
ADDING A CLUB WITH FINITE CONDITIONS, PART II

JOHN KRUEGER

Abstract. We define a forcing poset which adds a club subset of a given fat
stationary set S ⊆ ω2 with finite conditions, using S-adequate sets of models

as side conditions. This construction, together with the general amalgamation
results concerning S-adequate sets on which it is based, is substantially shorter

and simpler than our original version in [3].

The theory of adequate sets introduced in [2] provides a framework for adding
generic objects on ω2 with finite conditions using countable models as side con-
ditions. Roughly speaking, an adequate set is a set of models A such that for
all M and N in A, M and N are either equal or membership comparable below
their comparison point βM,N . A technique which was central to the development
of adequate sets in [2], as well as to our original forcing for adding a club to a fat
stationary subset of ω2 in [3], involves taking an adequate set A and enlarging it to
an adequate set which contains certain initial segments of models in A.

In this paper we prove amalgamation results for adequate sets which avoid the
method of adding initial segments of models. It turns out that these new results
drastically simplify the amalgamation results from [3] for strongly adequate sets.
As a result we are able to develop a forcing poset for adding a club to a given fat
stationary subset of ω2 with finite conditions which is substantially shorter than
our original argument in [3].

Forcing posets for adding a club to ω2 with finite conditions were originally de-
veloped by Friedman [1] and Mitchell [5], and then later by Neeman [6]. Adequate
set forcing was introduced in [2] in an attempt to simplify and generalize the meth-
ods used by the first two authors. This new framework is also flexible as it admits
useful variations. For example, in a subsequent paper [4] we show that the forcing
poset for adding a club presented below can be modified to preserve CH, answering
a problem of Friedman [1].

1. Background

For the remainder of the paper assume that (1) 2ω1 = ω2 and (2) there exists
a thin stationary set Y ⊆ Pω1

(ω2), which means that Y is stationary and for all
β < ω2, |{a∩β : a ∈ Y}| ≤ ω1. Without loss of generality assume that for all a ∈ Y
and β < ω2, a ∩ β ∈ Y. By (1) we can fix a bijection π∗ : ω2 → H(ω2). Consider
the structure (H(ω2),∈, π∗). The bijection π∗ induces definable Skolem functions
for this structure. For any set x ⊆ H(ω2), let Sk(x) denote the closure of x under
these Skolem functions.
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Let C∗ denote the set of α < ω2 such that Sk(α) ∩ ω2 = α. Easily C∗ is a club.
Let Λ = C∗ ∩ cof(ω1). Let X be the set of a in Y such that Sk(a) ∩ ω2 = a. The
set X is the collection of side conditions which we use in our forcing posets. If
x and y are in X ∪ Λ, a straightforward argument shows that Sk(x) = π∗[x] and
Sk(x) ∩ Sk(y) = Sk(x ∩ y). It follows that if x ∈ X and β ∈ Λ, then x ∩ β ∈ X .

For M ∈ X , define ΛM as the set β ∈ Λ such that Λ∩ [sup(M ∩β), β) = ∅. Note
that for β < ω2, β ∈ ΛM iff β = min(Λ \ sup(M ∩ β)).

Lemma 1.1. The following statements hold:

(1) If β ∈ Λ and M ∈ P (β) ∩ X , then M ∈ Sk(β). In particular, if M ∈ X
and β ∈ Λ, then M ∩ β ∈ Sk(β).

(2) If M and N are in X , then ΓM ∩ΓN has a maximum element. Let βM,N :=
max(ΓM ∩ ΓN ).

(3) (M ∪ lim(M)) ∩ (N ∪ lim(N)) ⊆ βM,N .

(1) follows from the thinness of Y. See Proposition 1.11 of [2]. (2) is proved in
Lemma 2.4 of [2]. The maximum ordinal βM,N is called the comparison point of
M and N . (3) is proved as Proposition 2.6 of [2].

Definition 1.2. Let A be a subset of X . We say that A is adequate if for all M and
N in A, either M ∩βM,N ∈ Sk(N), N ∩βM,N ∈ Sk(M), or M ∩βM,N = N ∩βM,N .

Suppose that {M,N} is adequate. If M ∩βM,N ∈ Sk(N) then we write M < N .
If either M ∩ βM,N ∈ Sk(N) or M ∩ βM,N = N ∩ βM,N then we write M ≤ N .

Lemma 1.3. Let {M,N} be adequate. Then M < N iff M ∩ ω1 < N ∩ ω1, and
M ≤ N iff M ∩ ω1 ≤ N ∩ ω1.

The lemma follows easily from the fact that ω1 ≤ βM,N . Therefore if {M,N}
is adequate, then the relationship between M and N is determined by their in-
tersections with ω1. If A is an adequate set, then M ∈ A is minimal in A if
M ∩ ω1 ≤ N ∩ ω1 for all N ∈ A. If M is minimal, then for all N ∈ A, M ≤ N .

Lemma 1.4. Suppose that M < N . Then Sk(M ∩ βM,N ) is a member and a
subset of Sk(N). Also every limit point of M ∩ βM,N and every initial segment of
M ∩ βM,N is in Sk(N).

This follows from the elementarity of Sk(N), the fact that Sk(M ∩ βM,N ) =
π∗[M ∩ βM,N ], and M ∩ βM,N being countable.

Definition 1.5. Suppose that {M,N} is adequate. Define RM (N) as the set of β
satisfying either:

(1) there is γ ∈M \ βM,N such that β = min(N \ γ), or
(2) N ≤M and β = min(N \ βM,N ).

Note that if M < N then the ordinal min(N \ βM,N ) is not required to be in
RM (N). The elements of RM (N) are called remainder points of N over M . The
set RM (N) is finite; for a proof see Proposition 2.9 of [2]. If A is adequate and
N ∈ A, let RA(N) =

⋃
{RM (N) : M ∈ A}. Let RA =

⋃
{RM (K) : M,K ∈ A}.

For the purposes of adding a club to a fat stationary set, we need a stronger
version of adequate. The next property was called strongly adequate in [3].

Definition 1.6. Let S be a subset of ω2 such that S ∩ cof(ω1) is stationary and is
a subset of Λ. A set A ⊆ X is S-adequate if A is adequate and for all M and N
in A, RM (N) ⊆ S.
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If A is S-adequate, N ∈ X , and A ⊆ Sk(N), then easily A∪ {N} is S-adequate.
Below we record some technical facts, most of which follow by elementary ar-

guments from the definitions. The reader would benefit by proving these results
as a warm up before proceeding. Any difficulties in doing so can be remedied by
reading Sections 1–3 of [2].

Lemma 1.7. Let K, L, and M be in X .

(1) If M ⊆ L then ΛM ⊆ ΛL. Hence βK,M ≤ βK,L.
(2) If L ⊆ β and β ∈ Λ, then ΛL ⊆ β + 1. Therefore βK,L ≤ β.
(3) If β < βK,L and β ∈ Λ, then K ∩ [β, βK,L) 6= ∅.
(4) Suppose that K ∩ βK,M ⊆ L. Then βK,M ≤ βL,M .

Proof. (4) By definition βK,M ∈ ΛM . By our assumptions, sup(K ∩ βK,M ) ≤
sup(L ∩ βK,M ). Since βK,M ∈ ΛK , βK,M = min(Λ \ sup(K ∩ βK,M )). So clearly
βK,M = min(Λ \ sup(L ∩ βK,M )). Hence βK,M ∈ ΛL. Since βL,M is maximal in
ΛL ∩ ΛM , βK,M ≤ βL,M . �

Lemma 1.8. Let M and N be in X and assume that {M,N} is adequate.

(1) If there is ζ ∈M \N with ζ < βM,N , then N < M .
(2) If M ≤ N then M ∩ βM,N = M ∩N .
(3) If β < βM,N and β ∈ Λ, then (M ∩N) \ β 6= ∅.

2. Amalgamation of S-adequate sets

The basic method for preserving cardinals when forcing with side conditions is
the amalgamation of conditions over elementary substructures. In this section we
prove general results for amalgamating S-adequate sets over countable structures
and structures of size ω1. This material is a simplification of the analogous results
from [3].

Lemma 2.1. Let A be an adequate set. Let ζ ∈ RA and K ∈ A with K \ ζ 6= ∅.
Then min(K \ ζ) ∈ RA.

Proof. The proof splits into a large number of cases. Fix M and L in A such that
ζ ∈ RM (L). Let σ := min(K \ ζ) and we will show that σ ∈ RA. If ζ = σ, then
we are done since ζ ∈ RA. So assume that ζ < σ. Then ζ /∈ K. If βK,L ≤ ζ, then
since ζ ∈ L, σ ∈ RL(K) and we are done. So assume that ζ < βK,L. As ζ ∈ L \K,
it follows that K < L.

If βK,L ≤ σ, then σ = min(K \βK,L), so σ ∈ RL(K) and we are done. So assume
that σ < βK,L. Since K ∩ βK,L ⊆ L, it follows that σ ∈ L and K ∩ σ ⊆ L.

Case 1: L ≤M . Then K < M . Since ζ ∈ RM (L), βL,M ≤ ζ. So σ ∈ L\βL,M , and
hence σ /∈ M . Therefore σ ∈ K \M . Since K < M , this implies that βK,M ≤ σ.
Hence K ∩ βK,M ⊆ L. By Lemma 1.7(4), βK,M ≤ βL,M .

Subcase 1.1: ζ = min(L \ γ) for some γ ∈ M \ βL,M . Since βK,M ≤ βL,M ,
γ ∈M \ βK,M and easily σ = min(K \ γ). So σ ∈ RM (K).

Subcase 1.2: ζ = min(L \ βL,M ). Let σ′ := min(K \ βK,M ), which is in RM (K).
We claim that σ′ = σ. Since K ∩ ζ ⊆ L, K ∩ [βL,M , ζ) = ∅. So if σ′ < σ, then
σ′ < βL,M . But then σ′ ∈ L ∩ βL,M and hence σ′ ∈ M since L ≤ M . Hence
σ′ ∈ (K ∩M) \ βK,M , which is impossible.
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Case 2: M < L. Then there is γ ∈ M \ βL,M such that ζ = min(L \ γ). Since
K ∩ σ ⊆ L, σ = min(K \ γ). So if βK,M ≤ γ, then σ ∈ RM (K). Assume that
βK,M > γ. Then since γ ∈M \K, K < M . If βK,M ≤ σ, then σ = min(K \ βK,M )
and hence σ ∈ RM (K). Assume that βK,M > σ. Then σ ∈ M . But then σ ∈
(L ∩M) \ βL,M , which is impossible. �

For the rest of the section assume that S is a subset of ω2 such that S ∩ cof(ω1)
is stationary and is a subset of Λ.

The next result describes the amalgamation of adequate sets over countable
models, and replaces the material of 2.2-2.11 of [3].

Proposition 2.2. Let A be adequate and let N ∈ A. Let B be adequate and assume
that A ∩ Sk(N) ⊆ B ⊆ Sk(N). Suppose that:

(1) for all M < N in A, there is M ′ ∈ B such that M ∩ βM,N = M ′ ∩ βM,N ;
(2) there is N ′ in B such that RA(N) ⊆ RB(N ′);
(3) for all M < N in A, M ′ < N ′ and βM,N = βM ′,N ′ .

Then A∪B is adequate and RA∪B = RA∪RB. Therefore if A and B are S-adequate,
then so is A ∪B.

Proof. Let M ∈ A and L ∈ B. We will prove that either M ≤ L or L < M , and
RL(M) and RM (L) are subsets of RA ∪RB .

First suppose that N ≤M . Since L ∈ Sk(N), βL,M ≤ βM,N , and so L∩βL,M ∈
Sk(N) ∩ Sk(βM,N ) = Sk(N ∩ βM,N ) ⊆ Sk(M). This proves that L < M . Let
ζ ∈ RL(M). Then there exists γ ∈ L \ βL,M such that ζ = min(M \ γ). Since
γ ∈ N \M and N ≤M , βM,N ≤ γ. So ζ is in RN (M).

Now consider ζ ∈ RM (L). Then ζ is equal to either (a) min(L \ βL,M ), or (b)
min(L \ γ) for some γ ∈ M \ βL,M . Since ζ ∈ N \M and N ≤ M , βM,N ≤ ζ. So
βL,M ≤ βM,N ≤ ζ. Let ξ := min(N \ βM,N ). Since N ≤ M , ξ ∈ RM (N). So by
property (2), ξ ∈ RB . (a) If ζ = min(L \ βL,M ), then clearly ζ = min(L \ ξ). Since
ξ is in RB , ζ ∈ RB by Lemma 2.1. (b) If γ ≤ βM,N , then again ζ = min(L \ ξ) so
ζ ∈ RB . Otherwise γ > βM,N . Then γ ∈ M \ βM,N . Let τ := min(N \ γ). Then
τ ∈ RM (N) and hence τ ∈ RB . Clearly ζ = min(L \ τ), so ζ ∈ RB by Lemma 2.1.

Assume now that M < N . Since L ⊆ N , βL,M ≤ βM,N . As M ∩ βM,N =
M ′ ∩ βM,N , M ∩ βL,M ⊆ M ′. By Lemma 1.7(4), βL,M ≤ βL,M ′ . We claim that
either βL,M = βL,M ′ or βL,M ′ > βM,N . Suppose that βL,M < βL,M ′ . Since {L,M ′}
is adequate, by Lemma 1.8(3) fix θ ∈ (L∩M ′)\βL,M . Then θ < βL,M ′ . If θ < βM,N ,
then θ ∈ M ′ ∩ βM,N = M ∩ βM,N . So θ ∈ (L ∩M) \ βL,M , which is impossible.
Hence βM,N ≤ θ < βL,M ′ .

Since B is adequate, either M ′ ≤ L or L < M ′. Suppose that M ′ ≤ L. Then
M ′ ∩ βL,M ′ is either equal to L ∩ βL,M ′ or is in Sk(L). Since βL,M ≤ βL,M ′ ,
M ′ ∩ βL,M is either equal to L ∩ βL,M or is in Sk(L). But as βL,M ≤ βM,N ,
M ′ ∩ βL,M = M ∩ βL,M . So M ∩ βL,M is either equal to L ∩ βL,M or is in Sk(L).
Therefore M ≤ L. Note that L and M compare the same way as do L and M ′.

Consider ζ ∈ RL(M). Then ζ is equal to either (a) min(M \ βL,M ) or (b)
min(M \ γ) for some γ ∈ L \ βL,M . First assume that ζ < βM,N . Then ζ ∈
M ∩ βM,N = M ′ ∩ βM,N . Since M ′ ≤ L and ζ ∈ M ′ \ L, we must be in the
case that βL,M = βL,M ′ . In case (a), clearly ζ = min(M ′ \ βL,M ′), and in case
(b), γ ∈ L \ βL,M ′ and ζ = min(M ′ \ γ). In either case, ζ ∈ RL(M ′). Now
assume that βM,N ≤ ζ. If (a) holds or if (b) holds and γ < βM,N , then clearly
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ζ = min(M \ βM,N ) and hence ζ ∈ RN (M). Otherwise (b) holds and βM,N ≤ γ.
Since γ ∈ N , ζ ∈ RN (M).

Now let ζ ∈ RM (L). Then either (a) L∩βL,M = M∩βL,M and ζ = min(L\βL,M )
or (b) ζ = min(L \ γ) for some γ ∈ M \ βL,M . Assume (a). Then L ∩ βL,M ′ =
M ′ ∩ βL,M ′ . If βL,M = βL,M ′ , then ζ = min(L \ βL,M ′) and hence is in RM ′(L).
Otherwise βM,N < βL,M ′ . Note that ζ cannot be below βM,N , because otherwise
it would be in L ∩ βM,N = M ′ ∩ βM,N = M ∩ βM,N , and hence in (L ∩M) \ βL,M ,
which is impossible. Therefore ζ = min(L \ βM,N ). By Lemma 1.8(3), L ∩ M ′
meets the interval [βM,N , βL,M ′). Hence ζ < βL,M ′ . Then ζ = min(M ′ \ βM,N ).
But βM,N = βM ′,N ′ and M ′ < N ′. So ζ ∈ RN ′(M ′).

Now assume (b). First suppose that βL,M = βL,M ′ . Then γ ∈ M \ βL,M ′ . If
γ < βM,N , then γ ∈M ′. So ζ = min(L \ γ) and γ ∈M ′ \ βL,M ′ , and hence ζ is in
RM ′(L). Otherwise γ ∈ M \ βM,N . Let ξ := min(N \ γ). Then ξ ∈ RM (N) and
hence ξ ∈ RB . Clearly ζ = min(L \ ξ), so ζ ∈ RB by Lemma 2.1. Now assume that
βM,N < βL,M ′ . We claim that γ ≥ βM,N . Otherwise γ ∈M ∩ βM,N = M ′ ∩ βM,N .
So γ ∈ M ′ ∩ βL,M ′ , and since M ′ ≤ L, this implies that γ ∈ L. But then γ ∈
(L ∩M) \ βL,M which is impossible. Since γ ∈ M \ βM,N , ξ := min(N \ γ) is in
RM (N) and hence in RB . Clearly ζ = min(L \ ξ), so ζ ∈ RB by Lemma 2.1.

In the final comparison, suppose that L < M ′. Then L∩βL,M ′ ∈ Sk(M ′). Since
βL,M ≤ βL,M ′ , βM,N , L∩βL,M ∈ Sk(M ′)∩Sk(βM,N ) = Sk(M ′∩βM,N ) = Sk(M ∩
βM,N ) ⊆ Sk(M). So L < M . Let ζ ∈ RL(M) be given. Then ζ = min(M \ γ) for
some γ ∈ L \ βL,M . If γ ≥ βM,N , then ζ ∈ RN (M). Suppose that γ < βM,N . If
βL,M ′ > βM,N then since L < M ′, γ ∈M ′. But then γ ∈M ′ ∩ βM,N = M ∩ βM,N .
So γ ∈ (L∩M) \ βL,M which is impossible. Therefore βL,M = βL,M ′ . If ζ < βM,N ,
then clearly ζ = min(M ′ \ γ), and ζ is in RL(M ′). Otherwise γ < βM,N ≤ ζ. Then
clearly ζ = min(M \ βM,N ). Since M < N , ζ ∈ RN (M).

Consider ζ ∈ RM (L). Then ζ is equal to either (a) min(L\βL,M ) or (b) min(L\γ)
for some γ ∈ M \ βL,M . First assume that βL,M = βL,M ′ . Then (a) implies that
ζ ∈ RM ′(L). Suppose (b). If γ < βM,N , then γ ∈M ∩ βM,N = M ′ ∩ βM,N , so γ ∈
M ′ \ βL,M ′ . Therefore ζ ∈ RM ′(L). Assume that βM,N ≤ γ. Let ξ := min(N \ γ).
Since γ ∈M , ξ ∈ RM (N) and hence ξ ∈ RB . Clearly ζ = min(L \ ξ), so ζ ∈ RB by
Lemma 2.1.

Now assume that βM,N < βL,M ′ . We claim that ζ ≥ βM,N . Otherwise since
L < M ′, ζ ∈ M ′ ∩ βM,N = M ∩ βM,N . But then ζ ∈ (L ∩ M) \ βL,M , which
is impossible. In case (a) or in case (b) when γ ≤ βM,N , ζ = min(L \ βM,N ).
By Lemma 1.7(3), ζ < βL,M ′ . Recall that βM,N = βM ′,N ′ and M ′ < N ′. Let
τ := min(M ′ \ βM,N ), which is in RN ′(M ′). Then ζ = min(L \ τ), so ζ ∈ RB

by Lemma 2.1. Suppose case (b) and γ > βM,N . Then γ ∈ M \ βM,N . Let
ξ := min(N \γ), which is in RM (N) and hence in RB . Then clearly ζ = min(L\ξ),
so ζ ∈ RB by Lemma 2.1. �

The next proposition decribes the amalgamation of adequate sets over models
of size ω1 and replaces 2.12–2.15 of [3].

Proposition 2.3. Let A be adequate and β∗ ∈ Λ. Let B be adequate and assume
that A∩Sk(β∗) ⊆ B ⊆ Sk(β∗). Suppose that there is β < β∗ in Λ such that for all
M ∈ A, there is M ′ in B with M ∩β∗ = M ′ ∩β. Let rA = {min(M \β∗) : M ∈ A}
and rB = {min(K \ β) : K ∈ B}. Then A∪B is adequate and RA∪B ⊆ RA ∪RB ∪
rA∪rB. In particular, if A and B are S-adequate, rA ⊆ S, and rB ⊆ S, then A∪B
is S-adequate.
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Proof. Let M ∈ A and L ∈ B. Note that M ∩ β∗ ⊆ β and M ∩ β = M ′ ∩ β.
Since L ⊆ β∗, βL,M ≤ β∗ by Lemma 1.7(2). We claim that βL,M ≤ β. Otherwise
β < βL,M , which implies that M ∩ [β, βL,M ) 6= ∅ by Lemma 1.7(3). But then
M ∩ [β, β∗) 6= ∅, which is false. Since βL,M ≤ β, M ∩βL,M ⊆M ′. So βL,M ≤ βL,M ′

by Lemma 1.7(4).
We claim that either βL,M = βL,M ′ or βL,M ′ > β. Assume that βL,M ′ > βL,M .

Since {L,M ′} is adequate, by Lemma 1.8(3) we can fix θ ∈ (L∩M ′) \ βL,M . Then
θ ∈ βL,M ′ . If θ < β, then θ ∈ M ′ ∩ β = M ∩ β, so θ ∈ (L ∩M) \ βL,M , which is
impossible. Hence β ≤ θ < βL,M ′ .

Since L and M ′ are in B, either M ′ ≤ L or L < M ′. Assume that M ′ ≤ L.
Then M ′ ∩ βL,M ′ is either equal to L ∩ βL,M ′ or is a member of Sk(L). Since
βL,M ≤ βL,M ′ , M ′ ∩ βL,M is either equal to L ∩ βL,M or is a member of Sk(L).
But as βL,M ≤ β, M ′ ∩ βL,M = M ∩ βL,M . So M ≤ L. Also note that L and M
compare the same way as do L and M ′.

Let ζ ∈ RM (L). Then either (a) ζ = min(L \ βL,M ) and M ∩ βL,M = L ∩ βL,M ,
or (b) ζ = min(L \ γ) for some γ ∈ M \ βL,M . Assume (a). Then M ′ ∩ βL,M ′ =
L ∩ βL,M ′ . If βL,M = βL,M ′ then clearly ζ ∈ RM ′(L). Otherwise βL,M ′ > β. Then
L ∩ β = M ′ ∩ β = M ∩ β. Since ζ /∈M , ζ ≥ β. So ζ = min(L \ β) and ζ ∈ rB .

Assume (b). Since L ⊆ β∗ and ζ exists, γ < β∗, and hence γ < β. So γ ∈ M ′.
We claim that βL,M = βL,M ′ . Otherwise βL,M ′ > β, so γ ∈ M ′ ∩ βL,M ′ ⊆ L. So
γ ∈ (L ∩M) \ βL,M , which is impossible. So βL,M = βL,M ′ . Then γ ∈M ′ \ βL,M ′ ,
so ζ ∈ RM ′(L).

Now consider ζ in RL(M). Then ζ is equal to either (a) min(M \ βL,M ), or (b)
min(M \ γ) for some γ ∈ L \ βL,M . If ζ ≥ β∗, then since βL,M ≤ β∗ and L ⊆ β∗,
ζ = min(M \ β∗). So ζ ∈ rA. Otherwise ζ < β. Hence ζ ∈ M ′. Since M ′ ≤ L and
ζ is not in L, βL,M = βL,M ′ . Hence in either case (a) or (b), ζ ∈ RL(M ′).

Suppose that L < M ′. Then L ∩ βL,M ′ ∈ Sk(M ′). Since βL,M ≤ βL,M ′ , β,
L ∩ βL,M ∈ Sk(M ′) ∩ Sk(β) = Sk(M ′ ∩ β) ⊆ Sk(M). So L < M .

Let ζ ∈ RL(M). Then there is γ ∈ L \ βL,M such that ζ = min(M \ γ). If
ζ ≥ β∗, then since γ < β∗, ζ = min(M \ β∗) and so ζ ∈ rA. Otherwise ζ < β and
ζ ∈M ′. Then γ < β. If β < βL,M ′ , then since L < M ′, γ ∈M ′ ∩ β ⊆M , which is
impossible since γ ≥ βL,M . So βL,M = βL,M ′ . Hence ζ ∈ RL(M ′).

Finally, consider ζ ∈ RM (L). Then ζ is equal to either (a) min(L \βL,M ), or (b)
min(L \ γ) for some γ ∈ M \ βL,M . Assume (a). If ζ ≥ β, then since βL,M ≤ β,
ζ = min(L \ β) and hence ζ ∈ rB . Otherwise ζ < β. Since ζ /∈ M , ζ /∈ M ′. As
L < M ′, this implies that βL,M = βL,M ′ . Hence ζ ∈ RM ′(L).

Assume (b). Since L ⊆ β∗ and ζ exists, clearly γ < β. Hence γ ∈ M ′. If
βL,M = βL,M ′ , then γ ∈ M ′ \ βL,M ′ , so ζ ∈ RM ′(L). Otherwise βL,M ′ > β. Since
L < M ′, if ζ < β then ζ ∈ M ′ ∩ β ⊆ M , which contradicts that ζ is not in M . So
ζ ≥ β. But γ < β. So ζ = min(L \ β) and hence ζ ∈ rB . �

3. Adding a club

Let S be a fat stationary subset of ω2. That means that for every club D ⊆ ω2,
S ∩D contains a closed subset of order type ω1 + 1. We will define a forcing poset
with finite conditions which preserves cardinals and adds a club subset of S.

Note that since S is fat, S ∩ cof(ω1) is stationary. Thinning out S if necessary
using fatness, assume that S ∩ cof(ω1) ⊆ Λ and for all α ∈ S ∩ cof(ω1), S ∩ α
contains a club subset of α. Let Z denote the set of N in X such that sup(N) ∈ S
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and for all α ∈ N ∩ S, sup(N ∩ α) ∈ S. A straighforward argument shows that Z
is a stationary subset of Pω1

(ω2).
Pairs of ordinals 〈α, α′〉 and 〈γ, γ′〉 are said to be overlapping if either α < γ ≤ α′

or γ < α ≤ γ′; otherwise they are nonoverlapping. A pair 〈α, α′〉 and an ordinal ζ
are overlapping if α < ζ ≤ α′, and otherwise are nonoverlapping.

Definition 3.1. Let P be the forcing poset whose conditions are of the form p =
(xp, Ap) satisfying:

(1) xp is a finite set of nonoverlapping pairs of the form 〈α, α′〉, where α ≤
α′ < ω2 and α ∈ S;

(2) Ap is a finite S-adequate subset of Z;
(3) let M ∈ Ap and 〈α, α′〉 ∈ xp; if M ∩ [α, α′] 6= ∅, then α and α′ are in M ;

if M ∩ [α, α′] = ∅ and M \ α 6= ∅, then min(M \ α) ∈ S;
(4) if ζ ∈ RAp

then ζ is nonoverlapping with any pair in xp.

Let q ≤ p if xp ⊆ xq and Ap ⊆ Aq.1

For a condition p, a pair 〈α, α′〉 can be added to p if (xp ∪ {〈α, α′〉}, Ap) is a
condition (and in that case is obviously below p).

Let p be a condition and ζ ∈ S. Then 〈ζ, ζ〉 can be added to p provided that
there is no pair 〈α, α′〉 in x such that α < ζ ≤ α′, and for any N in Ap such that
ζ /∈ N and N \ ζ 6= ∅, min(N \ ζ) ∈ S.

In particular, suppose that ζ ∈ RAp . Then ζ ∈ S and ζ does not overlap any pair
in xp. Also if N ∈ Ap, ζ /∈ N , and N \ζ 6= ∅, then by Lemma 2.1, min(N \ζ) ∈ RAp

,
so min(N \ ζ) ∈ S. It follows that 〈ζ, ζ〉 can be added to p. Consequently there are
densely many conditions p satisfying that for all ζ ∈ RAp

, 〈ζ, ζ〉 ∈ xp.
If (x,A) satisfies properties (1), (2), and (3), and for all ζ ∈ RAp

, 〈ζ, ζ〉 ∈ xp,
then p is a condition. For in that case, property (4) follows from property (1).

Let Ḋ be a P-name such that P forces

Ḋ = {α : ∃p ∈ Ġ ∃γ 〈α, γ〉 ∈ xp}.

Clearly Ḋ is forced to be a subset of S. We will show that P preserves cardinals
and forces that Ḋ is club in ω2.

Lemma 3.2. Let p be a condition. Suppose that 〈α, α′〉 ∈ xp, N ∈ Ap, N∩[α, α′] =
∅, and N \ α 6= ∅. Let β := min(N \ α). Then 〈β, β〉 can be added to p.

Proof. Note that β ∈ S. Let 〈γ, γ′〉 be in x, and suppose for a contradiction that
γ < β ≤ γ′. Since β ∈ N , N∩ [γ, γ′] 6= ∅. Hence γ and γ′ are in N . Since γ < β and
β = min(N \ α), γ < α. But then γ < α ≤ γ′, contradicting that p is a condition.

Suppose that M ∈ Ap, β /∈M , and M\β 6= ∅. We will show that ζ := min(M\β)
is in S. If βM,N ≤ β, then since β ∈ N , ζ is in RN (M) and hence in S. Assume
that βM,N > β. Then as β ∈ N \ M , M < N . As α ≤ α′ < β < βM,N and
M∩βM,N ⊆ N , M∩[α, α′] = ∅. So min(M \α) ∈ S. But easily min(M \α) = ζ. �

Proposition 3.3. The forcing poset P preserves ω1.

Proof. Let p 
 ġ : ω → ω1 is a function. Fix χ > ω2 regular with ġ ∈ H(χ). Let N∗

be a countable elementary substructure ofH(χ) such that P, p, ġ, π∗, C∗,Λ,X , S,Z ∈

1The difference between this forcing poset and the one we defined in [3] is the additional
requirement (4), and a slightly different definition of pairs overlapping.
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N∗ and N := N∗ ∩ ω2 ∈ Z. This is possible as Z is stationary. Note that since
π∗ ∈ N∗, N∗ ∩H(ω2) = π∗[N ] = Sk(N). In particular, N∗ ∩ P ⊆ Sk(N).

Let q := (xp, Ap ∪ {N}). We will prove that q is N∗-generic. It follows that q
forces that the range of ġ is contained in N , so ġ does not collapse ω1. Fix a dense
set D ∈ N∗, and we will show that N∗ ∩D is predense below q.

Let r ≤ q. Extending r if necessary using Lemma 3.2, assume that whenever
〈α, α′〉 ∈ xr, M ∈ Ar, M ∩ [α, α′] = ∅, and M \ α is nonempty, then 〈min(M \
α),min(M \ α)〉 ∈ xr. Similarly assume that for all ζ ∈ RAr

, 〈ζ, ζ〉 ∈ xr.
Let M0, . . . ,Mk list the sets M in Ar with M < N . For each i ≤ k, βMi,N ∈

ΛMi
implies that βMi,N = min(Λ \ (sup(Mi ∩ βMi,N ))), and hence βMi,N ∈ N by

elementarity.
The objects r, N , and M0, . . . ,Mk witness the following statement: there exists

v, N ′, and M ′0, . . . ,M
′
k satisfying:

(1) v ∈ P;
(2) xr ∩ Sk(N) ⊆ xv, Ar ∩ Sk(N) ⊆ Av, and M ′0, . . . ,M

′
k and N ′ are in Av;

(3) RAr (N) = RAv (N ′);
(4) for all i ≤ k, M ′i < N ′, Mi ∩ βMi,N = M ′i ∩ βMi,N , and βMi,N = βM ′

i ,N
′ .

The parameters of the above statement, namely P, xr∩Sk(N), Ar∩Sk(N), RAr
(N),

and Mi ∩ βMi,N and βMi,N for i ≤ k, are all members of N∗. By the elementarity
of N∗, fix v, N ′, and M ′0, . . . ,M

′
k in N∗ which satisfy the same statement.

Fix w ≤ v in N∗ ∩ D. Extending w if necessary, assume that for all ζ ∈ RAw
,

〈ζ, ζ〉 ∈ xw. We will prove that w is compatible with r, which finishes the proof.
Define t by letting xt := xr ∪ xw and At := Ar ∪ Aw. We will show that t is a
condition. Then clearly t ≤ r, w and we are done.

(1)–(4) imply that the hypotheses of Proposition 2.2 hold for A = Ar and B =
Aw. It follows that At is S-adequate and Rt = RAr ∪ RAw . So by the choice of r
and w, if ζ ∈ RAt

then 〈ζ, ζ〉 ∈ xt. Thus t is a condition provided that requirements
(1), (2), and (3) in the definition of P are satisfied. We already know that (2) is
true.

(1) Let 〈α, α′〉 ∈ xr and 〈γ, γ′〉 ∈ xw be given. Suppose for a contradiction that
α < γ ≤ α′. Since γ ∈ N , N ∩ [α, α′] 6= ∅. So α and α′ are in N , and hence
〈α, α′〉 ∈ xw. This contradicts that w is a condition.

Now assume for a contradiction that γ < α ≤ γ′. If N ∩ [α, α′] 6= ∅, then
α and α′ are in N and 〈α, α′〉 ∈ xw, which contradicts that w is a condition.
Assume that N ∩ [α, α′] = ∅. Let ζ := min(N \ α). Then by the choice of r,
〈ζ, ζ〉 ∈ xr ∩Sk(N) ⊆ xw. But γ < ζ ≤ γ′, which contradicts that w is a condition.

(3, 4) Let M ∈ Aw and 〈α, α′〉 ∈ xr be given. Assume that N ∩ [α, α′] 6= ∅.
Then α and α′ are in N , and hence 〈α, α′〉 ∈ xw, and we are done since w is a
condition. Assume that N ∩ [α, α′] = ∅. As M ∈ Sk(N), M ∩ [α, α′] = ∅. Suppose
that M \ α 6= ∅. Let ζ := min(N \ α). Then ζ ∈ S, and by the choice of r,
〈ζ, ζ〉 ∈ xr ∩Sk(N) ⊆ xw. If ζ ∈M then min(M \α) = ζ, which is in S. Otherwise
ζ /∈M , so min(M \ ζ) ∈ S since w is a condition. But min(M \ ζ) = min(M \ α).

Now letM ∈ Ar and 〈α, α′〉 ∈ xw be given. First suppose thatM∩[α, α′] = ∅ and
M \α is nonempty. Let ζ := min(M \α). Note that ζ = min(M \α′). If βM,N ≤ α′,
then since α′ ∈ N , ζ ∈ RN (M) and hence ζ ∈ S. Suppose that α′ < βM,N . Then
since α′ ∈ N \M , M < N . If βM,N ≤ ζ, then ζ = min(M \βM,N ). So ζ is in RN (M)
and hence in S. Finally suppose that βM,N > ζ. Then M ′∩[α, α′] = M∩[α, α′] = ∅
and ζ = min(M ′ \ α). So ζ ∈ S since w is a condition.
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Now suppose that M ∩ [α, α′] 6= ∅, and we will show that α and α′ are in M .
First assume that there is ξ ∈ M ∩ [α, α′] such that βM,N ≤ ξ. Since ξ ∈ M ,
ζ := min(N \ ξ) is in RM (N) and α < ζ ≤ α′. Since ζ ∈ RM (N), ζ ∈ RAw

. But ζ
and 〈α, α′〉 overlap, which contradicts that w is a condition.

Otherwise M ∩ [α, α′] ⊆ βM,N . In particular, α < βM,N . Suppose that N ≤M .
Then α ∈ M . If α′ < βM,N , then α′ ∈ M as well. Assume that α < βM,N ≤ α′.
Since N ≤M , ζ := min(N \βM,N ) is in RM (N) and hence in RAw . But α < ζ ≤ α′,
which contradicts that w is a condition.

Finally, assume that M < N . Then M ∩βM,N = M ′∩βM,N , so M ′∩ [α, α′] 6= ∅.
It follows that α and α′ are in M ′. So α ∈ M . If α′ < βM,N , then α′ ∈ M as
well. Otherwise βM,N ≤ α′. But βM,N = βM ′,N ′ and M ′ < N ′. Since α < βM,N ,
α ∈M ′∩βM ′,N ′ and hence α ∈ N ′. So N ′∩ [α, α′] 6= ∅, which implies that α′ ∈ N ′.
So α′ ∈ (M ′ ∩N ′) \ βM ′,N ′ , which is impossible. �

Proposition 3.4. The forcing poset P preserves ω2.

Proof. Let p 
 ġ : ω1 → ω2 is a function. Fix χ > ω2 regular such that ġ ∈ H(χ).
Let N∗ ≺ H(χ) be of size ω1 such that P, p, ġ, π∗, C∗,Λ,X , S,Z ∈ N∗ and β∗ :=
N∗ ∩ ω2 ∈ S ∩ cof(ω1). This is possible since S ∩ cof(ω1) is stationary. Note that
since π∗ ∈ N∗, Sk(β∗) = π[β∗] = N∗ ∩H(ω2). In particular, N∗ ∩ P ⊆ Sk(β∗).

Let q := (xp∪{〈β∗, β∗〉}, Ap). We will show that q is N∗-generic. It follows that
q forces that N∗ is closed under ġ, and hence ġ does not collapse ω2. So fix a dense
open set D ∈ N∗, and we will show that N∗ ∩D is predense below q.

Let r ≤ q be given. We will find a condition w in N∗ ∩D which is compatible
with r. Extending r if necessary, assume that for all ζ ∈ RAr

, 〈ζ, ζ〉 ∈ xr. Also by
Lemma 3.2 assume that whenever M ∈ Ar, M \β∗ 6= ∅, and ξ = min(M \β∗), then
〈ξ, ξ〉 ∈ xr. Note that if M ∈ Ar and M \β∗ 6= ∅, then min(M \β∗) ∈ S. Also note
that for all 〈α, α′〉 ∈ xr, if α < β∗, then α′ < β∗.

Let M0, . . . ,Mk enumerate Ar. The objects r, β∗, and M0, . . . ,Mk witness the
following statement: there exists v, β, and M ′0, . . . ,M

′
k satisfying:

(1) v ∈ P;
(2) β ∈ S ∩ cof(ω1) and 〈β, β〉 ∈ xv;
(3) xr ∩N∗ ⊆ xv, Ar ∩N∗ ⊆ Av, and M ′0, . . . ,M

′
k ∈ Av;

(4) for all i ≤ k, Mi ∩ β∗ = M ′i ∩ β.

The parameters P, S, xr ∩ N∗, Ar ∩ N∗, and Mi ∩ β∗ for i ≤ k are in N∗. By
elementarity, fix v, β, and M ′0, . . . ,M

′
k in N∗ which satisfy the same properties.

Extend v to w in D∩N∗. Extending w if necessary, assume that for all ζ ∈ RAw
,

〈ζ, ζ〉 ∈ xw, and for all M ∈ Aw, if ξ = min(M \ β) then 〈ξ, ξ〉 ∈ xw. Let
r0 = {min(M \ β∗) : M ∈ Ar} and r1 = {min(M \ β) : M ∈ Aw}. Then r0 and r1
are subsets of S. So all the hypotheses of Proposition 2.3 are satisfied. It follows
that Ar ∪Aw is S-adequate and RAr∪As

⊆ RAr
∪RAw

∪ r0 ∪ r1.
Define t by letting xt = xr ∪ xw and At = Ar ∪ Aw. We will prove that t is a

condition. Then clearly t ≤ r, w and we are done. By the choice of r and w, for
every ζ ∈ RAt , 〈ζ, ζ〉 ∈ xt. So it suffices to show that t satisfies properties (1), (2),
and (3). We already know that (2) holds. For (1) let 〈α, α′〉 ∈ xw and 〈γ, γ′〉 ∈ xr.
Then either γ and γ′ are both below β∗ and 〈γ, γ′〉 ∈ xw, or β∗ ≤ γ. In either case,
the pairs do not overlap.

(3,4) Let M ∈ Aw and 〈α, α′〉 ∈ xr \ xw. Then β∗ ≤ α. So M ∩ [α, α′] = ∅ and
min(M \ α) does not exist. Now let M ∈ Ar \ Aw and 〈α, α′〉 ∈ xw. Then α and
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α′ are below β∗. First assume that β ≤ α. Since M ∩ β∗ ⊆ β, M ∩ [α, α′] = ∅ and
min(M \ α) = min(M \ β∗), which is in S.

Now assume that α < β. Then since 〈β, β〉 ∈ xw, α′ < β. Suppose that
M ∩ [α, α′] = ∅. Since M ∩ β = M ′ ∩ β, M ′ ∩ [α, α′] = ∅. Let ζ := min(M \ α). If
ζ < β, then ζ = min(M ′ \ α) and hence ζ ∈ S. Otherwise ζ = min(M \ β∗), which
is in S. Now assume that M ∩ [α, α′] 6= ∅. Then M ′ ∩ [α, α′] 6= ∅. So α and α′ are
in M ′ ∩ β and hence in M . �

Proposition 3.5. The forcing poset P forces that Ḋ is a club.

Proof. It is easy to see that P forces that Ḋ is unbounded. Suppose that p forces
that α is a limit point of Ḋ. Let A0 := {K ∈ Ap : sup(K ∩ α) < α} and A1 :=
{M ∈ Ap : sup(M ∩ α) = α}. Note that for all M and N in A1, α is a limit point
of both M and N and hence βM,N > α.

Extending p if necessary, we may assume the following: (1) for all ζ ∈ RAp
,

〈ζ, ζ〉 ∈ xp; (2) whenever 〈β, β′〉 ∈ xp, M ∈ Ap, M∩[β, β′] = ∅, and ξ = min(M \β),
then 〈ξ, ξ〉 ∈ xp; (3) let γ be the largest ordinal such that γ < α and 〈γ, γ′〉 ∈ xp
for some γ′; then γ is larger than sup(K ∩ α) for all K ∈ A0.

If 〈α, α′〉 ∈ xp for some α′, then p forces that α ∈ Ḋ and we are done. So assume
not. Then for all 〈ξ, ξ′〉 in xp, ξ and ξ′ are either both below or both strictly above
α. (3) implies that for all K ∈ A0 with K \ α 6= ∅, min(K \ α) = min(K \ γ) ∈ S.
As a result of these observations, if α ∈ S but we cannot add 〈α, α〉 to p, then
there is N ∈ A1 such that α /∈ N , N \ α 6= ∅, and min(N \ α) /∈ S. Note that if
M ∈ A1 then γ ∈ M . For otherwise γ < min(M \ γ) < α and (2) implies that
〈min(M \ γ),min(M \ γ)〉 is in xp, contradicting the maximality of γ.

Suppose that there is M ∈ Ap with sup(M) = α. We claim that 〈α, α〉 can be
added to p. By definition of Z, α ∈ S. So if this pair cannot be added, then by
the comments above there is N ∈ A1 such that α /∈ N and ξ := min(N \ α) /∈ S.
Since βM,N > α and α is not in M nor N , M ∩ βM,N = N ∩ βM,N . Since ξ /∈ M ,
βM,N ≤ ξ, so ξ = min(N \ βM,N ). Then ξ is in RM (N) and hence in S, which is a
contradiction. So we may assume that for all M ∈ A1, M \ α 6= ∅.

Suppose that there is K ∈ A0 such that α ∈ K. Then α = min(K \α) is in S as
discussed above. We claim that we can add 〈α, α〉 to p. Otherwise there is N ∈ A1

with α /∈ N and min(N \ α) /∈ S. Note that βK,N > α. So as α ∈ K \N , N < K.
But this is impossible since sup(K ∩ α) < α = sup(N ∩ α). Hence we may assume
that for all K ∈ A0, α /∈ K.

Suppose that A1 = ∅. Then it is easy to see that 〈γ, α〉 can be added to p, which

contradicts that p forces that α is a limit point of Ḋ. Namely, this pair does not
overlap any pair in xp by the maximality of γ. And it does not conflict with any
K ∈ A0 with K \ α 6= ∅, since K ∩ [γ, α] = ∅ and min(K \ α) ∈ S.

Assume that A1 6= ∅. Let M be a minimal set in A1 such that the ordinal
σ := min(M \ α) is minimal amongst all minimal sets in A1. Suppose first that
σ ∈ S. By definition of Z, α = sup(M ∩σ) ∈ S. We claim that 〈α, α〉 can be added
to p. If not, then there is N ∈ A1 such that α /∈ N and τ := min(N \ α) /∈ S.
In particular, τ 6= σ. Since βM,N > α and α is not in N , N ≤ M . So by the
minimality of M , M ∩ βM,N = N ∩ βM,N . Hence N is also minimal in A1. By the
minimality of σ, σ < τ . Since σ /∈ N , βM,N ≤ σ. So τ = min(N \ σ). Therefore τ
is in RM (N) and hence in S, which is a contradiction.
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Finally, assume that σ /∈ S. We will show that we can add 〈γ, σ〉 to p, which

contradicts that p forces that α is a limit point of Ḋ. We claim that for all K ∈ A0

with K \ α 6= ∅, τ := min(K \ α) > σ. Since τ ∈ S and σ /∈ S, τ 6= σ. Assume
for a contradiction that τ < σ. Then σ = min(M \ τ). So if βK,M ≤ τ , then σ
is in RK(M) and hence in S which is false. Suppose that τ < βK,M . Then since
τ ∈ K \M , M < K. But this is impossible since sup(K ∩ α) < α = sup(M ∩ α).

Let us show that 〈γ, σ〉 has no conflict with models in Ap. Let K ∈ A0. If
sup(K) < α, then K ∩ [γ, σ] = ∅ and min(K \ γ) does not exist. Otherwise by
the last paragraph, min(K \ γ) = min(K \ α) > σ. Hence K ∩ [γ, σ] = ∅ and
min(K \ γ) ∈ S. Now let N ∈ A1. We already observed that γ ∈ N . To prove that
σ ∈ N , by the minimality of M it suffices to show that σ < βM,N . Assume for a
contradiction that βM,N ≤ σ. Then α ≤ βM,N ≤ σ, so σ = min(M \ βM,N ). Hence
σ is in RN (M) and therefore in S, which is a contradiction.

Let 〈β, β′〉 ∈ xp. Since 〈γ, γ′〉 ∈ xp, it is false that β < γ ≤ β′. Suppose that
γ < β ≤ σ. Then by the maximality of γ, α < β. Since β ∈ S and σ /∈ S, β < σ.
Then β /∈ M , which implies that min(M \ β) ∈ S. But min(M \ β) = σ, which
contradicts that σ is not in S. �

References

[1] S.D. Friedman. Forcing with finite conditions. In Set Theory: Centre de Recerca Matemàtica,
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