Geometric derivation of quantum uncertainty
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Quantum observables can be identified with vector fields on the sphere of normalized states.
Consequently, the uncertainty relations for quantum observables become geometric statements. In
the Letter the familiar uncertainty relation follows from the following stronger statement: Of all
parallelograms with given sides the rectangle has the largest area.
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Quantum observables can be identified with vector
fields on the space of states. Namely, given a self-adjoint
operator A on a Hilbert space Lo of square-integrable
functions one can introduce the associated linear vector
field A, on Ly by

A, = —iAp. (1)

This field is defined on a dense subset D in Ly on which
the operator A itself is defined. Clearly, to know the vec-
tor field A, is the same as to know the operator A itself.
Moreover, the commutator of observables and the com-
mutator (Lie bracket) of the corresponding vector fields
are related in a simple way:

[Ag, B, = [4, Blp. (2)

The field A, associated with an observable, being re-
stricted to the sphere S%2 of unit normalized states, is
tangent to the sphere. Indeed, the equation for the inte-
gral curves of A, has the form

dor
dr

= —iAp,. (3)

The solution to (3) through initial point ¢ is given by
0y = e 7y, Here e 7 denotes the one-parameter
group of unitary transformations generated by —iA, as
described by Stone’s theorem. It follows that the integral
curve through ¢y € S¥2 will stay on the sphere. One
concludes that, modulo the domain issues, the restriction
of the vector field A, to the sphere S™2 is a vector field
on the sphere.

Under the embedding, the inner product on the Hilbert
space Lo gives rise to a Riemannian metric (i.e., point-
dependent real-valued inner product) on the sphere S¥z.
For this one considers the realization Log of the Hilbert
space Ls, i.e., the real vector space of pairs X =
(Re,Imap) with ¢ in Lo. If £ are vector fields on
SE2 | one can define a Riemannian metric G, : Try, 572 x
TryS™? — R on the sphere by

Go(X,Y) = Re(E,n). (4)

Here the tangent space Tg,S™? to S%2 at a point
@ is identified with an affine subspace in Lop, X =

(Re&, Im&), Y = (Ren,Imn) and (£,n) denotes the Lo-
inner product of £,7. Note that the obtained Rieman-
nian metric G, is strong in the sense that it yields an

isomorphism G- TR¢5L2 — (TRSOSLQ)* of dual spaces.

The Riemannian metric on S¥2 yields a (strong) Rie-
mannian metric on the projective space C P2, For this
one defines the metric on C' P2 so that the bundle projec-
tion 7 : S¥2 — CPL2 would be a Riemannian submer-
sion. The resulting metric on C' P2 is called the Fubini-
Study metric. To put it simply, an arbitrary tangent
vector X € Tg,S L2 can be decomposed into two compo-
nents: tangent and orthogonal to the fibre {¢} through
¢ (i.e., to the plane C! containing the circle S1 = {¢}).
The differential dm maps the tangent component to zero-
vector. The orthogonal component of X can be then
identified with dm(X). If two vectors X,Y are orthog-
onal to the fibre {¢}, the inner product of dm(X) and
dm(Y) in the Fubini-Study metric is equal to the inner
product of X and Y in the metric G,. Note that the
obtained Riemannian metrics on S*2 and CP*? are in-
variant under the induced action of the group of unitary
transformations on L.

Having a Riemannian metric on the manifolds S%2
and C' P2 opens a way for formulating the unitary and
non-unitary processes in quantum mechanics in geomet-
rical terms. Namely, as shown in Refs.[10]-[12] (see also
Ref.[13] for the mathematical considerations), both the
Schrédinger evolution and the process of collapse of a
state can be thought of as geodesic motions on the sphere
of states furnished with an appropriate strong Rieman-
nian metric. Such a geometrization of quantum dynamics
goes beyond the existing methods of geometrical quan-
tum mechanics pioneered in Refs.[1],[2] (see Refs.[3]-[6]
for extension of these ideas and review of other recent
developments), and the geometric considerations related
to Berry’s phase (Refs.[7]-[9] amongst many others). In-
deed, in those papers the metric on spaces of states is
fixed and, consequently, is not dynamical.

The goal of this work is to demonstrate that the more
basic notions of expected value, variance and uncertainty
relation also have a clear geometric interpretation. This
interpretation is based directly on the association of ob-
servables with vector fields on the sphere of states and
does not employ the Hamiltonian formalism on the phase



space. This makes the interpretation particularly trans-
parent and naturally leads one to a geometric uncertainty
identity.

Let’s begin with the standard uncertainty relation for
observables A, B:

AAAB > % (.14, Bly)|. (5)

Here AA% = (p, A%p) — (¢, Ap)? and similarly for AB2
and ¢ is the state of the system under consideration. It
is implicit in (5) that the state ¢ is in the domain of
all operators involved. As an immediate corollary of the
relation one sees that, in general, the standard deviations
AA, AB of non-commuting observables cannot be made
arbitrarily small at the same time (i.e., for the same state
©). This constitutes a version of the famous uncertainty
principle of Heisenberg [14].

In light of the identification (1) of observables with
vector fields on the sphere of states S2 C Lo, each term
in (5) obtains a simple geometric interpretation. Namely,
the equality

A= (p, Ap) = (—ip, —iAp), (6)

signifies that the expected value of an observable Ain
the state ¢ is the projection of the vector —iAp € T,,S*2
on the vector —ip = —ilp € TS(,SLZ, associated with the
identity operator I. Because

(0, A%p) = (Ap, Ap) = (—ihp, —iAy),  (T)

the term (cp,gggo) is just the norm of the vector —igcp
squared. Note that the expected value ((p,le\ 1) of the
operator A =A-AIi in the state ¢ is zero. Therefore,
the vector —ZAJ_@ = —iAp — (—iAp), which is the com-
ponent of —zAgo orthogonal to —iy is orthogonal to the
entire fibre {¢}. Accordingly, the variance
AA? = (p,(A=AIp) = (—iALp,—iALp)

A (8)
is the norm squared of the component —iA | . As dis-
cussed, the image of this vector under dr can be identified
with the vector itself. It follows that the norm of —iA ¢
in the Fubini-Study metric coincides with its norm in
the Riemannian metric on S¥2 (and in the original Lo-
metric).

Consider the evolution equation

(0, A2 ) =

d L~
% = —1Ap, 9)

for the state ¢, with the initial condition ¢¢|,_, = ¢. By
projecting both sides of this equation by dm, one obtains

d{e:} _
dt

The left hand side of (10) at ¢ = 0 is the velocity of evo-
lution of the projection of ¢; at the point {p} € CPL2.

—i4 ;. (10)

By the above, the norm of the right hand side at ¢t = 0 is
the uncertainty of A in the state ¢:

| —iALpl| = AA. (11)

So the uncertainty AA is equal to the speed of the state
{¢+} at the point {¢} under the evolution (9). In the
case when A is equal to the Hamiltonian % of the system,
one obtains the result of Ref.[8]: the energy uncertainty
is the speed of evolution of the state in the projective
space.

One concludes that the left hand side of (5) is the prod-
uct of norms of the projections of vectors —igga, —zﬁcp
onto T{W}CPLQ. In geometric terms, the left hand side
is therefore the area A|xy| of a rectangle with sides of
lengths || —iA, ¢||, || —iBL¢|. Let’s show that the right
hand side of (5) can be estimated via the area of parallel-

ogram f formed by vectors —zAgp, —zBﬂp For this note
that [A, B] = [A,, B.] and, therefore,

(s Vi E]@) = (gﬂp, EMP) - (EJ_SO7 A\ﬂﬂ)
= 2Im(AL p, B ) = 2ilm(—iA, p,—iB, ). (12)

The form Im(&,n) is an anti-symmetric 2-form on vec-
tors &,m. Let {ex} be an orthonormal basis in Ls, such
that e; = —iﬁﬂp and the vector —zﬁlgp is in the linear
envelop C? of the vectors e1,es. Let By = e1, Ey = ieq,
FEs5 = ey, E4 =ies, ... be the corresponding orthonormal
basis in the realization Lyr. Note that the linear envelop
R* of the vectors Ey, Fs, E5, E, is a subspace of the tan-
gent space Tr,S™ and the Riemannian metric on the
sphere yields the Euclidean metric on /ﬁ‘l. Let’s denote
the realization of the vectors & = —iA;p,n = —iB,p
by X and Y and let’s denote the components of X and
Y in the basis {Ex} by x and yi respectively. Because
x =y = 0 for k > 4, one has

m(&,n) = Ingkﬁk = (z2y1 — 21y2) + (Tay3 — T3Ya),
k
(13)
and so the right hand side of (5) is equal to

|(21y2 — 22u1) + (T3y4 — T4y3)|- (14)

On the other hand, the area squared A%, of the paral-
lelogram on vectors X, Y is equal to

(z1y2 — 2y1)? + (21y3 — 2301)° + (T194 — 2431)?
+(z2ys — T3y2)® + (T2ys — T4Y2)? + (T3ys — v4y3)*(15)

By the choice of {E\}, we have zo = 5 = 24 = 0. By
comparing (14) and (15) one concludes that

1 PN
As a result, the obvious geometric inequality

Aixy| 2 Axvy, (17)



implies the uncertainty relation (5).
It is well known that the uncertainty relation (5) can
be somewhat strengthened to take the form

AA’AB? > i ‘(% (4, Bly) (2 + i ‘(% {41, B.}e) ‘2,

(18)
where {A,,B,} stands for the anticommutator of the
operators ﬁi, Ei. Note that

(0. {AL,Bi}p) = (ALp,Biy) + (BLy, ALy)
= 2Re(ggp, Eﬂp) = 2Re(—ilelg0, —iﬁgp). (19)

So the second term on the right of (18) is simply the
square of Riemannian inner product of vectors —iA 19,
—iB ¢. With the help of (12) one can now identify the
right hand side of (18) with |(—iA, ¢, —iB,¢)?. Us-
ing (11), one concludes that (18) is simply the Cauchy-
Schwarz inequality

| —iALgl?|| —iBiol* > |(~iALp, —iBLyp)[>  (20)

for the vectors —Z'A\lcp, —zﬁ“g.

Recall that the left hand side of the uncertainty rela-
tions (5), (17), (18) is the product of lengths of vectors
X,Y. In particular, in the basis E} one has:

AA?AB? = 21 (yi + v5 + 3 + vi)- (21)

Note that the right hand sides of the uncertainty re-
lations (5), (17) and (18) are formed by the terms of
(21). In particular, these uncertainty relations follow
from (21). Moreover, the right hand side of (21) is exactly
the sum of the Riemannian inner product term squared

~ A 2
(RE(—Z-AJ_(‘D, —iBJ_Lp)) = G2(X,Y) = z7y} and the
area term squared A%y = 23(y3 + y3 +y3). It follows

that the uncertainty relation can be written in the form
of the “uncertainty identity”

AA’AB? = A%y + GL(X,Y), (22)

with X = —/L.A\J_QO and Y = —zﬁ“o.

One concludes, once again, that Axy = 0 is a neces-
sary condition for vanishing uncertainty AAAB. This
condition is satisfied when vectors —iA ¢ and —iB, ¢
are linearly dependent over R. Another necessary condi-
tion that follows from (22) is the condition of orthogo-
nality of the vectors filelgo and fzﬁ“o in the Rieman-
nian metric. The necessary and sufficient condition for
AAAB = 0 is the vanishing of both terms on the right
hand side of (22). In particular, for bounded operators
;1\, E, the uncertainty AAAB vanishes iff at least one of
the vectors —i A ¢, —iB p vanishes. That is, iff ¢ is an
eigenstate of either A or B. For example, for the Pauli
matrices, Ao, Ao, = 0 iff ¢ is an eigenstate of either 7,
or 0y.
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Assume now that [A, B] = ¢I, where ¢ is a number.
Recall that Axy > % ‘ (<p, [/T, E]@) ’ and so the first term

on the right of (22) is at least |¢/2|. Therefore, the un-
certainty AAAB is at least |¢/2|. This minimal value
of the uncertainty can only be achieved if Axy = |¢/2]
and G,(X,Y) = 0. Recall that in the basis Ej one has

Ay = a? (13 + 93 +93) and | (0. 14 Blg)| = forgel
Therefore, to achieve the minimum value one must have
Y3 +y3 = 0. It follows that —i§<p =) (—i@p) for some
complex \. The condition G,(X,Y) = 0 reads in the
basis Ej as z1y; = 0. It follows that y; must be zero,
which means that the constant A is purely imaginary. In
particular, for the momentum and position operators p
and Z these conditions yield Gaussian states for which
ApAzx = h/2.

Note that the terms on the right of (22) can be written
as || X||? |Y[|* sin? 6 and || X|*||Y||* cos? 6, where 6 is the
angle between the vectors X and Y. In particular, when
# = 0 the uncertainty comes from the inner product term
G, (X,Y) only and when 6 = 7/2, the uncertainty is due
to the area term. By replacing B with a real linear com-
bination of the operators A, B, one can change # in any
desirable way while preserving the uncertainty AAAB.

The standard uncertainty relations (5), (18), the de-
rived geometric uncertainty relation (17) and the uncer-
tainty identity (22) are mathematical statements. The
mystery of the uncertainty principle lies not so much in
these statements, but rather in a physical interpretation
of operators and states entering the statements. So, what
is the significance of the provided derivation in this re-
spect?

The quantum evolution of a system yields a path on
the sphere of states. The projection 7 : S¥2 — CPL2
gives then a path on the projective space C P2 of phys-
ical states. As advocated in Refs.[10]-[12], the evolution
of state along the manifolds S¥2 and CP%2 should be
treated as a fundamental physical process, rather than
just a way of describing changes in probability distri-
butions of measured quantities. As shown in Ref.[12],
by choosing an appropriate Riemannian metric on the
sphere S'2, one can ensure that the Schrodinger path of
the state is a geodesic on the sphere. Moreover, at least
in the finite dimensional spaces of states, the process of
collapse can be also modeled by a geodesic motion of the
state in the metric perturbed by the measuring device.
The Born rule for probability of collapse can be derived
from simple additional assumptions (see Ref.[12]).

One is faced then with a new point of view on quantum
mechanics that makes that theory quite similar to Ein-
stein’s general relativity, but considered on a manifold
of states rather than on space-time. The approach turns
out to be fruitful in explaining various paradoxical results
in quantum theory via the geometry of the manifold of
states. Moreover, the formalism allows one to naturally



embed the physics of macroscopic particles on the clas-
sical Riemannian space into the theory (see Ref.[10]). In
light of this, the provided geometric derivation of the un-
certainty relation and the uncertainty identity seems to
be another piece of the puzzle falling into place.

What is the physical interpretation of quantum uncer-
tainty in the the new geometrical setting? The answer
depends on the one’s definition of the uncertainty. Here
are some possible definitions together with their geomet-
ric interpretation.

(a) Note first of all that the set of eigenstates of two
non-commuting observables 21\, B form two non-identical
(often, non-overlapping) subsets S4, Sp of the sphere of
states. If the intersection S4 N Sp is empty, the state
cannot belong to both of them at once. If the state is
close in the Riemannian metric to one of these subsets,
it cannot be arbitrarily close to the other one, hence, the
uncertainty principle.

Mathematically, the principle can be formulated in this
case via the triangle inequality on the sphere of states.
Namely, if ¢ is the state of the system and d(y,Sa),
d(y,Sp), d(Sa, Sp) are the distances in the Riemannian
metric between ¢ and Sy4, ¢ and Sp, S4 and Sp respec-
tively, then

d(p,Sa) +d(p,Sp) > d(Sa, Sp). (23)

By projecting on C' P2, one obtains a similar inequality
for physical states.

In such an interpretation the uncertainty of an ob-
servable A is the distance from the state to the set of
eigenstates of A in the Riemannian metric. The uncer-
tainty relation (23) shows that for two observables with
no common eigenvectors the state cannot be made arbi-
trarily close to both S4 and Sp at once. For example,
for spin states ¢ of a non-relativistic electron one has
A({0}. {50, ) + ({0}, {55, }) > 5.

(8) More commonly, the uncertainty of an observable
A in state ¢ is defined as the standard deviation AA. Re-
call that A A is the norm of the velocity vector —iA | ¢ of
the evolution d{d%*} = —iA 1@t The velocity vector van-
ishes at the eigenstates (and only at the eigenstates) of
the operator A. Therefore, the uncertainty AA vanishes
only at the eigenstates as well.

Note that in the case of the space C'P! of spin states
of a non-relativistic electron, the standard deviation AA
of any observable A with —iA € su(2) can be identified
with the distance d({¢},{Sa}) between the state and the
set, of cigenstates of A (see Ref.[12]). In other words, the
speed of evolution of the state in C'P! is proportional
to the distance d({¢},{Sa}). In this particular case the
definitions («) and (3) coincide.

(7) The uncertainty can be understood as the product
AAAB of standard deviations of two observables for a

system in a given state ¢ (or, in some cases, as the infi-
mum of the set of such products for all possible states).
Suppose that the velocity vectors —iA | ¢, —iB @, con-
sidered as vectors in the real space Log, are linearly de-
pendent. Then the area of the parallelogram based on
these vectors vanishes. In this case the right hand side
of the geometric uncertainty relation (17) also vanishes.
This provides one with a simple geometrical necessary
condition for vanishing AAAB.

(6) A related and most common understanding of
quantum uncertainty is based on the standard uncer-
tainty relation (5). This relation is often used to iden-
tify quantum uncertainty in the sense (y) with non-
commutativity of quantum observables under consider-
ation. Note however that according to (18), the lower
bound of the product of standard deviations of two com-
muting observables on a given set of states may be posi-
tive [15]. Conversely, even if two observables do not com-
mute, they could still have a common eigenvector so that
the standard deviations of both observables on this vec-
tor would vanish. In other words, the non-commutativity
of observables A, B is neither necessary nor sufficient for
a nontrivial uncertainty relation.
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[1] C. Glnter, Int. J. Theor. Phys. 16, 447 (1977)
[2] T.W.B. Kibble, Commun. Math. Phys. 65, 189 (1979)
[3] A. Ashtekar and T.A. Schilling, in On Einstein’s Path,
edited by A. Harvey (Springer, Berlin, 1998)

[4] L.P. Hughston, in Twistor Theory, edited by S. Huggett
(New York, Marcel Dekker, 1995)

[5] D.C. Brody and L.P. Hughston, Proc. Roy. Soc. London
A 458, 1117 (2002)

[6] 1. Bjelakovi¢é and W. Stulpe, Int. J. Theor. Phys. 44,
2041 (2005)

[7] M. V. Berry, Proc. Roy. Soc. London A 392, 45 (1984)

[8] J. Anandan & Y. Aharonov, Phys. Rev. Leit. 65, 1697

(1990)

| B. Simon, Phys. Rev. Lett. 51, 2167 (1983)

| A. Kryukov, Found. Phys. 34, 1225 (2004)

] A. Kryukov, Found. Phys. 36, 175 (2006)

] A. Kryukov, Found. Phys. 37, 3 (2007)

| A. Kryukov, Int. J. Math. & Math. Sci. 14, 2241 (2005)

] In the original Heisenberg formulation of the principle

the issue of simultaneous measurements of observables
is central. The mathematically derived uncertainty rela-
tions are not about such measurements, but rather about
the standard deviations (or the like measures) of the ob-
servables measured separately on the same state.

[15] Of course, the lower bound of the product of standard
deviations of two commuting observables over the entire
sphere of states is zero. However, it is an unnecessary
limitation to consider this case only.



