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Abstract Assuming that the target of theory oriented empirical science in general and
of nomic truth approximation in particular is to characterize the boundary or demar-
cation between nomic possibilities and nomic impossibilities, I have presented, in
my article entitled “Models, postulates, and generalized nomic truth approximation”
(Kuipers in Synthese 193(10):3057–3077, 2016. https://doi.org/10.1007/s11229-015-
0916-9), the ‘basic’ version of generalized nomic truth approximation, starting from
‘two-sided’ theories. Its main claim is that nomic truth approximation can perfectly be
achieved by combining two prima facie opposing views on theories: (1) the traditional
(Popperian) view: theories are (models of) postulates that exclude certain possibilities
from being realizable, enabling explanation and prediction and (2) the model view:
theories are sets of models that claim to (approximately) represent certain realizable
possibilities. Nomic truth approximation, i.e. increasing truth-content and decreasing
falsity-content, becomes in this way revising theories by revising their models and/or
their postulates in the face of increasing evidence. The basic version of generalized
nomic truth approximation is in many respects as simple as possible. Among other
things, it does not take into account that one conceptual possibility may be more simi-
lar (or closer) to another than a third one (is to that other). However, for example, one
theory may include a possibility that is more similar to a wrongly not included possi-
bility than another theory can offer. Similarly, for wrongly not excluded possibilities.
In this article it will be shown that such ‘refined’ considerations can be taken into
account by adapted clauses based on a ternary similarity relation between possibilities
(structures). This allows again abductive conclusions about refined truth approxima-
tion if a theory is persistently more successful in the refined sense than another. It
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will also be indicated and illustrated that this refined approach enables a specification
to the effect that refined truth approximation can be obtained by the method of ide-
alization and subsequent concretization. Finally, the basic and the refined approach
will be evaluated with regard to some general principles and objections that have been
discussed in the literature.

Keywords Truthlikeness · Verisimilitude · Refined truth approximation · Refined
success theorem · Idealization and concretization · Ideal gas model · Van der Waals
model · Validity research · Child’s play objection

1 Introduction1

In a recent article, “Models, postulates, and generalized nomic truth approximation”2
(Kuipers 2016), I have presented the ‘basic’ version of generalized nomic truth approx-
imation, starting from ‘two-sided’ theories. In my view (Kuipers 2000), the target of
theory oriented empirical science in general and of nomic truth approximation in par-
ticular is to characterize the boundary or demarcation between nomic possibilities and
nomic impossibilities, for example the demarcation between physically possible and
impossible states or trajectories of a system or between economically possible and
impossible markets. The main claim of the new article is that nomic truth approxi-
mation can perfectly be achieved by combining two prima facie opposing views on
theories:

1. The traditional (Popperian) view: theories are (sets of models of) postulates that
exclude certain possibilities from being realizable, enabling explanation and pre-
diction.

2. Themodel view: theories are sets ofmodels that claim to (approximately) represent
certain realizable possibilities.

Nomic truth approximation, i.e. increasing or otherwise improving truth-content and
decreasing or otherwise weakening falsity-content, becomes in this way revising theo-
ries by revising their models and/or their postulates in the face of increasing evidence.
My pre-2012 work on truth approximation3 was restricted to maximal theories, that
is, theories in which the models are just all structures satisfying the postulates. Hence,
the two-sided approach is a far-reaching generalization.

The basic version of generalized nomic truth approximation is in many respects as
simple as possible. The present article deals with the second of (at least) three plausi-
ble concretizations of the basic version [in line with such concretizations in Kuipers
(2000)]: a quantitative version, a refined version, and a stratified version, based on
a (theory-relative) distinction between an observational and an inclusive theoretical

1 This introduction is heavily based on another separately published chapter (Kuipers 2017) of a book
manuscript of Kuipers, Nomic Truth Approximation Revisited, dealing with another concretization, viz.
quantification.
2 Highly inspired by Cevolani et al. (2011).
3 Notably (Kuipers 2000).
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level.4 The intended refined version in this article is based on an underlying ternary
similarity relation, called structurelikeness, enabling to make e.g. one counterexample
less dramatic than another, and enabling to deal e.g. with ‘idealization & concretiza-
tion’ of theories.

To present the refined version we will first clarify, in Sect. 2, the main target of
nomic truth approximation and the nature of (true and false) two-sided theories and of
empirical evidence. Then we will present the crucial definitions of the basic account
and the corresponding success theorem. We will not only adapt but also revise the
definitions in Kuipers (2000, Chapter 10) of ‘refined closer to’ and ‘refined more
successful’ between two two-sided theories. Among other things, the ‘refined success
theorem’ will now hold unconditionally, as in the basic case, roughly, ‘refined closer
to’ entails ‘refinedmore successful’. The theorem enables tentative refined nomic truth
approximation conclusions by abductive reasoning.

Wewill present themain refined definitions in two rounds. In Sect. 3 wewill start by
introducing the notion of structurelikeness, crucial for refinement. Then we introduce
the refined definitions in such a way that they are conceptually highly plausible and
lead to the refined success theorem. In Sect. 4 we will summarize the main notions
in a couple of handsome tables. In Sect. 5 we will focus on the special cases where
refinement concerns the transition of an idealization to a concretization. We conclude
(Sect. 6) with the evaluation of the refined approach with regard to some general
principles and objections that have been discussed in the literature.

2 Nomic theories, nomic evidence, and the basic account

2.1 Nomic theories and nomic evidence

As stated before, in my view (Kuipers 2000), the target of theory oriented empirical
science in general and of nomic truth approximation in particular is to characterize
the boundary or demarcation between nomic possibilities and nomic impossibilities.5

For this purpose we need to presuppose a set, U, of conceptual possibilities in a given,
bounded, context, e.g. the states or trajectories of a system or a type of systems,6

that is, the set of structures generated by a descriptive vocabulary, V, in which U and
subsets of U, e.g. X, Y, M, P, R, S, are characterized (cX will indicate the complement
of X). Let bold T indicate the unknown subset of U of nomic possibilities, not (yet)
based on V. Hence cT indicates the subset of nomic impossibilities.

4 In (Kuipers, Nomic Truth Approximation Revisited, book manuscript) the other two concretizations are
presented: a quantitative version and a stratified version.
5 Hence, ‘nomic’ is used here as a generic term. Moreover, the notion of nomic possibility, and its field
specific cases, such as physical possibility, function as basic or primitive ones, with corresponding laws,
such as physical laws, as derivative notions.
6 Hence, U is not a set of possible worlds in the standard ‘there is only one world’ sense, but concerns so-
called ‘small worlds’. They are onlymutually exclusive and jointly exhaustive in the same case in the given
context, e.g. a system may have several physically possible states, but has only one state at one time. Cf.
the space of possible elementary outcomes in probability theory: one experiment has only one elementary
outcome.
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In these terms, the target of nomic research is identifying, if possible, T’s boundary
in V-terms, called the nomic truth, for reasons that will become clear soon. For this
purpose we design theories with claims. A (two-sided) theory is a tuple<M, P>of
subsets of U, defined in V-terms, where M indicates a set of (specified) models and P
indicates the set ofmodels of certain Postulates (P=Models (Postulates)). The theory’s
claims are:

“M⊆T”, the inclusion claim: all members of M are nomic possibilities.
“T ⊆P”, i.e. “cP⊆cT”, the exclusion claim: all non-members of P are nomic
impossibilities

This combines the two views on theories: representation (or inclusion) and exclusion.
The two claims are compatible, making the theory consistent, iff (if and only if)M⊆P,
that is, assuming the chosen models satisfy the chosen postulates (i.e., are models of
these postulates).

A theory is maximal if M=P; non-maximal otherwise. My pre-2012 work on truth
approximation was restricted to maximal theories, hence we deal now with a far-
reaching generalization. The definition of two-sided theories leaves formally room for
two one-sided extremes:<M, U>and<∅, P>, i.e. pure inclusion and pure exclusion
theories, respectively, also referred to as the M- and P-theory constituting theory<M,
P>.

A theory<M, P> is true if both claims are true, i.e. M⊆T ⊆P, false otherwise. It
is easy to check that there is at most one true maximal theory, called the true theory
or simply the (nomic) truth, resulting from the characterization of T in V-terms, if
it exists.7 It will be indicated by<T, T>, or simply T, i.e. non-bold ‘T’. This T is
more specifically the target of (theory-oriented) research! It is also easy to check that
this maximal theory<T, T>=T is the strongest true (two-sided) theory, with claim(s):
T⊆T ⊆T, i.e. T=T. The term ‘strongest theory’ is based on the notion that e.g. the
inclusion claim of theory<M*, P*> is stronger than that of<M, P> if M is a proper
subset of M*.

Finally, we turn to the representation of evidence, i.e. empirical data, for evidence
will guide nomic truth approximation. In the nomic context empirical data at a given
moment are typically asymmetric. They can be represented by a data theory <R, S>,
where R indicates the so far realized possibilities, e.g. the realized physical possibili-
ties, and S (⊇R) the (models of the) strongest law induced on the basis of R. Hence, cS
indicates the induced nomic (e.g. physical) impossibilities. Of course, if R and S are
correctly described and induced, respectively, then: R⊆T⊆S, i.e. the data theory<R,
S> is true. To be sure, the assumption of correct data is far from trivial.

2.2 The basic approach

For the basic definitions (Kuipers 2016) we need first to introduce some crucial new
terms. The truth-content at the M-side is M∩T, i.e. the set of possibilities about
which the M-side claim (M⊆T) is true, and the falsity-content is M−T, i.e. the set of

7 In special cases, V may not be rich enough to precisely characterize T in some finite way.
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possibilities about which the M-side claim is false. Similarly, the truth-content at the
P-side is cP∩cT and the falsity-content is cP−cT. Note that in both cases, their union
M and cP, respectively, may well be called the content of the theory at the relevant
side.

Now the following definition is plausible.

Definition 1:
Theory<M*, P*> is basically at least as close to the truth <T, T> as<M, P> iff:
TC-clauses
The truth-content on both sides of<M, P> is a subset of the truth-content at the
corresponding side of<M*,P*> :M∩T⊆M*∩T (≡T−M*⊆T−M)and cP∩cT
⊆cP*∩cT (≡P*−T ⊆P−T).
FC-clauses
The falsity-content on both sides of<M*, P*> is a subset of the falsity-content at
the corresponding side of<M, P> : M*−T ⊆M−T and cP*−cT ⊆cP−cT (≡T
−P*⊆T −P).

It is not difficult to check that on both sides the combined clauses can be summarized
in terms of symmetric differences: M* � T ⊆M � T and cP* � cT ⊆cP � cT (≡P*
� T ⊆P � T).

Of course,<M*, P*> is said to be basically closer to the truth<T,T> than<M, P> if
at least one of the subset relations is proper.

Now we turn to some notions that take evidence<R, S> into account, where we
assume to have accepted its claims: R⊆T and T ⊆S (≡cS⊆cT). The accepted-
content at the M-side is M∩R, i.e. the set of possibilities about which the M-side
claim (M⊆T) has been accepted, and the rejected-content is M−S, i.e. the set of
possibilities about which the M-side claim has been rejected, which is easy to check.
Similarly, the accepted-content at the P-side is cP∩cS and the rejected-content is
cP−cR (≡R−P).

Now the following definition is also plausible.

Definition 2:
Theory<M*, P*> is, relative to<R, S>, basically at least as successful as <M, P> iff:
AC-clauses
The accepted-content on both sides of<M, P> is a subset of the accepted-content
at the corresponding side of<M*, P*> : M∩R⊆M*∩R (≡R−M*⊆R−M) and
cP∩cS⊆cP*∩cS (≡P*−S⊆P−S).
RC-clauses
The rejected-content on both sides of<M*, P*> is a subset of the rejected-content
at the corresponding side of<M, P> : M*−S⊆M−S and cP*−cR⊆cP−cR
(≡R−P*⊆R−P).

Of course,<M*, P*> is said to be basically more successful relative to<R, S> than
<M, P> if at least one of the subset relations is proper.

We close with a not surprising but crucial theorem.

Theorem 1 Basic Success Theorem
If<M*, P*> is basically at least as close to the truth<T,T> as<M, P> then, assuming
correct data<R, S>, i.e. R⊆T⊆S,<M*, P*> is, relative to<R, S>, basically at least
as successful as<M, P>.

123



1606 Synthese (2020) 197:1601–1625

The proof is straightforward. The remaining methodological steps to complete the
basic theory of nomic truth approximation are analogous to those of the refined theory,
for which we refer to the end of Sect. 3.

3 The refined approach

In (Kuipers 2000, Chapter 10) I have introduced refined nomic truth approximation
for maximal theories in order to compensate for the following problem of basic truth
approximation: any mistake is as worse as any other. For that purpose I introduced the
ternary similarity relation s(x, y, z) between structures in U: y is at least as similar
to z as x.8 Structures x and y are called comparable or related, r(x, z), iff there is a
y such that s(x, y, z). The basic idea behind r(x, z) is not the existence of a proper
intermediate, i.e. a y different from x and z, but only that x and z have at least so much
in common that it makes sense to talk about (proper and improper) intermediates.

The relation s is supposed to satisfy the following ‘minimal’ s-conditions: centered,
centering and conditionally left and right reflexive. For all x, y, z, s is centered iff s(x,
x, x) and centering iff s(x, y, x) implies x=y. Moreover, s is conditionally left/right
reflexive if s(x, y, z) implies all kinds of left and right reflexivity, i.e., s(x, x, y), s(x, x,
z), s(y, y, z) and s(x, y, y), s(x, z, z), s(y, z, z), respectively. Note that the conditional
form, by assuming s(x, y, z), leaves room for incomparable structures; without this
assumption, s(x, x, y) for example would entail r(x, y), for all x and y. The relation s
is trivial if s(x, y, z) iff x=y=z.

A plausible example of such a s-relation we get in the case the conceptual possibili-
ties consist of the propositional constituents generated by a finite number n of elemen-
tary propositions p1, p2, …pn: (±)p1 & (±)p2 & …(±)pn, where each (±) is either a
negation sign or no sign at all. It is plausible to say that e.g. ¬p1 & p2 is more similar
to p1 & p2 than ¬p1 & ¬p2. In general, for propositional constituents x, y, z, y is more
similar to z than xwhen y agrees withmore (non-)negation signs of z than x. This qual-
itative definition, called the basic s-relation, transforms into a quantitative version by
just comparing the number of agreements.9 We get an interpretation of the r-relation by
enlarging U to all (partial) constituents generated by a selection of elementary propo-
sitions out of a given set: r(x, y) then amounts to ‘x and y are generated by the same
selection’. Hence, p1 & p2 and¬p1 & p2 are comparable, but p1 & p2 and¬p1 are not.

To take account of structurelikeness, we start with introducing some new general
terminology, again suitable for both sides. In this section, MP will be short for<M,
P>, and hence TT=<T, T> and RS for<R, S>. The important new terms with respect
to theory MP need all some reflection to understand the underlying idea. They are the
following ones: a theory’s missing content, viz. M−T and cP−cT, respectively; its
maximally possible falsity- (or false) content, viz. M−R and cP−cS, respectively;
and its maximally possible missing content, viz. S−M and cR−cP, respectively.
Table 1 summarizes all relevant previously introduced and new notions, including

8 The ternary relation may be based on Northcott (2013), who focuses on comparisons of the (causally
specified, quantitative) verisimilitude of specific models.
9 This measure is known as the Clifford measure among constituents (Niiniluoto 1987, p. 311).
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Table 1 Crucial notions

Theory MP=<M, P> k∈{m, p} m=M-side p=P-side

Claim of MP Clk(MP) M⊆T T ⊆P
(cP⊆cT)

Content of MP Ck(MP) M cP

Content of TT=<T, T> Ck(TT) T cT

Truth-content of MP TCk(MP) M∩T cP∩cT

Falsity- (or false)
content of MP

FCk(MP) M−T cP−cT
(T −P)

Missing content of MP MCk(MP) T −M cT −cP

Claim of data theory
RS=<R, S>, assumed
to be accepted!

Clk(RS) R⊆T T ⊆S
(cS⊆cT)

Content of RS Ck(RS) R cS

Accepted-content of MP ACk(MP) M∩R cP∩cS

Rejected-content of MP RCk(MP) M−S cP−cR

Maximally possible
falsity-(or false)
content of MP

MPFCk(MP) M−R cP−cS

Maximally possible
missing content of MP

MPMCk(MP) S−M cR−cP

side-independent symbols for them. The sides are indicated by m and p, respectively,
with variable k.

The new notions enable conceptually plausible refined definitions of ‘at least as
close to the truth’ and ‘at least as successful’. The idea behind ‘MP* is refined at
least as close to the truth as MP’ is that MP* includes and excludes items at least as
adequately asMP.More precisely, first, MP* at least matches up toMP in representing
TT in the following sense: for each individual claim ofMP and each related individual
claim of TT MP* has an individual claim that is at least as good in representing that
claim of TT as that of MP does, and, second, all extra, but mistaken, claims of MP*
are useful in matching up to MP in the indicated way. In still other words,<M*,
P*>characterizes, by M* and cP*, respectively, what is to be included and excluded,
i.e. T and cT, at least as precisely as<M, P>does by M and cP.

For all clauses in the following definition there will first be given a general verbal
formulation, followed by a general formalization, and finally a side-wise decomposi-
tion.

Definition 3:
MP*=<M*, P*> is refined at least as close to the truthTT=<T,T> asMP=<M,
P> iff

(i) Likeness-clauses (or refined TC-clauses)
For either side k in {m, p}, for all x in the k-content of MP and for all z in the
k-content of TT if x and z are comparable then there is y in the k-content of MP*
such that y is between x and z, i.e.

123



1608 Synthese (2020) 197:1601–1625

(i) ∀k∈{m,p}∀x∈Ck(MP) ∀z∈Ck(TT) r(x,z) → ∃y∈Ck(MP*) s(x,y,z)⇔
M(i) ∀x∈M ∀z∈T r(x,z) → ∃y∈M* s(x,y,z)
&
P(i) ∀x∈cP ∀z∈cT r(x,z) → ∃y∈cP* s(x,y,z)

(ii) Usefulness-clauses (or refined FC-clauses)
For either side k in {m, p}, for all y in the extra false k-content of MP* (relative
to MP) there are x in the false k-content of MP and z in the missing k-content of
MP such that y is between x and z, i.e.
(ii) ∀k∈{m,p}∀y∈FCk(MP*)−FCk(MP)∃x∈Ck(MP)∃z∈MCk(MP)s(x,y,z)

⇔
M(ii) ∀y∈M*−(M∪T) ∃x∈M−T∃z∈T−M s(x,y,z)
&
P(ii) ∀y∈cP*−(cP∪cT) ∃x∈cP−cT ∃z∈cT−cP s(x,y,z)

It is easy to check, using the minimal s-conditions, that the Likeness-clauses are
stronger than the basic TC-clauses and that they reduce to these clauses when s is
trivial: s(x, y, z) iff x=y=z. Strictly speaking, we prefer to call the refined TC-clauses
Likeness-clauses, for the term TC-clause is problematic in the refined case, for the
clauses deal not only with, for example, at the M-side M∩T and M* ∩T, in the same
way as the basic clauses, but also with M−T and M* in general. In the next section
we will give a table with their decomposition, showing in detail that and how they are
stronger than the basic clauses.

Note that, in contrast, the refined FC-clauses, which we also call Useful-
ness-clauses, are weaker than the basic FC-clauses and reduce to these clauses
when s is trivial. However, they are not only trivially entailed by them, since
M*− (M∪T) and cP*− (cP∪cT) become empty, but they remain to deal only
with the (extra) falsity-content (of MP* relative to MP). Hence, they can rightly
be called refined FC-clauses. For this reason, we will continue to also speak of
the refined TC- and FC-clauses, despite the somewhat misleading term ‘refined TC-
clause’.

Turning to the definition of ‘MP is refined at least as successful as MP*’ the idea
is that MP* includes and excludes accepted items at least as adequate as MP.

Definition 4:
MP*=<M*, P*> is, relative to RS=<R, S>, refined at least as successful as
MP=<M, P> iff

(i)RS Accepted Likeness-clause (refined AC-clause)
For either side k in {m, p}, for all x in the k-content of MP and for all z in the
k-content of RS if x and z are comparable then there is y in the k-content of
MP* such that y is between x and z, i.e.
(i)RS ∀k∈{m,p}∀x∈Ck(MP) ∀z∈Ck(RS) r(x,z) → ∃y∈Ck(MP*) s(x,y,z)⇔

M(i)RS ∀x∈M ∀z∈R r(x,z) → ∃y∈M* s(x,y,z)
&
P(i)RS ∀x∈cP ∀z∈cS r(x,z) → ∃y∈cP*s(x,y,z)
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(ii)RS Accepted Usefulness-clause (refined RC-clause)
For either side k in {m, p}, for all y in the extra rejected k-content of MP*
(relative to MP) there are x in the maximally possible false k-content of MP
and z in the maximally possible missing k-content of MP such that y is between
x and z, i.e.
(ii)RS ∀k∈{m,p}∀y∈RCk(MP*)−RCk(MP)∃x ∈MPFCk(MP)∃z ∈MPMCk(MP) s(x,y,z)

⇔
M(ii)RS ∀y∈M*−(M∪S) ∃x ∈M−R ∃z ∈S−M s(x,y,z)
&
P(ii)RS ∀y∈cP*−(cP∪cR)∃x ∈cP−cS∃z ∈cR−cP s(x,y,z)

Nowwe can summarize clause (i)RS by:MP* at least matches up toMP in representing
RS, and clause (ii)RS by: all extra, but mistaken, items of MP* are useful in matching
up to MP in representing RS.

Again, it is easy to check, using the minimal s-conditions, that the Accepted
Likeness-clauses are stronger than the basic AC-clauses, enabling again a plausible
decomposition, and that they reduce to these clauses when s is trivial. Similarly, it
is easy to check that the Accepted Usefulness-clauses are weaker than the basic RC-
clauses and that they reduce to these clauses when s is trivial. Terminologically, similar
remarks apply: a preference to speak of Accepted Likeness-clauses instead of refined
AC-clauses, but no preference between speaking of Accepted Usefulness-clauses and
refined RC-clauses.

As announced, the new, more conceptual, approach suggested the above presented
revised definition of ‘refined at least as successful’, such that we can now (easily) prove
that the two notions are ideally related, the first entails the second unconditionally.

Theorem 2 Refined Success Theorem
If MP*=<M*, P*> is refined at least as close to TT as MP=<M, P>and assuming
correct data RS=<R, S> then MP* is, relative to RS, refined at least as successful
as MP*.

Let us conclude this section by formulating the remaining methodological steps
to complete the refined theory of nomic truth approximation10: assuming that a new
theory is at a certainmoment refinedmore successful than the old one, propose and test
the ‘refined empirical progress hypothesis’: the new theory (is and) remains refined
more successful than the old one. Assuming that after ‘sufficient confirmation’ this
‘refined empirical progress hypothesis’ is accepted (for the time being), argue on
the basis of a reconstruction of the way in which experiments have been done and
the Refined Success Theorem, that the ‘default explanation’ for this case of refined
empirical progress is the hypothesis that the new theory is refined closer to the truth
than the old one, i.e. that this is a case of refined truth approximation. Finally, conclude
abductively (for the time being) that the new theory is refined closer to the truth than
the old one, i.e. that refined truth approximation has been achieved.

It should be noted that, different from the basic and even more from the quantitative
case, the comparative relations of ‘closer to’ and ‘more successful’ in the refined

10 The main lines are the same as those for the basic account.
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sense presuppose very special conditions and hence will seldom hold in full strength.
However, in the context of ‘idealization and concretization’ such relations may well
hold as we will argue in Sect. 5.11 But first we will summarize the above in a number
of tables.

4 A summary in tables

In this section, the main points of the previous section will be summarized in some
handsome tables, leaving out the side-independent conceptually motivated formula-
tions, and hence we can return to the<M, P>- and<R, S> -representation of theories
and evidence. Table 2 summarizes the claims that<M*, P*> is basically and refined at
least as close to the truth as<M, P>.

Again, as in the basic and quantitative cases, it is interesting to combine, in Table 3,
the refined TC- and FC-clauses, in particular for maximal theories.

Table 4 summarizes the claims that<M*, P*> is basically and refined at least as
successful as<M, P>, relative to<R, S>.

Finally, Table 5 shows how the (Accepted) Likeness-clauses can be decomposed
in the corresponding basic clauses and extra clauses dealing with the (maximally
possible) falsity-content.

5 Idealization and concretization

In this section12 it will be pointed out that ‘idealization and concretization’ is a special
kind of (potential) refined truth approximation. This is illustrated by Van der Waals’s
theory of gases. Moreover, it is indicated how idealization and concretization can
function as a strategy in validity research around ‘interesting theorems’. The present
section is restricted to inclusion theories (‘pure theories of models’), that is, theories
that only specify classes of models, hence theories of the form<M, ∅>, which notation
will be reduced to M.

5.1 Truth approximation by (idealization and) concretization

Concretization or factualization, as it has been presented by the Polish philoso-
phers Władysław Krajewski (1977) and Leszek Nowak (1980), is basically a relation
between real-valued functions. Hence, let us assume that the conceptual possibili-
ties (structures) to be considered contain one or more real-valued functions, with or
without one or more real constants. Structure y is called a concretization of x and
x an idealization of y, indicated by con(x, y), if y transforms, directly or by a limit
procedure, into x when one or more constants occurring in y assume the value 0. It is

11 A formal way to increase the applicability of the refined approach is by setting up a quantitative refined
version by introducing a distance function between the conceptual possibilities. In Kuipers (2000, Chap. 12)
this has been done assuming maximal theories. We leave it as a challenge to do so for two-sided theories.
12 This section is heavily based on Section 10.4 of (Kuipers 2000).
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Table 5 Decomposition of the (accepted) likeness-clauses

Likeness-clauses:
decomposition in basic
TC-clause & extra clause

∀x∈M ∀z∈T r(x,z) →
∃y∈M* s(x,y,z)

≡
M∩T ⊆M*∩T
&
∀x∈M − T ∀z∈T r(x,z) →

∃y∈M* s(x,y,z)

∀x∈cP ∀z∈cT r(x,z) →
∃y∈cP* s(x,y,z)

≡
cP∩cT ⊆cP*∩cT
&
∀x∈cP − cT ∀z∈cT r(x,z) →

∃y∈cP* s(x,y,z)

Accepted Likeness-clauses:
decomposition in basic
AC-clause & extra clause

∀x∈M ∀z∈R r(x,z) →
∃y∈M* s(x,y,z)

≡
M∩R⊆M*∩R
&
∀x∈MR∀z∈R r(x,z) →

∃y∈M* s(x,y,z)

∀x∈cP ∀z∈cS r(x,z) →
∃y∈cP* s(x,y,z)

≡
cP∩cS⊆cP*∩cS
&
∀x∈cPcS ∀z∈cS r(x,z) →

∃y∈cP* s(x,y,z)

easy to see that it is a necessary condition for con (x, y) that x and y have the same
domain-sets. Moreover, it is easy to check that con is reflexive, antisymmetric and
transitive. In a subsection to follow, the example of a Van der Waals gas model will
be presented as a concretization of an ideal gas model.

Concretization is primarily a binary relation, but for our purposes, we need the
plausible ternary version leading to a concretization triple: ct(x, y, z) if and only if
con(x, y) and con(y, z).Wewill assume ct as the underlying notion of structurelikeness.
The relation of relatedness based on ct is easily seen to be equivalent to con. Note
that we have here a clear example in which relatedness is not symmetric, but directed.
Note also that ct is trivially decomposable. It is easy to check that ct satisfies the
minimal s-conditions of being centered, centering and conditionally left and right
reflexive. Moreover, it is antisymmetric (central, left and right) and it satisfies all
conceivable kinds of transitivity, e.g., left: if ct(w, x, z) and ct(x, y, z,) then ct(w, y, z).
The relation of more truth-(theory-) likeness, M* is closer to T (M**) than M, based
on this ternary relation, will be indicated by MTLct(M, M*, T) and MTLct(M, M*,
M**), respectively.

Our next task is to define the binary relation of concretization between theories.
Again we will do this as weakly as possible: M* is a concretization of M and M an
idealization of M*, indicated by CON (M, M*), if and only if all members of M have
a concretization inM* and all members of M* have an idealization inM. At first sight,
one might think that the second clause should be strengthened to: and all members
of M* have a unique idealization in M. However, this would exclude e.g., ‘inclusive’
concretization triples<M, M*, M**) with M as subset of M* and M* of M** and
CON (M, M*) and CON(M*, M**).

It is trivial that CON is reflexive and transitive. However, contrary to what one
might expect, it need not be antisymmetric. But sufficient for antisymmetry of CON
(M, M*) is that M and M* are convex (i.e., closed for intermediates). Here convexity
of M amounts to: if con(x, y) and con(y, z), i.e., ct(x, y, z), and x and z are in M, then
y is in M.
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The ternary relation of concretization of theories we define again as weakly as
possible: CT(M, M*, M**) if and only if CON(M, M*) and CON(M*, M**). It
is easy to check that CT has the properties of being centered, centering for con-
vex sets, and conditional left and right reflexivity, antisymmetry (central, left, right)
for convex sets and all conceivable forms of transitivity. As a consequence, CT(M,
M*, M**) is for fixed M** a partial ordering as far as convex theories are con-
cerned.

The main question is whether or under what conditions CT(M, M*, M**) implies
MTLct(M, M*, M**). It turns out that some conditions have to be added to guaran-
tee this implication, but there are some alternative possibilities. We are, of course,
primarily interested in conditions on M and/or M* or their combination, for in the
crucial case we do not dispose of M**, i.e., T. One sufficient combination of condi-
tions is the following: M* should be convex as well as mediating, the latter condition
being defined as: if z is a concretization of x and if x has a concretization in M*
and z an idealization in M*, then M* also provides an intermediate for x and z; or,
more formally, if con(x, z) and if there are y and y’ in M* such that con(x, y) and
con(y’, z), then there is y” in M* such that con (x, y”) and con(y”, z), i.e., ct(x, y”,
z).

Note that both conditions only concern M*. Although being mediating is a more
specific property than convexity, it is not a very restrictive condition in the present
context. Note also that it follows that any M can be an idealized starting point for
successive concretization. However, the starting point M will usually even be closed
for idealizations in the sense that if x in M and con(x’, x), then x’ is in M. It is easy
to check that this trivially implies that M is convex and mediating.

Let us formally state the main claim: it is (easily) possible to prove the following
Double Concretization (DC- )Theorem: if CT(M, M*, M**) and if M* is convex
and mediating, then MTLct(M, M*, M**). In words: the intermediate theory of a
concretization triple is closer to the third than the first, assuming that it is convex and
mediating.

We may define stronger versions of concretization triples such as CT#(M, M*,
M**)=CT(M, M*, M**) and M* convex and mediating or even CT##(M, M*,
M**)=CT#(M, M*, M**) and M and M** also convex. According to the DC-
Theorem, both are special kinds of more theorylikeness. Moreover, it has already
been mentioned that CT(M, M*, M**) is antisymmetric (in the central sense) as soon
as the three sets are convex; hence CT## is an antisymmetric special type of theory-
likenes.

A direct consequence of the DC-Theorem is that, if theory M* is a concretization
of theory M, if M* is convex and mediating, and if the true set of nomic possibil-
ities T is a concretization of M*, then M* is closer to the truth than M. This may
be called the Truth Approximation by Double Concretization (TADC-)Corollary—a
major goal of this section—viz., to show that and in what sense concretization may
be a form of truth approximation. All conditions for truth approximation can be
checked, except, of course, the crucial heuristic hypothesis that T is a concretiza-
tion of M*.

To obtain ‘good reasons’ to assume that the required heuristic hypothesis that T
is a concretization of M* is true, it is important that the concretization has some
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type of (necessarily insufficient) justification, of a theoretical or empirical nature,
suggesting that the account of the new factor is in the proper direction. In this respect,
it is plausible to speak of theoretical and/or empirical concretization. The famous
case of Van der Waals to be presented in the next subsection evidently is a case
of theoretical concretization, followed by empirical support. The same holds true for
Sommerfeld’s concretization of the ‘old quantum theory’, presented in (Kuipers 2000,
Chapter 11).

5.2 Application to gas models

The transition from the theory of ideal gases to Van der Waals’s theory of gases has
frequently been presented as a paradigmatic case of concretization. The challenge of
any sophisticated theory of truthlikeness hence is to show that this transition can be a
case of truth approximation.

The Law of Van der Waals takes, informally speaking, two factors into account
that are neglected in the ideal gas law: the mutual attraction of the molecules and the
volume of the molecules. The idea is that these two concretizations are successive
steps in the direction of the truth. To specify this in some formal detail, we start by
formulating the relevant models in elementary structuralist terms. (S, n, P, V, T) is
a potential gas model (PGM) if and only if S represents a set of thermal states of n
moles of a gas and P, V and T are real-valued functions defined on S and representing
pressure, volume and (empirical absolute) temperature, respectively.

Specific gas models are PGM’s satisfying an additional condition. The ideal gas
models (IGM) satisfy in addition P(s)V(s)=nRT(s) for all s in S, or simply PV=nRT,
where R is the so-called ideal gas constant. For gas models with mutual attraction
(GMa) there is a non-negative real (number) constant a, within a certain fixed interval,
such that (P+ (n2a/V2))V=nRT. For gas models with non-zero volume of molecules
(GMb) there is a non-negative real constant b, within a certain fixed interval, such that
P(V−nb)=nRT. Finally, in the case of Van der Waals gas models (WGM) there are
non-negative real constants a and b, within the previously mentioned two intervals,
such that (P+ (n2a/V2))(V−nb)=nRT.13

Note first that it is a necessary condition for con(x, y) (x and y in PGM) that x and
y have the same set of thermal states (Sx=Sy). Note also that IGM/GMa/GMb/WGM
have been defined such that they are all convex and mediating.

It is easy to check that IGM, GMa and WGM as well as IGM, GMa and WGM
constitute a concretization triple: an element of WGM transforms into an element
of GMa/GMb by substituting the value 0 for b and a, respectively. The resulting
elements of GMa and GMb transform into elements of IGM by substituting 0 for a
and b, respectively.

Due to the DC-Theorem, it follows that GMa and GMb are both refined closer to
WGM than IGM.14 As a consequence, if WGM represented the true set of nomically

13 Note that the two factors become negligible when the volume is very large.
14 Note that GMa and GMb are mutually not comparable relative to IGM, e.g. GMb is refined not closer
to GMa than IGM.
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possible gases, GMa and GMb would be refined closer to the truth than IGM. Finally,
and most importantly, the TADC-Corollary guarantees that WGM is refined closer to
the truth than IGM, assuming the heuristic hypothesis that the true set of nomically
possible gases is on its turn a concretization of WGM.

5.3 Validity research

Scientific research is not always directed at describing the actual world or charac-
terizing the set of nomically possible worlds. It may also primarily aim at proving
interesting theorems for certain conceptual possibilities. Hamminga (1983) showed
this for neo-classical economics, in particular the theory of international trade.

Let a certain domain of research and a vocabulary have been chosen, and hence a
universe of conceptual possibilities U, let T indicate the (unknown) subset of nomic
possibilities, and let Rmf indicate the (equally unknown) subset (of T) of as a matter
of fact realized (nomic) possibilities, possibly containing just one element, the actual
possibility.

Let IT indicate an ‘interesting theorem’, that is some insightful claim, of which it is
interesting to know whether it is true for the nomic possibilities, or at least the realized
possibilities. Let VAL(IT), or simply VAL, indicate the set of conceptual possibilities
for which IT can be proven. VAL is called the domain of (provable) validity of IT, and
it is assumed to be not yet explicitly characterized.

A frequently occurring type of scientific progress is the following. Suppose that it
was proven earlier that IT holds for M, i.e., that M is a subset of VAL. The new result
is that M*, which includes M, is also, like M, included in VAL. Due to concentricity
of the basic and refined theorylikeness notions, it follows in this case that M* is closer
to VAL than M both in the basic and the refined sense (MTLb/ MTLr(M, M*, VAL).
The ultimate purpose of this type of research was to find out whether T, or at least
Rmf, is a subset of VAL. Of course, the larger VAL has been proven to be, as in the
described case, the greater the chance, informally speaking, that Rmf or even T are
subsets of VAL. However, simply enlarging the proven domain of validity does not
necessarily go in the direction of Rmf and T. For this purpose, concretization is the
standard strategy.

Let it first have been shown thatM is a subset of VAL, and later that a concretization
M* of M (CON(M, M*), M need not be a subset of M*) is also a subset of VAL. It
then trivially follows that MTLr(M, M∪M*, VAL). If, moreover, M* is convex and
mediating, it follows from the heuristic hypothesis that M* is a concretization of T
(CON(M*,T)), using theDC-Theorem, thatMTLr(M,M*,T). Hence, we have proven
IT for a set M* which is more similar to T than M, which increases the chance that IT
holds for T, ipso facto for Rmf.

A complex form of validity research concerns the case that IT is not fixed, but that
realistic factors are successively accounted for. Formally, this is also a form of con-
cretization. IT2 is called a concretization of IT1 if VAL(IT2)=VAL2 is a concretization
of VAL(IT1)=VAL1.

Now suppose that IT1 is proven for M. The relevant heuristic strategy is to look for
a concretization M* of M and a concretization IT2 of IT1 such that IT2 can be proven
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for M*. The heuristic hypotheses are that T is a concretization of M* and that there is
a concretization IT* of IT2 such that IT* holds for T and hence for Rmf. This makes
sense because, if M* and IT2 are convex and mediating, it not only follows that M*
is closer to T than M, but also that VAL2 is closer to VAL(IT*) than VAL1. Hence, in
this case we are not only on the way to T but also to IT*.

The concretization of the theory and corresponding theorem of Modigliani and
Miller concerning the capital structure of firms by Kraus and Litzenberg turns out to
be a perfect example of this kind of approximation of a provable interesting truth. It
is presented in (Kuipers 2000, Chapter 11).

6 Some evaluation

Although the refined definitions are in our view rather plausible in themselves, we like
to conclude with the evaluation of the refined approach with regard to some general
principles and objections that have been discussed in the literature, notably by Graham
Oddie. In this section we will freely speak of the sets M and P and the theories M and
P.

6.1 The value of content for truths

Let us start with the highly desirable principle of the (positive) value of content for
truths (Oddie 2016), which amounts in terms of Ilkka Niiniluoto (1987, p. 230) to:
among true theories truthlikeness should covary with logical strength. So, let<M*,
P*>be true and stronger than<M, P>, hence also true. That is, we assume:M⊂M*⊆T
andT⊆P*⊂P. It is easy to check that the basic definition satisfies it:M*�T⊂M�T
andP*�T⊂P�T. It is also easy to check that the usefulness-clauses (ii) of the refined
definition (see Definition 3, Sect. 3) are empty (e.g. M*− (M∪T)=∅), and hence that
they are trivially satisfied by true theories, and even in both directions.Moreover,<M*,
P*>satisfies the likeness-clauses (i) relative to<M, P>. E.g. for x in M, and hence in
M*, and z in T, if r(x, z) then s(x, x, z) holds because structurelikeness (s(x, y, z))
is supposed to be conditionally left reflexive. Hence<M*, P*> is also refined at least
as close to the truth as<M, P>. Finally, a simple Venn-diagrammatic representation
shows that when s(x, y, z) is based on Euclidean distances the likeness-clauses will not
be satisfied in the other direction, in which case<M*, P*> is definitely closer to the
truth than<M, P> in the refined sense. It is even difficult to see how s(x, y, z) could be
defined such that this is not the case. In sum, both the basic and the refined definition
satisfy the (positive) value of content for truths.

6.2 The (dis-)value of content for falsehoods

Regarding false theories and strength, let me first quote Oddie (2016):

“[H]ow might strength determine verisimilitude [truthlikeness] amongst false
theories? There seem to be just two plausible candidates: that verisimilitude
increases with increasing strength (the principle of the value of content for false-
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hoods) or that it decreases with increasing strength (the principle of the disvalue
of content for falsehoods). Both proposals are at odds with attractive judgements
and principles.”

It is indeed also very interesting to elaborate the way in which the refined approach
works outwith respect to these twopossible principles. Let usfirst note that in particular
the first principle, the value of content for falsehoods, is also known as the so-called
child’s play objection of Pavel Tichý (Tichý 1974, p. 157, fn. 2) and Oddie (Oddie
1981), for it seems to enable truth approximation by just adding new claims to false
theories. It might seem that this objection can be made at the P-side of the basic case.
An analysis in terms of truth- and falsity-content focused on our particular setup of
nomic theories will be very illuminating. Let theory P be false, hencewith a non-empty
falsity-content cP−cT =T −P, with the extreme case T −P=T, i.e. T and P do not
overlap. Now it is easy to check that if we strengthen P to P* (P*⊂P) such that the
falsity-content remains the same (the FC-constant condition), which is guaranteed in
the extreme case, then the truth-content increases: cP∩cT ⊂cP*∩cT. Hence, under
the FC-constant condition, it is a child’s play to come basically closer to the truth and is
‘the value of content’ highly plausible for false theories. Of course, not knowingT, we
can’t guarantee the FC-constant condition. In other words, basic truth approximation
is only a child’s play when we know the nomic truth. But this is difficult to see as an
objection. It will be no surprise that the refined definition keeps this property. Both
refined clauses are trivially satisfied, the likeness-clause by the assumption that s(x, y,
z) is conditionally left symmetric, the usefulness-clause by being empty.

At theM-side, we have of course a similar situation.Whenwe strengthen (the claim
of) M to M* (M⊂M*) such that the non-empty falsity-content remains constant
(∅ ��M−T =M*−T) we increase the truth-content and hence come basically and
refined closer to the truth. Again, in practice we have no control over the condition
and so the child’s play is idle.

There is another type of child’s play that is even more interesting, in particular
at the M-side. When M is false (M−T ��∅) and we weaken (the claim of) M to
M# (M# ⊂M) such that the truth-content remains constant (TC-constant condition)
(M∩T=M# ∩T) the falsity-content decreases (M# −T ⊂M−T) and hence may
even become empty. According to the basic definition such weakening is straightfor-
ward truth approximation; again a child’s play assuming the non-realistic TC-constant
condition. Of course, the reverse side of this is that strengthening (the claim) of M,
under constant truth-content, has a negative effect on truth approximation. Hence, it
illustrates the principle of the (negative value or) disvalue of content for falsehoods
when TC is kept constant. At the P-side we obtain the parallel situation by assuming
P false (cP−cT =T −P ��∅) and weakening it (P⊂P#) such that its truth-content
remains constant (cP# ∩cT=cP∩cT). The falsity-content will then decrease (T −P#

⊂T−P) and hence basic truth approximation is obtained. Again, strengthening under
this condition brings us further from the truth.

It is important to note that we may already conclude that Oddie’s suggestion in the
quotation that either the principle of the value of content for falsehoods or the principle
of the disvalue of content for falsehoods will hold in general is mistaken. For in the
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Table 6 M# =Mod((p1⇔¬p2) & ¬p3) is basically closer to T=Mod(((p1vp2)⇒p3) than
M=Mod((p1vp2) & ¬p3), but M is refined closer to T than M#

Propositional
constituents/models

p1 p2 p3 M: models of
(p1vp2) & ¬p3

M#: models of
(p1⇔¬p2) & ¬p3

T: models of
(p1vp2)⇒p3

s1 =p1 & p2 & p3 1 1 1 0 0 1

s2 =¬p1 & p2 & p3 0 1 1 0 0 1

s3 =p1 & ¬p2 & p3 1 0 1 0 0 1

s4 =p1 & p2 & ¬p3 1 1 0 1 0 0

s5 =¬p1 & ¬p2 & p3 0 0 1 0 0 1

s6 =¬p1 & p2 & ¬p3 0 1 0 1 1 0

s7 =p1 & ¬p2 & ¬p3 1 0 0 1 1 0

s8 =¬p1 & ¬p2 & ¬p3 0 0 0 0 0 1

basic case we have seen that the first principle holds when the falsity-content is kept
constant and the second when the truth-content is kept constant.

The interesting point regarding the second principle is that this child’s play is now
blocked by the refined definition, and for good reasons. This is best illustrated by an
example at the M-side. We might give up a wrongly included possibility, which is
however more similar to a non-included nomic possibility than a remaining wrongly
included possibility.Here is an example. Assume three elementary propositions p1, p2,
p3 and let

T=Mod((p1vp2)⇒p3)={s1, s2, s3, s5, s8}
M=Mod((p1vp2) & ¬p3)={s4, s6, s7}
M# =Mod((p1⇔¬p2) & ¬p3)={s6, s7}

where the right side, in terms of propositional constituents, can be read of fromTable 6.
We will assume the basic s-relation among constituents, see the beginning of Sect. 3.

It is easy to check thatM# andM are false, even such that neitherM# norM overlaps
with T, and that M# is a proper subset of M. Hence M# is basically closer to T than
M.

According to the refined definition (Definition 3, Sect. 3) we get however the
reverse. The claim that M is refined at least as close to T as M# amounts to (simplified
by neglecting relatedness, for all propositional constituents of the same elementary
propositions, i.c. p, q and r, are related):

Likeness clause: M(i) ∀x∈M #∀z∈T ∃y∈M s(x,y,z)
Usefulness clause: M(ii) ∀y∈M−(M#∪T) ∃x ∈M#−T∃z ∈T−M#s(x, y, z)

It is easy to check that this holds in the case at hand: M(i) is almost trivial due to the
simplifiedminimal s-condition of left symmetry, s(x, x, z), andM# being a subset ofM;
for M(ii) it is crucial, in view of the fact that M− (M# ∪T)={p1 & p2 & ¬p3}={s4},
that e.g. s(s6, s4, s1)= s(¬p1 & p2 & ¬p3, p1 & p2 & ¬p3, p1 & p2 & p3) holds, where
s6 is in M# −T and s1 in T −M#.

M is refined even closer to T than M#, for the reversed first clause

M(i)rev ∀y∈M ∀z∈T ∃x∈M#s(x, y, z)
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does not hold, for e.g. neither s(s4, s6, s1) nor s(s4, s7, s1) holds, whereas at least one
of them would be required.

Of course, at the P-side, a similar case could illustrate that weakening of a false P
such that the truth-content remains the same results in basic truth approximation, but
in general not in refined truth approximation, on the contrary. Instead of spelling this
also out for nomic truth approximation, we like to turn to actual truth approximation.

6.3 Application to actual truth approximation

It is interesting to apply the above findings to actual truth approximation, i.e. the case
that T ={t} where ‘t’ represents the actual truth. Actual truth approximation is in the
first place a matter of comparing structures (see Kuipers 2000, Section 7.1), e.g. in
terms of s(x, y, t). But at the level of comparing sets of structures it is also possible.

Regarding the positive value of content for truths at the P-side the situation is
simple. The truth- and strength condition together (T ⊆P*⊂P) entail for T={t} that
t∈P*⊂P, from which it is easy to see that the truth-content increases and the falsity-
content remains empty, leading to basic and refined actual truth approximation. At the
M-side, the conditionM⊂M*⊆T entails for T={t} the unique case ∅=M,M*={t},
which is a trivial case of basic and refined actual truth approximation.

Let us now turn to the child’s play of strengthening a false theory while keep-
ing the falsity-content constant. At the P-side, P being false amounts to: t /∈ P.
By strengthening P to P* we keep this falsity-content automatically the same, viz.
{t}, (cP−c{t}={t}−P={t}={t}−P*=cP*−c{t}), but increase the truth-content
(cP∩c{t}=cP−{t}⊂cP*∩c{t}=cP*−{t}). Hence, basic and refined truth approx-
imation result. At the M-side, the strengthening while keeping the falsity-content
constant can only be done by just including t (i.e. M*=M∪{t}), again resulting in
basic and refined truth approximation. Hence, not surprisingly, also basic and refined
actual truth approximation respect the principle of the value of content for falsehoods
in the present setup, assuming constant falsity-constant, hence again only useful on
condition of knowing the actual truth.

Remains to study the child’s play of actual truth-approximation byweakeningwhile
keeping the truth-content constant. To be sure, on the M-side the case of actual truth
approximation may seem at first sight somewhat weird in general as soon as M is
not a singleton set {m}, because the claim of M amounts to M⊆{t}, that is, in terms
of ‘individual claims’, for all m ∈ M m= t. Hence, formally speaking, the claim is
inconsistent, assuming the structures in M are really different.15 But it is nevertheless
interesting to see what happens when we weaken a false theory (M−{t} ��∅, M#

⊂M) with constant truth-content (M∩{t}=M# ∩{t}), hence t is either in both M and
M# or in neither of the two. Of course we get basic actual truth approximation. Again
by way of a propositional example we will show that this is not necessarily so in the
refined approach.16 Assuming two elementary propositions, p1 and p2, let

T={p1 & p2}={t}

15 Note that this is not so in the nomic case, because then we do not know the size of T.
16 The example was provided to me by Gerhard Schurz and initiated in fact this whole section.
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M=Mod(¬p1v¬p2)={¬p1 & p2, ¬p1 & ¬p2, p1 & ¬p2}=M# ∪{p1 & ¬p2}
M# =Mod(¬p1)={¬p1 & p2, ¬p1 & ¬p2}

It is easy to check that (the claim of) M# is a weakening of (that of) M, with both an
empty truth content, and hence that T�M# ⊂T�M, that is, M# is basically closer to
T than M.

According to the refined definition (again neglecting relatedness, for all proposi-
tional constituents of the same elementary propositions, i.c. p1 and p2, are related)
we get however the reverse. The claim that M is refined at least as close to T as M#

amounts in the case of actual truth approximation to:

Likeness clause:
M(i) ∀x∈M#∀z∈T ∃y∈M s(x,y,z) ≡∀x∈M#∃y∈M s(x,y,t)

Usefulness clause:
M(ii) ∀y∈M−(M#∪T) ∃x ∈M#−T∃z ∈T−M#s(x, y, z) ≡∀y∈M−M#∃x ∈M#s(x, y, t)

It is easy to check that this holds:

Ad M(i): the two possible cases follow from the minimal s-conditions, notably s(x,
x, z),
Ad M(ii): for the only case y=p1 & ¬p2 we take x=¬p1 & ¬p2, for, of course,
s(¬p1 & ¬p2, p1 & ¬p2, t).

M is refined even closer to T than M#, for the reversed first clause

M(i)rev ∀y∈M ∀z∈T ∃x∈M#s(x, y, z) ≡∀y∈M ∃x∈M#s(y, x, t)

does not hold for y=p1 & ¬p2.
Hence, the example shows that the refined account does not respect the principle of

the disvalue of content for falsehoods.At theM-side, it is blocked as a general principle,
for just dropping a mistaken structure is not a step forward when that structure is
relatively close to the true structure compared to some other structures.

At the P-side the relevant conditions are not applicable in the case of actual truth
approximation. P false amounts to {t}−P# ��∅, weakening to P⊂P# and constant
truth-content to cP∩c{t}=cP# ∩c{t}, i.e. cP−{t}=cP# −{t}. Since t is not in P#,
hence not in P, because P⊆P#, the last condition can only be satisfied by P=P#, hence
not by P⊂P#.

In sum, it is possible that the refined account of nomic and actual truth approx-
imation does not only refine the basic account in the sense that it decides cases of
incomparability; it may also disagree with the basic account.17 This is plausible since,
as we have seen (Sect. 3), the first clause is a strengthening and the second aweakening
of the corresponding basic clauses. Hence, the question arises, which account should
be preferred in a case of conflict? In my view the refined version should in general be
preferred, because from the ‘scientific common sense’ point of view the basic account
is rather naïve and coarse. However, there may be special, e.g. propositional, cases
where the basic approach is to be preferred.

17 Recall that the refined definition reduces to the basic one for trivial similarity (i.e., s(x, y, z) iff x=y=z).
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Table 7 Survey of the scores of the basic and refined account regarding Oddie’s principle of the (positive)
value of content for truths and the principle of the (positive) value of content for falsehoods versus the
principle of the (negative or) disvalue of content for falsehoods

The value of
content /
strengthening

N.B. actual:
T={t}

Truth-/falsehood-and
strength-condition

Extra condition Effect for truth
approximation

Basic Refined

For truths

Nomic T ⊆P*⊂P Positive Positive

Actual t ∈ P*⊂P Positive Positive

Nomic M⊂M*⊆T Positive Positive

Actual ∅=M, M*={t} Positive Positive

For falsehoods, with constant falsity-content

Nomic T −P ��∅, P*⊂P T −P=T −P*a) Positive Positive

Actual t /∈P, P*⊂P (⇒t/∈P*) no extra condition
needed

Positive Positive

Nomic M−T ��∅, M⊂M* M−T=M*−T Positive Positive

Actual M−{t} ��∅, M⊂M* M−{t}=M*−{t}b) Positive Positive

For falsehoods, with constant truth-content

Nomic T −P ��∅, P*⊂P cP*∩cT=cP∩cT Negative Blocked

Actual {t}−P ��∅, P*⊂P cP*∩c{t}=cP∩c{t}c) n.a. n.a.

Nomic M−T ��∅, M⊂M* M∩T=M*∩T Negative Blocked

Actual M−{t} ��∅, M⊂M* M∩{t}=M*∩{t} Negative Blocked

Remarks: (a) guaranteed when P and T do not overlap, (b) together, the conditions can only be satisfied
when t does not belong toM andM*=M∪{t}, (c) since t is not in P, hence not in P* if P*⊆P, this condition
can only be satisfied by P*=P

Table 7 summarizes the results of Sects. 6.1, 6.2 and 6.3. It is important to note that,
in order to get strengthening as the uniform action in the table, in the last main row
(dealing with strengthening of falsehoods with constant truth-content) P* and M* are
the stronger versions of P and M, respectively, whereas in the text P# and M# were the
weaker versions.

6.4 Some other principles

Ilkka Niiniluoto rightly conjectured (personal communication) that the refined def-
inition satisfies the qualitative version of Graham Oddie’s (2016) ‘uniform distance
principle’, that is, assuming propositional constituents x and y: “if x and y are equally
distant from t, then also their disjunction x v y is at the same distance.” Qualitatively
it amounts to the claim that s(x, y, t) and s(y, x, t) together imply (using the mini-
mal s-condition s(x, x, z)) that, e.g.{x, y} is refined equally close to {t} as {x} and
{y}, respectively. Assuming general relatedness,18 it also holds in general, and hence

18 For all x and z in U r(x, z), that is, for all x and z in U there is y in U such that s(x, y, z). Hence, the in
Sect. 6.3 given general versions of M(i) and M(ii) apply.
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Table 8 Survey of the principles: uniform distance, Pareto, and difference

Principle Condition Consequence Basic Refined

Uniform
distance

Actual s(x, y, t) & s(y, x, t) {x, y} ect {t} as {x}/{y} Trivial Yes

Nomic M ect T as M* M∪M* ect T as M/M* Trivial Yes

Pareto Actual s(x, y, t) Mx/y lct {t} as M Trivial Yes

Nomic for all z∈T s(x, y, z) Mx/y lct T as M Trivial Yes

Difference Actual s(x, y, t) and/or s(y, x, t) iff Mx/y lct {t} as M
and/or M lct {t} as Mx/y

Trivial Yes

Nomic for all z∈T s(x, y, z) and/or
for all z∈T s(y, x, z)

iff Mx/y lct T as M and/or
M lct T as Mx/y

Trivial Yes

ect equally close to, lct at least as close to
NB: the used minimal s-conditions are suppressed

in nomic cases, for e.g. on the M-side: if M and M* are refined equally close to T,
then M∪M* is as well. Again, s(x, x, z) and s(x, z, z) are crucial. For this kind of
reasons I have proposed in debate with Thomas Mormann (see Kuipers 2000, p. 256)
the strong boundary condition for ‘refined closer to’ that the size of M* should be
between that of M and T. This is never satisfied by M∪M* when T={t}. I have
also considered there to liberate the condition to: the size of M* should be between
that of M∩T and M∪T. However, this would not prevent the first case: M={x},
M*={y}, T={t}, as is easy to check. Instead of seeing this as a problem, one might
as well agree with Oddie’s principle, with the consequence that no further condition
is needed.

It is interesting to check whether the definition of ‘refined closer to’ satisfies the
other two principles proposed by Oddie, at least if we assume general relatedness.
The ‘Pareto principle’ reads (in adapted symbols): if y is at least as close to the actual
world (t) as x is, i.e. s(x, y, t), then the result of substitution of y for x in M, i.e.
(M∪{y})−{x}=def Mx/y, is at least as close to the truth as M is. It is easy to check,
using s(x, x, t), that this principle also holds in general, and hence in nomic cases: if
y is refined at least as close to all z in T as x is, i.e. s(x, y, z), then Mx/y is at least as
close to T as M is. To be sure, the condition is in a qualitative setting rather strong,
but quantitatively (in terms of distances) not at all.

Finally, Oddie submits the ‘difference principle’, which is typically quantitative
(again in adapted symbols): the difference in closeness to the truth {t} of M and Mx/y

is some function or other of at most three factors: the distance of x from the actual
world t, the distance of y from the actual world, and the size of M. In a qualitative
reading it amounts to the claim that the question whether Mx/y is at least as close to {t}
as M, and/or the other way around, or whether they are incomparable, only depends
on whether s(x, y, t) or s(y, x, t) holds, respectively. It is easy to check that this holds
as well. The general version, hence including nomic cases, also holds. It amounts to:
the question whether Mx/y is refined at least as close to T as M, and/or the other way
around, or whether they are incomparable, only depends on whether either s(x, y, z)
or s(y, x, z) holds for all z in T.
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Table 8 summarizes the principles dealt with in the present subsection. That they
trivially hold in the basic case is easy to check in view of the fact that the refined
definitions reduce to the basic ones when s(x, y, z) is trivial (s(x, y, z) iff x=y=z).

It is just a matter of tedious checking that all three general principles also hold if
relatedness is taken into account. Regarding the P-side, in view of the nature of the
principles and the ‘mirror-symmetric’ correspondence between the two sides, they
hold here as well.

In sum, on the basis of this section we may conclude that the refined approach
deals in a sophisticated way with a number of principles and objections that have been
discussed in the literature.
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