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1. Introduction

We take for granted that physical events take place in space-time. Mathematically this

is reflected in realization of physical quantities as functions of space-time points. The

shortcomings of this are well known. In particular, position of a particle in quantum

field theory (QFT) is only defined to energies less than the particle’s mass. The field

description of the smaller distances leads to inconsistencies which up until now have not

been completely resolved.

By now the string/M-theory is generally believed to be the leading successor of the

QFT. Not only it deals successfully with divergencies plugging QFT, but it also leads

to a unified approach to the known interactions. However, one of the main objections

to the string/M-theory is that it requires the notion of space-time to begin with. In

particular, the theory, while deducing gravity, does not deduce the space-time which

therefore stays classical.

The situation is reminiscent of the quantum mechanics (QM). The latter theory

also seems to require the classical behavior of the measuring devices for its mere

existence. The fundamental problem to deduce the classical world from the quantum

one is therefore common to both theories.

Motivated by analysis of position measurement experiments in QM we introduce

here a model in which the classical space-time is considered to be a subspace of an

abstract infinite-dimensional Hilbert space S. The space S is associated with the space

of states of a macroscopic test-particle in the universe. A specific realization of S as a

space of functions is then associated with a particular measurement performed on the

particle. A natural measurement performed on macroscopic particles in the universe is

the measurement of their positions. Respectively, the space S is naturally realized by

a Hilbert space H∗ of linear combinations of localized state functions. These functions

are considered in the paper as functions of abstract parameters, so that no pre-existing

notion of space-time is required. The process of decoherence and collapse induced by the

measurement is associated with a choice of submanifold M of H∗ consisting of localized

normalized state functions. The resulting space M can be then identified with the

classical space-time.

In following this line of thought we also develop a formalism which permits to reduce

in a natural way the infinite-dimensional differential geometry on S to the ordinary

Riemannian geometry on space-time. This reduction can be also associated with the

large-scale measurement process naturally occurring in the universe. In this respect the

space-time structure is shown to emerge as a result of position measuring experiments

constantly performed in/on the universe. It is also shown that different topologies (let

alone geometries) on space-time are readily available from the structure of a single

Hilbert space S. Moreover, a particular choice of topology seems to be related to a

particular measurement set up realized in the universe.

Despite these promising results, the paper cannot be considered as more than

just a model of emergence. This is so because the entire construction is based on
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the non-relativistic quantum mechanical formalism and because additional simplifying

assumptions have been made. The quantum field-theoretic approach to the problem

together with a more refined treatment of the subject are left for a future publication.

2. How to “pin” a point of space-time?

The modern classical notion of space-time is due to Einstein. According to Einstein,

the space-time is a four-dimensional Riemannian manifold. To accept such a manifold

as physical one must be able to physically “pin” the points of space at any moment of

time.

To pin a point is to observe an event at the point. Most typically the observations of

this kind are done by means of scattering processes. To observe location of a macroscopic

object, for example, one can observe the light scattered off the object. If one wants to

be more precise in “fixing” a point, the scattering of high energy electrons off a test

particle could be used instead.

In principle, position of a particle in the non-relativistic quantum mechanics can

be measured as precisely as one wishes. Up to a constant factor the state function ψa

of the particle with a given position a is the solution of the eigenvalue problem

x̂ψa(x) = aψa(x) (1)

for the operator of coordinate x̂. The non-normalized solutions of this equation are

given by an arbitrary constant multiple of the delta-function. By fixing normalization

we observe that position of a particle determines its state. On the other hand, if the

state function of a particle is concentrated at a point in space, then position of the

particle is known. That is, there exists a bijective correspondence between points in

space and state functions of a particle localized at any one of these points. In this

respect one can conclude that to “pin a point” is to identify the point with the state

function of a particle localized at the point.

The resulting identification of the points in space with the state functions of a

localized particle makes one wonder whether it would be fruitful to consider the classical

space-time as a particular subspace of the space of states of the particle. This by itself

could seem rather artificial and pointless without the following supporting circumstance:

Macroscopic particles in the universe are found in well localized in space wave packets.

Ideally, when the size of a packet is negligible, the state function of the particle is the

delta-function. As macroscopic test-particles are the ones used to determine the large-

scale structure of space-time, it becomes quite plausible that the origin of the classical

space-time can be traced back to the Hilbert space of quantum states.

In more detail, scattering processes on (non-interacting) macroscopic test-particles

constantly happening in the universe can be identified with measuring position of the

particles. This measurement leads to realization of the Hilbert space of states of each

particle as a space H∗ of linear combinations of the localized (ideally, point supported)

state functions. The process of decoherence triggered by the measurement destroys
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superpositions of the functions. That is, decoherence, together with the consecutive

collapse (reduction of state) ensure spatial localization of the particles. In principle,

assuming that we keep record of each position measurement, i.e. in case of the so-called

selective description, the state of each particle stays pure. As a result, the points of

space can be identified with the states of particles each particle being “attached” to a

point.

To avoid dealing with tensor products of Hilbert spaces of states of individual

particles we prefer here to identify the space-time with all possible states of a single

localized test-particle. The single particle approach poses several questions which we do

not address in the paper. A more careful analysis of the situation including the QFT

treatment of the problem is left for a future publication. Here, motivated by the present

analysis, we simply accept the embedding of the space-time into the Hilbert space H∗

as a hypothesis and explore its consequences.

Before moving on let us point out that mathematically the embedding of a finite-

dimensional manifold into an infinite-dimensional one is always possible. The question

therefore is to find the embedding that would be physically meaningful and interesting.

In particular, we want to use the embedding to derive the space-time structure

from the Hilbert structure on H∗. Thus, the elements of H∗ shall not be assumed

to be functions of space-time coordinates but shall be instead functions of abstract

parameters. The already discussed measurement of position of a macroscopic particle

shall be mathematically the process of reduction of H∗ to a submanifold consisting

of “decohered” states. Such a submanifold shall be then identified with the classical

space-time leading to the measurement induced emergence of space-time.

As the states of localized at a point particle are given in QM by the delta-function,

it is important to comment on the nature of the space H∗. It is usually assumed

that the delta-like states in QM cannot be elements of a Hilbert space of states. The

existence of various Hilbert spaces of distributions demonstrates that this opinion is

wrong. Moreover, in [5] we have developed a formalism that includes the improper and

the square-integrable states on equal footing. For this the metric on Hilbert spaces of

functions is made dependent on the variety of functions making up a particular space.

The resulting formalism presents an alternative to the generally accepted rigged Hilbert

space approach to improper states in QM (see [3]).

In particular, the space H∗ of real valued generalized functions “of” x ∈ R4 finite

in the metric

(ϕ, ψ)H∗ =
∫

e−(x−y)2ϕ(x)ψ(y)dxdy (2)

can be shown to be Hilbert (see [5]). Such a space contains delta-functions as, for

example, ∫
e−(x−y)2δ(x)δ(y)dxdy = 1. (3)

Moreover, H∗ contains all derivatives of delta-functions as well.

Throughout the paper Hilbert spaces with the metric defined by a smooth kernel

k(x, y) will be generically denoted by H∗.
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Let us now develop a mathematical formalism of emergence that satisfies the

discussed criteria.

3. The “Emergence formalism”

In this section we make no initial assumption about existence of space-time. Our main

object is an abstract separable Hilbert space S. This space is taken to be a model of

the “quantum” space which shall replace the classical space-time.

As discussed in the previous section, the natural large-scale measurement process in

the universe is the process of measuring positions of macroscopic particles. As a result,

the macroscopic particles in the universe are in eigenstates of the position operator x̂.

As the space S is associated with the space of states of a macroscopic test-particle in

the universe, it is naturally realized by a Hilbert space H∗ of linear combinations of the

delta-functions.

Let us point out, however, that this quantum-mechanical picture is only used as a

motivation. In particular, the (generalized) functions in H∗ are at this point functions

of abstract parameters a which are not assumed to be the space-time coordinates. In

what follows we will assume that parameters a take values in the abstract Euclidean

space R4.

A particular realization of S as a space H of functions can be mathematically

described by an isomorphism eH : H −→ S. Such an isomorphism will be called a

functional basis on S (see [5]).

Assume in particular that, as before, H∗ is a Hilbert space generated by the delta-

functions. Then the isomorphism eH∗ : H∗ −→ S will be called a natural functional

basis on S.

Let now Φ0 be a point of S and let Γ0 be the algebra of differentiable functionals

on a neighborhood of Φ0. That is, the functionals in Γ0 are defined on the elements Φ

which belong to a neighborhood of Φ0 in S. Let Φt : R −→ S be a differentiable path

in S which passes through the point Φ0 at t = 0.

The vector tangent to the path Φt at the point Φ0 is defined as a map X : Γ0 −→ R

given by

XF =
dF (Φt)

dt

∣∣∣∣∣
t=0

. (4)

Such a definition of tangent vector is common in the finite dimensional setting. In

case of the infinite number of dimensions a different approach is more common (see [1]).

The definition (4) is, however, more adequate for our needs. The coordinate formalism of

[5] makes it a convenient tool for developing differential geometry on infinite-dimensional

manifolds.

As the functionals F and the path Φt are assumed to be differentiable, we have:

dF (Φt)

dt

∣∣∣∣∣
t=0

= F ′(Φ)|Φ=Φ0
Φ′

t|t=0 , (5)
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where F ′(Φ)|Φ=Φ0 : S −→ R is the derivative functional at Φ = Φ0 and Φ′
t|t=0 ∈ S is the

derivative of Φt at t = 0. As always, a tangent vector X is a linear map satisfying the

product rule.

Let us show that the space T0S of various tangent vectors X with an appropriate

topology is isomorphic to S. For this let eH be a functional basis on S. For a path Φt

through Φ0 let ϕ = ϕt be an equation of the path in the eH-basis (i.e. ϕt = e−1
H (Φt)).

As Φ′
t|t=0 ∈ S, we also have ϕ′t0 ∈ H. Then

XF =
dF (Φt)

dt

∣∣∣∣∣
t=0

=
∫ δf(ϕ)

δϕ(x)

∣∣∣∣∣
ϕ=ϕ0

ξ(x)dx, (6)

where ξ = ϕ′t|t=0 and the linear functional δf(ϕ)
δϕ(x)

∣∣∣
ϕ=ϕ0

, which is an element of the dual

space H∗, can be thought of as the derivative functional F ′ in the basis eH . The integral

sign is understood here in the sense of action of δf(ϕ)
δϕ(x)

on ξ (see [5] for notations). In

these notations we can also write

X =
∫

ξ(x)
δ

δϕ(x)
dx, (7)

where ξ ∈ H and the right hand side acts on functionals f defined by

f(ϕ) = F (Φ), (8)

where F ∈ Γ0 and eHϕ = Φ. In particular, we see that the coordinate formalism permits

one to present tangent vectors in a mathematically rigorous way in the form similar to

the finite dimensional case, i.e. as “linear combinations” of the “partial” derivatives.

Let us now consider the map ω : T0S −→ S which in the basis eH is given by∫
ξ(x) δ

δϕ(x)

∣∣∣
ϕ0

dx −→ ∫
eH(x)ξ(x)dx. Here again, in accordance with notations used in

[5], the integral on the right signifies the action of eH on ξ.

To show that ω is an isomorphism, consider an arbitrary element Ψ =
∫

eH(x)η(x)dx

of S and a path ϕt = ϕ0 + ηt. The vector tangent to this path at t = 0 is

X =
∫

η(x) δ
δϕ(x)

dx. It follows that ω is surjective.

On another hand, if X =
∫

ξ(x) δ
δϕ(x)

dx = 0, then for any F ∈ Γ0 we have

XF =
∫ δf(ϕ)

δϕ(x)
ξ(x)dx = 0. Since the derivative of a linear functional is the functional

itself and since any continuous linear functional on S is an element of Γ0 we conclude

that h(ξ) = 0 for any h ∈ H∗. It follows that ξ = 0, that is, ω is injective.

The one-to-one linear map ω induces a Hilbert structure on the space T0S. Relative

to this structure ω is an isomorphism of Hilbert spaces.

The space T0S with the above Hilbert structure will be called the tangent space to

S at the point Φ0.

For the tangent space T0S, the dual space T∗
0S is called the cotangent space at Φ0.

The differential dF of a functional F ∈ Γ0 is an element of T∗
0S which satisfies

dF (X) = XF (9)

for any X ∈ T0S.
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Notice that for a smooth enough F the usual Taylor formula is valid. In particular,

if F is twice differentiable on a neighborhood of Φ0, then

F (Φ0 + Ξ) = F (Φ0) + dF (Φ0, Ξ) +
1

2!
d2F (Φ0, Ξ) + o(‖Ξ‖) ‖Ξ‖ . (10)

Here d2F (Φ0, Ξ) = F ′′(Φ0)(Ξ, Ξ), F ′′(Φ0) is the second derivative of F which is a

symmetric bilinear functional on T0S×T0S, and ‖Ξ‖ is the norm of Ξ in S.

Having discussed the general differential geometry on S let us return to the specific

realization of S by a space H∗ of linear combinations of delta-functions. Recall that

the corresponding functional basis is called natural. In accordance with the previous

discussion we now identify the classical space-time M with the subset of H∗ consisting

of all delta-functions δ(x− a) for various possible a ∈ R4.

Notice first of all that as a subset of H∗, M is a topological space with the induced

(subset) topology. We will further assume that the inclusion map i : M −→ H∗ is an

embedding. In particular, M will be a submanifold of H∗.
Clearly, M is not a linear subspace of H∗. However, in the simplest case when M

is diffeomorphic to R4, the space M has an induced linear structure (different than the

one on H∗).
As already discussed, the proposed choice of M corresponds to a “decohered”

universe. In this sense it is physically sound. However, it is also important to verify

that the tangent bundle structure and the Riemannian structure on M are naturally

induced by the embedding of M into H∗.
The notion of “naturality” requires some clarification. As already discussed, the

embedding of the space-time into H∗ is always possible. Moreover, it is possible to ensure

an isometric embedding, i.e. the Riemannian metric on M will be just a restriction

(pull-back) of the Hilbert metric on H∗. What we want in addition is a compatibility

of differential-geometric “languages” on M and H∗. More precisely, the variational

derivatives used to define vectors tangent to S (or its realization H∗) according to (6),

should naturally reduce to the partial derivatives that permit to define vectors tangent

to M . Respectively, tensor algebra on spaces tangent to S (or H∗) must “project”

to the tensor algebra on spaces tangent to M . In particular, the Hilbert metric on S

(respectively, H∗) shall reduce to the Riemannian metric on M . In other words, we

want to express the finite dimensional differential geometry on space-time in terms of

the infinite-dimensional differential geometry on a Hilbert space.

For this, let us select from all paths in H∗ the “decohered” ones, i.e. the paths laying

in M . For each value of the parameter t any such path ft reduces to a delta-function.

That is,

ft(x) = δ(x− a(t)) (11)

for some function a(t) which takes values in R4.

To find vectors tangent to such paths we proceed as before. Consider first the

action of linear (continuous) functionals on ft. Such functionals will be then elements
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of the space H dual to H∗ and will be denoted by ϕ. We have:

ϕ(ft) =
∫

ϕ(x)δ(x− a(t))dx = ϕ(a(t)). (12)

Respectively,

dϕ(ft)

dt

∣∣∣∣∣
t=0

=
∂ϕ(x)

∂xµ

∣∣∣∣∣
x=a(0)

daµ

dt

∣∣∣∣∣
t=0

. (13)

The expression on the right can be immediately identified with the ordinary 4-vector

acting on the function ϕ(x). In the more general non-linear case situation is similar.

Consider for example a quadratic functional

b(ft) =
∫

b(x, y)δ(x− a(t))δ(y − a(t))dxdy = b(a(t), a(t)). (14)

Then, as before

db(ft)

dt

∣∣∣∣∣
t=0

=
∂b(x, x)

∂xµ

∣∣∣∣∣
x=a(0)

daµ

dt

∣∣∣∣∣
t=0

. (15)

Notice that the formula (13) and its nonlinear analogues can be obtained directly from

(6). For example:

dϕ(ft)

dt
=

∫ δϕ(f)

δf(x)

dft

dt
dx = −

∫
ϕ(x)∇µδ(x− a)

daµ

dt
dx =

∂ϕ

∂xµ

daµ

dt
, (16)

where linearity of the functional ϕ along with the “integration by parts” formula have

been used. Notice in particular the validity (in generalized sense) of the formula

dft(x)

dt
= −∇µδ(x− a)

daµ

dt
. (17)

From (13) and its nonlinear analogues we conclude that elements of T0S tangent to the

curves (11) are “naturally” (in the above sense) equivalent to the ordinary 4-vectors.

Let us now see how the Riemannian metric on M is induced by the embedding of

M into H∗.
Let us assume first that H∗ is a real Hilbert space. Let k(x, y) be the kernel of the

Hilbert metric K : H∗ ×H∗ −→ R. In particular, the norm of a vector δf ∈ H∗ can be

written as

‖δf‖2
H∗ =

∫
k(x, y)δf(x)δf(y)dxdy. (18)

Let us remark that we identify here the spaces tangent to H∗ with H∗ itself. Assuming

now that f = ft = δ(x− a(t)) is a path in M and therefore δf(x) = df(x)
dt

∣∣∣
t=0

, and using

(17) with a = a(0) we have:
∫

k(x, y)δf(x)δf(y)dxdy =
∫

k(x, y)∇µδ(x− a)
daµ

dt

∣∣∣∣∣
t=0

∇νδ(y − a)
daν

dt

∣∣∣∣∣
t=0

dxdy. (19)

“Integration by parts” in the last expression gives then
∫

k(x, y)δf(x)δf(y)dxdy =
∂2k(x, y)

∂xµ∂yν

∣∣∣∣∣
x=y=a

daµ

dt

∣∣∣∣∣
t=0

daν

dt

∣∣∣∣∣
t=0

. (20)



On the problem of emergence of classical space-time 9

By defining daµ

dt
|t=0 = dxµ, we have

∫
k(x, y)δf(x)δf(y)dxdy = gµν(a)dxµdxν , (21)

where

gµν(a) =
∂2k(x, y)

∂xµ∂yν

∣∣∣∣∣
x=y=a

. (22)

As the functional K is symmetric, its kernel k(x, y) can be chosen to be a symmetric

function of x and y. Then, the tensor gµν(a) will be symmetric as well. If in addition
∂2k(x,y)
∂xµ∂yν

∣∣∣
x=y=a

is positive definite at every a, the tensor gµν(a) can be identified with a

Riemannian metric on space-time. One could similarly obtain a metric of Lorentzian

signature.

It is important to know whether an arbitrary Riemannian metric gµν(a) on space-

time can be obtained in such a way. Clearly, for a function k(x) with x ∈ R4 the form
∂2k(x)
∂xµ∂xν is rather special and cannot be made equal to an arbitrary Riemannian metric

on R4. However, we have twice as many variables at our disposal.

To analyze the situation assume here that the space H∗ is a complex Hilbert space

of (generalized) functions on C4. The variables x, y in (18) are then replaced with the

complex conjugate variables z, z. The Hilbert metric on H∗ is necessary Hermitian.

This can be assured, in particular, by choosing a real-valued kernel k(z). Moreover, the

form gµν = ∂2k(z)
∂zµ∂zν is then automatically Hermitian as well. If in addition gµν is positive

definite, the Riemannian metric gµν is known to be Kähler. Moreover, an arbitrary

Kähler metric on C4 can be written locally is such a way (see for example [2]).

In [6] it was verified that any real analytic Riemannian n-dimensional manifold can

be locally isometrically embedded into a Kähler n-dimensional manifold. Together with

the above, this result assures that any analytic Riemannian metric can be locally written

in the form (22). Moreover, this also proves that the complex Hilbert space structure

on H∗ naturally leads to a Kähler structure on the complex extension of space-time.

4. Discussion and outlook

Let us review the advocated scenario of emergence of the classical space-time.

We began with the observation that the large-scale structure of space-time can be

naturally recovered from the Hilbert space of states of a macroscopic test-particle in the

universe.

To use this fact in analyzing the process of emergence, we have dropped the

assumption of a pre-existing space-time. Instead, the abstract infinite-dimensional

separable Hilbert space S is taken to be a model of space-time adequate to the quantum

theory.

To recover the classical space-time it is necessary to find, first of all, a specific

realization of S by a space of functions. Such a realization can be associated with

a particular measurement performed on a macroscopic particle in the universe. The

typical such measurement is the continuous measurement of the particle’s position.
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Respectively, the space S is naturally realized as a space H∗ generated by the delta-

functions δ(x − a), where x, a ∈ R4. The coordinate formalism developed in [5]

demonstrates that such a space can be made Hilbert by choosing a metric on H∗ to

be a bilinear functional with a continuous kernel k(x, y) (see also the metric (??) in this

paper).

After fixing a natural realization H∗ we identify the space-time M with a

submanifold of H∗ consisting of delta-functions δ(x − a). This reduction is associated

with the process of decoherence and collapse naturally happening under a continuous

observation of the particle’s position.

The submanifold M is locally parameterized by the elements a ∈ R4 which serve

as abstract parameters needed to define the elements of H∗. The manifold structure on

M is not defined by the space of parameters, but appears as a restriction (pull-back) of

the manifold structure on H∗. It is therefore defined by a specific realization H∗ of the

abstract Hilbert space S.

After the space H∗ and the submanifold M are chosen, the parameters aµ can be

identified with coordinates on space-time, the vectors tangent to M become identified

with the ordinary space-time vectors and the induced metric becomes an (arbitrary)

Riemannian metric on space-time.

As a clarifying example consider the Hilbert space generated by the delta-functions

δ(θ− a) on R with functions δ(θ− a) and δ(θ− (a + 2π)) identified for any a ∈ R. The

space of parameters here is R. The space H∗ is a space of generalized functions on the

circle S1. The space M consists of all delta-functions on S1 and by the formalism of the

last section is naturally identified with the unit circle itself. The parameter a becomes

then identified with the angular coordinate on S1.

It is important to notice that the metric on space-time is derived from the metric

on the Hilbert space H∗ which is, in turn, associated with a particular measurement

performed on a macroscopic particle in the universe (see [5] for details). The variety of

admissible metrics in the universe requires then a variety of realizations of the Hilbert

space S. This fact is in complete agreement with the coordinate formalism of [5].

In this interpretation a specific Riemannian structure, and, in fact, topology of

the emerging space-time is determined by a specific large-scale measuring experiment

performed in/on the universe. If one simply observes the results of measurements of

positions of macroscopic particles naturally occurring in the universe, one ends up with

the classical space-time as we know it. Assuming that a different experiment in/on the

universe can be set, a different space-time shall, in general, come out of it.

Consider in particular a Hilbert space H∗ generated by all delta-functions on the

product R × S3 of the real line and a 3-sphere. More precisely, the elements of H∗ are

functionals acting on a space of continuous functions on the cylinder R × S3. In this

case the space-time M has itself a topology of the cylinder. It is in principle conceivable

that an experiment can be set that would result in such a topology of space-time. Even

if such “global” experiments are not within our reach, a “local” change of topology of

space is still a possibility.
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Notice once again that different topologies on the “emerging” space-time are

produced simply by changing a particular functional realization of S and despite the

fact that all such realizations are isomorphic. That is, what looks like a “coordinate

transformation” on S (see [5]), can be observed as a change in topology on M .

The paper leaves many questions unanswered and, in fact, presents only the first

look at the advocated approach to the problem of emergence. The results seem to be

promising but clearly require further exploration. As no dynamics has been discussed,

it is hard to compare the proposed “emergence formalism” to the existing approaches

to emergence of the classical space-time (see [4] and references therein). In particular,

it remains to be seen if the formalism is adequate for the dynamical treatment of the

problem of emergence.
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