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Abstract

We generalize the model theory of small profinite structures developed by
Newelski to the case of compact metric spaces considered together with com-
pact groups of homeomorphisms and satisfying the existence of m-independent
extensions (we call them compact e-structures). We analyze the relationships
between smallness and different versions of the assumption of the existence
of m-independent extensions and we obtain some topological consequences of
these assumptions. Using them, we adopt Newelski’s proofs of various results
about small profinite structures to compact e-structures. In particular, we
notice that a variant of the group configuration theorem holds in this context.

A general construction of compact structures is described. Using it, a class
of examples of compact e-structures which are not small is constructed.

It is also noticed that in an m-stable compact e-structure every orbit is
equidominant with a product of m-regular orbits.

0 Introduction

In [12, 14], Newelski introduced the notion of a profinite structure and developed a
counterpart of geometric stability theory in a purely topological setting.

Recall that a profinite space X is, up to homeomorphism, the inverse limit of
a system of finite discrete topological spaces, that is X = {〈xi〉i∈I : fji(xj) =
xi for every j ≥ i}, where {Xi, fji : i, j ∈ I, j ≥ i} is an inverse system of fi-
nite discrete spaces. The topology on X is inherited from the product of Xi’s. We
always assume that I is countable.

A profinite structure is a pair (X,Aut∗(X)) consisting of a profinite topological
space X and a closed subgroup Aut∗(X), called the structural group of X, of the
group of all homeomorphisms of X respecting a distinguished inverse system defining
X (the topology is inherited from the product topology on XX). It is easy to see that
Aut∗(X) is a profinite group acting continuously on X. We say that (X,Aut∗(X))
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is small if for every natural number n, there are only countably many orbits on
Xn under the action of Aut∗(X). To develop the model theory of small profinite
structures, Newelski defined m-independence, which has similar properties to those of
forking independence in stable theories. He considered counterparts of such notions
as Lascar U -rank, superstability or 1-basedness, and proved various results about
them. The deepest result seems to be the group configuration theorem [14, Theorem
1.7 and Theorem 3.3].

Smallness and the fact that we have a basis consisting of clopen sets which are
classes of finite Aut∗(X)-invariant equivalence relations play a prominent role in all
these considerations. From the model theoretic point of view, smallness is a natural
assumption, because any profinite structure interpretable in a small theory (see Def-
inition 1.2) is small. Unfortunately, it is not easy to find explicit examples of small
profinite structures, especially of small profinite groups. All known examples of small
profinite groups are abelian profinite groups of finite exponent and their variants (see
[3, 4] for details). So, it would be interesting to extend Newelski’s approach to wider
classes of profinite structures or even to ”non-profinite” mathematical objects.

In this paper, we investigate pairs (X,G), where X is a compact metric space
and G is a compact group acting continuously and faithfully on X (so G is just a
compact subgroup of the group of all homeomorphisms of X). We call them compact
structures.

Similarly to profinite structures, compact structures appear naturally as objects
interpretable in some sense in first order theories. Namely, the space of classes of
a bounded, type-definable equivalence relation together with the group of homeo-
morphisms induced by automorphisms of the monster model is a compact structure.
Moreover, any compact structure is of this form (see Theorem 1.4).

In Section 1, we give definitions and prove some fundamental results about com-
pact and profinite structures. In particular, in Proposition 1.5, we notice that profi-
nite structures can be defined without referring to a distinguished inverse system.
Namely, profinite structures are those compact structures for which the underlying
space is profinite.

At the beginning of Section 2, we easily get that smallness of (X,G) would imply
that (X,G) is a small profinite structure. So, in the further part of the paper,
instead of smallness we assume in a sense the weakest condition necessary to develop
a counterpart of geometric stability theory, namely the existence of m-independent
extensions. Compact structures satisfying this condition will be called compact e-
structures (see Definition 2.5). Notice that the class of compact e-structures contains
profinite structures which are not necessarily small, but in which m-independent
extensions exist (we call them profinite e-structures).

We also give a short, elementary proof of Kim’s theorem that in small theories the
finest bounded, type-definable equivalence relation equals the relation of having the
same strong type. As in the proof of this theorem in [6], we use the fact that strong
types are connected-components in the space of Kim-Pillay strong types. However,
using this fact, we give a completely elementary proof, without applications of Haar
measure and integrals.
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An important part of the paper is the rest of Section 2, where we analyze the
relationships between different versions of the assumption of the existence of m-
independent extensions, obtain various topological consequences (in particular, that
all orbits are profinite), construct a class of examples of compact e-structures which
are not profinite (so not small), and a class of profinite e-structures which are not
small.

In Subsection 3.1, we explain how to generalize most of the results from [14] to
the case of compact structures satisfying the existence of m-independent extensions.
In particular, we have a variant of the group configuration theorem.

In Subsection 3.2, working in the class of compact e-structures, we show counter-
parts of some results about regular types, domination and weight known for simple
theories (see Sections 5.1 and 5.2 of [15]). These results are new even for small
profinite structures.

1 Compact and profinite structures

In this section, we give definitions and prove some fundamental results about compact
and profinite structures. We also discuss some notions of interpretability of compact
and profinite structures in first order theories.

Definition 1.1 A compact structure is a pair (X,G), where X is a compact metric
space and G is a compact group acting continuously and faithfully on X.

Equivalently, G is a compact subgroup of the group of all homeomorphisms of X
with the compact-open topology. Since the group of all homeomorphisms of X with
the compact-open topology is Polish, G is second countable. By the compactness
of G, the pointwise convergence topology on G coincides with the compact-open
topology. Of course, each profinite structure is a compact structure (recall that in
the definition of a profinite structure, we always assume that the inverse system is
countable).

Let (X,G) be a compact structure. Let A ⊆ X be finite. By GA we denote
the pointwise stabilizer of A. We say that V ⊆ X is A-invariant if f [V ] = V for
every f ∈ GA. If in addition V is closed, we say that V is A-definable. For a ∈ Xn

and A ⊆ X, we define o(a/A) = {f(a) : f ∈ GA} (the orbit of a over A) and
On(A) = {o(a/A) : a ∈ Xn}. Each orbit is always a closed subset of X.

For a finite A ⊆ X, the algebraic [definable] closure of A, denoted by acl(A)
[dcl(A), respectively] is the set of all elements in X with finite [1-element, respec-
tively] orbits over A. If A is infinite, acl(A) =

⋃
{acl(A0) : A0 ⊆A is finite} and

dcl(A) =
⋃
{dcl(A0) : A0 ⊆A is finite}. We will introduce later an imaginary exten-

sion Xeq of X; acleq and dcleq are defined then as acl and dcl, but in Xeq.
We say that compact structures (X,G) and (Y,H) are isomorphic, if there is a

homeomorphism φ : X → Y and an (topological) automorphism ψ : G → H such
that φ(gx) = ψ(g)φ(x) for all x ∈ X, g ∈ G. To be precise, the definition of a
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profinite structure is up to isomorphism, i.e. any compact structure isomorphic to a
profinite structure is also a profinite structure.

We have the following natural notion of interpretability of profinite structures
in first order theories [12, 14] (for more details on this and another notion of inter-
pretability, see [5]).

Let T be a first order, countable, complete theory T with a monster model C,
and A ⊆ C be countable. In the definition below, Y is an arbitrary A-type-definable
subset of Ceq and E1 ⊇ E2 ⊇ . . . is an arbitrary descending sequence of finite A-
definable equivalence relations on Y .

Definition 1.2 We say that a profinite structure is interpretable in T over A if it
is isomorphic to the inverse limit of spaces Y/Ei with the structural group induced
by Aut(C/A).

So, (X,Aut∗(X)) is interpretable in T over A iff it is isomorphic to

{〈a/E1, a/E2, . . . 〉 : a ∈ Y }

with the structural group induced by Aut(C/A).
The main examples of profinite structures interpretable in T over A are traces of

complete types overA. More precisely, for p ∈ S(A), we consider (Tr(p), Aut∗(Tr(p))),
where

Tr(p) = {q ∈ S(acleq(A)) : p ⊆ q}
and Aut∗(Tr(p)) is induced by Aut(C/A). We treat Tr(p) as the inverse limit of the
system of all spaces p(C)/E, with E ranging over finite equivalence relations on C
definable over A. So, Tr(p) is a profinite structure homogeneous under the action of
Aut∗(Tr(p)).

It is obvious that any profinite structure interpretable in a small theory over any
finite set is small. Moreover, it is easy to show that any [small] profinite structure is
interpretable as the space of all strong 1-types in some [small] stable, weakly minimal
theory. To see this, take any [small] profinite structure (X,Aut∗(X)). Then, we have
the distinguished set {Ei : i ∈ I} of finite, invariant equivalence relations inducing
the profinite topology on X. Let X be the first order structure with the universe
X, the relations Ei, i ∈ I, and the relations Ri, i ∈ I, which are defined as follows.
Write explicitly X/Ei = {ai1/Ei, . . . , aiki/Ei} and let π : X → X/Ei be the quotient
map. Then, Ri ⊆ Xki is defined as (π × · · · × π)−1[o(ai1/Ei, . . . , a

i
ki
/Ei)], where

o(ai1/Ei, . . . , a
i
ki
/Ei) is the orbit of the tuple (ai1/Ei, . . . , a

i
ki
/Ei) under the action of

Aut∗(X). Now, we define T = Th(X ). Then, one can check that T is [small] stable,
weakly minimal, and that (X,Aut∗(X)) is interpretable in T as the set of all strong
1-types over ∅.

For compact structures, we can also introduce a natural notion of interpretability.
Let T be a first order, countable, complete theory with a monster model C, and
A ⊆ C be countable. Let Y be any A-type-definable set and E be a bounded, A-
type-definable equivalence relation on Y. Then, Y/E is a compact metric space (with
the so-called logic topology), and Aut(C/A) induces a compact group (denoted by
Aut(C/A)�Y/E) acting continuously on Y/E (for details see [1, 6, 8]).
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Definition 1.3 We say that a compact structure is interpretable in T over A if it is
isomorphic to a compact structure of the form (Y/E,Aut(C/A)�Y/E), where E is a
bounded, A-type-definable equivalence relation on an A-type-definable set Y .

Similarly to the case of profinite structures, it turns out that any compact struc-
ture is interpretable in some first order theory. This fact is a folklore, but I have
never found any published proof of it, so we give a proof below.

Theorem 1.4 Any compact structure (X,G) is interpretable in some first order
countable theory T so that X becomes C/E, where E is a bounded ∅-type-definable
equivalence relation on a monster model C of T .

Proof. Using the Haar measure on G and a given metric on X, it is easy to produce
a new metric d on X which is invariant under the action of G (see [6], the paragraph
before Theorem 3.5).

We are going to consider X as a first order, relational structure. Choose a dense
countable subset A of X. Let A be the set of finite tuples of elements of A. Now,
we define a countable family of relational symbols and their interpretations in X:

• Uq(x, y), q ∈ Q+, and X |= Uq(x, y) iff d(x, y) < q;

• Ra(x), a ∈ A, and Ra(X) = o(a).

We treat X as a model in the language L = {Uq(x, y), Ra : q ∈ Q+, a ∈ A}.
Let T = Th(X) and C be a monster model of T containing X as an elementary
substructure. In fact, the relations Ra will be used only in the proof of Claim 4
below.

We define a ∅-type-definable equivalence relation on C:

E(x, y) ⇐⇒
∧
q∈Q+

Uq(x, y).

To finish the proof, we need to show that E is a bounded, ∅-type-definable equiv-
alence relation on C and (C/E,Aut(C) � C/E) ∼= (X,G). We will prove this in
successive claims.

Claim 1 C/E = {x/E : x ∈ X} and for any distinct x, y ∈ X, we have x/E 6= y/E;
hence E is bounded.

Proof. The second part is obvious. For the first part, suppose for a contradic-
tion that there is a ∈ C such that [a]E ∩ X = ∅. Then, for each x ∈ X, there
is qx ∈ Q+ such that ¬Uqx(x, a). But, since X is compact, finitely many sets
Uqx1 (x1, X), . . . , Uqxn (xn, X) cover X. Hence, the sets Uqx1 (x1,C), . . . , Uqxn (xn,C)
cover C, so Uqxi (xi, a) for some i. This is a contradiction. �

Claim 2 X is homeomorphic to C/E.

Proof. Let π : X → C/E be defined by π(x) = x/E. By Claim 1, π is 1-1 and onto.
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Since both spaces X and C/E are compact and Hausdorff, it is enough to show that
π is continuous. An open basis of the logic topology on C/E consists of the sets
Ub,q = {a/E : [a]E ⊆ Uq(b,C)}, b ∈ X. Then, π−1[Ub,q] = Uq(b,X) is open in X. �

From now on, we identify spaces X and C/E. Then, G and Aut(C)�C/E become
compact subgroups of the group of all homeomorphisms of X.

Claim 3 G is contained in Aut(C)�C/E.

Proof. It is clear, because G consists of automorphisms of the structure X. �

Claim 4 Aut(C)�C/E is contained in G.

Proof. In the following, we use the compactness of X and G, and the continuity
of the action. Suppose for a contradiction that there is f ∈ Aut(C) such that
f �C/E /∈ G. Then, there is a = (a1, . . . , an) ∈ A such that ¬Ra(b1, . . . , bn), where
{bi} = [f(ai)]E ∩X for i = 1, . . . , n. Since Ra(X) is closed, there is q ∈ Q+ such that

X |= (∀x1, . . . , xn)

( ∧
1≤i≤n

Uq(bi, xi)→ ¬Ra(x1, . . . , xn)

)
.

So, the same formula holds in C, but the tuple (f(a1), . . . , f(an)) witnesses that this
is impossible. �

We see that the definition of a profinite structure depends on a distinguished
inverse system. The question arises if we can define profinite structures without
referring to this inverse system. The next result yields a positive answer.

Proposition 1.5 If (X,G) is a compact structure such that X is a profinite space,
then (X,G) is a profinite structure (hence G is a profinite group).

Proof. By Theorem 1.4, there exists a countable theory T and a bounded, ∅-type-
definable equivalence relation E on a monster model C of T such that (X,G) ∼=
(C/E,Aut(C) � C/E). Since C/E ≈ X is 0-dimensional, we get that E is an in-
tersection of countably many finite, ∅-definable equivalence relations Ei, i ∈ ω, [6,
Proposition 2.4]. We see that

(C/E,Aut(C)�C/E) ∼= (lim
←−

C/Ei, Aut(C)� lim
←−

C/Ei),

and, of course, Aut(C) preserves the inverse system C/Ei, i ∈ ω, with the natural
projections. So, (X,G) is a profinite structure. �

Hence, we can define profinite structures as those compact structures (X,G) for
which X is a profinite space. One can also prove it by a purely topological argument
(without referring to first order theories) by using Proposition 1.16. We leave it as
an easy exercise.
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One could ask here whether G being profinite implies that (X,G) is a profinite
structure. Proposition 1.11 below shows that this is not the case. However, we have
the following weaker conclusion.

Proposition 1.6 If (X,G) is a compact structure such that G is a profinite group,
then every orbit under the action of G is profinite.

Proof. Choose any x ∈ Xn. It is an easy exercise to show that the function Φ : G→
o(x) given by Φ(g) = gx is continuous, closed and open.

To prove that o(x) is profinite, we need to show that o(x) has a basis consisting
of clopen sets. Consider any U open in o(x) and y ∈ U . Take any g ∈ Φ−1(y).
Since Φ−1[U ] is open in G and G is profinite, there is a clopen subset V of Φ−1[U ]
containing g. Then, y ∈ Φ[V ] ⊆ U and Φ[V ] is clopen in o(x). So, o(x) has a basis
consisting of clopen sets. �

In model theory, we can freely use names of definable sets, because we can add
imaginary sorts whose elements are classes of definable equivalence relations. We
can make a similar trick for compact structures.

Remark 1.7 Let (X,G) be a compact structure and E be a ∅-definable equivalence
relation on Xn. Then Xn/E is a compact metric space, and G induces a compact
group, denoted by G �Xn/E, of homeomorphisms of Xn/E acting continuously on
Xn/E. So, (Xn/E,G�Xn/E) is a compact structure.

Proof. Since Xn is a compact metric space and E is closed, we easily get that Xn/E
is a compact, Hausdorff, second countable space, so it is a compact metric space. The
rest is an easy exercise which uses the compactness of X and G, and the continuity
of the action of G on X. �

Definition 1.8 Let (X,G) be a compact structure. We define Xeq as the disjoint
union of sets Xn/E with E ranging over ∅-definable equivalence relations on Xn.
The sets Xn/E will be called sorts of Xeq.

By the last remark, each sort of Xeq is a compact structure. Now, elements and
sets of parameters can be taken from Xeq. As in model theory, (Xeq)eq = Xeq,
which means that if E is a ∅-definable equivalence relation on a product of sorts
Xn1/E1 × · · · × Xnk/Ek, then the set of E-classes can be identified with the sort
(Xn1 × · · · ×Xnk)/E ′, where

E ′(x1, . . . , xk; y1, . . . , yk) ⇐⇒ E(x1/E1, . . . , xk/Ek; y1/E1, . . . , yk/Ek).

Definition 1.9 Let V be a definable subset of a compact structure (X,G). We say
that a ∈ Xeq is a name for V if any f ∈ G fixes V as a set iff it fixes a. A name for
V will be denoted by pV q (notice that it is defined up to interdefinability).

Proposition 1.10 Any set definable in a compact structure (X,G) has a name in
Xeq.
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Proof. Suppose V is a-definable for some a ∈ Xeq. On the sort of a, we define an
equivalence relation E by

E(a1, a2) ⇐⇒ [a1 = a2 ∨ (a1, a2) ∈ S(a, a))],

where S = {(f, g) ∈ G×G : f [V ] = g[V ]}. It is easy to check that E is a ∅-definable
equivalence relation and that a/E is a name for V . �

A similar definition of Xeq was given in [12, 14] for profinite structures. By
[12, Lemma 1.3], we know that all sorts of a small profinite structure are profinite
structures. The next proposition shows that in general this is not the case.

Proposition 1.11 If (X,Aut∗(X)) is a non-small profinite structure, then there is
a ∅-definable equivalence relation E on some Cartesian power Xn such that Xn/E is
not profinite; even more, each compact metric space is of the form Xn/E for some
E as above.

Proof. Replacing X by Xn, if necessary, we can assume that O1(∅) is uncountable.
We know that (X,Aut∗(X)) is interpretable as S1(acl

eq(∅)) in some first order theory

T . So, we can identify X with C/
s≡, where C is a monster model of T . Since O1(∅)

is uncountable, S1(∅) is uncountable as well. Let Y be any compact metric space.
By [6, Corollary 2.3], there is a ∅-definable equivalence relation E ′ on C coarser than

the relation of having the same type and such that C/E ′ ≈ Y . Let π : C/
s≡→ C/E ′

be the natural projection. Define an equivalence relation E on X = C/
s≡ by

E(a/
s≡, b/ s≡) ⇐⇒ π(a/

s≡) = π(b/
s≡).

We see that E is ∅-definable in X and X/E ≈ Y . �

If (X,Aut∗(X)) is a profinite structure, it is natural to define Xeq as the disjoint
union of those sorts X/E which are profinite spaces. Then, by Proposition 1.5 and
Remark 1.7, (X/E,Aut(X) � X/E) is a profinite structure. It is obvious that for
such definition of Xeq, we still have (Xeq)eq = Xeq.

Proposition 1.12 Let (X,Aut∗(X)) be a profinite space and E be a ∅-definable
equivalence relation. Then X/E is profinite iff E is an intersection of finite, ∅-
definable equivalence relations.

Proof. (⇐=) is obvious.
(=⇒) Since (X/E,Aut(X)�X/E) is a profinite structure, there is a countable family
{Ei : i ∈ ω} of finite ∅-definable equivalence relations on X/E whose classes form an
open basis. Let π : X → X/E be the quotient map. Then, (π × π)−1[Ei], i ∈ ω, are
finite, ∅-definable equivalence relations on X whose intersection equals E. �

Proposition 1.13 Let (X,Aut∗(X)) be a profinite structure. If E is a ∅-definable
equivalence relation on X finer than lying in the same orbit, then X/E is profinite.

8



Proof. Once again we use the fact that (X,Aut∗(X)) is interpretable as S1(acl
eq(∅))

in some theory T , and hence X can be identified with C/
s≡. Let π : C→ C/

s≡ be the
quotient map, and E ′ = (π×π)−1[E]. It is easy to check that E ′ is a ∅-type-definable

equivalence relation on C finer than ≡ but coarser than
s≡. By [6, Fact 2.5], C/E ′ is

profinite. We are done since X/E ≈ C/E ′. �

Corollary 1.14 Any set definable in a profinite structure (X,Aut∗(X)) has a name
in Xeq.

Proof. We see that the relation E defined in the proof of Proposition 1.10 is finer
than lying in the same orbit. Hence, the assertion follows from Proposition 1.13. �

Corollary 1.15 Let (X,G) be a compact structure. If all orbits on Xn, n ∈ ω, are
profinite, then all orbits on Xeq are profinite as well.

Proof. Consider any [a]E ∈ Xeq (i.e. a ∈ Xn and E is a ∅-definable equivalence
relation). Let F be the intersection of E and the relation of being in the same orbit.
The map f : o(a)/F → o([a]E) given by f([b]F ) = [b]E is a well-defined bijection.
It is easy to see that it is also a homeomorphism. Indeed, since both spaces are
compact, it is enough to show that f is continuous. Take any closed D ⊆ o([a]E).
Then, D′ := {b ∈ Xn : [b]E ∈ D} is closed. So, we get that {b ∈ o(a) : [b]F ∈
f−1[D]} = D′ ∩ o(a) is also closed, and hence f−1[D] is closed.

By assumption and Proposition 1.5, (o(a), G/Go(a)) is a profinite structure. Thus,
by Proposition 1.13, o(a)/F is profinite. We finsih using the fact that f is a homeo-
morphism. �

The next easy, topological observation and its corollary are very important in the
following sections.

Proposition 1.16 Let (X,G) be a compact structure and Z be an A-definable subset
of Xeq for some finite A ⊆ Xeq. Let Y be a clopen subset of Z. Then the setwise
stabilizer of Y in GA is a clopen subgroup of GA, and the set {f [Y ] : f ∈ GA} is
finite. Thus, there exists a finite, A-definable equivalence relation E on Z with open
classes and such that Y is the union of some equivalence classes of E.

Proof. Since GA, and hence GA/GZ , acts continuously on Z, and GA and Z are
compact, the topology on GA/GZ is the compact-open topology. Therefore, as Y is
compact and open in Z, the setwise stabilizer of Y in GA, i.e. the set

GA{Y } := {f ∈ GA : f [Y ] = Y } = {f ∈ GA : f [Y ] ⊆ Y } ∩ {f ∈ GA : f−1[Y ] ⊆ Y },

is an open subgroup of GA. So, by the compactness of GA, we get [GA : GA{Y }] < ω.
Thus, {f [Y ] : f ∈ GA} is finite.

The second part of the proposition is now almost trivial. Namely, the atoms of
the Boolean algebra of subsets of Z generated by {f [Y ] : f ∈ GA} form a partition of
Z into clopen sets which are classes of some finite, A-definable equivalence relation
on Z. Of course, Y is the union of some classes of E. �
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Corollary 1.17 Let (X,G) be a compact structure. Let A,B, a ⊆ Xeq be finite and
such that o(a/AB) is open in o(a/A). Then the set {f [o(a/AB)] : f ∈ GA} is finite.
Thus, there exists a finite, A-definable equivalence relation E on o(a/A) such that
o(a/AB) is the union of some equivalence classes of E.

2 Smallness and the existence of mmm-independent

extensions

As for profinite structures, we say that a compact structure (X,G) is small if for
every natural number n, there are only countably many orbits on Xn. Equivalently,
there are only countably many 1-orbits [n-orbits] over any finite set.

The next remark shows that if we want to consider a class of objects essentially
wider than small profinite structures, we cannot assume smallness.

Remark 2.1 Any small compact structure is a small profinite structure.

Proof. Suppose (X,G) is a small compact structure which is not profinite. Then,
there is a non-trivial connected component Y of X. Choose y ∈ Y . Then, Y is
y-definable and it is the union of countably many orbits over y. By Baire category
theorem, one of these orbits is open in Y , but it is also closed, so it must be equal
to Y . Hence, Y = {y}, a contradiction. �

The following result of Kim (see [2] or [6, Theorem 3.5]) is an immediate corollary
of the last Remark and Proposition 3.1 of [6]. The advantage of the proof given here
in comparison with the one from [6] is that it is a completely elementary topological
argument, which does not use Haar measures and integrals.

Theorem 2.2 In a small theory, the finest bounded, ∅-type-definable equivalence

relation equals
s≡.

Proof. Let
bd≡ denote the finest bounded, ∅-type-definable equivalence relation on a

monster model C of a small theory T . Then, (C/
bd≡, Aut(C)�C/

bd≡) is a small compact

structure. Hence, by Remark 2.1, C/
bd≡ is profinite. Since by [6, Proposition 3.1], the

strong types are the connected components of C/
bd≡, the proof is completed. �

In profinite structures, Newelski defined the following notion of an independence
relation, which plays a similar role to forking independence in stable and simple
theories. Here, we consider this notion in the more general context of compact
structures.

Definition 2.3 Let (X,G) be a compact structure, a be a finite tuple and A,B finite
subsets of Xeq. We say that a is m-independent from B over A (written a

m|̂ AB) if
o(a/AB) is open in o(a/A). We say that a is m-dependent on B over A (written
a
m6̂ | AB) if o(a/AB) is nowhere dense in o(a/A).

10



Of course, if A,B,C are finite subsets of Xeq, then A
m|̂ CB means that a

m|̂ CB,
where a is any tuple consisting of the elements of A.

For small profinite structures, the following was proved by Newelski [13].

Fact 2.4 In a small profinite structure (X,Aut∗(X)), m-independence has the fol-
lowing properties.

(1) (Symmetry) For every finite A,B,C ⊆ Xeq, we have that A
m|̂ CB iff B

m|̂ CA.

(2) (Transitivity) For every finite A ⊆ B ⊆ C ⊆ Xeq and a ⊆ Xeq, we have that
a
m|̂ AC iff a

m|̂ BC and a
m|̂ AB.

(3) a ∈ acl(A) implies a
m|̂ AB for every finite B ⊆ Xeq.

(4) (Extensions) For every finite a,A,B ⊆ Xeq, there is some a′ ∈ o(a/A) with
a′

m|̂ AB.

As in the case of forking independence, from symmetry and transitivity, we get

ab
m|̂ AB ⇐⇒ a

m|̂ AB ∧ b
m|̂ AaB (∗)

for any finite a, b, A,B ⊆ Xeq.
In fact, Properties (1), (2) and (3) are true for all compact structures (without

smallness): (2) and (3) are trivial; (1) follows from the Kuratowski-Ulam theorem
applied to the subset o(ab/C) of the product o(a/C) × o(b/C), where a, b are any
tuples of the elements of A and B. As to Property (4), it may fail without smallness,
e.g. in the additive group of p-adic numbers with the standard structural group or
in the unit circle S1 with the group of all rotations.

Property (4) (at least in the home sort) seems to be a necessary assumption in
order to develop a counterpart of geometric stability theory. Since it will be the main
assumption in the rest of the paper, we introduce the following terminology.

Definition 2.5 A compact e-structure is a compact structure (X,G) satisfying Prop-
erty (4) in the home sort (i.e. only for tuples and subsets of X), and a compact
ei-structure is a compact structure satisfying Property (4) in all imaginary sorts.

We introduce the same terminology for profinite structures as well. It is obvious
that if (X,G) is a profinite structure, then it is a profinite e-structure iff it is a
compact e-structure.

Remark 2.6 If (X,G) is a profinite structure, then it is a profinite ei-structure iff
it is a compact ei-structure.

Proof. Only (→) requires a short explanation. An easy forking calculus using (∗)
reduces the proof to showing that (X,G) satisfies the existence of m-independent
extensions for orbits of finite tuples of elements from X over parameters from Xeq

computed in (X,G) treated as a compact structure. By virtue of Proposition 1.13,
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in order to do that, it is enough to notice that any element b/E, where b ∈ Xn and
E is ∅-definable equivalence relation, is interdefinable with some b′/E ′, where E ′ is
a ∅-definable equivalence relation finer that lying in the same orbit. We finish by
taking b′ := b and defining E ′ as the intersection of E and the relation of being in
the same orbit. �

Remark 2.7 Let (X,G) be any compact structure. If Property (4) holds in X [or,
more generally, in Xeq] when a and B are any singletons from X, then it holds in
general, even for a,B ⊆ Xeq.

Proof. By transitivity and an easy induction, we get that (4) holds when a is a
singleton and B ⊆ X is finite.

Suppose now that A,B ⊆ X are finite [A ⊆ Xeq, when we work in Xeq]. By
induction on n, we will show that for any a = (a1, . . . , an) ∈ Xn, there is a′ ∈ o(a/A)
such that a′

m|̂ AB.
Suppose that the statement holds for (n − 1)-tuples. So, there is a tuple b =

(a′1, . . . , a
′
n−1) ∈ o((a1, . . . , an−1)/A) such that b

m|̂ AB. Choose a′′n ∈ X with
(a′1, . . . , a

′
n−1, a

′′
n) ∈ o(a/A). Once again by the inductive hypothesis, we get an

element a′n ∈ o(a′′n/Ab) such that a′n
m|̂ AbB. So, we are done by (∗).

Now, the fact that Property (4) holds even for a,B ⊆ Xeq easily follows from
Properties (2), (3) and (∗). �

Definition 2.8 We say that an orbit o(a/A) in a compact structure (X,G) is strongly
small if for any finite B ⊆ X, the orbit o(a/A) is a union of countably many orbits
over AB. We say that it is small if the same condition holds but with B ⊆ o(a/A).

Remark 2.9 Each 1-orbit over ∅ is strongly small iff for every natural number n,
each n-orbit over any finite subset of Xeq is [strongly] small iff for every natural
number n, each n-orbit over ∅ is small iff each orbit on any sort of Xeq over any
finite subset of Xeq is [strongly] small.

If one of the above equivalent conditions holds, we say that (X,G) has small
orbits. In the next proposition, we consider a list of stronger and stronger properties
between Property (4) and smallness.

Proposition 2.10 Let us consider the following list of properties of a compact struc-
ture (X,G).

(a) (X,G) is a compact e-structure.

(b) (X,G) is a compact ei-structure.

(c) For every finite A ⊆ X, for every A-definable subset D of X (equivalently, of
Xeq) such that any two elements a, b ∈ D lie in the same orbit over pDq, there
is a ∈ D such that o(a/A) is open in D.

(d) (X,G) has small orbits.

12



(e) For every finite A ⊆ X, for every A-definable subset D of X such that any two
elements a, b ∈ D lie in the same orbit over ∅, there is a ∈ D such that o(a/A)
is open in D.

(f) For every finite A ⊆ X and for every A-definable subset D of X, there is a ∈ D
such that o(a/A) is open in D.

(g) (X,G) is small.

Then (a)⇐= (b) ⇐⇒ (c)⇐= (d) ⇐⇒ (e)⇐= (f) ⇐⇒ (g).

Proof. (a) ⇐= (b) is obvious.
(b) ⇐= (c). Let a,A,B ⊆ Xeq be finite. By Remark 2.7, we can assume that a ∈ X
and B ⊆ X. We can identify the tuple of all elements of A with an element b/E from
some sort Xn/E. Let D = o(a/A). Then, D is b-definable, so it is also Bb-definable.
Moreover, o(a/A) = o(a/ApDq) = o(a/pDq). Hence, by (c), we can find an element
a′ ∈ D such that o(a′/Bb) is open in D. So, o(a′/AB) is open in o(a/A), i.e. a′

m|̂ AB.
(b) =⇒ (c). Let D satisfy the assumptions of (c). We have pDq ∈ dcleq(A). Take
any a ∈ D. By assumption, we have that o(a/pDq) = D. Hence, from (b), it follows
that there is a′ ∈ D such that a′

m|̂ pDqA, i.e. o(a′/A) is open in D.
Notice that in the proof of (b) ⇐= (c), we used (c) for D ⊆ X, whereas in the

proof of (b) =⇒ (c), we got (c) for D ⊆ Xeq. This shows that both versions of (c)
are equivalent.
(c) ⇐= (e) is obvious.
(d) =⇒ (e) follows easily from Baire category theorem.
(d) ⇐= (e) has a similar proof to (f) =⇒ (g) below.
(e) ⇐= (f) is obvious.
(f) ⇐= (g) follows from Baire category theorem.
(f) =⇒ (g). We will show that there are only countably many 1-orbits over any finite
set A. Wlog A = ∅. We construct a descending sequence Xα, α ∈ Ord, of ∅-definable
subsets of X in the following way:

• X0 = X,

• Xα+1 = Xα \
⋃
{o(a) : o(a) is open in Xα},

• Xγ =
⋂
α<γ Xα for γ ∈ Lim.

By (f), we have that if Xα 6= ∅, then Xα+1 is a proper subset of Xα.
If Xα 6= ∅ for all α < ω1, then we get a contradiction with the fact that X is

second countable. Hence, Xα0 = ∅ for some α0 < ω1. Then, X =
⋃
α<α0

Xα \Xα+1.
But, since X is second countable, for every α, the set Xα \Xα+1 is a union of count-
ably many orbits which are open in Xα. So, we get that X is the union of countably
many orbits. �

Later in this section, we give examples of compact and profinite e-structures [ei-
structures] which are not small. In particular, we give examples showing that in
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Proposition 2.10, (a) does not imply (b), and (e) does not imply (f). As to the
implication (c) =⇒ (d), we have not found a counterexample yet.

Before turning to the examples, we study various topological properties of com-
pact e-structures, which are essential in Section 3. By Example 2 below, we know
that there exist compact ei-structures which are not profinite. However, we have

Proposition 2.11 All orbits in a compact e-structure (X,G) are profinite.

Proof. In fact, we claim here that all orbits on Xeq are profinite. But, by Corollary
1.15, it is enough to show that all orbits on Xn, n ∈ ω, are profinite. Let o be any
orbit on Xn over ∅. Put H = G/Go, where Go is the pointwise stabilizer of o. Then,
(o,H) is a homogeneous compact e-structure. So, by Proposition 1.6, it is enough
to show that H is profinite.

Choose a dense subset {ai : i ∈ ω} of o. Since (o,H) is a compact e-structure,
there is a sequence 〈bi〉i∈ω such that o(b0/a0) is open in o and o(bi/a≤i) is open in
o(bi−1/a≤i−1) for every i ≥ 1. Put oi = o(bi/a≤i), i ∈ ω.

Claim 1 The intersection
⋂
i∈ω oi has exactly one element; we will denote it by a.

Proof. That
⋂
i∈ω oi 6= ∅ follows from the compactness of o and the fact that oi’s

form a descending sequence of closed, non-empty sets.
Assume that a, b ∈

⋂
i∈ω oi. Then, there are hi ∈ H, i ∈ ω, such that hia = b

and hi ∈ Ha≤i
. Since H is a compact metric group, there is a subsequence 〈hik〉

converging to some h ∈ H. Then, h ∈
⋂
i∈ωHa≤i

= {id} as {ai : i ∈ ω} is dense.
Thus, since hika = b for all k ∈ ω, we get a = ha = b. �

Now, put Si = {hoi : h ∈ H} and Ni = {h ∈ H : hs = s for every s ∈ Si}.
By Proposition 1.16, we see that Si’s are finite. This together with Proposition 1.16
easily gives us that Ni’s are clopen, normal subgroups of H.

We will be done if we prove the following

Claim 2 The collection of all intersections of finitely many Ni’s forms a basis of
open neighborhoods of id.

Proof. Suppose it is not true. By the compactness of H and the closedness of Ni’s,
we get

⋂
i∈ωNi 6= {id}. So, take any f ∈

⋂
i∈ωNi \ {id}. Then, there is b ∈ o with

fb 6= b. On the other hand, for every i ∈ ω, we can choose hi ∈ H so that b ∈ hioi.
Since hioi ∈ Si and f ∈ Ni, we get fhioi = hioi. So, b and fb belong to hioi, and

thus, h−1i b ∈ oi and h−1i fb ∈ oi.
By the compactness of H, there is a subsequence 〈hik〉 converging to some h ∈ H.

Therefore, by Claim 1, h−1b ∈
⋂
k∈ω oik = {a} and h−1fb ∈

⋂
k∈ω oik = {a}. Thus,

h−1b = a = h−1fb, and so b = fb, a contradiction. �

Proposition 2.12 Every compact e-structure (X,G) satisfies the existence of m-
independent extensions over parameters from X ∪ acleq(∅).
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Proof. Notice that using the same argument as in Remark 2.7, we easily get that
it is enough to consider any orbit o(a/AC), where a ∈ X, A is a finite subset of X
and C a finite subset of acleq(∅), and to show that for any finite B ⊆ X, there is
b ∈ o(a/AC) such that b

m|̂ ACB.
On the one hand, o(a/AC) is open in o(a/A). On the other, by the existence of

m-independent extensions over the real elements, there is a′ ∈ o(a/A) with a′
m|̂ AB,

i.e. o(a′/AB) is open in o(a/A). Moreover, by virtue of Proposition 2.11, o(a/A) is
profinite, and so the compact structure (o(a/A), GA/GAo(a/A)) is a profinite structure
by Proposition 1.5. All these three observations imply that there exists a finite, A-
invariant equivalence relation E on o(a/A) with clopen classes and such that the
following two conditions hold:

[a]E ⊆ o(a/AC), (∗)

o(a′/AB) = [a1]E ∪ · · · ∪ [an]E for some a1, . . . , an ∈ o(a/A). (∗∗)

By the existence of m-independent extensions over the real elements, there is a′′ ∈
o(a′/AB) such that a′′

m|̂ ABa1 . . . an. By (∗∗), a′′ ∈ [ai]E for some i ∈ {1, . . . , n}, and
we get that o(a′′/ABa1 . . . an) is an open subset of [ai]E.

Consider any g ∈ GA mapping ai to a. Then, o(g(a′′)/Ag[B]g(a1) . . . g(an)) =
g[o(a′′/ABa1 . . . an)] is an open subset of [a]E. On the other hand, once again
using the existence of m-independent extensions over the real elements, there is
b ∈ o(g(a′′)/Ag[B]g(a1) . . . g(an)) such that b

m|̂ Ag[B]g(a1)...g(an)B. Thus, we conclude
that o(b/ACBg[B]g(a1) . . . g(an)) is an open open subset of [a]E. So, by (∗), it is an
open subset of o(a/AC), and in particular, b ∈ o(a/AC). Since o(b/ABC) contains
o(b/ACBg[B]g(a1) . . . g(an)), we get b

m|̂ ACB. �

Corollary 2.13 Let (X,G) be a compact e-structure, A and B be finite subsets of
X, and a ∈ Xn. Assume that U 6= ∅ is an open subset of o(a/A). Then there is
b ∈ U with b

m|̂ AB.

Proof. By Propositions 2.11 and 1.5, (o(a/A), GA/GAo(a/A)) is a profinite structure,
and so there is a finite, A-definable equivalence relation E on o(a/A) with [a]E ⊆ U .
On the other hand, it is obvious that (X,GA) is a compact e-structure, and thus by
Proposition 2.12, there is b ∈ o(a/A[a]E) = [a]E with b

m|̂ A[a]EB. Then, b ∈ U and
b
m|̂ AB. �

Following Newelski, we say that a sequence 〈ai : i ∈ ω〉 is a flat Morley sequence
in an orbit o = o(a/A) in a compact structure (X,G) if it is m-independent (i.e.
o(an/Aa<n) is open in o for every n) and dense in o.

The following follows immediately from Corollary 2.13.

Corollary 2.14 A flat Morley sequence exists in every orbit of a real tuple over a
real subset in any compact e-structure.

One more corollary will be useful later.
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Corollary 2.15 In every compact e-structure (X,G), if A ⊆ B are finite subsets of
Xeq and o(a/B) is open in o(a/A), then there is b ∈ acleq(∅) such that o(a/B) =
o(a/Ab) = o(a/Bb).

Proof. By Proposition 2.11 and 1.5, there is a finite, ∅-definable equivalence relation
E on o(a) and a1, . . . , an ∈ o(a/B) such that o(a/B) = o(a/A)∩ ([a1]E ∪ · · · ∪ [an]E)
and for every i, o(a/A) ∩ [ai]E 6= ∅. Now, define b as a name for [a1]E ∪ · · · ∪ [an]E.
It is clear that b satisfies our requirements. �

Now, we turn to examples. Since in the rest of this section we will often consider
products and projections, let us fix some notation. For a product X × Y , let π1 :
X × Y → X and π2 : X × Y → Y denote the projections on the first and on the
second coordinate, respectively. If a ∈ X × Y and A ⊆ X × Y , then a1 := π1(a),
a2 := π2(a), A1 := π1[A] and A2 := π2[A]. Moreover, if X is the inverse limit of a
system indexed by a set I, then for any x = 〈xi〉i∈I ∈ X, xi is of course the i-th
coordinate of x.

A trivial example, showing that (e) does not imply (f) in Proposition 2.10, is any
uncountable compact [profinite] structure with the trivial structural group. A little
bit more complicated (but still rather trivial) examples are the following.

Example 1 Let (X,Aut∗(X)) be any small profinite structure and let Y be an un-
countable profinite space. Consider the profinite structure (X × Y,Aut∗(X)) with
the trivial action of Aut∗(X) on Y and the given action of Aut∗(X) on X. Then
(X × Y,Aut∗(X)) is not small, but it has small orbits. So, (e) does not imply (f).

Example 2 Let (X,Aut∗(X)) be a small profinite structure and Y be a compact
metric space which is not profinite. Consider the compact structure (X×Y,Aut∗(X))
with the trivial action of Aut∗(X) on Y . Then (X × Y,Aut∗(X)) is a compact, non-
profinite (hence non-small) structure which has small orbits.

More generally, it is trivial that if (X,G) and (Y,H) are small [or with small
orbits] compact structures, then so is (X × Y,G × H) with the natural action of
G × H on X × Y . Similarly, if (X,G) and (Y,G) are compact e-structures, so is
(X × Y,G × H). The next remark tells us that the same is also true in imaginary
sorts, but the proof of this fact is less straightforward.

Remark 2.16 If (X,G) and (Y,G) are compact ei-structures, so is (X×Y,G×H).

Proof. By Proposition 2.10, we need to show that for every finite A ⊆ X × Y and
every A-definable subset D of X × Y such that any two elements from D lie in the
same orbit over pDq, there is d ∈ D such that o(d/A) is open in D.

By the choice of D, D1 is an orbit over pDq, so also over pD1q. Since (X,G)
is a compact ei-structure and D1 is A1-definable, there is d1 ∈ D1 such that o1 :=
o(d1/A1) is open in D1.

Put D′ = D∩(o1×Y ). Then, D′ is a clopen subset of D. So, by Proposition 1.16,
pD′q ∈ acleq(pDq). Hence, if we choose any d′2 ∈ D′2 such that (d1, d

′
2) ∈ D′ (the last
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condition holds anyway, because using the A-definability of D′, we get D′ = D′1×D′2),
then D′′ := o(d1, d

′
2/pDqpD

′q) is open in o(d1, d
′
2/pDq) = D. Moreover, we see that

D′ is A-definable, and so is D′′.
We conclude that D′′2 is A2-definable and it is an orbit over pD′′2q. Since (Y,H)

is a compact ei-structure, there is d2 ∈ D′′2 such that o2 := o(d2/A2) is open in D′′2 .
Define d = (d1, d2). Since D′′ ⊆ D′ is A-definable, we get D′′1 = o1. This eas-

ily implies that D′′ = D′′1 × D′′2 , and so d ∈ D′′. On the other hand, o(d/A) =
o(d1/A1) × o(d2/A2) = o1 × o2. Since o1 = D′′1 and o2 is open in D′′2 , we conclude
that o(d/A) is an open subset of D′′. Using the fact that D′′ is open in D, we obtain
the desired conclusion that o(d/A) is open in D. �

Below we describe a general construction which will yield non-trivial examples of
non-small compact e-structures. We will get even more – examples showing that (a)
does not imply (b) in Proposition 2.10.

Construction (∗) We start from two compact structures (X,H) and (Y,G). Equip
the set Cont(X,G) ⊆ GX of all continuous functions from X to G with the compact-
open topology. Let G∗ be a subgroup (with the group structure inherited from the
product group structure on GX) of Cont(X,G) which is a compact subset. Assume
that G∗ ◦H = G∗, i.e. for any g ∈ G∗ and h ∈ H, g ◦ h ∈ G∗.

Notice that by compactness of G∗ and the fact that G∗ is equipped with the
compact-open topology, we get that this is also the pointwise convergence topology.
It is a classical fact that if G and X are compact metric spaces, then Cont(X,G)
with the compact-open topology is metrizable. Thus, G∗ is metrizable.

In several claims, the proofs of which are left as easy exercises, we will explain
how the above assumptions produce a new compact structure (X × Y,H nG∗).

Claim 1 G∗ is a topological group.

We have the natural actions of H and G∗ on X × Y as groups of permutations.
Namely, H acts by h(x, y) = (hx, y) and G∗ by g∗(x, y) = (x, g∗(x)y).

Claim 2 Inside Sym(X×Y ), G∗ is normalized by H. More precisely, for any g∗ ∈ G∗
and h ∈ H, we have h−1g∗h = g∗ ◦ h ∈ G∗.

Of course, H acts on G∗ on the right by g ∗ h := g ◦ h. Claim 2 tells us that this
action coincides with the action by conjugation if we treat H and G∗ as subgroups
of Sym(X × Y ). Since inside Sym(X × Y ) the intersection of H and G∗ is trivial,
H n G∗ can be considered as a subgroup of Sym(X × Y ), and so it acts on X × Y
by (h, g∗)(x, y) = (hx, g∗(x)y). Using Claim 1, one can show

Claim 3 HnG∗ equipped with the product topology is a compact topological group
and it acts continuously on X × Y .

Therefore, we have obtained a new compact structure (X×Y,HnG∗), and Con-
struction (∗) is completed. �
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In fact, the following special case of the above construction will be used to produce
our examples.

Construction (∗′) Let (X,Aut∗(X)) be a profinite structure with a distinguished
inverse system X = {Xi, fji : i ≤ j; i, j ∈ I}, i.e. X is the inverse limit of X and
Aut∗(X) respects X . Let (Y,G) be a compact structure, and let Y = {Yi, gji : i ≤
j; i, j ∈ I} be an inverse system of compact metric spaces such that Y is the inverse
limit of Y and G respects Y .

It is clear that X×Y can be considered as the inverse limit of the system X×Y :=
{Xi × Yi, (fji, gji) : i ≤ j; i, j ∈ I}.

GX acts on X × Y as a group of permutations by g(x, y) = (x, g(x)y). Define G∗

as the subgroup of GX consisting of the elements of GX respecting the inverse system
X × Y . Equip GX with the product topology and G∗ with the inherited topology.

By routine arguments (using the finiteness of Xi’s in Claim 2), we get

Claim 1 G∗ is a compact topological group.

Claim 2 The function Φ : G∗ ×X → G defined by Φ(g∗, x) = g∗(x) is continuous.

By Claims 1 and 2, the topology on G∗ coincides with the compact-open topology
inherited from Cont(X,G). Of course, we also have G∗ ◦ Aut∗(X) = G∗. Therefore,
Construction (∗) yields the compact structure (X × Y,Aut∗(X)nG∗).

We can also getAut∗(X)nG∗ in a little bit different way. Namely, inside Sym(X×
Y ), GX is normalized by Aut∗(X), so we can build Aut∗(X)nGX . Define G(X, Y )
as the subgroup of Aut∗(X)nGX consisting of the permutations from Aut∗(X)nGX

respecting the inverse system X × Y , and equip it with the topology inherited from
Aut∗(X)nGX with the product topology. One can easily check that

G(X, Y ) = Aut∗(X)nG∗.

Let us make a few additional observations. Let Gi(Xi, Yi) be the group of per-
mutations of Xi × Yi induced by G(X, Y ). If we equip Gi(Xi, Yi) with the pointwise
convergence topology coming from the action on Xi×Yi, then the natural map from
G(X, Y ) onto Gi(Xi, Yi) is continuous, so Gi(Xi, Yi) is compact. It is easy to see that
Gi(Xi, Yi) is a compact topological group acting continuously on Xi × Yi. Finally,
G(X, Y ) is the inverse limit of all the groups Gi(Xi, Yi). �

Before we use Construction (∗′) to produce our examples, it is convenient to make
some general observations. In all applications of Construction (∗′), we assume that
I = ω, i.e. the inverse systems are indexed by natural numbers.

Lemma 2.17 Let (X,Aut∗(X)) and (Y,G) be as in Construction (∗′). Suppose
that for some x1, . . . , xn ∈ X we have elements g1, . . . , gn ∈ G such that, whenever
xki = xji , gk and gj induce the same permutation of Yi. Then we can find g∗ ∈ G∗
such that g∗(xj) = gj for j = 1, . . . , n.
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Proof. Extend the set {xj : j ≤ n} to a dense subset D := {xj : j ∈ ω} of X. By an
easy recursion, we extend the given sequence 〈gj〉j≤n to a sequence 〈gj〉j∈ω of elements
of G so that, whenever xki = xji , then gk and gj induce the same permutation of Yi.

Now, we are going to define g∗. Consider any x ∈ X. For every i ∈ ω, choose any
ji such that xi = xjii (such a ji exists because D is dense). Let hi be the permutation
of Yi induced by gji . By the choice of gj’s, hi does not depend on the choice of ji,
and for i1 > i2, the permutation induced by hi1 on Yi2 is exactly hi2 . So, the hi’s
determine some hx ∈ G in the sense that for every i, the permutation induced by hx
on Yi equals hi.

As a result, we obtain a function g∗ ∈ GX defined by g∗(x) = hx. It is obvious
that g∗ ∈ G∗ and g∗(xj) = gj for j = 1, . . . , n. �

Lemma 2.18 Suppose (X,Aut∗(X)) and (Y,G) are as in Construction (∗′). In (iii)
and (iv) below, assume additionally that G induces a finite group of permutations of Yi
for every i ∈ ω (e.g. it is the case if all Yi’s are finite). Consider any (x, y) ∈ X×Y .
Take any finite sets A and B such that A ⊆ {x} × Y and B ⊆ (X \ {x})× Y . Then
we have the following description of orbits in (X × Y,G(X, Y )).

(i) o(x, y) = o(x)× o(y).

(ii) If A 6= ∅, then o(x, y/A) = {x} × o(y/A2).

(iii) o(x, y/B) = o(x/B1)× U , where U is open in o(y).

(iv) If A 6= ∅, then o(x, y/AB) = {x} × U , where U is open in o(y/A2).

(v) If C is any finite subset of X × Y , then o(x, y/C) ⊇ o(x/C1)× o(y/C2).

Proof. (i) The inclusion (⊆) is obvious. For the opposite inclusion, take any x1 ∈ o(x)
and y1 ∈ o(y). Then, there are f ∈ Aut∗(X) and g ∈ G such that f(x) = x1

and g(y) = y1. Let g∗ ∈ GX be the function constantly equal to g. We see that
(f, g∗) ∈ G(X, Y ) and it maps (x, y) to (x1, y1).

(ii) The inclusion (⊆) is obvious. For the opposite inclusion, we argue as in (i).

(iii) Let
S = {g∗ ∈ G∗ : (∀b ∈ B1)(g

∗(b) = id)}.

It is enough to show that {g∗(x)y : g∗ ∈ S} is open in o(y). So, we will be done if
we prove that

P := {g∗(x) : g∗ ∈ S}

is open in G.
Let i be the maximal index for which there is b ∈ B1 such that bi = xi. We shall

show that P is the set of all elements of G inducing the trivial permutation of Yi.
Since G induces a finite group of permutations of Yi, this will complete the proof.

Of course, every element of P induces the trivial permutation of Yi. For the other
direction, take any g ∈ G inducing the trivial permutation of Yi. By Lemma 2.17,
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there is g∗ ∈ S such that g∗(x) = g, and so g ∈ P .

(iv) We argue as in (iii).

(v) We argue as in (i). �

Lemma 2.19 Suppose we have (X,H), (Y,G) and G∗ as in Construction (∗). As-
sume additionally that:

(i) for any (x, y), (x1, y1), . . . , (xn, yn) ∈ X × Y with x different from all xi’s, we
have that {g∗(x)y : g∗(x1)y1 = y1, . . . , g

∗(xn)yn = yn} is open in o(y),

(ii) (X,H) is a compact e-structure,

(iii) for every finite A ⊆ X, acl(A) = A,

(iv) for every y ∈ Y , Gy := {g ∈ G : gy = y} = {id}.

Then (X × Y,H nG∗) obtained in Construction (∗) is a compact e-structure, but it
is not a compact ei-structure whenever G is infinite.

Proof. First, we prove that it is a compact e-structure. So, take any finite subsets
A,B ⊆ X × Y and a ∈ X × Y . We need to find a′ ∈ o(a/A) such that o(a′/AB) is
open in o(a/A).

Case 1 a1 ∈ A1.
Then, by (iv), o(a/A) is a singleton, and so a′ := a works.

Case 2 a1 /∈ A1.
By (ii), there is a′1 ∈ o(a1/A1) such that o(a′1/A1B1) is open in o(a1/A1). By (iii),
we have that a1 /∈ acl(A1), and so a′1 /∈ A1 ∪ B1. Take any a′2 ∈ π2[o(a/A)], and put
a′ := (a′1, a

′
2). Thus, by virtue of (i), we get that o(a′/AB) is open in o(a′1/A1)×o(a2),

which implies that o(a′/AB) is open in o(a/A).
It remains to show that (X×Y,HnG) is not a compact ei-structure whenever G

is infinite. In order to do that, choose any a ∈ X×Y and define D = {a1}×G∗(a1)a2.
Since G is infinite and stabilizers of all singletons in Y are trivial, o(a2) is infinite,
and so, using (i), D is also infinite. We also see that D is definable over a and
all elements in D lie in the same orbit over pDq, whereas all orbits in D over a are
singletons. So, by Proposition 2.10, (X×Y,HnG∗) is not a compact ei-structure. �

We leave it as an easy exercise to check that if we replace Assumption (iii) by
A ( acl(A) for some finite A ⊆ X, then (X×Y,HnG∗) is not a compact e-structure
whenever G is infinite.

Now, we use Construction (∗′) to produce examples. Recall that in all applications
of Construction (∗′), we assume that I = ω.

Example 3 Let (X,Aut∗(X)) be any small profinite structure [or, more generally,
profinite e-structure] such that acl(A) = A for every finite A ⊆ X (e.g. it is the
case when X = {0, 1}ω and Aut∗({0, 1}ω) is the group of all homeomorphisms of X
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preserving the inverse system consisting of all initial subproducts). Let Y = Sω1 be
treated as the inverse limit of Sn1 , n ≥ 1, and G = Zω2 act on Y by 〈gi〉〈yj〉 = 〈zk〉,
where

zk =

{
yk if gk = 0
−yk if gk = 1.

Then (X×Y,G(X, Y )) is a compact e-structure which is not a compact ei-structure,
and, of course, it is not a profinite structure. This shows that Condition (a) in
Proposition 2.10 does not imply (b). Moreover, G(X, Y ) induces finite groups of
permutations on every Xi × Yi.

Proof. It is an easy application of Lemma 2.19 once one uses Lemma 2.18(iii) in
order to prove that Assumption (i) of Lemma 2.19 is satisfied. �

Notice that although the orbits in the structures obtained in the above example
are profinite (which, by Proposition 2.11, is always the case in compact e-structures),
no such structure is isomorphic to a structure obtained by the trivial product con-
struction described in Example 2. Even more, any structure obtained in Example 3 is
not isomorphic to a compact structure of the form (Z1×Z2, K), where Z1 is profinite,
Z2 is compact, and for every k ∈ K, k(z1, z2) ∈ Z1×{z2}. To see this, suppose for a
contradiction that it is isomorphic to such a structure. The connected components of
X×Y are the sets {x}×Y , where x ∈ X, and the connected components of Z1×Z2

are the sets {z1}×C, where z1 ∈ Z1 and C is any connected component of Z2. Since
the structures are isomorphic, the connected components of X×Y are mapped to the
connected components of Z1×Z2, and the induced actions of G(X, Y ) and K on the
corresponding components coincide. However, on each {x}×Y , every orbit under the
action of the setwise stabilizer of {x}×Y in G(X, Y ) is uncountable, whereas on each
{z1}×C, the setwise stabilizer of {z1}×C in K acts trivially. This is a contradiction.

Example 4 Let (X,Aut∗(X)) be any small profinite structure [or, more generally, a
profinite e-structure] such that acl(A) = A for every finite A ⊆ X. Let (Y,Aut∗(Y ))
be a profinite structure with an infinite structural group and trivial stabilizers of all
singletons (it is always the case when (Y,Aut∗(Y )) is an infinite, strongly 1-transitive
profinite structure; e.g. Y is any infinite profinite group, and Aut∗(Y ) = Y acts on
Y by left translations). Then (X × Y,G(X, Y )) is a profinite e-structure, but it is
not a profinite ei-structure. This shows that Condition (a) in Proposition 2.10 does
not imply (b), even in the class of profinite structures.

Proof. The same argument as in Example 3 works here. �

Notice that any structure obtained in Example 4 is not isomorphic to a structure
obtained in Example 1. This is because the structures obtained in Example 4 do not
have small orbits.

Now, we will show that Construction (∗′) preserves the properties that we are
interested in (smallness, having small orbits, being e-structure or ei-structure). In
particular, starting from Examples 3 or 4, and iterating Construction (∗′), we produce
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a class of examples of compact [profinite] e-structures, which are not small.

Proposition 2.20 Let (X,Aut∗(X)) be a profinite and (Y,G) a compact structure.

(i) If (X,Aut∗(X)) and (Y,G) are small, then so is (X × Y,G(X, Y )).

(ii) If (X,Aut∗(X)) and (Y,G) have small orbits, then so has (X × Y,G(X, Y )).

(iii) If (X,Aut∗(X)) and (Y,G) are compact e-structures and G induces a finite
group of permutations of every Yi, then (X × Y,G(X, Y )) is also a compact e-
structure, and G(X, Y ) induces a finite group of permutations of every Xi×Yi.

(iv) If (X,Aut∗(X)) and (Y,G) are compact ei-structures and G induces a finite
group of permutations of every Yi, then (X ×Y,G(X, Y )) is also a compact ei-
structure, and G(X, Y ) induces a finite group of permutations of every Xi×Yi.

Before we start to prove the proposition, notice that if (Y,G) is a profinite struc-
ture, then the extra assumption about G in (iii) and (iv) is automatically satisfied.

Proof. (i) Consider any a ∈ X × Y and any finite A ⊆ X × Y . By Lemma 2.18,
o(a/A) ⊇ o(a/A1) × o(a/A2). Since in (X,Aut∗(X)) there are countably many or-
bits over A1, and in (Y,G) there are countably many orbits over A2, we get that in
(X × Y,G(X, Y )) there are countably many orbits over A.

(ii) Take any 1-orbit o(a) in X × Y and any finite subset A of X × Y . Then,
o(a) = o(a1)× o(a2) and for any a′ ∈ o(a), o(a′/A) ⊇ o(a′1/A1)× o(a′2/A2). To finish
the proof, notice that by assumption, o(a1) and o(a2) are unions of countably many
orbits over A1 and A2, respectively.

(iii) Let A ⊆ B be finite subsets of X×Y and a ∈ X×Y . We need to find a′ ∈ o(a/A)
such that o(a′/B) is open in o(a/A).

Case 1 a1 ∈ A1.
Let C = A ∩ ({a1} × Y )). By Lemma 2.18, o(a/A) = {a1} × U , where U is
open in o(a2/C2). Since (Y,G) is a compact e-structure, by Corollary 2.13, we
can find a′2 ∈ U such that o(a′2/B2) is open in o(a2/C2). Put a′ := (a1, a

′
2). As

o(a′/B) ⊇ {a1} × o(a′2/B2), we get that o(a′/B) is open in o(a/A).

Case 2 a1 /∈ A1.
By Lemma 2.18, o(a/A) = o(a1/A1)× U , where U is an open subset of o(a2). Since
(X,Aut∗(X)) is a compact e-structure, there is a′1 ∈ o(a1/A1) such that o(a′1/B1)
is open in o(a1/A1). As (Y,G) is a compact e-structure, by Corollary 2.13, there
is a′2 ∈ U such that o(a′2/B2) is open in o(a2). Put a′ = (a′1, a

′
2). We see that

a′ ∈ o(a/A). We also have o(a′/B) ⊇ o(a′1/B1) × o(a′2/B2), and the last product is
open in o(a1/A1)× o(a2). Hence, o(a′/B) is open in o(a/A).

(iv) Let D ⊆ X × Y be A-definable for some finite subset A of X × Y , and assume
that D is an orbit over pDq. By Proposition 2.10, it is enough to find a ∈ D with
o(a/A) open in D.
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We see that D1 is an A1-definable subset of X whose elements lie in the same
orbit over pD1q. Since (X,Aut∗(X)) is a compact ei-structure, we can find a1 ∈ D1

such that o(a1/A1) is open in D1.

Case 1 a1 ∈ A1.
Then, D1 is finite. Put E = π2[({a1} × Y ) ∩D]. Then, E is A2-definable and it is
an orbit over its name. Since (Y,G) is a compact ei-structure, there is a2 ∈ E with
o(a2/A2) open in E. Hence, a := (a1, a2) does the job.

Case 2 a1 /∈ A1.
Take any a2 ∈ Y with (a1, a2) ∈ D. Put a = (a1, a2). By Lemma 2.18, o(a/A) =
o(a1/A1) × U , where U is an open subset of o(a2). On the other hand, since all
elements of D lie in the same orbit over ∅, we have D ⊆ D1 × o(a2). As o(a1/A1) is
open in D1 and U is open in o(a2), we see that o(a/A) is open in D. �

We have constructed a class of examples of compact [profinite] e-structures which
are not small. Another problem, which we leave for future considerations, is to find
examples of non-small, compact [profinite] e-groups, which are defined as follows.

Definition 2.21 A compact [profinite] e-group is a compact [profinite] e-structure
(H,G), where H is a compact group and G acts on H by automorphisms. Compact
[profinite] ei-groups are defined analogously.

Let us only make here a few comments and observations about groups. There
are some results [12, 16, 7] which describe the structure of small profinite groups
and rings, and which significantly restrict the class of possible examples of small
profinite groups (recall that all known examples of small profinite groups are some
variants of abelian profinite groups of finite exponent [3, 4]). Most of these results
are based on various chain conditions proved in Section 2 of [12], and on the fact that
small profinite groups are locally finite [12, Proposition 2.4]. For compact [profinite]
ei-groups, these results are false, because, for example, any infinite compact metric
group considered with the trivial structural group is always a compact ei-group.
More generally, Examples 1 and 2 as well as the comments immediately after them
(including Remark 2.16) work for compact [profinite] groups. In particular, we see
that a compact ei-group is not necessarily locally finite, even if the structural group
is infinite. But, of course, it would be interesting to find more complicated examples.

It is pretty clear that any topologically finitely generated, compact metric group
with an infinite structural group is not a compact e-group. Indeed, if a1, . . . , an
are topological generators, then o(ai) must be infinite for at least one i = 1, . . . , n,
whereas all orbits over {a1, . . . , an} are trivial.

However, we do not know whether the free profinite group on ω-many generators
(symbolically F̂ω) with some natural, infinite (standard) structural group is a profi-
nite e-group. Of course, we know that it is not small since it is not locally finite. We
can show even more.

Remark 2.22 Let (F̂ω, G) be a profinite group for which G contains all inner au-

tomorphisms of F̂ω (it is always the case when G is the standard structural group
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with respect to any distinguished inverse system). Then (F̂ω, G) is not a profinite
ei-group.

Proof. Let ei, i ∈ ω, be the set of free generators of F̂ω. Let F < F̂ω be the closure
of 〈e0, e1〉. Then, F ∼= F̂2. For a ∈ F̂ω, let fa ∈ G be defined by fa(x) = a−1xa.
Since F2 is residually finite, we get fen0 (e1) 6= e for every n ≥ 1. We also have

fen0 [F ] = 〈e0, e−n0 e1en0 〉 = F . So, we conclude that o(e1/pFq) is infinite. On the
other hand, for any a ∈ F , o(a/e0, e1) = {a}. Thus, o(e1/pFq) does not have an
m-independent extension over {e0, e1}. �

The above proof gives us the following general remark about compact ei-groups.
However, we do not know if this remark holds for compact e-groups.

Remark 2.23 If (H,G) is a compact ei-group, then for every topologically finitely
generated, closed F < H, GpFq induces a finite group of automorphisms of F . Simi-
larly, if (X,G) is a compact ei-structure and A ⊆ X is finite, then Gpdcl(A)q induces
a finite group of homeomorphisms of dcl(A).

Notice that any compact structure with finite orbits is a compact ei-structure.
Below we give an example of a profinite ei-structure with this property and with
infinite structural group. It would be also interesting to find a compact ei-group
with infinite structural group and with finite orbits.

Example 5 Let X = Zω2 and Aut∗(X) = Zω2 , where the action of Aut∗(X) on X is
defined by

f(η) =



η + (0, f(0), f(0), f(0), f(0), . . . ) if η(0) = 0,
η + (0, 0, f(0), f(1), f(0), f(1), . . . ) if η(0) = 1, η(1) = 0,
η + (0, 0, 0, f(0), f(1), f(2), f(0), f(1), f(2), . . . ) if η(0) = 1, η(1) = 1, η(2) = 0,
...

...
η if η ≡ 1.

It is easy to check that (X,Aut∗(X)) is a profinite structure with finite orbits,
and, of course, Aut∗(X) is infinite.

3 Model theory of compact eee-structures

3.1 Newelski’s results in a wider context

In this section, we explain why most of the results (including the group configuration
theorem) proved by Newelski for small profinite structures hold in the more general
context of compact [profinite] e-structures (in some cases, we need to work in a
compact ei-structure). In many cases, instead of repeating the proofs, we will briefly
explain why they work, referring the reader to Newelski’s papers for details.
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Essentially, in the model theory of small profinite structures, one uses the follow-
ing consequences of smallness of a profinite structure (X,Aut∗(X)):

(a) the existence of m-independent extensions in the home sort,

(b) the existence of m-independent extensions over parameters from X ∪ acleq(∅),

(c) the existence of m-independent extensions in imaginary sorts,

(d) the existence of open orbits in definable sets.

Of course, any result about small profinite structures whose proof uses only Con-
sequences (a) or (b) [or (c)] holds for any profinite e-structure [ei-structure]. If a
proof uses (d), we cannot automatically generalize it to the case of profinite ei-
structures. Moreover, Propositions 1.16, 2.11, 2.12 and Corollary 1.17 enable us to
pass, in many cases, from a profinite to a compact situation.

The following theorem is a generalization of [10, Theorem 1.5].

Theorem 3.1 Let (X,G) be any compact structure. Let I be a ternary relation
defined on finite tuples from Xeq, invariant under G and satisfying Properties (1),
(2), (3) and (4) listed in Fact 2.4. Then

m|̂ implies I. Similarly, if all orbits are
profinite (e.g. (X,G) is a compact e-structure) and I is a ternary relation defined
on finite tuples from X ∪ acleq(∅), invariant under G and satisfying Properties (1),
(2), (3) and (4) listed in Fact 2.4, then

m|̂ implies I.

Proof. Suppose for a contradiction that a
m|̂ Cb, but ¬aICb for some finite a, b, C ⊆

Xeq. Then, o(a/Cb) is open in o(a/C). By Corollary 1.17, we get that d :=
po(a/Cb)q ∈ acleq(C).

Let us prove now that ¬aICdb. Otherwise, by (1), we get bICda. By (3), we have
dICa. So, by (1) and (2), we get bdICa, hence aICbd, and finally aICb, a contradiction.

Since d is a name for o(a/Cb), we have that o(a/Cd) = o(a/Cdb). Take any
a′ ∈ o(a/Cd). Then, a′ ∈ o(a/Cdb). Since I is invariant under G, we get ¬a′ICdb;
this contradicts Property (4) for I.

The second part of the theorem can be proved similarly. Namely, suppose for
a contradiction that a

m|̂ Cb, but ¬aICb for some finite a, b, C ⊆ X ∪ acleq(∅). The
proof of Corollary 2.15 yields d ∈ acleq(∅) such that o(a/Cb) = o(a/Cbd) = o(a/Cd).
Then, we proceed as in the first part to get a contradiction. �

From now on, assume that (X,G)(X,G)(X,G) is a compact eee-structure. Notice that
by Proposition 2.12, we can freely work in X ∪ acleq(∅). Sometimes, e.g. working
essentially in Xeq, we assume that (X,G) is a compact ei-structure.

We can measure the size of orbits in X (or Xeq) by means of M-rank defined as
follows.

Definition 3.2 The rankM is the unique function from the collection of orbits over
finite sets to the ordinals together with ∞, satisfying

M(a/A) ≥ α + 1 iff there is a finite set B ⊇ A such that
o(a/B) is nowhere dense in o(a/A) and M(a/B) ≥ α.
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The following results follow from a standard forking calculation (e.g. see [15, Lemma
5.1.4 and Theorem 5.1.6].

Proposition 3.3 Let a, b, A be finite tuples (subsets) of X ∪ acleq(∅) [or of Xeq, if
(X,G) is a compact ei-structure].

1. If a
m|̂ Ab, then M(a/Ab) =M(a/A). The converse holds whenever M(a/A) <

∞.

2. M(a/bA) +M(b/A) ≤M(ab/A) ≤M(a/bA)⊕M(b/A).

3. Suppose M(a/Ab) < ∞ and M(a/A) ≥ M(a/Ab) ⊕ α. Then M(b/A) ≥
M(b/Aa) + α.

4. Suppose M(a/Ab) < ∞ and M(a/A) ≥ M(a/Ab) + ωαn. Then M(b/A) ≥
M(b/Aa) + ωαn.

5. If a
m|̂ Ab, then M(ab/A) =M(a/bA)⊕M(b/A).

As in stable or simple theories, the (in)equalities in (2)-(5) are called Lascar
(in)equalities.

Remark 3.4 Let a,A ⊆ X be finite. Then the M-rank of o(a/A) computed in X
is the same as the M-rank of o(a/A) computed in X ∪ acleq(∅). Moreover, if (X,G)
is a compact ei-structure, then the M-rank of o(a/A) computed in X is the same as
the M-rank of o(a/A) computed in Xeq.

Definition 3.5 (X,G) is m-stable if every 1-orbit has an ordinal M-rank.

Equivalently, there is no infinite sequence A1 ⊆ A2 ⊆ . . . of finite subsets of X and
a ∈ X such that o(a/Ai+1) is nowhere dense in o(a/Ai) for every i.

By Lascar inequalities we easily get

Remark 3.6 (X,G) is m-stable iff each n-orbit has an ordinal M-rank (iff each
orbit in Xeq has an ordinalM-rank, assuming that (X,G) is a compact ei-structure).

Following the lines of the proof of [13, Lemma 2.6] and using Proposition 1.16 in
the appropriate places, one gets

Proposition 3.7 Assume that (X,G) is m-stable and a,A ⊆ X∪acleq(∅) [or a,A ⊆
Xeq, if (X,G) is a compact ei-structure]. Then o(a/A) is invariant over finitely many
parameters from o(a/A) which can be chosen m-independent from a given set B over
A.
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Let us recall that the proof of [13, Lemma 2.6] is by induction on po(a/A)q. In
our context, even without the existence of m-independent extensions over imaginary
sorts, we can also make such an induction, because m-stability implies that for every
d ∈ Xeq, M(d) < ∞, where M is computed while working only over parameters
from X.

Let us add that, elaborating the proof of the above proposition and applying
Corollary 2.13, the parameters from o(a/A) can be chosen to be m-independent over
A.

The next definition (see [14]) is in the same spirit as the above result; in fact, it
is a counterpart of the notion of 1-basedness in geometric stability theory. However,
in compact structures we have to formulate it in a slightly different way than in [14]
(both definitions coincide in profinite structures).

Definition 3.8 (X,G) is m-normal if for every finite a,A ⊆ X, there is U 3 a
clopen in o(a/A) and with finitely many conjugates under Ga.

Notice that by Proposition 1.16, in the above definition we can replace U by any
clopen subset of U containing a. Hence, by Propositions 2.11 and 1.5, we can take
U = o(a/A) ∩ [a]E, where E is a finite, ∅-definable equivalence relation on o(a) with
clopen classes.

The next two results are more or less Theorem 2.3 of [13]. However, we will prove
them in our context to illustrate how Proposition 1.16 works.

Remark 3.9 (X,G) is m-normal iff for every finite a,A ⊆ X ∪ acleq(∅), there is
U 3 a clopen in o(a/A) and with finitely many conjugates under Ga. Moreover,
if (X,G) is a compact ei-structure, then (X,G) is m-normal iff for every finite
a,A ⊆ Xeq, there is U 3 a clopen in o(a/A) and with finitely many conjugates under
Ga.

Proof. (⇐=) is obvious.
(=⇒). Let us prove the ’moreover’ part (the proof applies also in the first part).
Take any a,A ∈ Xeq. Then, A = A0/F , where A0 is a finite tuple from X and F
is a ∅-definable equivalence relation. Wlog A0

m|̂ Aa, hence a
m|̂ AA0. This means that

o(a/A0) is clopen in o(a/A). Hence, wlog A = A0.
Now, a = a0/E for some finite tuple a0 from X and a ∅-definable equivalence

relation E. Wlog
(∗) a0

m|̂ aA.

Since (X,G) is m-normal, we can find a set V 3 a0 clopen in o(a0/A) and with
finitely many conjugates under Ga0 .

Let b = pV q. Then, b ∈ acleq(a0). On the other hand, by Proposition 1.16,
b ∈ acleq(A). This together with (∗) gives us

(∗∗) b ∈ acleq(a).
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As we noticed right below Definition 3.8, by Proposition 1.16, we can assume that V
is the equivalence class [a0]E0 of some finite A-definable equivalence relation E0 on
o(a0/A).

Let T : X → X/E be the quotient map.

Claim T [V ] is a clopen subset of o(a/A).

Proof. GAb acts transitively on V , so it acts transitively on T [V ]. On the other hand,
since o(a0/A) is covered by finitely many translates of V by elements of GA, o(a/A)
is also covered by the translates of T [V ] by these same elements of GA. Hence, T [V ]
has a non-empty interior in o(a/A), so it is open by the first line of the proof. The
fact that T [V ] is closed follows from continuity of T and compactness of X. �

The Claim tells us that T [V ] is a clopen neighborhood of a inside o(a/A). By
(∗∗), we get that T [V ] has finitely many conjugates under Ga. �

The next result shows that m-normality corresponds to the notion of 1-basedness.

Proposition 3.10 (X,G) is m-normal iff for all finite a, b ⊆ X [or a, b ⊆ Xeq, if
(X,G) is a compact ei-structure], there exists c ∈ acleq(a) ∩ acleq(b) with a

m|̂ cb.

Proof. (=⇒) Take any finite a, b. Then, we can find a set U 3 a clopen in o(a/b) and
with finitely many conjugates under Ga. Let a+ = pUq. By Proposition 1.16, we get
a+ ∈ acleq(a)∩acleq(b). But, we can assume that U = [a]E for some finite, b-definable
equivalence relation E on o(a/b). Hence, we see that U = o(a/a+b) = o(a/a+), so
a
m|̂

a+b.
(⇐=) Take any finite a and A. By assumption, there is c ∈ acleq(a) ∩ acleq(A) such
that a

m|̂ cA. So, o(a/Ac) is clopen in both o(a/c) and o(a/A). Put U = o(a/Ac).
Then, U is a clopen neighborhood of a in o(a/A). By Proposition 1.16, it has finitely
many conjugates under Gc. Since c ∈ acleq(a), U has finitely many conjugates over
a. �

The next remark (see [14, Remark 1.4]) follows from Proposition 2.11.

Remark 3.11 For any finite A ⊆ Xeq, acleq(A) = dcleq(A ∪ acleq(∅)).

Proof. (⊇) is obvious.
(⊆). Take [a]E ∈ acleq(A). By Proposition 2.11, Y := o([a]E) is profinite. On the
other hand, we know that o([a]E/A) = {[a1]E, . . . , [an]E} is finite. So, by Remark 1.7
and Proposition 1.5, there is a finite, ∅-definable equivalence relation R on Y such
that the [ai]E’s lie in different classes modulo R; denote these classes by c1, . . . , cn.
Then, [a]E ∈ dcleq(Ac1 . . . cn) and c1, . . . , cn ∈ acleq(∅). �

So far, we have discussed some basic results of Newelski which can be generalized
to compact e-structures. Now, we turn to some deeper results.

Lemma 3.1 of [14] is true for compact ei-structures. Namely, we have
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Proposition 3.12 Let (X,G) be a compact ei-structure and o be an orbit over ∅.
Then acleq(a) ∩ o is finite for every a ∈ o.

The proof of Lemma 3.1 of [14] works here, except for one step that will be
explained now. As in [14], we define Ya as the topological closure of acleq(a) ∩ o,
and, using Proposition 2.11, we prove that Ya = Yb for b ∈ Ya. This means that Ya
is a-definable and any two elements of Ya lie in the same orbit over pYaq. Hence,
by Proposition 2.10, there is an orbit over a which is open in Ya. This orbit meets
acleq(a) ∩ o, so it is finite. Hence, there is an element b ∈ Ya which is isolated in Ya.
Since Ya is an orbit over pYaq, all points in Ya are isolated, and hence Ya is finite.

Examples 3 and 4 show that the above result is not true for compact [profinite]
e-structures. Indeed, by Lemma 2.18(i), in both these examples o(x, y) = o(x)×o(y)
for any (x, y) ∈ X×Y . We also have that o(y) is infinite. Hence, o(x, y)∩ ({x}×Y )
is infinite. On the other hand, {x}×Y ⊆ dcl(x, y). So, we see that acl(x, y)∩o(x, y)
is infinite.

Recall that A = {a, b, c} is a dcl-triangle in (X,G) if for every x ∈ A, we have
x ∈ dcl(A\{x})\acl(∅), and every two elements of A are m-independent. Replacing
dcl by acl, we get the definition of an acl-triangle.

Having the last two results and using Proposition 1.16 and 2.11 in the appropriate
places, we can repeat the proof of Theorem 3.3 of [14]. So, we have the following
group configuration theorem for compact ei-structures.

Theorem 3.13 Assume {a, b, c} is an acl-triangle in an m-normal compact ei-
structure (X,G). Then there is a group H, which is open in o(a), a is the neutral
element of H, and H is definable over a and finitely many parameters from acleq(∅).

If we want to have such a theorem in the wider class of compact [profinite] e-
structures, we have to formulate it in a slightly weaker form. The reason is that in
this situation we do not have Proposition 3.12.

Definition 3.14 A compact structure (Y,H) is interpretable in (X,G) over a finite
subset A of X if there is a closed subgroup H∗ of H and A-definable subset Z of Xeq

such that (Y,H∗) is isomorphic to (Z,GA/GZ).

Theorem 3.15 Assume {a, b, c} is an acl-triangle in an m-normal compact e-structure
(X,G). Then there is a compact group (H,K) interpretable in (X,G) over finitely
many parameters from acleq(∅).

To prove this theorem, it is enough to apply Newelski’s proof of [14, Theorem
3.3], using in the appropriate places Propositions 1.16, 2.11, 2.12 and the results
discussed before Theorem 3.13 in this section. The group H obtained in Newelski’s
proof together with K defined as the group of automorphisms of H induced by the
pointwise stabilizer in G of finitely many parameters from acleq(∅) over which H is
defined do the job.
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One of the main open problems about small profinite structures is the so-called
M-gap conjecture saying that for every orbit o, M(o) ∈ ω ∪ {∞}. This conjecture
has been proved by Newelski for small, m-normal profinite structures [9, Theorem
1.4], and by Wagner for small, m-stable profinite groups [16, Theorem 18]. Below we
prove it in the context of m-normal compact ei-structures. We give a proof because
the proof of [9, Theorem 1.4] uses Consequence (d) of smallness formulated at the
beginning of Section 3. In fact, we simplify the proof of [9, Theorem 1.4] a bit,
eliminating the application of m-normality from the final part of this proof. Notice,
however, that the final part of our proof does not work for compact e-structures.

Theorem 3.16 Assume (X,G) is an m-normal compact ei-structure. Then there is
no orbit o on Xeq such that ω ≤M(o) <∞.

Proof. Suppose for a contradiction that such an orbit exists. Then,M(a/A) = ω for
some a ∈ Xeq and finite A ⊆ Xeq. Wlog A = ∅.

Consider a relation ∼ on o(a) defined by

a1 ∼ a2 ⇐⇒ a1
m6̂ | a2.

Claim 1 ∼ is an ∅-invariant equivalence relation.

Proof. We just repeat the proof of (a) from the proof of [9, Theorem 1.4]. Only
transitivity requires an explanation. Assume a1 ∼ a2 ∼ a3, i.e. a1

m6̂ | a2 and a2
m6̂ | a3.

By Lascar inequalities, we get

M(a3/a1) ≤M(a2a3/a1) ≤M(a3/a2a1)⊕M(a2/a1) ≤M(a3/a2)⊕M(a2/a1) < ω.

But M(a3) = ω. Therefore, a3
m6̂ | a1, i.e. a1 ∼ a3. �

Claim 2 ∼ is ∅-definable, and thus [a]∼ is closed.

Proof. Consider any a1, a2 ∈ o(a) with a1 � a2. Then, a1
m|̂ a2. So, by the

Kuratowski-Ulam theorem, V := o(a1a2) is open in o(a) × o(a). Also, for any
(b1, b2) ∈ V , b1 � b2. Thus, ∼ is a closed subset of o(a)× o(a).

The fact that [a]∼ is closed can be also seen without the Kuratowski-Ulam theo-
rem. Namely, suppose b ∈ [a]∼ \ [a]∼. Then, b

m|̂ a, so o(b/a) is open in o(b) = o(a).
Hence, o(b/a) ∩ [a]∼ 6= ∅. But for c ∈ o(b/a) ∩ [a]∼, we get c

m|̂ a and c
m6̂ | a, a contra-

diction. �

Claim 3 For any n ∈ ω, there is b ∈ [a]∼ such that M(b/a) > n.

Proof. This time, we repeat the proof of (d) from the proof of [9, Theorem 1.4].
Choose a finite set B such that a

m6̂ | B and M(a/B) > n. Lemma 1.3 of [9] goes
through for compact e-structures (this is the only place where m-normality is used),
so there is c ∈ o(a) such that a

m|̂ cB and a
m|̂ Bc. It follows thatM(a/c) =M(a/B) <

ω, so a ∼ c. Applying an authomorphim mapping c to a, we do not change [a]∼, and
so a is mapped to some b ∈ [a]∼ such that M(b/a) > n. �
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Now, we will show that there is a bound on M(b/a) for b ∈ [a]∼, which gives a
contradiction with Claim 3. Take any b ∈ [a]∼. Then, M(b/a) ≤ M(b/[a]∼). Since
[a]∼ is a definable set which is an orbit over its name, M(b/[a]∼) =M(a/[a]∼) < ω
(if the last inequality was false, then taking c ∈ [a]∼ with c

m|̂ [a]∼a, we would get that
M(c/a) = ω, a contradiction). So, M(b/a) is bounded by M(a/[a]∼) < ω. �

In [10, 11, 13, 14], Newelski considered acl-pregeometry on an orbit ofM-rank 1.
To have some good properties (e.g. homogeneity) of this pregeometry, one needs to
localize it at a flat Morley sequence. Since by Corollary 2.14 flat Morley sequences
exist in every compact e-structure, we can also localize acl at flat Morley sequences
in this context and easily check the basic properties of such pregeometries. Newelski
introduced the notion of a full [weak] coordinatization and he proved [13, Theorem
3.3] that a small profinite structure of finiteM-rank is m-normal iff it has full [weak]
coordinatization and each orbit ofM-rank 1 is locally modular. Analyzing Newelski’s
proof and modifying it appropriately, we can conclude that this equivalence is also
true for compact ei-structures (in the proof, we use Theorem 3.16). It is not clear
if this also holds for compact e-structures, because in some places in [13] forking
calculus over non-algebraic imaginary elements was used. Anyway, as in [14], we
get the following corollary of Theorem 3.13, which is another form of the group
configuration theorem.

Corollary 3.17 If (X,G) is a compact ei-structure with a non-trivial locally modu-
lar orbit o of M-rank 1, then some open subset o′ of o is a definable group.

3.2 Regular orbits, domination and weight

In this subsection, we study counterparts of some model theoretic notions (which
have not been considered yet, even in the context of small profinite structures) in
our general context of compact e-structures. The main result of this subsection is
Theorem 3.24 saying that each orbit in an m-stable compact e-structure is equidom-
inant with a product of finitely many m-regular orbits.

From now on, (X,G)(X,G)(X,G) is an mmm-stable compact eee-structure. Assuming that
(X,G) is a compact ei-structure, everywhere below one can work in Xeq.

The general scheme is the same as in Sections 5.1 and 5.2 of [15]. However,
caution has to be taken, because we do not have stationary (Lascar strong) types,
independence theorem and canonical bases. It turns out that Proposition 3.7 will
allow us to omit all such obstacles.

Recall that two orbits o(a/A) and o(b/B) are said to be m-orthogonal over a set
C containing A ∪B if for any a′ ∈ o(a/A) and b′ ∈ o(b/B) with a′

m|̂ AC and b′
m|̂ BC

we have a′
m|̂ Cb′. These orbits are said to be m-orthogonal if they are m-orthogonal

over every finite set containing A ∪ B. As in stable theories, we say that o(a/A) is
m-regular if it is m-orthogonal to all its m-dependent extensions.

It turns out that, as in stable theories, m-regular orbits are exactly the orbits on
which m-dependence induces a pregeometry. More precisely, let o(a/A) be any orbit.
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For a finite B ⊆ o(a/A), define cl(B) := {b ∈ o(a/A) : b
m6̂ | AB}; if B is infinite, put

cl(B) =
⋃
{cl(B0) : B0 is a finite subset of B}.

Proposition 3.18 Assume that a /∈ acleq(A). Then the orbit o(a/A) is m-regular
iff (o(a/A), cl) is a pregeometry.

Proof. (=⇒) Only cl(cl(B)) = cl(B) requires a proof; this can be shown by an easy
forking calculus (exactly as in stable theories), without using m-stability.
(⇐=) This is the place where Proposition 3.7 (and hence m-stability) plays an im-
portant role. Suppose for a contradiction that o(a/A) is not m-regular, i.e. there are
a, b ∈ o(a/A) and C ⊇ A with a

m|̂ AC, b
m6̂ | AC and a

m6̂ | Cb.
By Proposition 3.7, we can find a finite sequence I ⊆ o(ab/C) over which o(ab/C)

is invariant and with I
m|̂ Cab. Hence, o(ab/IC) is open in o(ab/C) and o(ab/I) ⊆

o(ab/C). So, ab
m|̂ IC.

A simple forking calculus yields: a
m|̂ AI, b

m6̂ | AI and a
m6̂ | IAb. This means that

a /∈ cl(I), b ∈ cl(I) and a ∈ cl(Ib), a contradiction. �

The above proposition is also true for m-normal compact e-structures. The proof
is similar to the above one, except that instead of Proposition 3.7 we use the fact that
for each orbit o(a/A) in any m-normal compact e-structure, we can find b ∈ acleq(∅)
such that o(a/Ab) is invariant over ab. To prove the last fact, apply the proof of [9,
Remark 0.2] using Proposition 2.11.

The proof of [15, Proposition 5.1.11] works in our context, and so we get

Proposition 3.19 Each non-algebraic orbit is not m-orthogonal to an m-regular
orbit (of an element from X).

Definition 3.20 The weight, denoted by w, is the unique function from the collec-
tion of all orbits over finite sets to ω ∪ {∞} such that for every n ∈ ω, we have
w(o(a/A)) ≥ n iff there is a finite set A′ ⊇ A, a′ ∈ o(a/A) with a′

m|̂ AA′, and a se-
quence 〈a0, . . . , an−1〉 m-independent over A′ and satisfying a′

m6̂ | A′ai for every i < n.

An easy forking calculation shows that every orbit in any m-stable compact e-
structure has finite weight (a precise finite bound for the weight of an orbit is provided
by [15, Theorem 5.2.5] whose proof works in our context). The following properties
of weight can be proved as in stable or simple theories [15].

Proposition 3.21 1. If a
m|̂ AB, then w(a/A) = w(a/B).

2. w(ab/A) ≤ w(a/A) + w(b/Aa).

3. If a
m|̂ Ab, then w(ab/A) = w(a/A) + w(b/A).

The next proposition is a counterpart of a well-known result for stable theo-
ries, but to prove it, we use Proposition 3.7 instead of canonical bases and Morley
sequences.

32



Proposition 3.22 Each m-regular orbit o(a/A) has weight 1.

Proof. Suppose for a contradiction that there are A′ ⊇ A, a′ ∈ o(a/A) with a′
m|̂ AA′,

and elements b, c with b
m|̂ A′c, a′

m6̂ | A′b and a′
m6̂ | A′c. By Proposition 3.7, we can find

a finite sequence 〈bi : i ≤ n〉 ⊆ o(a′/A′b) which is m-independent from c over A′b,
and over which o(a′/A′b) is invariant. So, there is k ≤ n such that a′

m|̂ A′b<k and
a′

m6̂ | A′b<k
bk. The rest of the proof is the same as in the proof of Lemma 5.2.11(1) in

[15]. By m-regularity of o(a′/A′) = o(bk/A
′), we have bk

m|̂ A′b<k. Since c
m|̂ A′b≤k, we

get bk
m|̂ A′cb<k. By m-regularity of o(bk/A

′) = o(a′/A′), we obtain bk
m|̂ A′cb<k

a′; this
yields bk

m|̂ A′a′cb<k, a contradiction. �

We define the notions of domination exactly as in [15, Definition 5.2.6]. a and b
below are elements (or finite tuples) and C is a finite set containing sets A and B.

Definition 3.23 1. We say that a dominates b over A, written amA b, if b
m|̂ Ac for

all c
m|̂ Aa. a and b are equidominant over A, denoted a

.
=A b, if amA b and bmA a.

2. We say that o(a/A) is more dominant than o(b/B) over C, in symbols o(a/A)mC

o(b/B), if there are a′ ∈ o(a/A) and b′ ∈ o(b/B) such that a′
m|̂ AC, b′

m|̂ BC and
a′ mC b

′. o(a/A) is more dominant than o(b/B), written o(a/A) m0 o(b/B), means
that o(a/A)mC o(b/B) for some C.

3. We say that o(a/A) is equidominant with o(b/B) over C, in symbols o(a/A)
.
=C

o(b/B), if there are a′ ∈ o(a/A) and b′ ∈ o(b/B) such that a′
m|̂ AC, b′

m|̂ BC and
a′

.
=C b′. Finally, o(a/A) and o(b/B) are equidominant, written o(a/A)

.
=0 o(b/B),

if o(a/A)
.
=C o(b/B) for some C.

Equidominanation over a fixed set is an equivalence relation on elements, whereas
equidomination may not be an equivalence relation on orbits (it is easy to find
an example of an infinite orbit with two m-independent extensions which are m-
orthogonal).

We have all the basic properties of domination, e.g.: if w(o1) = 1 and o1 is not
m-orthogonal to o2 over a set A (containing the domains of o1 and o2), then o2mA o1.
If additionally w(o2) = 1, we get o2

.
=A o1. In particular, by Proposition 3.22, if an

m-regular orbit is not m-orthogonal over A to an orbit of weight 1, then these orbits
are equidominant over A (which together with Proposition 3.19 is used in the proof
of the next theorem).

Having all these results, we can repeat the proof of Theorem 5.2.18 of [15] to get
the main theorem of this subsection.

Theorem 3.24 Each orbit in an m-stable compact e-structure is equidominant with
a product of finitely many m-regular (hence of weight 1) orbits.
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