permit the derivation of any theorem of the form pa≡ bq where a
and b are distinct expressions. A fortiori, they do not permit the derivation of any such theorem
where a and b belong to different types. It may not be as obvious that (≡2) does not, as it stands,
allow the derivation of any negation of a cross-type identi�cation. But note that so far, `≡' is the
only cumulative predicate in our language. So any well-formed cross-type instance of (≡2) will be a
formula like `a≡ b→ (b ≡ c→ a≡ c)' where the substitution in the consequent occurs in the scope
of `≡'. As a result, we could only obtain the negation of a cross-type identity from such a premise
given another negation of a cross-type identity to start with. For essentially the same reason, we
also cannot derive negations of cross-type identi�cations appealing to the proposed indiscernibility
de�nition of `≡'.
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Perhaps one might be tempted to argue for such a disanalogy along the following

lines.27 A cumulative counterpart of the identity-predicate like `≡' is most naturally

thought of on the model of the disjunction of the relevant non-cumulative identity-like

predicates. Now when we think of `≡' in this way, then it trivially produces a false sen-

tence whenever it is fed expressions of different types as arguments. But that makes the

crucial claims of distinctness from which (MOREC ) is inferred importantly dissimilar

to the claims of distinctness from which (MORE1) is inferred. For the latter claims of

distinctness are not trivial in this way. And since (MOREC ) is now seen to be merely an

immediate consequence of a perfectly trivial claim, it would be implausible to consider

it as contradicting the spirit of Absolutism. For surely it would be disingenuous to

interpret the spirit of Absolutism in such a way that it is straightforwardly inconsistent

with a mere triviality.

My response is that the envisaged disjunctive understanding of `≡' is incompatible

with how I have introduced the expression, and that an understanding that is in line

with how I have introduced `≡' does not trivialize cross-type identi�cations in the way

described. I suggested two alternative ways to introduce `≡'. The �rst is to take it as

primitive, subject to the inference rules (≡1) and (≡2). These rules do not trivialize

cross-type identi�cations, but tie them to predications involving the relevant terms. As

a result, there are non-trivial considerations that can be brought to bear on the question

of the truth or falsity of a given cross-type identi�cation.

Consider �rst the question of the identity between objects a and b . In order to

decide the question, we may ask whether there is a predicate that, under a uniforma-

tion interpretation, is de�ned for both a and b , and applies to a but not to b . Since

the cumulative higher-orderist allows cumulative predicates, a counterpart of that con-

sideration applies to questions of cross-type identity. For instance, to decide whether

ae ≡ b 〈e〉, we may ask whether there is a predicate of type 〈[e ,〈e〉]〉 � whose applica-

tion conditions are accordingly de�ned for both ae and b 〈e〉 � which, under a uniform

interpretation, applies to ae but not to b 〈e〉.

The second way of introducing `≡' I offered is through an explicit de�nition in terms

of the corresponding indiscernibility condition. This de�nition also does not trivialize

cross-type identi�cations, but ties them to the existence of discriminating properties.

To decide whether a given cross-type identi�cation is true, we may ask whether there is

a property of type〈[e ,〈e〉]〉 � whose exempli�cation conditions accordingly are de�ned

27 Thanks here to [blinded].
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for both ae and b 〈e〉 � which ae has but b 〈e〉 does not have. In the same way, the

existence of discriminating properties bears on questions of �rst-order identity: we ask

whether there is a property whose exempli�cation conditions are de�ned for both a

and b and which a has and b does not have.

Finally, it is not obvious whether some cross-type identi�cations might not be true.28

Consider some way for a thing to be, say, wise, and the corresponding property, wis-

dom, conceived of as a bona �de object, i.e. something properly designated in a formal

language by a singular term. It is not absurd to think that if ≡ is to be the closest thing

to identity that is de�ned for a range comprising both objects and ways for objects to

be, then it should be the case that wisdom ≡ is wise. Such a view might allow a cu-

mulative higher-orderist to hold that most of the ways for things to be recognized in

L2≡ are �identical� to things in the range of L1's quanti�er � the exception being the

Russell-style ways for things to be. Indeed, a non-classical cumulative higher-orderist

who endorses a naive comprehension schema for properties at the cost of some truths

of classical logic could in this way argue for the negation of (MOREC ):

(GAC ) ∀y[e , 〈e∗〉] ∃o x y[e , 〈e∗〉]≡ x

Whatever the overall merits or demerits of such a view, it would thereby underwrite

a stronger form of Absolutism than is consistent with a classical cumulative higher-

orderism such as Williamson's.

I conclude that `≡' is not problematically dissimilar to `=', and that the analogy

between (MORE1) and (MOREC ) is accordingly strong enough that (MOREC ) should

be taken to contradict the spirit of Absolutism.

6 Expressive Dif�culties

One of Williamson's arguments against Relativism is related to the peculiarity we noted

in §2 concerning the most natural ways an Absolutist might attempt to express their

28 It should be noted that the option of holding things of different types in general distinct is plau-
sible at most for what we may call pure types, i.e. types that are neither cumulative, nor derived
from cumulative types. If we allow semantically cumulative variables, we of course obtain some
examples of true cross-type identi�cations. In particular, we should have the result that, for exam-
ple ∀x e ∃y[e , 〈e∗〉] x e ≡ y[e , 〈e∗〉]. Moreover, for higher-level analogues of `≡' which also apply to

expressions of functional types derived from cumulative types, we shall also have true cross-type
identi�cations where neither argument is of a cumulative type. For example, for the counterpart of
`≡' in type 〈[〈e〉, 〈[e , 〈e〉]〉], [〈e〉, 〈[e , 〈e〉]〉]〉 we should have that ∀x〈e〉 ∃y〈[e , 〈e〉]〉 x e ≡ y〈[e , 〈e〉]〉.
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view. Prima facie, the obvious way to do that is to utter a sentence like `It is possible to

quantify over absolutely everything'. Now if Absolutism is true, then we can interpret

the Absolutists's use of the quanti�er phrase `absolutely everything' in the absolutist

way they intend, and under such an interpretation, the Absolutist has said something

relevant and true. But if Absolutism is false, then we cannot so interpret the utterance,

and our Absolutist, far from making a relevant claim that is unfortunately true, has

made a true but irrelevant claim. While that is perhaps a somewhat strange dialectical

situation, it seems that at least by their own lights, the Absolutist can express their

intended thesis.

Williamson suggests that the Relativist is in a considerably worse position (cf. 2003,

§5). The idea is this. Suppose the Relativist attempts to state his view by uttering the

negation of the Absolutist's sentence, i.e. `It is impossible to quantify over absolutely

everything'. That sentence can express what the Relativist intends it to express only on

the assumption that Relativism is false. And in that case, what the sentence expresses

is also false, as one would have hoped. But if Relativism is true, the sentence sim-

ply says something unintended. Whatever restricted domain the quanti�er `absolutely

everything' is interpreted as ranging over, the sentence then says that quanti�cation

restricted in that way is impossible. But that is not something the Relativist wants to

proclaim to be impossible, and rightly so, for it evidently is not impossible. It seems

that if the Absolutists cannot help but say something true, but at least say what they

want if their view is right, the Relativists cannot help but say something false, and say

what they wants only if their view is wrong.

Of course, even if successful, this argument does not show that standard Relativism

is incoherent. It shows only that a natural �rst idea for stating the view is incoherent.

Relativists might respond in two ways. They might simply resist the urge to produce a

general claim supposed to capture their view, limiting themselves to claims like

(MORE1) ∃y ∀o x x 6= y

describing individual languages like L1 as expressing only a restricted form of generality.

Although these claims seem to instantiate a common pattern, crying out for generaliza-

tion, Relativists might simply reject any suggestion that there is a true generalization of

which all these claims are mere special cases.29 Admittedly, while internally coherent,

this kind of quietist positions may be less than fully satisfactory. Alternatively, Rela-

29 Button 2010 puts forth a view like this.
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tivists can try to devise some other way of formulating a general thesis that can capture

their view without collapsing into incoherence.30

Whether or not Relativists can �nd a convincing solution to the problem, it appears

that cumulative higher-orderists face exactly the same sort of dif�culty. Their pro-

posal requires that from any legitimate language, we can move to a meta-language that

includes quanti�ers of an order higher than any order of quanti�cation found in the

object-language. So like Relativists, they seem committed to a kind of inexhausibility

thesis; only the higher-orderist's thesis concerns the entire hierarchy of orders of quan-

ti�cation. The most natural way to attempt to express the view is by uttering a sentence

like: `It is impossible to quantify over absolutely everything in the entire hierarchy of

higher and higher orders of quanti�cation.' Clearly, this sentence is no better off than

the Relativist's doomed `It is impossible to quantify over absolutely everything'.

Of course, this does not show that cumulative higher-orderism is incoherent. It

shows only that a natural �rst idea for stating the relativist component of the view is

incoherent. Like Relativists, higher-orderists might respond in two ways. They might

simply resist the urge to produce a general claim supposed to capture the Relativist

element of their view, limiting themselves to claims like

(MOREC ) ∃y〈e〉 ∀o x e y〈e〉 6≡ x e

describing individual languages like L1 as expressing only a limited form of generality.

Although these claims seem to instantiate a common pattern, crying out for general-

ization, higher-orderists might simply reject any suggestion that there is a true gener-

alization of which all these claims are mere special cases. Again, the view seems to be

internally coherent, but to the same extent as its Relativist cousin, it also seems less

than fully satisfactory. Alternatively, higher-orderists can try to devise some other way

of formulating a general thesis capturing their intended form of Relativism. It is not

obvious how they might do so, but if they manage it, that would answer the objection

just presented. However, it is to be expected (though I cannot prove) that if any such

means were to be found, it would also give the standard Relativist a way of formulating

their thesis without falling into incoherence.

I conclude that, as far as adequate formulation of their overall view is concerned,

standard Relativists and cumulative higher-orderists are in a very similar situation.

30 See Fine 2006 for one proposal.
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7 Interpretative Limitations

Williamson also criticizes Relativism for painting an unattractive picture of parts of log-

ical, metaphysical, and mathematical discourse (cf. Williamson, 2003, 415ff, 435). As I

mentioned in the introduction to this paper, such discourse appears to provide us with

numerous examples of utterances intended as absolutely general. As a result, the in-

terpretations of such utterances that the Relativist can offer seem, from a pre-theoretic

standpoint, quite weird and implausible. In this section, I investigate whether the in-

terpretations offered by the cumulative higher-orderist should be considered similarly

weird and implausible.

Let me �rst try and bring out as clearly as I can that and why the Relativist's inter-

pretations seem weird.31 Consider any of the following sentences:

(6) Everything is self-identical.

(7) If something x is identical to something y, then this is necessarily so.

(8) Everything is necessarily identical to something.

(9) Everything is either abstract or concrete.

From the point of view of a Relativist's meta-language and semantics, utterances of any

of (6)�(9) can be interpreted only as restricted to some less than all-inclusive domain

D . In typical cases, any such interpretation seems to simply be a misinterpretation.

Consider the formalization

(10) ∀x (Ax∨C x)

of (9) in a formal �rst-order language L1. Assume we have formulated a Relativist se-

mantics in a �rst-order meta-language L2, which we may suppose include the predicates

`is abstract' and `is concrete' with their usual meanings. Now consider the following

two sentences of L2

(11) ∀x (x is concrete ∨ x is abstract)

31 Although I myself agree that they do seem weird, I have encountered some resistance to this view
in discussion. So it may be worth stressing two points. Firstly, it is important to guard against a
misunderstanding. As I see it, the issue concerns the plausibility of certain interpretations from
a pre-theoretic standpoint. Among other things, this means that `interpretation' here must not be
understood in any theoretically loaded sense like assignment of semantic values, or some such, but is
to be taken in an intuitive, pre-theoretic sense. Secondly, for the purposes of my argument, it does
not matter much whether the following considerations do show that the Relativist's interpretations
should seem implausible. For my claim will simply be that if they do, then similar considerations
establish an analogous, if less drastic verdict on the cumulative higher-orderist's interpretations.
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(12) ∀x ∈D (x is concreteD ∨ x is abstractD )

where D is the domain with respect to which we are interpreting L1, and `abstractD '

and `concreteD ' mean the same as their subscript-free counterparts except in that their

application conditions are de�ned only over D . Evidently, the generalization expressed

by (12), as well as every generalization expressed by a version of (12) in which some

other set is referred to in place of D , bears an interesting relationship to the generaliza-

tion expressed by (11). Roughly speaking, (12) is obtained from (11) through replacing

the quanti�er `∀x' by a proper restriction of it, and replacing the predicates by counter-

parts with accordingly restricted application conditions. I shall say the generalization

expressed by (12) is a mere restriction of that expressed by (11), and conversely that the

latter is a mere expansion of the former.

The important point is that the claim expressed by (12), because it is a mere restric-

tion of that expressed by (11), seems a strange target for metaphysical inquiry, and

relatedly a strange claim to put forth as the upshot of a metaphysical investigation.

The claim expressed by (11) seems a much more interesting and natural claim to focus

on. At least at a �rst, and again, perhaps somewhat naive glance, it therefore seems

implausible to interpret a metaphysician using the L1-sentence (10) to put forth (part

of) his metaphysical theory as having endorsed the claim expressed by (12), not (11).

Of course, if we try to specify, in a meta-language for our meta-language, an intended

interpretation of (11), it, too, will turn out to express a mere restriction of a yet more

encompassing counterpart. In this way, saying that everything is abstract or concrete

becomes something of a metaphysisyphean task.

To illustrate the point another way, imagine a necessitist like Williamson uttering

(8). In effect, the Relativist would interpret him as saying that everything except perhaps

some things outside D is necessarily (identical to) something. This seems very strange.

From a naive point of view, one expects the Relativist to then ask our necessitist what

his view is with respect to the things outside D . The kind of conversation that would

then unfold seems not worth having. N: `I think that everything, in- or outside D , is

necessarily something.' R: `Oh, I see, you think that everything in your domain of

discourse D ′ is necessarily something. But what about the things outside D ′?' N: `Yes,

they too. Indeed, everything, and so in particular everything outside D ′, is necessarily

something.' R: `I see, so everything in D ′′ . . . '

Thankfully, disputes in logic and metaphysics rarely take this shape. But it is not

obvious why interpreting speakers in the Relativist's way should not invite this kind
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of tiring sequence of questions and responses. Relatedly, it is not obvious why the

Relativist's interpretations of the pertinent utterances are not cases of strange misinter-

pretation. So at �rst glance, it seems that Relativism paints a somewhat disconcerting

picture of signi�cant parts of logico-metaphysical inquiry.

However, it seems to me that the same kind of problem also arises for the cumulative

higher-orderist, although only in a somewhat less dramatic form. Speci�cally, for some

of universal generalizations of L1, it seems that from the perspective of the cumulative

meta-language L2C , they express mere restrictions of more encompassing claims. This

is so in particular for L1-generalizations involving only logical vocabulary.

Consider the L1-sentence

(13) ∀x x = x

On the cumulative higher-orderist's semantics given in L2C , it expresses the claim that

(14) ∀x e x e = x e

Now, as we have seen, using cumulative resources, we can express a version of the

notion of identity that is de�ned for both objects and ways for objects to be. That

notion ≡ seems to relate the ordinary notion of identity in much the same way as

the notion of abstractness relates to that expressed by `abstractD ' above. The ordinary

identity-predicate `=' means the same as `≡', except in that its application conditions

are de�ned only for objects.

Moreover, the semantically cumulative quanti�er `∀x[e , 〈e∗〉]' of L2C seems to relate

to `∀x e ' as expansion to restriction in much the same as `∀x' above does to `∀x ∈D'.

Indeed, from the perspective of L2C , we could also say that (13) expresses the claim

that32

(15) ∀x (OBJ(x)→ x ≡OBJ x)

where `OBJ(x)' is de�ned by `∃y e x ≡ y' and thus applies to all and only objects, and

`x ≡OBJ y' is de�ned by `OBJ(x) ∧ OBJ(y) ∧ x ≡ y' and thus applies to all and only

identical objects.

In this way, we can formulate mere expansions for any given universal generaliza-

tion in L1 as long as it contains only �rst-order predicates that have natural higher-

order analogues. Clearly, this is not the case for every generalization. For example,

32 For readability, I have here dropped the type-superscript [e , 〈e∗〉] from the underlined, cumulative
variables.
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it does not seem as though the abstract/concrete distinction has any obvious counter-

parts at higher orders of quanti�cation. Nevertheless, it holds for quite a few interest-

ing and contentious logico-metaphysical theses, such as the necessity of identity and

existence. More cases show up when we consider a second-order language as object-

language. They include, for example, the claim that nothing has contradictory prop-

erties (∀x e ¬∃x〈e〉 (x〈e〉(x e ) ∧ ¬x〈e〉(x e ))), or the conclusion of the Russell Paradox

¬∃z〈e , e〉 ∀x〈e〉 ∃x e ∀y e (x〈e〉(x e )↔ z〈e , e〉(x e , y e )).
It would be an exaggeration to claim in conclusion that with respect to the dif�culty

of interpreting apparently absolutely general discourse in logic, mathematics, or meta-

physics, a cumulative higher-orderist is in as worrisome a position as the Relativist. The

cases in which they may be thought to interpret speakers in an implausibly restricted

fashion are less wide-spread than those arising for Relativism, and it is not obvious

that the restricted interpretations are as implausible-looking as those given by the Rel-

ativist. Nevertheless, the difference appears to be one of degree, and a smaller one than

one might have expected.

8 Conclusions

The attempt to develop a generalized semantic theory in a �rst-order language for an

object-language that expresses absolute generality runs into a version of Russell's Para-

dox. Standard Relativism concludes that absolute generality is impossible. Williamson

2003 criticizes that view on a number of grounds, including that it is by its own lights

not properly expressible, and that it yields an unsatisfactory picture of parts of logical,

metaphysical, and mathematical inquiry. To avoid Relativism, Williamson appeals to a

hierarchy of higher and higher orders of quanti�cation, which, in his recent book, he

extends to trans�nite and cumulative orders of quanti�cation. I have argued that the

emerging view has implications strongly reminiscent of the distinctive commitments of

standard Relativism and thus gives up on much of the spirit of Absolutism. Moreover,

versions of the two criticisms of Relativism just mentioned also apply on the cumula-

tive higher-order view.

Cumulative higher-orderism is not thereby shown to be wrong, of course. (Indeed,

I incline to think it is correct.) What I hope to have shown, however, is that it does

not let us be as much of a Generality Absolutist as we might have thought and hoped.
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Even according to cumulative higher-orderism, there is not just everything. There is

everything, and then some.
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