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FAT SETS AND SATURATED IDEALS

JOHN KRUEGER

Abstract. We strengthen a theorem of Gitik and Shelah [6] by showing that if κ is

either weakly inaccessible or the successor of a singular cardinal and S is a stationary

subset of κ such that NSκ � S is saturated then κ \S is fat. Using this theorem we derive

some results about the existence of fat stationary sets. We then strengthen some results

due to Baumgartner and Taylor [2], showing in particular that if I is a λ+++-saturated

normal ideal on Pκλ then the conditions of being λ+-preserving, weakly presaturated, and

presaturated are equivalent for I.

§1. Introduction. In this paper we strengthen several known theorems about
saturated and presaturated ideals, and present some results about the existence
of fat stationary sets. One of the better known results in the area of saturated
ideals is the following theorem of Gitik and Shelah [6]: if θ < θ+ < κ are regular
cardinals then NSκ � cof(θ) is not saturated. This theorem solved the prob-
lem of whether NSκ can be saturated for κ weakly inaccessible. In Section 3
we strengthen this theorem by proving that if κ is either weakly inaccessible or
the successor of a singular cardinal and S is a stationary subset of κ such that
NSκ � S is saturated then S is co-fat. Using this theorem we prove some results
about fat stationary sets. In particular we prove that if κ is weakly inaccessible
or the successor of a singular cardinal then any stationary subset of κ contains
a stationary co-fat subset.

In the fourth section we discuss presaturated ideals and strengthen some re-
sults of Baumgartner and Taylor [2]. The idea of a presaturated ideal was intro-
duced in [2] as a generalization of saturation. They proved that if I is a normal
λ++-saturated ideal on Pκλ then the conditions of being λ+-preserving, weakly
presaturated, and presaturated are equivalent for I. We strengthen this result
by showing that if I is λ+++-saturated then the three conditions are equivalent.
In particular, if I is a normal ideal on a regular cardinal κ and 2κ ≤ κ++, or if
GCH holds and I is a normal ideal on Pκλ, then the conditions are equivalent
for I.

This paper forms a part of my Ph.D. dissertation under the supervision of James Cummings.
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§2. Preliminaries. If κ is regular and κ ≤ λ, we define Pκλ = {a ⊆ λ :
|a| < κ, a ∩ κ ∈ κ}.1 Note that Pκκ = κ. A subset of Pκλ is club if it is closed
under unions of increasing sequences of length less than κ and is cofinal; a set is
stationary if it intersects every club. The ideal of non-stationary subsets of Pκλ
is denoted by NSκ,λ (or NSκ if κ = λ). If S is stationary, NSκ,λ � S is the ideal
generated by NSκ,λ along with the complement of S. An ideal I on Pκλ is fine
if for each ξ < λ the set {a ∈ Pκλ : ξ /∈ a} is in I. In what follows if we say that
I is an ideal we mean that I is a κ-complete fine ideal on some space Pκλ.

An antichain of stationary subsets of Pκλ is a family of stationary sets any
two of which have non-stationary intersection. If I is an ideal on Pκλ, I+ is
the forcing poset consisting of subsets of Pκλ which are not in I, ordered by
inclusion. An ideal I on Pκλ is µ-saturated if there is no antichain of I+ of size
µ, and I is saturated if it is λ+-saturated. An ideal of the form NSκ,λ � S is
saturated if and only if there is no antichain of stationary subsets of S of size
λ+. The saturation of an ideal I, denoted sat(I), is the least cardinal µ such
that I is µ-saturated. We assume familiarity with generic ultrapowers in Section
4. The forcing poset I+ adds a filter U which measures every subset of Pκλ in
V , and induces a generic embedding j : V → M where M is the ultrapower of
V by U . We say that I is precipitous if I+ forces that M is well-founded. If I is
a saturated ideal on Pκλ then I is precipitous, I+ forces that λ+ is a cardinal,
and I+ forces that the generic ultrapower is closed under λ-sequences.

We reserve the letters κ, λ, and µ for infinite cardinals, and the letter n for
natural numbers. The term cof(θ) indicates the class of ordinals with cofinality
θ, and similarly for cof(≥ θ) and cof(> θ). We use the fact that if κ is regular
and S is a stationary set of singular ordinals then there is a regular θ < κ such
that S ∩ cof(θ) is stationary (just apply Fodor’s Lemma). We denote the class of
singular limit ordinals by Sing and the class of regular cardinals by Reg. If P is
a forcing poset and λ is a cardinal, terms of the form λ+n in forcing statements
indicate λ+n as computed in the ground model.

§3. Fat sets and saturated ideals. A fat subset of a regular uncountable
cardinal κ is a set A such that for any club C in κ, A ∩ C has closed subsets
of any order type less than κ. Thus fatness is intermediate between stationarity
and clubness. A set A is co-fat if κ \ A is fat. In this section we prove that if
κ is either weakly inaccessible or the successor of a singular cardinal and S is a
stationary subset of κ such that NSκ � S is saturated then S is co-fat. A slightly
weaker result holds for successors of regulars.

We proved this last theorem in an effort to answer the following combinatorial
question about fat sets: is it provable in ZFC that there exist non-trivial fat
sets in a regular uncountable cardinal? There are some standard examples of fat
stationary sets. Any club set is fat. It is not difficult to see that if κ is weakly
inaccessible then the set κ ∩ Sing is fat. We show below that if κ = µ+ where µ
is regular and if A is contained in cof(µ) and cof(µ) \ A is stationary, then the
complement of A is a fat set. Also, a set which almost contains any such set

1Usually Pκλ is used to denote the set [λ]<κ = {a ⊆ λ : |a| < κ}. The set Pκλ as we define
it is a club subset of [λ]<κ which is easier to work with than [λ]<κ.
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modulo clubs is fat. We refer to these sets as trivially fat. We asked whether
or not it is provable in ZFC that there exist non-trivial fat sets in a regular
uncountable cardinal.

Our main result on fat sets is that if κ is weakly inaccessible or the successor of
a singular cardinal then any co-stationary set B can be enlarged to a set A which
is fat but not club. In other words, any stationary set S can be thinned out to a
stationary co-fat set. This result solves the question about the existence of non-
trivial fat sets for these two sorts of cardinals as follows: if S is a stationary co-fat
subset of Sing, then S has a non-trivial fat complement. For the case κ = µ+

where µ is regular uncountable the question about the existence of non-trivial
fat sets in κ is independent of ZFC.

The main use of fat sets in the literature thus far has been variations of the
following theorem: under GCH, if κ is regular and A is stationary in κ then A is
fat if and only if there is a κ-distributive forcing poset P such that P forces that
A contains a club (see [1]). In the present paper we are interested in fat sets in
their own right rather than in applications of this theorem.

The following lemma explains what fat subsets of successor cardinals are like.
The first statement of the lemma appears in [1].

Lemma 1. Let κ = µ+ where µ is a cardinal.
1. Suppose that µ is regular. A set A is fat in κ if for any club C, the set

A ∩ C contains a closed subset of order type µ + 1.
2. Suppose that µ is singular. A set A is fat in κ if for any club C, the set

A ∩ C contains closed subsets of any order type less than µ.

Proof. We prove 1 and 2 simultaneously. We show by induction that for all
ξ < κ and for any club C, the set A ∩ C contains a closed subset of order type
ξ+1. We can assume ξ ≥ µ. If ξ is a successor ordinal then the statement follows
from induction and the fact that A is stationary. Suppose that ξ is a limit ordinal
and the claim holds below ξ. Let C be club. Define E as the club of α less than
κ such that for all β < α and for all ζ < ξ, the set A ∩ C ∩ (β, α) contains a
closed subset with order type ζ + 1. Let θ = cf(ξ). Then either θ < µ, or if µ
is regular possibly θ = µ. In either case there is a closed subset of A ∩ C ∩ E
of order type θ + 1, which we enumerate as 〈αi : i ≤ θ〉. Let 〈ξi : i < θ〉 be an
increasing sequence unbounded in ξ. For each i < θ fix a closed set ci with order
type ξi + 1 contained in A ∩ C ∩ (αi, αi+1). Let d be the union of all the ci’s
along with all the αi’s. Then d is a closed subset of A ∩ C with order type at
least ξ + 1. a

A consequence of this lemma is that every stationary subset of ω1 is fat. For let
S be stationary in ω1 and suppose that C is club. Then S intersects lim(S ∩C)
at some point α. The set S ∩C is unbounded in α and α is in S ∩C, so there is
a closed subset of S ∩ C with order type ω + 1.

The following is a useful characterization of co-fatness in terms of stationary
reflection. The proof is straightforward.

Lemma 2. Suppose that κ is weakly inaccessible or κ = µ+ where µ is singular.
Let A be a subset of κ and let T be the set of limit ordinals α less than κ with
uncountable cofinality such that A∩α is non-stationary in α. The following are
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equivalent.
1. A is co-fat.
2. For all regular uncountable cardinals θ < κ, the set T ∩ cof(θ) is stationary.
3. There are unboundedly many regular cardinals θ < κ such that T ∩ cof(θ)

is stationary.

The following proposition is our main tool for relating fatness to saturation.

Proposition 1. Let κ be regular and let A be a fat subset of κ. Suppose that
A is an antichain of stationary sets B ⊆ A such that A \ B is not fat. If κ is
weakly inaccessible then |A| ≤ κ. If κ = µ+ and µ is a singular cardinal then
|A| ≤ µ.

Proof. Let δ be equal to κ or µ depending on whether κ is inaccessible or
the successor of a singular cardinal µ. Suppose for a contradiction that there
is an antichain A as above with size δ+. Enumerate A as 〈Ai : i < δ+〉. Since
A \ Ai is not fat, its complement Ai ∪ (κ \ A) is not co-fat. For each i let Ti be
the set of α ∈ κ ∩ cof(> ω) such that (Ai ∪ (κ \ A)) ∩ α is non-stationary in α.
By the previous lemma, for each i there is a regular uncountable cardinal θi < κ
such that Ti ∩ cof(θi) is non-stationary. It is easy to see by cases that there is a
set Z ⊆ δ+ with size δ+ such that θi = θ for all i ∈ Z. Choose a set Y contained
in Z with order type θ+. Note that θ+ < κ. Now for each i < j in Y choose
a club C(i, j) such that Ai ∩ Aj ∩ C(i, j) is empty. For each i in Y choose a
club Di such that Ti ∩ cof(θ) ∩ Di is empty. Now let C =

⋂
{C(i, j) : i < j in

Y } ∩
⋂
{Di : i ∈ Y }. Since |Y | = θ+ < κ, C is club.

Applying the fatness of A choose a closed set X contained in A∩C with order
type θ + 1, and let α = sup(X). Note that α is in C ∩ cof(θ). For each i in Y
the ordinal α is in Di ∩ cof(θ), and therefore is not in Ti. So (Ai ∪ (κ \ A)) ∩ α
is stationary in α. Since X is contained in A, it is easy to see that Ai ∩ X is
stationary in α. Moreover, if i < j in Y then Ai∩Aj ∩X ⊆ Ai∩Aj ∩C(i, j) = ∅.
Thefore {Ai ∩X : i ∈ Y } is a pairwise disjoint collection of θ+ many non-empty
subsets of X. This is a contradiction since X has size θ. a

Corollary 1. Suppose that κ = µ+ where µ is a singular cardinal and A is
a fat subset of κ. Then any stationary set B ⊆ A contains a stationary set B0

such that A \ B0 is a fat set. In particular, any stationary subset of κ contains
a stationary co-fat subset.

Proof. Let A be fat and B ⊆ A stationary. Fix a sequence 〈Bi : i < κ〉
which partitions B into pairwise disjoint stationary sets. Since the partition has
size greater than µ, by the last proposition there is i such that A \ Bi is fat.
Setting A to be κ, this gives that every stationary subset of κ contains a co-fat
stationary subset. a

The following has a similar proof.

Corollary 2. Suppose that κ is weakly inaccessible and A is a fat subset of
κ. For any stationary set B ⊆ A such that NSκ � B is not saturated, there is a
stationary set B0 ⊆ B such that A\B0 is fat. In particular any stationary subset
of κ on which the non-stationary ideal is not saturated contains a stationary co-
fat subset.
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In order to prove that every stationary subset of a weakly inaccessible cardinal
contains a stationary co-fat subset, we strengthen the main theorem of Gitik and
Shelah [6] on the non-saturation of the ideal NSκ � cof(θ) for regular θ < κ. The
following lemma describes a club guessing property which is slightly more general
than a similar property which was proven in [6]. The proof is the same as the
proof which appears in [6] so we omit it.

Lemma 3. Suppose that θ0 ≤ θ < θ+ < κ are regular cardinals. Let C be the
club of limit points of the set κ∩cof(> θ). Suppose that S is a stationary subset of
κ∩ cof(θ0). If NSκ � S is saturated then there exists a sequence 〈sα : α ∈ S ∩C〉
such that:

1. sα ⊆ α ∩ cof(> θ),
2. sα is unbounded in α,
3. for any club D there is a club E such that for all α in S ∩ C ∩ E there

is β < α such that sα \ β ⊆ D.

Theorem 1. Assume that κ is either weakly inaccessible or κ = µ+ where
µ is a singular cardinal. Suppose that S is a stationary subset of κ such that
NSκ � S is saturated. Then S is co-fat.

Proof. The proof is similar to the proof from [6]. Suppose for a contradiction
that S is not co-fat. Then S is not almost contained in the co-fat set Reg, so
S∩Sing is stationary. Fix a regular cardinal θ less than κ and a club D such that
D \ S contains no closed subsets of order type θ, and θ is large enough so that
S ∩ cof(< θ) is stationary. Note that θ+ < κ. Fix a sequence 〈θi : i < ξ〉 which
enumerates every regular cardinal ζ below θ such that S ∩ cof(ζ) is stationary.
Let F be a club such that for all α in S ∩ cof(< θ) ∩ F there is i < ξ such that
cf(α) = θi. For each i < ξ the set Ti = S ∩ cof(θi) is stationary and NSκ � Ti is
saturated. So fix a club guessing sequence 〈si

α : α ∈ Ti ∩ C〉 as in the preceding
lemma, where C is the club of limit points of the set κ ∩ cof(> θ).

Define a sequence of clubs 〈Ei : i ≤ θ〉 as follows. Let E0 = C ∩D ∩ F . Take
intersections at limits. Suppose that Ej is given. For each i < ξ there is a club
F i

j such that for every α in Ti ∩ C ∩ F i
j there is β < α such that si

α \ β ⊆ Ej .
Let Ej+1 = lim(Ej) ∩

⋂
{F i

j : i < ξ}.
Let δ be the least member of the set S ∩ Eθ ∩ cof(< θ). Fix i < ξ such that

cf(δ) = θi. We claim that si
δ ∩ Eθ is non-empty. Let 〈αj : j < θi〉 be increasing

and unbounded in δ. For each l < θ, δ ∈ F i
l ∩ Ti ∩ E0, and therefore there is

kl < θi such that si
δ \αkl

⊆ El. Let Y be a set of size θ and k fixed such that for
all l in Y , kl = k. Then si

δ \αk ⊆
⋂
{El : l ∈ Y } = Eθ. So si

δ ∩Eθ is non-empty.
Choose some γ in si

δ ∩ Eθ. Then cof(γ) > θ, and γ ∈ lim(El) for all l < θ,
therefore Eθ ∩ γ is club in γ. Let X be a closed subset of Eθ ∩ γ of order type θ
consisting of ordinals of cofinality less than θ. Since D \ S does not contain any
closed subsets of order type θ, it does not contain X. So X ∩ S is non-empty.
But if ξ ∈ X ∩ S then ξ ∈ S ∩ Eθ ∩ cof(< θ) and ξ < δ, which contradicts the
minimality of δ. a

This theorem generalizes the result of Gitik and Shelah [6] since the set κ ∩
cof(θ) is not co-fat. Combining the last theorem with Lemma 2 we get the
following.
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Corollary 3. Suppose that κ is weakly inaccessible or the successor of a
singular cardinal and S is a stationary subset of κ such that NSκ � S is saturated.
Then for every regular uncountable cardinal θ < κ there is a stationary set of α
in κ ∩ cof(θ) such that S ∩ α is non-stationary in α.

Corollary 4. Suppose that κ is weakly inaccessible. Then every stationary
subset of κ contains a stationary co-fat subset.

Proof. Let S be stationary. If NSκ � S is saturated then S is cofat. Other-
wise S can be broken up into an antichain of κ+ many stationary subsets. By
Proposition 1 one of those subsets is co-fat. a

Corollary 5. Suppose that κ is either weakly inaccessible or the successor
of a singular cardinal. Then there exist non-trivial fat subsets of κ.

Proof. Let S be a stationary co-fat subset of Sing. Then the complement
of S is a non-trivial fat set, since it is disjoint from a stationary set of singular
ordinals. a

We now consider the case where κ = µ+ and µ is a regular uncountable
cardinal. Suppose that A is a stationary subset of κ such that A ∩ cof(µ) is
stationary and cof(< µ) \ A is non-stationary. Then A is fat. For let C be a
club. Fix a club D such that D ∩ cof(< µ) ⊆ A. Choose an ordinal α in the set
lim(C ∩D)∩ cof(µ)∩A. Then C ∩D∩α is club in α, so choose a club subset X
of C ∩D ∩ α with order type µ. Then lim(X) ∪ {α} is a closed subset of A ∩ C
of order type µ + 1. We refer to sets such as A as trivially fat.

We now prove that it is independent of ZFC whether there exist non-trivial
fat subsets of the successor of a regular uncountable cardinal. In particular we
prove that if V = L then any stationary subset of the successor of a regular
cardinal contains a stationary co-fat subset, which yields non-trivial fat sets. On
the other hand assuming large cardinals we can force a model in which there is
a successor of a regular cardinal which has no non-trivial fat subsets.

Proposition 2. Let κ = µ+ where µ is a regular uncountable cardinal. Sup-
pose that 2µ holds. Then every stationary subset of κ contains a stationary
co-fat subset, and therefore there exist non-trivial fat subsets of κ.

Proof. Let A be a stationary subset of κ. Let B be a stationary subset of
A such that cof(µ) \ B is stationary. It follows from 2µ that B contains a non-
reflecting stationary subset B0 (see [7]). We claim that B0 is co-fat. Let C be
club. Fix an ordinal α in lim(C) ∩ (cof(µ) \B0). Since B0 is non-reflecting, the
set B0 ∩ α is non-stationary in α. So choose a club D in α with order type µ
which is disjoint from B0. Then (C ∩ D) ∪ {α} is a closed set with order type
µ + 1 contained in C \ B0. So B0 is co-fat. Now let A be any stationary co-fat
subset of cof(< µ). Then the complement of A is non-trivially fat, since it is
disjoint from a stationary subset of cof(< µ). a

On the other hand it is consistent relative to large cardinals that every fat
subset of the successor of a regular cardinal is trivially fat. We use the following
observation.

Proposition 3. Let κ = µ+ where µ is a regular uncountable cardinal. The
following condition is equivalent to the assertion that every fat subset of κ is
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trivially fat: for every stationary set S contained in κ∩ cof(< µ), there is a club
C such that for all α in C ∩ cof(µ) the set S ∩ α is stationary in α.

Proof. Suppose that κ has a non-trivial fat subset A. Then B = cof(< µ)\A
is stationary. Let C be club. Since A is fat, choose a closed set X contained in
A ∩ C with order type µ consisting of ordinals with cofinality less than µ. Let
α = sup X. Then α is in C ∩ cof(µ), but B ∩ α is non-stationary in α since it
is disjoint from the club X. Now suppose that κ has no non-trivial fat subsets.
Let S be a stationary subset of cof(< µ). Then A = κ \ S is not fat. Let D be
a club such that A ∩ D contains no closed subsets of order type µ + 1. Fix an
ordinal α in lim(D)∩ cof(µ). Note that α is in A∩D. If S ∩α is non-stationary
then there is a set X club in α with order type µ which is disjoint from S and
therefore contained in A. But then (X ∩ D) ∪ {α} is a closed subset of A ∩ D
with order type µ + 1, which is impossible. So S ∩ α is stationary in α. a

Magidor [8] constructed a model where every stationary subset of ω2 consisting
of ordinals with cofinality ω reflects at almost every ordinal of cofinality ω1. His
method easily generalizes to higher cardinals to construct models satisfying the
stationary reflection property of the previous proposition. Hence it is consistent
that κ is the successor of a regular uncountable cardinal and every fat subset of
κ is trivially fat.

In spite of this independence, a weak form of the theorem about the existence
of non-trivial fat subsets of successor of singular cardinals can be proven for
successor of regulars. Let θ < κ be cardinals. A set A is < θ-fat in κ if for any
club C, the set A∩C contains closed subsets of any order type less than θ. The
following results are proven in the same manner as their analogues above.

Proposition 4. Let κ = µ+ where µ is a regular uncountable cardinal and
let A be a < µ-fat set. Suppose that A is an antichain of stationary sets B ⊆ A
such that A \B is not < µ-fat. Then |A| ≤ µ.

Theorem 2. Let κ = µ+ where µ is a regular uncountable cardinal. Suppose
that A is a < µ-fat subset of κ. Then any stationary set B ⊆ A contains a
stationary set B0 such that A\B0 is < µ-fat. In particular any stationary subset
of κ contains a stationary < µ-co-fat subset.

§4. Presaturated ideals. Baumgartner and Taylor [2] introduced presatu-
ration as a weakening of saturation which enjoys some of its strong consequences.
Let κ ≤ λ be cardinals with κ regular and let I be an ideal on Pκλ. Then I is
λ+-preserving if I+ forces that λ+ is a cardinal. The ideal I is weakly presatu-
rated if I is λ+-preserving and precipitous. Finally, we say that I is presaturated
if it satisfies the following combinatorial property: for any sequence 〈Aα : α < λ〉
of antichains of I+ and for any A ∈ I+ there is B ⊆ A in I+ such that for all
α < λ, |{S ∈ Aα : B ‖ S}| ≤ λ.2

2The definition of presaturation given in [2] is the same as what we have called weakly

presaturated (following [3]). Baumgartner and Taylor defined this notion and proved their
results only for ideals on ω1, but their results extend without difficulty to the general case

given here.
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Clearly every weakly presaturated ideal is λ+-preserving, and every presat-
urated ideal is weakly presaturated (see below). It is unknown whether λ+-
preserving implies precipitousness, or even whether λ+-preserving is equivalent
to presaturation. As a partial solution to this problem, Baumgartner and Taylor
proved the following two theorems: (1) if I is a λ++-saturated ideal on Pκλ
then λ+-preserving, weakly presaturated, and presaturated are equivalent for I;
(2) if I is λ+ω-saturated and I+ forces that cf(λ+n) > λ for all n > 0 then
I is weakly presaturated. We strengthen (1) by reducing the assumption to I
being λ+++-saturated, and we strengthen the conclusion of (2) to get that I is
presaturated.

The proof of the following proposition appears in [5].

Proposition 5. Suppose that I is a presaturated ideal on Pκλ. Then I is
weakly presaturated, and I+ forces that if j : V → M is the well-founded generic
embedding then λM ⊆ M .

We will use the following theorem of Shelah [9].3 We include a proof for the
benefit of the reader.

Theorem 3 (Shelah). Suppose that V ⊆ W are models of ZFC, κ is regular
in V , and κ+V = κ+W . Then W models that cf(κ) = cf(|κ|).

Proof. Since κ is regular in V there is a sequence 〈Ai : i < κ+〉 of unbounded
subsets of κ and a sequence 〈gi : i < κ+〉 of functions from κ to κ such that for
all α < κ+, 〈Ai \ gα(i) : i < α〉 is a disjoint sequence of sets. Now work in W .
Let µ = |κ|, δ0 = cf(µ), and δ1 = cf(κ). Fix an increasing sequence 〈Xi : i < δ0〉
of sets such that κ =

⋃
Xi and each |Xi| < µ. Suppose for a contradiction

that δ0 6= δ1. Then it is easy to see that for all i < κ+ there is βi < δ0 such
that Ai ∩ Xβi is unbounded in κ. Since κ+ is regular there is a set Y ⊆ κ+ of
order type µ and β < δ0 such that βi = β for all i ∈ Y . Let α = supY . Then
〈(Ai ∩ Xβ) \ gα(i) : i ∈ Y 〉 is a disjoint sequence of non-empty subsets of Xβ ,
contradicting that Xβ has size less than µ. a

Lemma 4. Let P be a forcing poset and let λ < λ1 be cardinals. Assume that
〈Aα : α < λ〉 is a sequence of antichains of P with each |Aα| ≤ λ1. Suppose that
p is in P and for all q ≤ p there is α < λ such that |{s ∈ Aα : q ‖ s}| = λ1.
Then p  cf(λ1) ≤ λ.

Proof. Enumerate each Aα as 〈sα
i : i < δα〉 where δα ≤ λ1. Define a name

ḟ so that for all α < λ, p  ḟ(α) is the unique β < δα such that sα
β ∈ Ġ (if there

is such β, otherwise 0). I claim that p  ran(ḟ) is unbounded in λ1, and hence
cf(λ1) ≤ λ. Otherwise there is q ≤ p and δ < λ1 such that q  ran(ḟ) ⊆ δ. Fix
α < λ such that |{s ∈ Aα : q ‖ s}| = λ1. Then clearly δα = λ1. Fix ξ > δ such
that q ‖ sα

ξ . Let t ≤ q, sα
ξ . Then t  ḟ(α) = ξ > δ, and also t  ran(ḟ) ⊆ δ,

which is a contradiction. a

Theorem 4. Suppose that I is a normal ideal on Pκλ which is λ+++-saturated.
Then the properties of λ+-preserving, weakly presaturated, and presaturated are
equivalent for I.

3See [4] for a generalization of Shelah’s theorem to singular cardinals.
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Proof. We know that presaturated → weakly presaturated → λ+-preserving.
So it suffices to show that if I is λ+-preserving then I is presaturated. Suppose
that I is a λ+++-saturated normal ideal on Pκλ which is λ+-preserving. Then
I+ is λ+++-c.c., so it preserves λ+++. By the theorem of Shelah above and the
assumption that I+ preserves λ+, it follows that I+  cf(λ++) = cf(|λ++|) ≥
λ+ > λ.

To show that I is presaturated suppose that 〈Aα : α < λ〉 is a sequence
of antichains of I+ and A ∈ I+. We wish to find B ⊆ A in I+ such that
for all α < λ, |{X ∈ Aα : B ‖ X}| ≤ λ. Since I is λ+++-saturated we can
enumerate each Aα as 〈Aα

i : i < δα〉 for some δα ≤ λ++. Since I+ forces that
cf(λ++) > λ, by the preceding lemma there is B0 ⊆ A such that for all α < λ the
set Bα = {X ∈ Aα : B0 ‖ X} has size no more than λ+. Since I+  cf(λ+) > λ
again by the preceding lemma there is B ⊆ B0 in I+ such that for all α < λ, the
set {X ∈ Bα : B ‖ X} = {X ∈ Aα : B ‖ X} has size no more than λ. a

We state consequences of this theorem in the more commonly considered cases.

Corollary 6. Suppose that κ is regular and 2κ ≤ κ++. Then the properties
of κ+-preserving, weakly presaturated, and presaturated are equivalent for normal
ideals on κ.

Corollary 7. Suppose that κ is regular and κ ≤ λ. Let I be a normal ideal
on Pκλ such that |I+| ≤ λ++. Then the properties of λ+-preserving, weakly
presaturated, and presaturated are equivalent for I. In particular under GCH
the properties are equivalent.

We now strengthen the second theorem of [2] mentioned above: if I is an
ideal on Pκλ which is λ+ω-saturated and I+  cf(λ+n) > λ for all n > 0, then
I is weakly presaturated. We strengthen this to show that under even weaker
assumptions I is presaturated. Note that since sat(I) is regular, the assumption
that I is λ+ω-saturated means that there is n such that I is λ+n-saturated.

Theorem 5. Let I be an ideal on Pκλ which is λ+n-saturated for some n > 1.
Assume that for all 0 < m < n− 1, I+  cf(λ+m) > λ. Then I is presaturated.

Proof. Suppose that I and n are as in the statement of the theorem. Since
I+  cf(λ+) > λ, I is λ+-preserving. By Shelah’s theorem, I+  cf(λ+n−1) =
cf(|λ+n−1|) ≥ λ+ > λ. To show that I is presaturated let 〈Aα : α < λ〉 be a
sequence of antichains of I+. Fix A in I+. Let m be the least integer such that
there is some B0 ⊆ A in I+ such that for all α < λ, |{X ∈ Aα : B0 ‖ X}| ≤ λ+m.
Note that by the saturation assumption, m ≤ n − 1. Fix B0 ⊆ A in I+ such
that for all α < λ, Bα = {X ∈ Aα : B0 ‖ X} has size less than or equal to
λ+m. Suppose for a contradiction that m > 0. By the minimality of m, for
all B ⊆ B0 in I+, there is α < λ such that |{X ∈ Aα : B ‖ X}| ≥ λ+m; but
{X ∈ Bα : B ‖ X} = {X ∈ Aα : B ‖ X}, and so this set has size λ+m. By a
previous lemma it follows that B0  cf(λ+m) ≤ λ, which is a contradiction. a
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