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Abstract. We work out the details of a schema for a mixed support forcing

iteration, which generalizes the Mitchell model [7] with no Aronszajn trees on

ω2.

The main purpose of this paper is to present the details of a schema for a mixed
support forcing iteration. This schema will provide the technical framework for a
variety of consistency results which we establish in [6] and [4].

In [5] we constructed a model in which the properties of being “internally club”
and “internally approachable” are distinct, for structures of size the successor of
a regular cardinal. Our construction was reminiscent in some ways of Mitchell’s
classic model with no Aronszajn trees on ω2 ([7]). We used a forcing iteration whose
factors are two-step iterations of Cohen forcing followed by a kind of collapse forcing,
where the support on the Cohen part and on the collapsing part are of different
sizes. However the kind of collapse forcing we used is not even strategically closed.

In Section 2 we describe an iterable property which is satisfied by both the
forcing used to construct Mitchell’s model and the forcing we used in [5]. It is this
property which we will assume to hold for the factor forcings in our mixed support
iteration schema. We work out the details of this iteration in Section 3.

In subsequent papers we use the iterated forcing schema presented below as a
tool for establishing consistency results. In [6] we construct a model with a disjoint
stationary sequence on the successor of an arbitrary regular cardinal, and also
distinguish several variations of the property of being internally approachable for
sets of a variety of sizes. In [4] we use the forcing iteration schema to study the
approachability ideal at the second successor of a singular cardinal.

1. Preliminaries

We review some background material, notation, and conventions used in the
paper. We assume the reader has had some previous exposure to proper forcing
and iterated forcing. We refer the reader to [2] for basic facts concerning iterated
forcing. In the rest of the section, µ and κ always refer to regular cardinals.

A forcing poset is a pair 〈P,≤〉 such that ≤ is a binary relation on P which is
reflexive and transitive. Due to our treatment of iterated forcing, we do not require
anti-symmetry as part of the definition of a forcing poset. In the case that p ≤ q
and q ≤ p, we say that p and q are equivalent.

A forcing poset P is µ-closed if whenever 〈pi : i < ξ〉 is a descending sequence of
conditions in P for some ξ < µ, then there is q in P such that q ≤ pi for all i < ξ.
The poset P satisfies the κ-covering property if it forces that whenever x is a set of
ordinals in the extension with size less than κ, then there is a set a in the ground
model with size less than κ in the ground model such that x ⊆ a.
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For a forcing poset P and an ordinal α, we define a two-player game G(P, α) as
follows. Player I and Player II take turns to define a descending sequence 〈pi : 1 ≤
i < ζ〉 of conditions in P, with Player I playing pj for odd ordinals j and Player II
playing pi for even ordinals i. The game continues as long as possible, until either
pi is defined for all i < α, in which case Player II wins, or otherwise until Player II
has no possible move, in which case Player I wins. Clearly Player I wins iff there is
a limit ordinal δ < α such that 〈pi : 1 ≤ i < δ〉 has no lower bound. We say that P
is α-strategically closed if Player II has a winning strategy in the game G(P, α).

The poset P is <κ-distributive if any family of fewer than κ many dense open
subsets of P has an intersection which is also dense open. This property is equivalent
to P not adding any new sequences of ordinals with order type less than κ. If P is
κ-closed then it is κ-strategically closed, and if P is κ-strategically closed then it is
<κ-distributive. We say that P is (<κ,∞, µ)-distributive if for all ξ < κ, P forces
that whenever g : ξ → On is a function in the extension, then there is a function
h : ξ → V in the ground model such that for all i < ξ, |h(i)|V ≤ µ and g(i) ∈ h(i).

We use Add(µ) to denote the forcing poset which adds a Cohen subset to µ.
Conditions in Add(µ) are partial functions f : µ→ 2 with domain of size less than
µ, and q ≤ p iff q extends p as a function. If µ<µ = µ then Add(µ) has size µ.

Consider a forcing iteration 〈Pi, Q̇j : i ≤ α, j < α〉. We refer to the Q̇j ’s as the
factors of the iteration. In our notation, a condition in Pα is a partial function
p : α → V whose domain is a subset of α, and the support of p is exactly the
domain of p. We do not use the convention that p(i) always denotes the maximal
element of Q̇i when i is not in the support of p. We also assume that whenever p
is a condition in Pα, then for all i in the domain of p, Pi forces that p(i) is in Q̇i.

A useful fact about names in forcing is the so-called maximal principle, which
asserts that whenever a condition p in P forces ∃xϕ, then there is a P-name ȧ
such that p forces ϕ(ȧ). We apply this fact in the paper in the following situation.
Suppose 〈Pi, Q̇j : i ≤ α, j < α〉 is a forcing iteration, p and q are conditions in Pα,
and q ≤ p. Then there is a condition q′ in Pα which is equivalent to q such that
for all i in dom(p), Pi forces that q′(i) ≤ p(i). Let the domain of q′ be equal to
dom(q). If i is in dom(q) \ dom(p), let q′(i) = q(i). Suppose i is in dom(p). Since
q � i forces q(i) ≤ p(i), Pi forces the statement: ∃x((x ≤ p(i)) & (q � i ∈ Ġi →
x = q(i)). By the maximal principle, let q′(i) be a Pi-name ȧ such that Pi forces
((ȧ ≤ p(i)) & (q � i ∈ Ġi → ȧ = q(i)). Then q′ is a condition equivalent to q and
satisfies the desired property.

We use Even and Odd to denote the classes of even and odd ordinals respectively.
If X is a set, we say that a cardinal θ is much larger than X if θ is larger than
|P(P(P(tr(X))))|, where tr(X) is the transitive closure of X.

If µ<µ = µ, then the following statement, known as the ∆-System Lemma, holds
for µ: if {ai : i < µ+} is a family of sets each of which has size less than µ, then
there is a set a and an unbounded set X ⊆ µ+ such that for i < j in X, ai∩aj = a.

Let Pκ(X) denote the collection of subsets of X which have size less than κ.
Usually when this notation is used, κ is a subset of X. A set C ⊆ Pκ(X) is club in
Pκ(X) if it is closed under unions of ⊆-increasing chains of length less than κ, and
is cofinal in the sense that any member of Pκ(X) is a subset of some member of C.
A set S ⊆ Pκ(X) is stationary in Pκ(X) if it has non-empty intersection with each
club set.
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We will be interested in elementary substructures of models which are an ex-
pansion of 〈H(λ),∈〉 in a countable language, where λ ≥ ω2 is a regular cardinal.
Suppose N ≺ H(λ) and N ∩ κ ∈ κ. Then any set x in N with size less than κ is a
subset of N . For |x| ∈ N by elementarity, and by the fact that N ∩κ ∈ κ, |x| ⊆ N .
Choose f : |x| → x a bijection in N . Then f [ |x| ] = x ⊆ N .

Let N be a set and ξ a limit ordinal. We say that N is internally approachable
of length ξ, and is in IA(ξ), if there is a ⊆-increasing and continuous sequence of
sets 〈Ni : i < ξ〉 with union equal to N such that for all j < ξ, 〈Ni : i < j〉 is in N .
We say that N is internally approachable if it is internally approachable of length
some limit ordinal.

An internally approachable chain is a ⊆-increasing and continuous sequence of
sets 〈Ni : i < ξ〉, where ξ is a limit ordinal, such that for all j < ξ, 〈Ni : i ≤ j〉 ∈
Nj+1. Note that the union of an internally approachable chain of length ξ is in
IA(ξ). Conversely, suppose κ < λ are regular uncountable cardinals, and A is an
expansion of H(λ) in a countable language. Assume that N ≺ A, N∩κ ∈ κ, κ ∈ N ,
and N is internally approachable. Then there exists an internally approachable
chain 〈Ni : i < ξ〉 with union N , for some limit ordinal ξ, such that for all i < ξ,
Ni ≺ A and Ni ∩ κ ∈ κ. If in addition N is in IA(µ) for a regular cardinal µ, then
there is such an internally approachable chain which has length µ. See Section 2 of
[3] for more information about internally approachable sets.

Suppose N ≺ 〈H(λ),∈,P〉. A condition q in P is N -generic for P if for any dense
open subset D of P in N , q forces that Ġ ∩N ∩D is non-empty. This implies that
q forces N [Ġ] ∩ V = N , and in particular, N [Ġ] ∩ On = N ∩ On (in fact, these
properties are equivalent for q). For suppose G is a generic filter containing q, and
let b be in N [G] ∩ V . Fix a P-name ċ in N such that ċG = b. Let D be the dense
open set of conditions which either force ċ is not in V , or decide the value of ċ. By
elementarity, D is in N . Fix s in G ∩N ∩D. Since b is in V , s decides the value
of ċ. Then b is in N , since it is definable from s and ċ.

We use the following generalization of proper forcing. Let P be a forcing poset,
and let µ < κ be regular cardinals. We say that P is <κ-proper for IA(µ) if for all
sufficiently large regular cardinals θ > κ which are much larger than P, there is a
club C ⊆ Pκ(H(θ)) such that for any N in C ∩ IA(µ), for all p in N ∩ P there is
q ≤ p which is N -generic.

2. Factors of the Iteration

In [8] Mitchell gives a modern description of the construction from [7] of a model
with no Aronszajn trees on ω2, as an iteration of adding Cohen reals and ω1-closed
collapses up to a weakly compact cardinal, with finite support on the Cohen forcings
and countable support on the collapses. In [5] we used a similar kind of mixed
support iteration to construct a model in which the notions of internally club and
internally approachable are distinct. We iterated alternately adding Cohen subsets
to a regular cardinal µ and then collapsing µ++ to have size µ+, with supports of
size less than µ on the Cohen forcings and supports with size µ on the collapses.
However, the kind of collapses we used are not even strategically closed.

Thus we sought an iterable property which is satisfied by the forcing posets used
in both constructions. Let µ<µ = µ be a cardinal, and let κ > µ be regular. We
consider two-step iterations Add(µ) ∗ Q̇, equipped with two partial orderings. The
first partial ordering ≤ is the usual ordering on a two-step iteration. The second
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ordering ≤∗ is defined by letting q ∗ ṫ ≤∗ p ∗ ṡ if q ∗ ṫ ≤ p ∗ ṡ and q = p. It turns out
that the desired property is:

The poset 〈Add(µ) ∗ Q̇ , ≤∗〉 is κ-strategically closed.

As we see next, if Add(µ) forces that Q̇ is κ-strategically closed, then the above
property holds. However, we will show at the end of the section that this property
does not imply that Add(µ) forces Q̇ is κ-strategically closed.

Proposition 2.1. If Add(µ) forces Q̇ is κ-strategically closed, then 〈Add(µ)∗Q̇,≤∗
〉 is κ-strategically closed. In particular, if Add(µ) forces that Q̇ is κ-closed then
〈Add(µ) ∗ Q̇,≤∗〉 is κ-strategically closed.

Proof. Let σ̇ be an Add(µ)-name for a strategy for Player II in the game G(Q̇, κ).
Define a strategy τ for Player II in the game G(〈Add(µ)∗ Q̇,≤∗〉, κ) as follows. Let
Player I begin the game with a condition p1 ∗ q̇1. Suppose a play 〈pj ∗ q̇j : 1 ≤ j < i〉
is defined where i < κ is even. By the definition of ≤∗, pj = p1 for all 1 ≤ j < i.
Assume as an induction hypothesis that p1 forces 〈q̇j : 1 ≤ j < i〉 is a play of the
game G(Q̇, κ) according to σ̇. Let τ instruct Player II to play a condition p ∗ q̇i
such that p forces q̇i is Player II’s response to 〈q̇j : 1 ≤ j < i〉 according to σ̇.
Thus Player II is able to pass through every limit stage less than κ and wins the
game. �

The next proposition describes the forcing poset we used in [5].

Proposition 2.2. Let λ ≥ κ be a regular cardinal. Let Add(µ) ∗ Q̇ be the two-
step iterated forcing defined as follows. If G is generic for Add(µ), then in V [G],
Q̇G is the forcing poset whose conditions are increasing and continuous sequences
〈ai : i ≤ γ〉 of sets such that γ < κ and ai is in Pκ(H(λ)V ) ∩ V for i ≤ γ, ordered
by extension of sequences. Then 〈Add(µ) ∗ Q̇,≤∗〉 is κ-strategically closed.

Proof. Fix a regular cardinal θ which is much larger than Add(µ) ∗ Q̇, and let
A denote the structure 〈H(θ),∈,Add(µ) ∗ Q̇, λ〉. We describe a strategy σ for
Player II in the game G(〈Add(µ) ∗ Q̇,≤∗〉, κ) by describing his or her moves on a
play 〈p ∗ q̇i : 1 ≤ i < κ〉. Simultaneously we define an increasing and continuous
sequence 〈Ni : i < κ〉 of elementary substructures of A with size less than κ. To
begin with fix N0 ≺ A with size less than κ such that N0 ∩ κ ∈ κ and µ ⊆ N0. Let
p ∗ q̇1 be Player I’s first move.

Suppose that i < κ and we have defined 〈p ∗ q̇j : 1 ≤ j ≤ i〉 and 〈Nj : j < i〉.
If i is a limit ordinal let Ni =

⋃
{Nj : j < i}. Otherwise let Ni be an elementary

substructure of A with size less than κ such that Ni−1 ⊆ Ni, Ni ∩ κ ∈ κ, and p ∗ q̇i
is in Ni. If i is even, let p ∗ q̇i+1 be Player I’s next move.

Suppose i is odd. Let σ instruct Player II to play a condition p ∗ q̇i+1, where
p forces that q̇i+1 is a sequence with domain equal to dom(q̇i) + 1, such that
q̇i+1 � dom(q̇i) = q̇i and q̇i+1(dom(q̇i)) = Ni ∩ H(λ)V . Clearly Ni ∩ H(λ)V is
in Pκ(H(λ)V )∩V . So to show that this definition makes sense, we need to check p
forces that the maximal element of q̇i is a subset of Ni ∩H(λ)V . Let G be generic
for Add(µ). Then Ni[G] ∩ V = Ni, since Add(µ) ⊆ Ni. Now qi = q̇Gi is a mem-
ber of Ni[G]. Let a be the last element on the sequence qi, which is in Ni[G] by
elementarity. Since |a| < κ, a ⊆ Ni[G] ∩H(λ)V = Ni ∩H(λ)V .
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Now suppose δ < κ is a limit ordinal and we have defined 〈p ∗ q̇j : 1 ≤ j < δ〉
and 〈Nj : j < δ〉. Let Nδ =

⋃
{Ni : i < δ}. Let q̇∗δ be a name for

⋃
{q̇i : i < δ},

and let γ̇ be a name for the length of this sequence. Then by construction, for all
odd i < δ, p forces that Ni ∩H(λ)V is the maximal element of the sequence q̇i+1.
Therefore p forces that the union of the sequence q̇∗δ is equal to

⋃
{Ni∩H(λ)V : i ∈

δ ∩Odd} = Nδ ∩H(λ)V , which is in Pκ(H(λ)V )∩ V . So let σ instruct Player II to
play the condition p ∗ q̇δ such that p forces q̇δ � γ̇ = q̇∗δ and q̇δ(γ̇) = Nδ ∩H(λ)V .
Thus Player II is able to pass through all limit stages less than κ, and wins the
game. �

We give an example to show that 〈Add(µ) ∗ Q̇,≤∗〉 being κ-strategically closed
does not imply that Add(µ) forces that Q̇ is κ-strategically closed.

Let µ = ω and κ = ω1, and let Add(ω) ∗ Q̇ be the forcing poset described
in Proposition 2.2 letting λ = ω2. We show that Add(ω) forces that Q̇ is not
ω1-strategically closed.

Let G be a generic filter for Add(ω) over V . We use the fact due to Abraham
and Shelah [1] that in V [G], the set Pω1(H(ω2)V )\V is stationary in Pω1(H(ω2)V ).
Suppose for a contradiction that there is a strategy σ for the game G(Q, ω1) in
V [G]. Working in V [G], let θ be a regular cardinal much larger than ω2 and let A
be the structure 〈H(θ),∈,Q, σ〉. Fix a countable N ≺ A such that N ∩H(ω2)V is
not in V . Fix an enumeration 〈xn : n < ω〉 of N ∩H(ω2)V .

We consider a partial run of the game 〈pj : 1 ≤ j ≤ ω〉 defined as follows.
We will arrange that pj is in N for all j < ω. Let Player I begin the game by
playing a condition p1 in N such that x0 is in the maximal element of p1. Suppose
〈pj : 1 ≤ j ≤ i〉 is defined where 1 ≤ i < ω. If i = 2n is even, let Player I choose
some pi+1 ≤ pi in Q ∩N such that the maximal element of pi+1 contains xn as an
element. If i is odd, let Player II play pi+1 according to σ. Since σ is in N , pi+1

is in N . This defines 〈pi : i < ω〉. Let pω be Player II’s response to this run of the
game according to σ.

Let
⋃
{pn : n < ω} = 〈ai : i < γ〉 and let a =

⋃
{ai : i < γ}. For each n < ω,

pn is in N . Since pn is countable, pn ⊆ N . So for i < γ, ai is in N , and hence
ai ⊆ N since ai is countable. Therefore a ⊆ N ∩H(ω2)V . On the other hand, if z
is in N ∩H(ω2)V , then z = xn for some n, and so for some i < γ, z is in ai. Hence
a = N ∩H(ω2)V . But then pω(γ) is equal to N ∩H(ω2)V , since pω is a continuous
sequence. By the definition of Q, N ∩H(ω2)V is in V , which is a contradiction.

Here is another way of viewing this argument, pointed out by the referee. The
poset Add(ω) adds stationarily many new countable subsets of H(ω2)V . The poset
Q̇ then adds a club set which is disjoint from this stationary set, thus destroying
its stationarity. If Q̇ is ω1-strategically closed, then it is proper. But proper forcing
posets cannot destroy the stationarity of stationary collections of countable sets.

3. Forcing Iteration with Mixed Support

We describe a general schema for a mixed support forcing iteration. Fix a regular
cardinal µ such that µ<µ = µ and let κ be a regular cardinal greater than µ such
that for all ζ < κ, ζ<µ < κ.

Let us consider a forcing iteration

〈Pi, Q̇j : i ≤ α, j < α〉,
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with two partial orderings ≤ and ≤∗. The iteration will alternate between forcing
with Add(µ) at even stages, and other posets at odd stages. The iteration will be
µ-closed, and therefore the poset Add(µ) is the same in both the ground model
and in any intermediate extension. Specifically, suppose the iteration satisfies the
following description.

(A) If i < α is even, Pi forces Q̇i = Add(µ).

(B) If i < α then Pi forces Q̇i is µ-closed.

(C) If j < α is odd, then Pj−1 forces that 〈 Q̇j−1 ∗Q̇j , ≤∗ 〉 = 〈Add(µ)∗Q̇j , ≤∗〉
is κ-strategically closed.

(D) If i ≤ α is a limit ordinal, Pi consists of all partial functions p : i→ V such
that p � j ∈ Pj for j < i, |dom(p) ∩ Even| < µ, and |dom(p) ∩Odd| < κ.

(E) For i ≤ α and p and q in Pi, q ≤ p in Pi iff for all γ in the domain of p, γ is
in the domain of q and q � γ  q(γ) ≤ p(γ).

(F) For i ≤ α and p and q in Pi, q ≤∗ p in Pi iff q ≤ p, dom(p) ∩ Even =
dom(q) ∩ Even, and for all γ in dom(p) ∩ Even, q � γ forces q(γ) = p(γ).

We will prove that such an iteration preserves all cardinals and cofinalities less
than or equal to κ. Hence by recursion, conditions (A), (B), and (C) make sense.
Also, since such an iteration is µ-closed, the cardinal arithmetic assumptions we
made in the ground model, that µ<µ = µ and ζ<µ < κ for all ζ < κ, will remain
true in the extension.

For β ≤ α, let P′β be the subset of Pβ consisting of conditions p such that for
all even i in the domain of p, there is x in Add(µ) such that p(i) is the canonical
Pi-name for x. Note that if β < γ ≤ α, then P′β ⊆ P′γ .

We make a list of the properties which we prove Pα satisfies.

(I) 〈Pα,≤〉 is µ-closed.

(II) 〈Pα,≤∗〉 is κ-strategically closed.

(III) P′α is a µ-closed dense subset of Pα.

(IV) Pα is <κ-proper for IA(µ).

(V) If p is in P′α and p  β̇ is an ordinal, then there is q ≤∗ p and a set x in V

with size less than or equal to µ such that q  β̇ ∈ x̌.

(VI) Pα is (<κ,∞, µ)-distributive.

(VII) Pα preserves all cardinals and cofinalities less than or equal to κ.

(VIII) For every regular cardinal λ less than or equal to κ, Pα preserves the
stationarity of all stationary subsets of λ.

(IX) Pα forces that whenever X ⊆ V and for all A in ([V ]<κ)V , X ∩A ∈ V , then
X is in V .



A GENERAL MITCHELL STYLE ITERATION 7

The most difficult properties to verify are (IV), (V), and (IX), so we prove these
last. Properties (I), (II), and (III) have fairly standard proofs.

Lemma 3.1. The posets 〈Pα,≤〉 and 〈P′α,≤〉 are µ-closed.

Proof. Suppose 〈pi : i < ξ〉 is a descending sequence in Pα, where ξ < µ is a limit
ordinal. We define a lower bound q in Pα with domain equal to X =

⋃
{dom(pi) :

i < ξ}. Suppose q � γ is defined and is below pi � γ for all i < ξ. If γ is in X, then
q � γ forces that 〈pi(γ) : i < ξ, γ ∈ dom(pi)〉 is a descending sequence in Q̇γ . By
property (B), choose a Pγ-name q(γ) for a lower bound of this sequence. If each pi
is in P′α, then also make sure that for all even γ in X, q(γ) is the canonical Pγ-name
for the union of {pi(γ) : γ ∈ dom(pi)}. �

Lemma 3.2. The poset 〈Pα,≤∗〉 is κ-strategically closed.

Proof. By property (C), for each odd γ+ 1 < α, let σ̇γ be a Pγ-name for a strategy
for Player II in the game G(〈Add(µ)∗Q̇γ+1, ≤∗〉, κ). Define a strategy σ for Player
II in the game G(〈Pα,≤∗〉, κ) as follows. Suppose a partial play 〈pi : 1 ≤ i < ζ〉 of
the game is given where ζ is even. Let X =

⋃
{dom(pi) : 1 ≤ i < ζ}. For each odd

γ + 1 in X, let iγ be the least ordinal i < ζ such that γ + 1 ∈ dom(pi). Assume
inductively that for each odd γ + 1 in X, iγ is odd, and for all iγ ≤ j < ζ, pj � γ
forces that 〈pk(γ) ∗ pk(γ + 1) : iγ ≤ k ≤ j〉 enumerates a partial play in the game
G(〈Add(µ)∗ Q̇γ+1, ≤∗〉, κ) according to σ̇γ , where we interpret pk(γ) to be 1Add(µ)

if γ is not in dom(pk). Now let σ instruct Player II to play the condition pζ with
domain equal to X such that pζ � Even = p1 � Even and for all odd γ + 1 in X,
pζ � γ forces pζ(γ)∗pζ(γ+1) is Player II’s response to 〈pk(γ)∗pk(γ+1) : iγ ≤ k < ζ〉
according to σ̇γ . �

Lemma 3.3. For β ≤ α, P′β is a dense subset of Pβ.

Proof. We prove the statement by induction on β. Note that for all β ≤ α, Pβ
satisfies (A) – (F), so by Lemma 3.1, 〈Pβ ,≤〉 and 〈P′β ,≤〉 are µ-closed. Suppose
β ≤ α and for all γ < β, P′γ is dense in Pγ . Let p in Pβ be given.

First assume β is a successor ordinal γ+ 1. If γ is not in the domain of p, then p
is in Pγ , so by the induction hypothesis choose q ≤ p in P′γ . Then q ≤ p in Pβ and
q is in P′β . Otherwise first find p′ ≤ p � γ in P′γ such that for some x in Add(µ),
p′ forces p(γ) = x̌. This is possible by the induction hypothesis and the fact that
since Pγ is µ-closed, Pγ forces Add(µ) is the same poset in both the ground model
and the extension. Then p′̂x̌ ≤ p and p′̂x̌ is in P′β .

Assume now that β is a limit ordinal. If cf(β) ≥ µ, then by property (D) there
is ξ < β such that dom(p) ∩ Even ⊆ ξ. By the induction hypothesis, find q ≤ p � ξ
in P′ξ. Then q̂(p � [ξ, β)) is a refinement of p in P′β .

Now suppose cf(β) < µ. Fix an increasing and continuous sequence 〈ξi : i <
cf(β)〉 cofinal in β with ξ0 = 0, and let ξcf(β) = β. Define by induction a descending
sequence 〈pi : i ≤ cf(β)〉, with p0 = p, so that pi � ξi is in P′ξi . Given pi, apply
the induction hypothesis and choose q ≤ pi � ξi+1 in P′ξi+1

, and let pi+1 = q̂(p �
[ξi+1, β)). Suppose δ ≤ cf(β) is a limit ordinal and pi is defined for all i < δ. For
each i < δ, pi � ξi is in P′ξi , and P′ξi is a subset of P′ξδ . Since P′ξδ is µ-closed, let q
be a lower bound of 〈pi � ξi : i < δ〉 in P′ξδ . We claim that q is below pi � ξδ for
i < δ. So let i < δ. Since ξδ is a limit ordinal, it suffices to show that q ≤ pi � ζ
for all ζ < ξδ. Given ζ < ξδ, choose i < j < δ large enough so that ζ ≤ ξj . Then
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q ≤ pj � ξj ≤ pj � ζ ≤ pi � ζ. Now let pδ = q̂(p � [ξδ, β)). This completes the
construction. The condition pcf(β) is a refinement of p in P′β . �

This completes the proof of properties (I), (II), and (III).
Since the proofs of properties (IV) and (V) are complicated, let us first show that

property (V) implies properties (VI), (VII), and (VIII). So assume that whenever
p is in P′α and p forces β̇ is an ordinal, there is q ≤∗ p and a set x with size less
than or equal to µ such that q forces β̇ is in x̌. Note that this implies the following
property:

(V′) If p is in P′α, q ≤∗ p, and q  β̇ is an ordinal, then there is r ≤∗ q and a set
x with size less than or equal to µ such that r  β̇ ∈ x̌.

The point is, if p is in P′α and q ≤∗ p, then there is q′ in P′α which is equivalent
to q. Namely, let q′ � Odd = q � Odd and q′ � Even = p � Even. Now apply (V) to
q′ and β̇.

Fix for the remainder of the section a winning strategy σ for Player II in the
game G(〈Pα,≤∗〉, κ).

Lemma 3.4. 〈Pα,≤〉 is (<κ,∞, µ)-distributive.

Proof. Let ξ < κ be a limit ordinal, and suppose p is a condition in P′α which forces
that ḟ : ξ → On is a function. We define a partial play 〈pi : 1 ≤ i ≤ ξ〉 in the game
G(〈Pα,≤∗〉, κ). Let Player I play p1 = p. Suppose 〈pi : 1 ≤ i < γ〉 is defined. If
γ is even, let pγ be Player II’s response according to σ. Suppose γ = 2 · ζ + 1 is
odd. Applying (V′), let Player I choose pγ ≤∗ pγ−1 such that for a set xζ with size
less than or equal to µ, pγ forces ḟ(ζ) is in x̌ζ . This completes the construction.
Let q = pξ, and define h : ξ → V by h(i) = xi. Then q forces ḟ(i) ∈ h(i) for all
i < ξ. �

We note that (VIII) implies (VII). For suppose in some generic extension V [G],
there is an ordinal ξ ≤ κ which changed its cofinality. Assume ξ is the least such
ordinal. In V [G], cf(ξ) = cf(cfV (ξ)). So by the minimality of ξ, cfV (ξ) = ξ, and ξ
is regular in V . Suppose cf(ξ) = β in V [G]. Then β is regular in both V and V [G].
Since β < ξ, the set S = ξ ∩ cof(β) is stationary in ξ in V . But in V [G] there is a
club in ξ with order type β, and the limits points of this club have cofinality less
than β. Thus S becomes non-stationary in V [G], contradicting (VIII). Now if any
cardinals are collapsed, the first collapsed cardinal would have to be a successor
cardinal, which would change its cofinality. So indeed (VIII) implies (VII).

Proposition 3.5. For all regular λ ≤ κ and any stationary set S ⊆ λ, Pα forces
S is stationary.

Proof. If λ < µ then Pα does not even add any subsets to λ. If λ = µ, Pα preserves
stationary subsets of λ since it is µ-closed. So assume µ < λ ≤ κ.

Suppose p is in P′α and p forces Ċ is club in λ. We find q ≤ p which forces S ∩ Ċ
is non-empty. We define a sequence 〈pi, βi, xi : 1 ≤ i < λ〉, where the sequence
of pi’s constitutes a partial play of the game G(〈Pα,≤∗〉, κ) according to σ. Let
p1 = p, β1 = 0, and x1 = ∅.

Suppose 〈pi, βi, xi : 1 ≤ i < γ〉 is defined for some γ < λ, where 〈βi : 1 ≤ i < γ〉
is an increasing and continuous sequence of ordinals less than λ. If γ is even, let pγ
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be Player II’s response according to σ to the sequence of conditions defined thus
far. Then let βγ = sup({βi + 1 : 1 ≤ i < γ}) and xγ = ∅.

Suppose γ is odd. Applying (V′), choose pγ ≤∗ pγ−1 and a set xγ with size less
than or equal to µ such that pγ forces min(Ċ \ βγ−1) ∈ x̌γ . Now choose an ordinal
βγ in λ larger than both βγ−1 and sup(xγ).

By construction the sequence 〈βi : 1 ≤ i < λ〉 is strictly increasing and contin-
uous, and so clearly is cofinal in λ. Since S is stationary, fix a limit ordinal δ < λ
such that βδ is in S. For every odd γ < δ, pγ forces Ċ ∩ [βγ−1, βγ) is non-empty.
Therefore pδ forces βδ is a limit point of Ċ, and hence is in Ċ ∩ S. �

We have proven properties (VI), (VII), and (VIII), assuming (V). It remains to
show (IV), (V), and (IX).

The following basic lemma is helpful in the remaining proofs.

Lemma 3.6. Suppose p and q are conditions in Pα such that for all γ in dom(p)∩
dom(q), either p � γ or q � γ forces p(γ) and q(γ) are compatible in Q̇γ . Then p
and q are compatible.

Proof. Define u below p and q by inductively defining u � γ for γ < α. Assume u � γ
is defined and is a condition below p � γ and q � γ. If γ is not in dom(p) ∪ dom(q),
then γ is not in the domain of u. If γ is in dom(p) \ dom(q), let u(γ) = p(γ),
and if γ is in dom(q) \ dom(p), let u(γ) = q(γ). Suppose γ is in dom(p) ∩ dom(q).
By assumption and the induction hypothesis, we can fix a Pγ-name u(γ) such that
u � γ forces u(γ) ≤ p(γ), q(γ). �

Proposition 3.7. Let θ be a regular cardinal much larger than Pα, and let A denote
the structure 〈H(θ),∈, <θ,Pα, σ〉, where <θ is a well-ordering of H(θ). Suppose N
is an elementary substructure of A in Pκ(H(θ)), N ∩ κ ∈ κ, and N is internally
approachable. Let p be in N ∩ P′α. Then:

(1) There is q ≤∗ p such that for any dense subset D of 〈Pα,≤∗〉 in N , there is
u in N ∩D such that q ≤∗ u.

(2) If, in addition, N is in IA(µ), then there is q ≤∗ p which is N -generic for
the forcing 〈Pα,≤〉.

In particular, 〈Pα,≤〉 is <κ-proper for IA(µ).

Conclusion (1) in the proposition asserts the existence of a strongly N -generic
condition for the poset Pα with the weak ordering ≤∗. Conclusion (2) asserts the
existence of an N -generic condition for the poset Pα with the usual ordering ≤.
The proof of (1) is an easy variation of the standard technique for constructing
generic conditions for closed forcings over internally approachable models.

Proof. (1) Let p be in N ∩ P′α. Fix an internally approachable chain 〈Ni : i < ξ〉,
where ξ < κ is a limit ordinal, with union N , such that p is in N0, and for i < ξ,
Ni is an elementary substructure of A with Ni ∩ κ ∈ κ. Write N = Nξ. Define by
induction a sequence 〈pi : 1 ≤ i ≤ ξ〉 which is partial play in the game G(〈Pα,≤∗
〉, κ), such that for all γ ≤ ξ, 〈pi : 1 ≤ i < γ〉 is definable in A from 〈Ni : i < γ〉
and p. Let p1 = p.

Suppose 〈pi : 1 ≤ i < γ〉 is defined as required. If γ is even, let pγ be Player
II’s response to this sequence according to σ. By the induction hypothesis, clearly
〈pi : 1 ≤ i < γ + 1〉 is definable in A from 〈Ni : i < γ + 1〉 and p as required.
Assume γ is odd. Since 〈Pα,≤∗〉 is κ-strategically closed, it is < κ-distributive.
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But |Nγ−1| < κ. So let pγ be the <θ-least ≤∗-refinement of pγ−1 which is in the
intersection of all dense open subsets of 〈Pα,≤∗〉 inNγ−1. Clearly 〈pi : 1 ≤ i < γ+1〉
is definable in A from 〈Ni : i < γ + 1〉 and p. Now if 〈pi : 1 ≤ i < δ〉 is defined
for a limit ordinal δ ≤ ξ, the definition given above witnesses that this sequence is
definable in A from 〈Ni : i < δ〉 and p.

This completes the construction of 〈pi : 1 ≤ i ≤ ξ〉. Every proper initial segment
of the sequence 〈pi : 1 ≤ i < ξ〉 is definable in A from p and a proper initial segment
of 〈Ni : i < ξ〉, and so is in N . In particular, pi is in N for all i < ξ. Now let
q = pξ. By construction, for every dense open subset D of 〈Pα,≤∗〉 in N , there is
i < ξ such that pi is in N ∩D, and q ≤∗ pi. This implies the conclusion of (1).

(2) Now suppose in addition that N is in IA(µ). Then we can take ξ = µ in the
proof of (1). It follows that N<µ ⊆ N . For if y is a subset of N with size less than
µ, there is i < µ such that y ⊆ Ni. But by assumption on κ, |[Ni]<µ| < κ. Since
N ∩ κ ∈ κ, this implies [Ni]<µ ⊆ N . So y is in N .

Recall that p is a condition in N ∩ P′α. By (1), we can fix q ≤∗ p such that for
any dense subset D of 〈Pα,≤∗〉 in N , there is u in N ∩D such that q ≤∗ u. Suppose
for a contradiction that q is not N -generic for 〈Pα,≤〉. Then there is a dense open
subset E of 〈Pα,≤〉 in N such that q does not force N ∩ E ∩ Ġ is non-empty. Fix
r ≤ q in P′α which forces that N ∩E∩ Ġ is empty. It follow that for any y in N ∩E,
r and y are incompatible. Let g : α → Add(µ) be the partial function such that
dom(g) = dom(r)∩Even∩N and for all i in dom(g), r(i) is the canonical Pi-name
for g(i). By property (D), g has size less than µ. For all i in the domain of g, i
is in N , and so Pi is in N . Since Add(µ) ⊆ N , it follows that g(i) is in N . Since
N<µ ⊆ N , g is in N .

Let D be the set of u in Pα such that either u is ≤∗-incompatible with p, or
u ≤∗ p and there is y ≤ u in E ∩ P′α such that:

(i) dom(g) ⊆ dom(y), and for all i in dom(g), y(i) is the canonical Pi-name for
a condition in Add(µ) which extends g(i),

(ii) y � Odd = u � Odd.
Note that by elementarity D is in N .

We claim that D is dense in 〈Pα,≤∗〉. So let s in Pα be given. If s is ≤∗-
incompatible with p, then s is in D. Otherwise fix t ≤∗ p, s.

Define w by letting w � Odd = t � Odd, dom(w)∩Even = dom(g), and for all i in
dom(g), w(i) is the canonical Pi-name for g(i). We claim w is a condition below t.
Since p ∈ N and |dom(p)| < κ, dom(p) ⊆ N . But r ≤ p and dom(r) ∩ Even ∩N =
dom(g). So dom(p)∩Even ⊆ dom(g). Since t ≤∗ p, dom(t)∩Even = dom(p)∩Even.
Hence dom(t) ⊆ dom(w). Suppose w � γ is a condition below t � γ where γ is in the
domain of w, and we show that w � γ + 1 is a condition below t � γ + 1. If γ is odd
then w(γ) = t(γ). Suppose γ is even. If γ is not in the domain of t then there is
nothing to check. Otherwise γ is in dom(p). Since r ≤ p, r � γ forces r(γ) ≤ p(γ).
But this implies g(γ) is below the condition in Add(µ) named by p(γ). Since t � γ
forces p(γ) = t(γ), w � γ forces w(γ) ≤ t(γ).

Now extend w to y which is in E∩P′α. Without loss of generality we can assume
that for all odd γ in dom(t), Pγ forces y(γ) ≤ t(γ); for if y did not already have
this property, there is a condition equivalent to y which does. Now define u so that
u � Even = t � Even and u � Odd = y � Odd. Then clearly y ≤ u ≤∗ t. So u ≤∗ s,
and y witnesses that u is in D; namely, (ii) is by definition, and (i) follows from the
fact that y is in P′α and y ≤ w.



A GENERAL MITCHELL STYLE ITERATION 11

Since D is in N and is dense in 〈Pα,≤∗〉, by (1) there is u in N ∩D such that
q ≤∗ u. Since q ≤∗ u, p, u is ≤∗-compatible with p. So by the definition of D and
elementarity, there is y ≤ u in E ∩ P′α ∩N satisfying (i) and (ii) above. Since y is
in N ∩E, by assumption r and y are incompatible. We will get a contradiction by
showing that r and y are in fact compatible.

If r and y are incompatible, then by Lemma 3.6 let γ be the least ordinal in
dom(r)∩dom(y) such that r � γ does not force r(γ) and y(γ) are compatible. Note
that dom(y) ⊆ N since |dom(y)| < κ. So γ is in N . If γ is even then γ is in
dom(r) ∩ Even ∩N = dom(g). Then by (i), Pγ forces y(γ) is below r(γ), which is
impossible. So γ is odd. But then by (ii), u(γ) = y(γ). Since r ≤ q ≤ u, r � γ forces
r(γ) ≤ u(γ) = y(γ), which is again impossible. So r and y are compatible. �

Thus we have proven property (IV).

Corollary 3.8. The poset Pα has the κ-covering property. In fact, if p is in P′α
and p forces ȧ is a set of ordinals with size less than κ, then there is q ≤∗ p and a
set x with size less than κ such that q  ȧ ⊆ x̌.

Proof. Suppose p is in P′α and p forces ȧ is a set of ordinals with size less than
κ. Let θ be a regular cardinal much larger than Pα and ȧ, and let A denote
the structure 〈H(θ),∈, <θ,Pα, σ〉, where <θ is a well-ordering of H(θ). Fix an
elementary substructure N of A such that |N | < κ, N ∩ κ ∈ κ, p and ȧ are in
N , and N is in IA(µ). Applying Proposition 3.7(2), let q ≤∗ p be N -generic. Let
x = N ∩ On. If G is a generic filter for Pα which contains q, then N [G] ∩ On =
N ∩On = x. In particular, N [G] ∩ κ = N ∩ κ ∈ κ. Since a = ȧG has size less than
κ and N [G] ≺ H(θ)V [G], a ⊆ N [G] ∩On = x. So q forces ȧ ⊆ x̌. �

Proposition 3.9. If p is in P′α and p forces β̇ is an ordinal, then there is q ≤∗ p
and a set x with size less than or equal to µ such that q  β̇ ∈ x̌.

Proof. If κ = µ+ then the statement follows from Corollary 3.8, letting ȧ = {β̇}.
So assume κ > µ+.

Suppose for a contradiction that there is no q ≤∗ p and x as in the conclusion
of the proposition. We define a sequence 〈pi, qi, βi : 1 ≤ i < µ+〉, where the pi’s
constitute a partial play in G(〈Pα,≤∗〉, κ) according to σ, and the qi’s are in P′α.
Let p1 = p, β1 = 0, and qi = 1Pα . Suppose γ < µ+ is even and for all 1 ≤ i < γ, pi,
βi, and qi are defined. Let pγ be Player II’s response to the play 〈pi : 1 ≤ i < γ〉
according to σ, and let βγ = 0 and qγ = 1Pα .

Suppose 2 ≤ γ < µ+ is even and pi, βi, and qi are defined for all 1 ≤ i ≤ γ.
Since pγ ≤∗ p, by assumption pγ does not force that β̇ is in the set {βi : 1 ≤ i ≤ γ}.
So we can fix qγ+1 ≤ pγ in P′α and an ordinal βγ+1 not in the set {βi : 1 ≤ i ≤ γ}
such that qγ+1 forces β̇ = βγ+1. Moreover, choose qγ+1 to have the property that
for all i in dom(pγ) ∩ Odd, Pi forces qγ+1(i) ≤ pγ(i). Now define pγ+1 by letting
pγ+1 � Even = pγ � Even and pγ+1 � Odd = qγ+1 � Odd. Clearly pγ+1 ≤∗ pγ .

Since κ > µ+, let q be Player II’s response to the play 〈pi : 1 ≤ i < µ+〉 according
to σ. Note that {qi : i ∈ µ+ ∩ Odd} is an antichain. For if i < j < µ+ are odd,
then βi 6= βj , qi  β̇ = β̌i, and qj  β̇ = β̌j . Using the fact that µ<µ = µ,
apply the ∆-System Lemma to the family {dom(qi) ∩ Even : i ∈ µ+ ∩ Odd} to
find an unbounded set X ⊆ µ+ ∩ Odd and a set a such that for i < j in X,
dom(qi)∩dom(qj)∩Even = a. Since a has size less than µ, Add(µ) has size µ, and
each qi is in P′α, there are distinct 1 < i < j in X such that qi � a = qj � a.
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We get a contradiction by showing that qi and qj are compatible. Otherwise, by
Lemma 3.6 let γ be least such that γ is in dom(qi) ∩ dom(qj) and qj � γ does not
force qi(γ) and qj(γ) are compatible. Clearly γ is not even, since otherwise it is in
a and therefore qi(γ) = qj(γ). So γ is odd. By construction, qi(γ) = pi(γ). But
qj ≤ pj−1 ≤ pi, so qj � γ forces qj(γ) ≤ pi(γ) = qi(γ), which is not possible. So
indeed qi and qj are compatible, giving us a contradiction. �

This completes the proof of property (V). It remains only to prove property (IX).
We use the following lemma.

Lemma 3.10. Let p and q be conditions in P′α and t a condition in Pα such that
p, q ≤ t. Then there are p′ ≤ p and q′ ≤ q in P′α such that p′ � Odd = q′ � Odd and
for all odd i in dom(t), Pi forces p′(i) = q′(i) is below t(i).

Proof. Without loss of generality assume p satisfies the property that whenever i
is an odd ordinal in dom(t), Pi forces p(i) ≤ t(i), since otherwise we can replace
p with an equivalent condition which does satisfy this property. We also assume
the same for q. Now define p′ and q′ as follows. First choose p′(0) ≤ p(0) and
q′(0) ≤ q(0) in Add(µ) so that p′(0) and q′(0) are incompatible. Suppose β > 0
is an even ordinal and p′ � β and q′ � β are defined. Let β be in dom(p′) iff β is
in dom(p), in which case let p′(β) = p(β), and similarly with q′. Suppose γ is odd
and p′ � γ and q′ � γ are defined. If γ is not in dom(p)∪dom(q) then γ is not in the
domain of either p′ or q′. If γ is in dom(p) \ dom(q) then let p′(γ) = q′(γ) = p(γ),
and if γ is in dom(q) \ dom(p) then let p′(γ) = q′(γ) = q(γ). Suppose γ is in
dom(p) ∩ dom(q). Let ẋγ be a Pγ-name such that Pγ forces “ẋγ = p(γ) if p′ � γ is
in Ġγ , and ẋγ = q(γ) otherwise”. Then ẋγ is well-defined because p′ � γ and q′ � γ
are incompatible, due to the choice of p′(0) and q′(0). Let p′(γ) = q′(γ) = ẋγ . �

Proposition 3.11. The poset Pα forces that whenever X ⊆ V and for all A in
([V ]<κ)V , X ∩A ∈ V , then X is in V .

Proof. Suppose for a contradiction that a condition p in P′α forces Ẋ ⊆ V is a set
such that for all A in ([V ]<κ)V , Ẋ ∩A ∈ V , but Ẋ is not in V .

Let θ be a regular cardinal much larger than Pα and Ẋ, and let A denote
the structure 〈H(θ),∈, <θ,Pα, σ〉, where <θ is a well-ordering of H(θ). Fix an
elementary substructure N of A such that |N | < κ, N ∩ κ ∈ κ, p and Ẋ are in N ,
and N is in IA(µ). Then N<µ ⊆ N . By Proposition 3.7 (1), fix q ≤∗ p such that
for any dense subset D of 〈Pα,≤∗〉 in N , there is u in N ∩D such that q ≤∗ u.

Since N is in ([V ]<κ)V , fix a condition r ≤ q in P′α which decides Ẋ ∩ N . Let
g : α → Add(µ) be the partial function such that dom(g) = dom(r) ∩ Even ∩ N
and for all i in dom(g), r(i) is the canonical Pi-name for g(i). Since N<µ ⊆ N , g
is in N .

Let D be the set of u in Pα such that either u is ≤∗-incompatible with p, or
u ≤∗ p and there are y0, y1 ≤ u in P′α such that:

(1) for k = 0, 1, dom(g) ⊆ dom(yk) and for all i in dom(g), yk(i) is the canonical
Pi-name for a condition in Add(µ) which extends g(i),

(2) y0 � Odd = y1 � Odd = u � Odd,
(3) there is a such that y0  ǎ ∈ Ẋ and y1  ǎ /∈ Ẋ.

By elementarity D is in N .
We claim that D is dense in 〈Pα,≤∗〉. Let s in Pα be given. If s is ≤∗-

incompatible with p then s is in D. Otherwise fix t ≤∗ p, s. Define w by letting
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w � Odd = t � Odd, dom(w) ∩ Even = dom(g), and for all i in dom(g), w(i) is the
canonical Pi-name for g(i). Exactly as in the proof of Proposition 3.7 (2), w is a
condition below t. Since w ≤ p, w forces Ẋ is not in V . In particular, there is a
such that w does not decide whether or not a is in Ẋ. So there are w0, w1 ≤ w in P′α
such that w0  ǎ ∈ Ẋ and w1  ǎ /∈ Ẋ. Now apply Lemma 3.10 to obtain y0 ≤ w0

and y1 ≤ w1 in P′α such that y0 � Odd = y1 � Odd and for all i in dom(t) ∩ Odd,
Pi forces y0(i) = y1(i) is below t(i). Define u by letting u � Even = t � Even and
u � Odd = y0 � Odd = y1 � Odd. Clearly then y0, y1 ≤ u ≤∗ t ≤∗ s and (1), (2),
and (3) are satisfied.

By the choice of q, there is u in D ∩N such that q ≤∗ u. Since q ≤∗ u, p, u and
p are ≤∗-compatible. By elementarity and the definition of D we can fix y0 and y1
below u in N satisfying (1), (2), and (3). Fix a in N as described in (3). Both y0
and y1 are compatible with r, as follows from (1), (2), and Lemma 3.6, exactly as
in the end of the proof of Proposition 3.7 (2). But r decides Ẋ ∩N , so it decides
whether or not a is in Ẋ. So r cannot be compatible with both y0 and y1. �

4. Mitchell’s Model

For the convenience of the reader, we give a sketch of Mitchell’s construction
of a model with no Aronszajn trees on a successor cardinal1, using the framework
described in Section 3. None of the results of this section are due to the author.
We give several original applications of the iteration schema of Section 3 in [6].

Let µ be an infinite cardinal such that µ<µ = µ, and suppose κ > µ is a regular
cardinal such that for all ζ < κ, ζ<µ < κ. Suppose that λ > κ is a strongly
inaccessible cardinal.

We define by induction a forcing iteration 〈Pi, Q̇j : i ≤ λ, j < λ〉 which satisfies
(A) – (F) of Section 3. The only thing we need to specify is the value of Q̇i when
i is odd and check that (B) and (C) hold. Suppose Pi is defined for some i < λ. If
i is even, then by (A) we let Q̇i be a Pi-name for Add(µ). If i is odd, let Q̇i be a
Pi-name for Coll(κ, κ+). Then (B) is clear, and (C) is satisfied by Proposition 2.1.
By Section 3, the iteration satisfies properties (I) – (IX). By (VII), Pλ preserves all
cardinals and cofinalities less than or equal to κ.

Since λ is strongly inaccessible, for all i < λ, Pi has size less than λ. It follows
by a standard argument that Pλ is λ-c.c. Since we iterate collapses, every cardinal
in the interval (κ, λ) is collapsed to have size κ. So λ is the successor of κ after
forcing with Pλ. Also Pλ forces 2µ = λ.

We show that if λ is a weakly compact cardinal, then Pλ forces that there are
no Aronszajn trees on λ = κ+. Suppose for a contradiction there is p in Pλ which
forces that Ṫ is an Aronszajn tree on λ. We may assume that the nodes of Ṫ are
exactly the ordinals below λ. Therefore without loss of generality we can assume
Ṫ ⊆ Vλ. Let C be the club of α less than λ such that p forces (Ṫ ∩ Vα)Ġα = Ṫ � α.

Consider the structure 〈Vλ,∈,Pλ,, p, Ṫ 〉. This structure models the Π1
1 state-

ment: for all A, if A is a Pλ-name, then for all q ≤ p in Pλ, q forces A is not a
cofinal branch in Ṫ . Since λ is weakly compact, there is an inaccessible cardinal
α < λ in C such that 〈Vα,∈,Pα,, p, Ṫ ∩ Vα〉 models the same statement.

Write Pλ = Pα ∗ Ṗα,λ. Then Pα forces that Ṗα,λ is equivalent to a forcing
iteration satisfying properties (A) – (F) of Section 3. Let Gα ∗H be a generic filter

1As noted in [7], the consistency of no Aronszajn trees on ω2 is due in part to J. Silver.



14 JOHN KRUEGER

for Pα ∗ Ṗα,λ which contains p. Since α is inaccessible, α is the successor of κ in
V [Gα]. By assumption on α, in V [Gα] the tree S = (Ṫ ∩ Vα)Gα has no cofinal
branch. In V [Gα ∗H], T = ṪGα∗H is a tree on λ and T � α = S.

Let c be a node on level α of T in V [Gα ∗ H], and let b = {x ∈ T : x <T c}.
Then b is a cofinal branch through S, and therefore b is not in V [Gα]. Suppose A is
in (V [Gα]<κ)V [Gα]. Then A∩ b is bounded in S, so there is z in b such that x <T z
for all x in A ∩ b. But then A ∩ b is exactly the set A ∩ {x ∈ S : x <T z}, which is
in V [Gα]. By Property (IX) of Section 3 applied to Ṗα,λ, b is in V [Gα], which is a
contradiction.
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