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Abstract. This paper tackles the problem of inference in normative systems where norms

concerning actions and states of affairs appear together. A deontic logic of actions and

states is proposed as a solution. It is made up of two independent deontic logics, namely

a deontic logic of action and a deontic logic of states, interlinked by bridging definitions.

It is shown at a language and a model level how an agent should look for norms to follow

in a concrete situation. It is pointed out that such specific norms are obtained by finding

the most specific obligation and the most general prohibition. They are to be derived from

all norms applicable to the situation by using the principles of the logic presented in this

paper.
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1. Introduction

‘Quidquid agis, prudenter agas et respice finem’1—this famous quote from
Ovidius points out two aspects of actions important from the deontic point
of view—their course and their result.2 Before we concentrate on them, let us
focus on the distinction between general and specific norms. General norms
appear in the sources of norms, such as legal documents, agreements, orders,
informal social regulations, etc. They are external in relation to agents and
are usually formed in an abstract way. Specific norms are connected with
a particular situation of an agent. They are the result of applying (by an
agent himself or by a judge) all general norms the agent should comply with
in a certain situation. The distinction is present in the theory of law [10]
and has recently been discussed in the context of deontic logic in [3], where
the notion of obligation is used instead of the notion of specific norm.

1 Whatever you do, do it cautiously, and with the end in mind.
2 This paper is a revised and expanded version of a paper entitled ‘A Deontic Logic of
Actions and States’ published in the Proceedings of DEON 2014 [17]. More precisely,
the essential part of the formal theory is preserved but some formal drawbacks of the
conference paper are eliminated, the intuitive description of the formal theory is amended,
examples are added for clarity, more explicit justification for some claims is presented and
less important issues are skipped.

Presented by Jacek Malinowski; Received June 14, 2016

Studia Logica (2017) 105: 915–942
DOI: 10.1007/s11225-017-9716-1 c© The Author(s) 2017. This article is an open access publication

http://crossmark.crossref.org/dialog/?doi=10.1007/s11225-017-9716-1&domain=pdf


916 P. Kulicki, R. Trypuz

Among general norms there are those that concern obligated, recom-
mended, permitted or prohibited actions (a-norms) and those that concern
desired, preferred, accepted or forbidden states (s-norms) (see e.g. [2,21]).

In every case a norm of conduct is a pronouncement which points out
for the addressee a more or less generally defined conduct in any, or
under specified, circumstances. Hence, it sets him the duty of under-
taking a specified action, and refraining from any other discordant
with it. It also sometimes happens that a norm points out for an
addressee a duty of bringing about some state of affairs without any
indications of the manner in which this state of affairs is to be attained
[21, chapter viii].

Both kinds of norms can be present in the same normative systems. For
example, in [2] the authors point out both kinds of norms in the Spanish
constitution. Further examples of the coexistence of action and state norms
can also be found in everyday situations. Let us consider an agent signing a
task contract to carry out construction works. In the task contract there is a
short description of the desired product, i.e., a state of affairs which is to be
attained. At the same time the work activities are regulated, among others,
by safety standards which limit all possible actions that lead to the desired
effects to those which are safe. For instance during the construction works:
it is obligatory to use designated passages when moving from one place to
another (never take hazardous shortcuts!), it is forbidden to throw objects,
etc. In deontic logic the two types of norms are not usually present together
within formal systems. Often they are regarded as linguistic variants of the
same normative reality. We are interested in a deontic logic in which we can
express norms of these two kinds. There are some works that tackle this
problem such as [6,19] and recently [7], but we are not fully pleased with
those solutions mostly because of the fact that they do not really separate
the deontic properties of actions from the properties of states. An approach
closer to ours is presented in [4,13–15], where a two-sorted propositional
language is used to deal separately with the properties of states and the
properties of actions. However, the deontic properties of actions and the
properties of states are connected only very loosely in those works.

By actions we mean action types (not tokens)—see [20]. From the lin-
guistic point of view we consider general names referring to actions. Names
of actions are arguments of the operators of obligation and prohibition.
Together with the deontic operators they make up a-norms. Similarly we
deal with states. We do not refer directly to particular states, but we use
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propositions to describe them. Each proposition can be then connected to all
the states in which it is true. Propositions are arguments of the operators of
obligation and prohibition. Together with the deontic operators they make
up s-norms.

We are interested in two kinds of reasoning about norms. One is a deriva-
tion of new general norms from the general norms already accepted. Derived
norms are usually obtained by a combination of norms existing within the
system. We want to be able to combine two a-norms together and two s-
norms together, but also a-norms with s-norms.

The other kind of normative reasoning we are interested in is discovering
specific norms for a particular agent and situation in a normative environ-
ment. Ignoring a sophisticated ontological distinction between general and
specific norms we attempt to find the most specific norm, in the case of
obligation and the most general norm, in the case of prohibition; they are
to be derived from all the norms applicable to the situation. Specific norms
understood in such a way are formally of the same type as general norms.
That allows us to discuss both kinds of norms in one formal system. We are
interested in the possibility of expressing a-norms and s-norms in one frame-
work acknowledging the fact that they are ontologically different. A separate
question is whether the logical laws governing reasoning about them are the
same or different. In our opinion even if the former is the case, to understand
their mutual relation they should be separated.

Most of our effort is directed towards building a model in which all kinds
of just mentioned norms can be defined. Two logics: deontic logic of states
and deontic logic of actions corresponding to the elements of the model are
then introduced. Finally on the basis of this logics operators connecting the
two logics are defined. It shows up that the defined operators are adequate
with respect to the constructions connecting a-norms and s-norms in the
model (see Observation 2).

In Section 2 we introduce a model and our notion of norm within that
model. In Section 3 we define a language and its interpretation in the model,
and in Section 4 we introduce a logic.

2. Frames for Deontic Actions and States and a Bridge Between
Them

2.1. Deontic Frames for Actions and States: DAF and DSF
2.1.1. Deontic Action Frame DAF . A deontic action frame with sets
of legal and illegal actions was described in Segerberg’s [12]. His results
have been systematized in [16,18] and his deontic action frame has been
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extended by a set of required actions (corresponding to obligation oper-
ator in the language). The deontic action frame is a structure: DAF =
〈AF , ILLa,REQa〉, where AF is an action frame being a triple3: AF =
〈W, E ,Step〉. W is a nonempty, finite set of states. States are characterized
by propositions, that are true in them. We assume that there are no two
different states with the same set of propositions true in both of them. In
other words we can always separate worlds with the use of propositions. E
is a nonempty, finite set of atomic action types used for labelling transitions
between states. The same label can be used for labelling different transitions
so the labels can seen as a cross-situation identification of actions. Step is
a nonempty finite set of transitions which we also call action steps. Every
element of Step is a triple 〈w1, w2, e〉, where w1, w2 ∈ W are initial and
final states respectively and e ∈ E is a label of an action which causes the
transition from w1 to w2. The subsets of Step represent arbitrary action
types.

Thus each action type consists of transitions that are additionally
described by the labels denoting different modes of acting by which these
transitions are accomplished. It is also worth stressing that one and the
same set of transitions (if abstracted from the labels) can make up two dif-
ferent action types. For instance, one may step down a ladder or jump from
its top, reaching exactly the same end state (while starting from the same
initial step). The transition itself is then exactly the same, but still one may
say that only the first action is permitted (see also Example 1 further in this
section).

We can model various operations on action types by set theoretical oper-
ations. Joint (parallel) realization of two action types can be captured by
intersection, choice—by sum and refraining from action type—by its com-
plement. Note that the labelled system allows us to name only those action
types that can be constructed as a sum of atomic action types from E .

We do not impose any restrictions on the frame AF . Thus, it may happen
that on the one hand, we have an indeterministic execution of an action,
e.g. 〈w1, w2, e〉 ∈ Step and 〈w1, w3, e〉 ∈ Step (w2 �= w3), and, on the other
hand, that the same transition is a result of the execution of two different

3Indeed, an action frame can be seen as a labelled transition system as described in
[14]. In the action model we do not really take advantage of the information about the final
state of the transitions. We work only on the information about labels as actions that can
take place in a particular state. This point of view was presented and studied in [12,16].
One can also understand the action frame presented in this section as a one-state action
frame. We shall, however, need the full structure introduced here to combine an action
frame with state frame in order to obtain the final model.
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actions, e.g. 〈w1, w2, e1〉 ∈ Step and 〈w1, w2, e2〉 ∈ Step (e1 �= e2). However,
transitions with the same start, end and label are identical.

ILLa and REQa are defined as functions from W to 22
Step

, so sets of
action types, each represented as a set of steps, are their values. ILLa(w)
is a set of illegal (forbidden) actions in w, whereas REQa(w)—a set of
required (obligatory) ones in w. We assume that each element of ILLa(w)
and REQa(w) encodes an a-norm which comes from a legal document, social
practice, etc. or is inferred from other norms. Note that each situation has
its own set of norms.

We use sets of sets of transitions instead of sets of transitions in a way
analogous to the neighborhood semantics of modal logic. That is because of
the properties of obligation which we could not describe in a simpler model.

Because of the indeterministic character of our system, we formulate the
following constraint: whenever 〈w,w1, e〉 belongs to some A in ILLa(w) or
REQa(w), then for any w2, 〈w,w2, e〉 also belongs to A. We will call it a
‘deontic action consistency’ constraint. It says that on the level of deontic
description of actions we do not consider their results. Actions are prohibited
or obligatory as actions, no matter what their results are.4

We believe, following natural language and legal practice [21], that the
approach to prohibition and obligation should be different. When we pro-
hibit an action type we prohibit the execution of every action token denoted
by the general action name and when we prohibit bringing about a state
described by a proposition we prohibit all its concrete realizations. On the
one hand, sub-action or sub-proposition (viz. an action or proposition refer-
ring to a subset of action tokens or states) of a prohibited action or propo-
sition is also forbidden. On the other hand, the obligation concerning an
action name or proposition is fulfilled if any action token or state fulfilling
the specification is realized. However, obligations should not be overgener-
alized, i.e., the fact that a set of action tokens or states is obligatory does
not entail that its supersets are also obligatory.5 In our opinion the over-
generalized obligations are not only less ‘useful’ than the original ones but
they are also sometimes wrong. More detailed description and justification
of those intuitions can be found in [18]. They can be expressed by imposing

4A similar constraint is present in [13,14] under the name of the absence of ‘moral luck’.
We are not quite sure whether the constraint formalizes what philosophers call moral luck
so we prefer not to use the name.

5For example the Ross paradox is a formula which overgeneralizes obligation and causes
a loss of information. That is the reason why we intend to avoid it in our system.
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Figure 1. Any way of performing a forbidden action A is forbidden. B

and C are more specific then A, so we infer that they are forbidden too

Figure 2. Prohibited actions can be aggregated. B and C being forbid-

den make up their sum (the action described as a choice between them)

A, so we infer that A is forbidden too

ideal conditions on the set ILLa(w) and the principles of agglomeration,
economy and trimming which we define below.

For any w ∈ W and A,B ∈ 2Step, ILLa(w) satisfies the three conditions
bellow making up ILLa(w) to be an ideal (in the algebraic sense)—see Fig-
ures 1 and 2 for constraints (1) and (2) respectively. An impossible action, by
its nature, cannot be carried out. Following Segerberg (see [12]) we assume
it is forbidden.6

A ∈ ILLa(w) & B ⊆ A =⇒ B ∈ ILLa(w) (1)

A ∈ ILLa(w) & B ∈ ILLa(w) =⇒ A ∪ B ∈ ILLa(w) (2)

∅ ∈ ILLa(w) (3)

Taking into account the introduced properties of ILLa, in the case of
forbidden actions we could talk about a set of illegal action steps instead
of sets of sets. (This is not so in the case of required actions and the set
REQa). Loosely speaking we can say that an action step that belongs to

6Symbol ‘=⇒’ is a metalanguage implication.
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Figure 3. An intersection of two obligatory actions is also obligatory. It

is because one has to comply with all their duties

Figure 4. The forbidden ways C of realizing the obligatory action A

should be excluded during practical reasoning. As a result an agent

obtains a more specific (than A) action B which is obligatory and is

free from illegal executions

an illegal action is illegal itself. Moreover, the set of all illegal steps is the
‘largest’ illegal action.

Now we move on to the characterization of obligation. We start with the
so-called agglomeration principle (see Figure 3):

A ∈ REQa(w) & B ∈ REQa(w) =⇒ A ∩ B ∈ REQa(w) (4)

We also accept the following principles, that we called in [18] trimming
and economy, respectively7:

A ∈ REQa(w) and B ∈ ILLa(w) =⇒ A ∩ −B ∈ REQa(w) (5)

A ∈ REQa(w) =⇒ −A ∈ ILLa(w) (6)

Figures 4 and 5 and their captions explain the meaning of the two afore-
mentioned principles. Trimming and agglomeration principles express an
idea of finding the most specific obligation that complies with all norms of
the system.

It is worth noticing that agglomeration (4) follows from trimming (5) and
economy (6) (see [18]).

7−A in the formulas stands for Step\A.
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Figure 5. Whatever cannot be carried out with an obligatory action

should be forbidden

Let us stress here that obligation does not ‘go up’: for A,B ⊆ Step, such
that A ⊂ B, it is possible that A ∈ REQa(w) and B �∈ REQa(w). Moreover,
for three actions such that A ⊂ B ⊂ C we can have: A ∈ REQa(w), B �∈
REQa(w) and C ∈ REQa(w).

The above restrictions on the model define a logic that is in a sense
minimal. Certainly more constraints can be added. Specifically we do not
postulate deontic consistency in any form, thus the following properties:

∅ �∈ REQa(w) (7)

A ∈ REQa(w) → A �∈ ILLa(w) (8)

are absent. That is because we want to stay open for the merge of inconsis-
tent sets of norms.

Another possible extension would be to say that doing something is oblig-
atory8:

Step(w) ∈ REQa(w). (9)
Moreover, we could get closer to the standard deontic logic by accepting

the principle of generalization of obligation:

A ∈ REQa(w) & A ⊆ B =⇒ B ∈ REQa(w) (10)

resulting in the presence of the Ross formula among theses.

2.1.2. Deontic State Frame DSF . A deontic state frame is a structure

DSF = 〈W,REQs, ILLs〉
where W is a set of states (as in AF above), REQs and ILLs are functions:
W −→ 22

W
. REQs(w) and ILLs(w) are sets of required and illegal sets of

states (propositions) in w, respectively.

8By Step(w) we mean the set of all transitions that start in w.
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Again, as in the case of the deontic action frame, each state has its own
deontic description. Thus sets of states (state propositions) are not oblig-
atory or forbidden by themselves but from the point of view of another
(current or possible) state.9 They represent s-norms and are counterparts of
REQa(w) and ILLa(w), satisfying the same formal conditions (Figures 1,
2, 3, 4, 5 can be applied to s-norms as well as to a-norms). For the sake of
simplicity we adopt the same constraints for the deontic state frames as for
the deontic action frames. We do it because we are mainly interested in the
way the two types of norms combine in the model and in the correspond-
ing logic. The reason for considering the two kinds of norms separately is
not that they are necessarily ruled by different principles but that they are
ontologically different.10 We believe that even if the logics we combine are
isomorphic the operation of combining them is by itself interesting.

However, the properties of the frames could be different. Exploring the
differences would require a separate study, here we just point out a few pos-
sibilities. In the deontic action language it makes sense to accept formula (9),
i.e., to state that Step(w) ∈ REQa(w)—some action is obligatory (an agent
is obliged to do something). This formula can reasonably characterize some
situation w. But it has been questioned at least since von Wright’s Standard
Deontic Logic that tautology is obligatory, i.e., that W ∈ REQs(w). More-
over, we may change the local deontic description of actions or of states into
a global one which would further differentiate the approach towards the two
kinds of norms. Yet another difference may occur when we introduce the
operator of sequential composition of actions. Then the two fragments of
our logic would have to deal with different sets of operators.

2.2. Deontic Action and State Frame DASF
A deontic action and state frame is a structure combining the two above
frames: DAF and DSF :DASF = 〈AF , ILLa,REQa, ILLs,REQs〉.

Having two deontic sets concerning actions (ILLa,REQa) and two sets
concerning states (ILLs,REQs), we intend to link them together to find all
the possible combinations of actions and states regulated by norms.

On the basis of the connections between a-norms and s-norms we shall
provide later new definitions of required and illegal actions taking into
account the norms on states. Before that let us discuss some example.

9The connection to the neighborhood semantics is clearer here than in the case of a
deontic action frame.

10A similar approach is accepted in Sergot’s nC+ framework [4,13–15].
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Example 1. A contractor signed a contract to reconstruct a flat. The desired
state of the flat is specified in the contract. The contract is a source of
obligation for the contractor. The obligation concerns bringing about the
state of affairs specified in the contract. Other sources of norms for the
constructor are the safety regulations for construction work. For the sake of
simplicity let us present it at a very general level as a prohibition to perform
hazardous (unsafe) actions.

The model of possible scenarios is depicted in the figure. There are four
states: three states (w2, w3 and w4) can be reached from the initial state w1

when the deadline for the contracted work comes. The states are character-
ized by the following atomic propositions: deadline came, work done, acci-
dent happened. In the initial state none of the atomic propositions are true.
In all other states deadline came is true. w2 is a state in which the work is
not done and an accident has not happened. w3 is a state in which the work
is done and accident has not happened. w4 is a state in which the work is not
done and an accident has happened. Atomic action types used to label the
transitions are safe action and unsafe action. We assume (optimistically)
that avoiding unsafe actions protects from accidents so there is no action
step labelled safe action leading to state w4, in which accident happened is
true. We also assume, for the sake of simplicity, that when an accident hap-
pens the work cannot be finalized, so there is no state in which work done and
accident happened are both true. A normative description of the situation is
defined by two norms, one a-norm: it is forbidden to perform unsafe actions
(unsafe action in the figure) and one s-norm: it is obligatory to achieve the
contracted state of affairs—set of all states in which work done is true.

The means to bring about states from X starting from w is a set of action
steps beginning in w and resulting in any w′ in X. Formally:

means(w,X) � {s ∈ Step:∃e ∈ E , w′ ∈ X s.t. s = 〈w, w′, e〉} (11)

For example in Figure 6 means(w1,¬work done) would be an action type
consisting of the following action steps11: 〈w1, w2, safe action〉,
〈w1, w2, unsafe action〉 and 〈w1, w4, unsafe action〉.

It is also worth noting that means(w,X) in w is always the most general
action type which can be used to reach states from X. From definition (11)
it also follows that the operation means(w, X) is normal in the sense that

11For the simplicity reason we use a proposition (e.g. ¬work done) to represent a set
of states; of course we mean the set of states where the proposition is true.
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Figure 6. An example of a contract to reconstruct a flat

it distributes over operators inside it12:

means(w,W\X) = Step\means(w, X) (12)

means(w,X ∪ Y ) = means(w,X) ∪ means(w, Y ) (13)

means(w,X ∩ Y ) = means(w,X) ∩ means(w, Y ) (14)

The model may be constructed in such a way that sets of states are not
compatible with sets of actions in the sense that for some sets of state
X there may be no action type e ∈ E such that means(w, X) equals
to the set of all 〈w,w′, e〉, such that w′ ∈ X. That is why combining
the two models indeed expands their expressive power. Just mentioned
means(w1,¬work done) can be taken as an example.

A set REQa
s of required actions in the context of s-norms is defined as

follows:

Definition 1.

Z ∈ REQa
s(w) �

(i) ∃A ∈ REQa(w), ∃X ∈ ILLs(w) (Z = A ∩ means(w,−X)) or

(ii) ∃A ∈ ILLa(w), ∃X ∈ REQs(w) (Z = −A ∩ means(w, X))

(15)

The former condition in Definition 1 states that action Z is required in
w if there exists a pair (a-required action A, s-illegal state of affairs X) such
that Z is a subset of A containing steps that do not lead to s-illegal states
from X. The latter condition states that Z consists of means to achieve
s-required states from X which does not belong to a-illegal action type A.

12Henceforth, we shall also use a simpler version of this formula of the following form:
means(w, −X) = −means(w, X).
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Both conditions express the same intuition as the trimming principle defined
separately for a-norms and s-norms. Now, however, the premisses are mixed:
one of them is an a-norm and the other—an s-norm.

Let us come back to Figure 6 from the example. In Example 1 the set of
states in which work done is true is required. That set is a singleton {w3},
thus we have that {w3} ∈ REQs. Likewise unsafe actions are forbidden,
thus the set of all action steps labelled unsafe actions is an element of ILLa.
These two facts allow us to generate the following set of action steps that
belongs to REQa

s :

means(w1, work done)\{〈w1, w,unsafe action〉:w ∈ W}
= {〈w1, w3, safe action〉}

Observation 1. From either of the conditions (i) or (ii) from Definition 1
(in the presence of economy principle for a-norms and s-norms) it follows
that Z ∈ REQa

s(w) if:

(iii) ∃A ∈ REQa(w), ∃X ∈ REQs(w) (Z = A ∩ means(w, X)).

So Z is required in w if there is a pair (a-required action A, s-required state
of affairs X) such that Z is a set of action steps from A that are a means
to bring about X (starting from w).

Condition (iii) is a way to express the agglomeration principle with an
a-norm and an s-norm as premises. As in the case of agglomeration within
the system of a-norms (and s-norms) agglomeration can be derived from
trimming and economy. Thus if economy principle were not accepted, then
condition (iii) would have been added to Definition 1.

The conditions in Definition 1 do not exclude the fact that some actions
in REQa

s(w) lead to illegal states in ILLs and that some required states
in REQs(w) are achieved by illegal actions in REQa(w). Why is it still so?
Because there may be other norms applicable to the state besides those
expressed by the conditions. This does not mean that the system is incon-
sistent. It just may be the place for applying trimming principle once more.

Loosely speaking the set ILLa
s consists of actions which are a-illegal or

are means to bring about s-illegal states. Formally, action types (and not
action steps) are illegal here, so the definition takes the following form:

Definition 2.

ILLa
s(w) � {Z ⊆ Step:∃A ∈ ILLa(w), ∃X ∈ ILLs(w),

(Z = A ∪ means(w,X))} (16)
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Figure 7. The only norm for the initial state w1 be a state norm pro-

hibiting state w2 (∅ is forbidden in each model). Thus REQa(w1) =

REQs(w1) = ∅, ILLa(w1) = {∅}, and ILLs(w1) = {{w2}, ∅}

ILLa
s and REQa

s satisfy most conditions analogous to the one enforced
on ILLa and REQa , i.e., formulas (2)–(6).13 The only exception is the
counterpart of condition (1) which counterpart takes the following form:

A ∈ ILLa
s(w) & B ⊆ A =⇒ B ∈ ILLa

s(w) (17)

By Definition 2 A is a set of action steps constructed as a sum of two sets,
let us call them A′ and B′, such that A′ ∈ ILLa(w) and B′ = means(w, X),
where X ∈ ILLs(w). Since B is a subset of A it contains only elements of
A′ and B′. Thus we know that all action steps from B are in an informal
sense ‘illegal’. However, we also have to be able to construct B in the way
presented in Definition 2, that is a sum of an illegal action and means to
an illegal state. That is not always possible. Let us consider the example
presented on Figure 7.

Let A = {〈w1, w2, a1〉, 〈w1, w2, a2〉}. By Definition 2 we have that A ∈
ILLa

s(w). However B = {〈w1, w2, a1〉}, being a subset of A, is not an element
of ILLa

s(w) (note that means(w1, {w2}) = {〈w1, w2, a1〉, 〈w1, w2, a2〉}).
In our opinion the fact that the counterpart of (1) does not hold in our

model is an inessential peculiarity of ILLa
s that does not undermine its role

of the counterpart of ILLa in the combined model. The intended meaning of
ILLa

s does not change: any member of ILLa
s is a set of illegal transitions and

behaving according to any of the transitions from such a set is prohibited.
Thus, in general subsets of members of ILLa

s should also be in ILLa
s . The

only problem is that we cannot define such sets as B from the example
within the language we use within the model.

2.3. Specific Norms in the Model

As we have mentioned in the introductory section, one of the main purposes
of this paper is to derive specific norms from general a-norms and s-norms.
Such specific norms describe what an agent should and should not do in a
particular situation. We want to achieve that goal by finding the most precise

13Proofs are in the “Appendix”.
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general norm. We presented a similar solution for deontic action logic in [8]
and now we extend it to the system including s-norms.

We shall express our most specific norm in the form of the largest set
ILLa

s(w). First let us notice that the set REQa
s(w) may be empty. Then

the only norms to be considered are prohibitions. Moreover, in the case of
non-empty REQa

s(w), due to the obligation economy principle (6) the most
specific (thus the most informative) norm expressed as obligation has its
prohibited counterpart. Due to conditions imposed on the set ILLa

s(w) the
largest element is also the sum of all the elements:

⋃ ILLa
s(w).

It may happen that the choice of norms is such that
⋃ ILLa

s(w) equals
Step. In that case the system of norms in inconsistent in the sense that
one cannot comply with it. In the opposite case Step\ ⋃ ILLa

s(w) gives a
complete recipe defining what an agent should do.

One of the benefits of the solution is the possibility of defining strong
permission (or free choice permission—see [12,18,19]) within the model. As
it is argued in [19] the notion is useful since, given a norm expressed with
the use of strong permission, an agent can freely choose between the actions
regulated by the norm and be sure that, whatever the choice is, it is legal
and that no other norms or regulations have to be taken into account.

Since
⋃ ILLa

s(w) collects all illegal steps, its complement, i.e., Step\⋃ ILLa
s(w) collects all legal steps. Thus we can define the set LEGa

s(w)
similarly to REQa

s(w) and ILLa
s(w), collecting norms that can be expressed

as strong permissions.

LEGa
s(w) � 2Step\ ⋃ ILLa

s (w) (18)

The set LEGa
s(w), defined as a powerset,14 has the properties analogous to

(1) and (2) as it is expected for strong permission; cf. [12,18].
If the set REQa

s(w) is not empty, then:

Step\
⋃

ILLa
s(w) =

⋂
REQa

s(w) (19)

and we can define the set of legal steps as
⋂ REQa

s(w). The proof of (19)
goes as follows:

Proof 1.

Step\
⋃

ILLa
s(w) ⊆

⋂
REQa

s(w) (20)

Assume that X �∈ ⋂ REQa
s(w). Since REQa

s(w) is not empty there exists
A ∈ REQa

s(w) such that X �∈ A. By (6) −A ∈ ILLa
s(w). Further, because

14Any powerset is an ideal in the algebraic sense.
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X ∈ −A, X ∈ ⋃ ILLa
s(w). Thus, X �∈ Step\⋃ ILLa

s(w).
⋂

REQa
s(w) ⊆ Step\

⋃
ILLa

s(w) (21)

By (4)
⋂ REQa

s(w) ∈ REQa
s(w). If

⋂REQa
s(w) = ∅, then (21) is triv-

ially true. Otherwise, assume indirectly that there exists X such that X ∈⋂ REQa
s(w) and X ∈ ⋃ ILLa

s(w). So there exists A ∈ ILLa
s(w) such that

X ∈ A. Then, by (5)
⋂ REQa

s(w)\X ∈ REQa
s(w). That contradicts with X

being a member of
⋂ REQa

s(w).

In our example from Figure 6 the set REQa
s(w)={{〈w1, w3, safe action〉}}.

Thus
⋂ REQa

s(w) = {〈w1, w3, safe action〉} and
⋃ ILLa

s(w) is its comple-
ment with respect to Step.

Let us finally notice one more property of the set
⋃ ILLa

s(w). Namely, we
can define it without the use of ILLa

s(w), taking into account the following
equation:

⋃
ILLa

s(w) =
⋃

ILLa(w) ∪
⋃

means(w, ILLs(w)) (22)

which follows from the fact that ILLa
s(w) is a set of sums of all pairs

of elements taken from ILLa(w) and means(w, ILLs(w)). Thus, the sets
ILLa

s(w) and REQa
s(w) are not indispensable for defining specific norms.

3. Language for DASF and Its Interpretation

3.1. Language for DASF
The language for DASF is defined in Backus–Naur notation in the following
way:

α ::= ai | 0 | 1 | α | α � α | α � α (23)

ϕ ::= pi | ⊥ | � | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ (24)

ψ ::= α = α | Fa(α) | Oa(α) | Fs(ϕ) | Os(ϕ) | ¬ψ | ψ ∧ ψ (25)

where ai belongs to a finite set of action generators Act0, ‘0’ is the impossible
action and ‘1’ is the universal action, ‘α’—not α (complement of α), ‘α�β’—
α or β (a free choice between α and β); ‘α�β’—α and β (parallel execution of
α and β); ‘α = β’ means that α is identical with β; ‘Fa(α)’—α is forbidden,
‘Oa(α)’—α is obligatory; pi belongs to a set of atomic propositions Atm,
‘⊥’ and ‘�’ represent falsehood and truth, respectively; ‘Os(ϕ)’—the state
of affairs ϕ is obligatory; Fs(ϕ)’—the state of affairs ϕ is forbidden.

For a fixed Act0, by Act we shall understand a set of formulas defined by
(23). Obviously Act0 ⊆ Act. We shall also use ‘→’ and ‘≡’ as implication
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and equivalence respectively, defined in the usual way. Let us notice that
the language is protected from iteration of deontic state operators.15

It should be also stressed that in the language of our logic there are
neither PDL-like nor STIT-like operators expressing execution of actions
or agency (‘sees to it that’). This is because we intended to stay on the
level of deontic operators and restrict our research here to understanding
the mutual dependency between a-norms and s-norms. The PDL-like and
STIT-like operators can be easily added to our framework in the similar way
as shown for instance by Sergot in [13,14]. The key point of our and Sergot’s
approaches (Sergot’s and our models are very similar) is that we treat the
models as more fundamental for analyses of deontic issues. To the language
of logic are added only these operators that are useful for capturing some
aspect of the model that are currently under investigation.

3.2. Interpretation for Actions and Satisfaction Conditions for Deontic
Action Operators

Ia:Act −→ 2Step is an interpretation function for DAF defined as follows:

Ia(ai) ⊆ Step, for ai ∈ Act0 (26)

Ia(0) = ∅ Ia(1) = Step (27)

Ia(α � β) = Ia(α) ∪ Ia(β) (28)

Ia(α � β) = Ia(α) ∩ Ia(β) (29)

Ia(α) = Step\Ia(α) (30)

Thus, every action generator is interpreted as a set of labelled transitions, the
impossible action has no transitions, the universal action is interpreted as a
set of all possible transitions, operations ‘�’, ‘�’ between actions and ‘¯’ on a
single action are interpreted as set-theoretical operations on interpretations
of actions.

For fixed ai ∈ Act0 we also assume that if an action step with a label
e ∈ E belongs to Ia(ai), then all action steps with that label e are elements
of Ia(ai), formally:

∀e (∃w1, w2 〈w1, w2, e〉 ∈ Ia(ai) =⇒ ∀w′
1, w

′
2〈w′

1, w
′
2, e〉 ∈ Ia(ai)) (31)

15Iterated deontic state formulas are often interpreted as norms of higher order. Because
a-norms are never higher-order norms, it makes sense (at least it is not controversial) to
link them with s-norms of the same level. That is the reason we have restricted our s-norms
language.
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Ia is an interpretation of actions insensitive to their preconditions and
takes into account all the possible executions of actions in all the states
in which they can be executed. To make our interpretation related to a
particular state we introduce Ia(w,α) that is a local interpretation of action
(relativized to situation w) and define it as follows:

Ia(w,α) = Ia(α) ∩ exe(w), (32)

where exe(w) � {〈w,w′, e〉:〈w,w′, e〉 ∈ Step} is a set of all action steps
executable in state w.

Satisfaction conditions for the action formulas in any model M =
〈DAF , Ia〉 are defined below:

M, w |= Fa(α) ⇐⇒ Ia(w, α) ∈ ILLa(w)
M, w |= Oa(α) ⇐⇒ Ia(w, α) ∈ REQa(w)
M, w |= α = β ⇐⇒ Ia(α) = Ia(β)

3.3. Interpretation for Propositions and Deontic State Operators

v:Atm −→ 2W is a standard valuation function that assigns a subset v(pi)
of W to each proposition in Atm. We shall think of v(pi) as a semantical
representation of proposition pi in the model, i.e., a set of states in W where
p is true (takes place).

Satisfaction conditions for the state formulas in any model M = 〈DSF , v〉
are defined below:

M, w |= Os(ϕ) ⇐⇒ ‖ϕ‖M ∈ REQs(w)

M, w |= Fs(ϕ) ⇐⇒ ‖ϕ‖M ∈ ILLs(w)

‖ϕ‖M is a truth set of the sentence ϕ in the model M, i.e., a set of states
at which ϕ is true. Formally16: ‖ϕ‖M = {w ∈ W:M, w |= ϕ}.

3.4. A Bridge Between Deontic Actions and States

Now we introduce deontic operators, O and F, combing actions and results.
Both operators have two arguments—an action and a formula being a result
of the action. We shall read them in natural language and understand them
intuitively as follows:

16The following facts about a truth set are known: ‖pi‖M = v(pi), for every pi ∈ Atm;
‖�‖M = W; ‖¬ϕ‖M = W\‖ϕ‖M = −‖ϕ‖M; ‖ϕ ∧ ψ‖M = ‖ϕ‖M ∩ ‖ψ‖M; ‖ϕ ∨ ψ‖M =
‖ϕ‖M ∪ ‖ψ‖M.
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• ‘O(α,ϕ)’—it is obligatory to execute α in such a way that ϕ. For ‘O(α,ϕ)’
to be true one of the three cases should take place (i) α and ϕ are both
obligatory, (ii) α is obligatory and ¬ϕ is prohibited or (iii) ϕ is obliga-
tory and α is prohibited. In other words both α and ¬ϕ are forbidden
and at least one of the two: α or ϕ is obligatory (compare Definition 1
and Observation 1 following it).

• ‘F(α, ϕ)’—it is forbidden to execute α or bring about ϕ. For a particular
behavior to be forbidden it is enough that one out of the two conditions
is fulfilled. However, for ‘F(α,ϕ)’ to be true both α and ϕ should be
forbidden.

Let us come back to our contract scenario (see Example 1). The appro-
priate language is based on the following sets of action generators and atomic
propositions: Act0 = {safe action} and Atm = {works done, accident
happened}. Let unsafe action be the complement of safe action, i.e., unsafe
action = safe action. Within this language we can formulate the follow-
ing example of binary obligation: O(safe action, works done). It is obliga-
tory to execute safe action (undertake only actions that are safe) in such
a way that works done is the case (getting to a situation in which planned
works are done). At the same time we can say that it is forbidden to exe-
cute unsafe action (no matter what its results will be) or bring about acci-
dent happen (no matter by means of which action):

F(unsafe action, accident happened).

Similarly we can say that it is forbidden to execute unsafe action or bring
about ¬works done. In other words it is forbidden that not all actions are
safe or works are not done: F(unsafe action,¬works done).

3.4.1. Formal Definitions for O and F. Formally we can define the new
operators in the following way:

O(α,ϕ) � (Oa(α) ∧ Fs(¬ϕ)) ∨ (Os(ϕ) ∧ Fa(α)) (33)

F(α,ϕ) � Fa(α) ∧ Fs(ϕ) (34)

3.4.2. Satisfaction Conditions for O and F. Let us now turn to the satis-
faction conditions for O and F. The same set of steps can be obtained as an
interpretation of different ‘action-proposition’ pairs taken as arguments of
operators O and F. Moreover, in the case of O we can have the same set of
steps for pairs α, ϕ and β, ϕ even if Ia(α) �= Ia(β) (the same holds for pairs
α, ϕ and α, ψ). That is because we postulate that binary obligations emerge
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as results of trimming obligatory actions by means of their forbidden results
or selecting from permitted actions those which lead to obligatory results.

For example let us take the following binary obligation in the language
from our Example 1: O(safe action, work done ∨ accident happened). Intu-
itively we can understand ‘work done∨accident happened’ as meaning that
unless an accident happens the work is to be completed. The combination of
actions and states representing arguments of that formula in the model gives
us the singleton set {〈w1, w3, safe action〉}. We have already checked that
this set belongs to REQa

s from the example. However, neither argument of
the binary obligation operator is obligatory by itself (as an obligatory action
or an obligatory state). Thus, the binary obligation cannot be valid. This
fact shows us that binary obligation O, as defined in the paper, being closely
related to REQa

s cannot be characterized only by it.
In contrast, a two-argument prohibition holds for any combination of an

action and a proposition whose interpretation is a subset of the interpreta-
tion of a forbidden pair.

Observation 2. The above remarks can be formalized with the use of the
following satisfaction conditions:

M, w |= O(α, ϕ) ⇐⇒ (Ia(w,α) ∈ REQa(w) or ‖ϕ‖M ∈ REQs(w))
& Ia(w,α) ∩ means(w, ‖ϕ‖M) ∈ REQa

s(w)

M, w |= F(α,ϕ) ⇐⇒ (Ia(w,α) ∪ means(w, ‖ϕ‖M)) ∈ ILLa
s(w)

It is easy to check that the definitions of the operators and models make
the conditions in the observation above fulfilled.

4. Logics for Deontic Actions, Deontic States and Their
Combination

4.1. Logics for Deontic Actions and Deontic States

Deontic action logic is expressed in the language defined by conditions (23)
and (25) without Os and Fs operators. Its axiomatization corresponding
with the DAF (see Section 2.1) comes from [18]. It consists of the rule
Modus Ponens of the usual form, the rule of extensionality: if α = β and
Φ(α), then Φ(β) (Φ(α) stands for any formula in which the action name α
appears) and the following axioms:

Boolean algebra for actions from Act. (35)

Fa(α � β) ≡ Fa(α) ∧ Fa(β) (36)
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Fa(0) (37)

Oa(α) ∧ Oa(β) → Oa(α � β) (38)

Oa(α) → Fa(α) (39)

Oa(α) ∧ Fa(β) → Oa(α � β) (40)

Deontic state logic is expressed in the language defined by conditions
(24) and (25) without Oa and Fa operators. Its axiomatization correspond-
ing with the DSF (see Section 2.1) is analogous to the axioms above (of
course extensionality concerns here equivalent formulas and Boolean algebra
is substituted by classical propositional calculus).

4.2. Tautologies for Binary Deontic Operators

The formulas below are theses of the combined deontic logic. They corre-
spond to the axioms of deontic action (state) logic presented above.

F(α � β, ϕ) ≡ F(α,ϕ) ∧ F(β, ϕ) (41)

F(0, ϕ) (42)

F(α,ϕ ∨ ψ) ≡ F(α,ϕ) ∧ F(α,ψ) (43)

F(α,⊥) (44)

O(α,ϕ) ∧ O(β, ϕ) → O(α � β, ϕ) (45)

O(α,ϕ) ∧ O(α,ψ) → O(α,ϕ ∧ ψ) (46)

O(α,ϕ) ∧ F(β, ϕ) → O(α � β, ϕ) (47)

O(α,ϕ) ∧ F(α,ψ) → O(α,ϕ ∧ ¬ψ) (48)

O(α,ϕ) → F(α,¬ϕ) (49)

Our forbiddance operator is strong; as such it is formally similar to van
der Meyden’s strong permission π (see [19]). So, by analogy, our F operator
satisfies the same axiom schemas (see π3. and π5. in [19]).

4.3. Bridging Formulas

Some bridging formulas, connecting the defined operators with the primitive
ones, follow immediately from definitions (33) and (34).

Oa(α) ∧ Os(ϕ) → O(α,ϕ) (50)

O(α,ϕ) → Fa(α) (51)

O(α,ϕ) → Fs(¬ϕ) (52)

O(α,ϕ) → Oa(α) ∨ Os(ϕ) (53)



Connecting Actions and States in Deontic Logic 935

More interesting relations between binary and unary deontic operators
can be formulated for specific systems of norms. Let us, for instance, consider
a system in which there are no a-norms. No action should then be obliga-
tory or forbidden. However, we need to take into account that 0 is always
forbidden by axiom (37). Thus in the normative system of our interest we
have the following axiom:

Fa(α) → α = 0 (54)

and its equivalent: Fa(α) ≡ α = 0. It follows from (54) that only the uni-
versal action 1 can be obligatory in such a system, formally

Oa(α) → α = 1 (55)

However, we may also require the stronger version of (55):

¬Oa(α) (56)

If a-norms are absent, then all norms are s-norms. We can express this
idea by the following formula:

((Fa(β1) → β1 = 0) ∧ ¬Oa(β2)) → (F(α,ϕ) ≡ Fs(ϕ)) ∧ (O(α,ϕ) ≡ Os(ϕ))
(57)

In the weaker version we have:

(Fa(β) → β = 0) → (F(α,ϕ) ≡ Fs(ϕ)) (58)
Similarly, we can define a system in which there are no s-norms.

4.4. Specific Norms in the Logic

4.4.1. Definition of the Most General (i.e., the weakest) Strong Prohi-
bition. To introduce specific norms concerning prohibition into the logic
we shall use an additional operator of the most general forbiddance ‘F#’.
It is not possible to define it within the language, so we use the following
metalanguage definition17:

F#(α, ϕ) � F(α,ϕ) & ∀β, ψ (F(β, ψ) =⇒ β � α & ϕ → ψ) (59)

F#(α, ϕ) indicates a unique pair of arguments defining the space of for-
bidden actions and propositions. Everything that is not described by that
pair is permitted.

17Formula β � α expresses the fact that β is more specific then α. Formally

β � α � α � β = β.
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4.4.2. Axioms for the Weakest Strong Prohibition. ‘F#’ can be also intro-
duced axiomatically provided there is the operator of strong permission (for
which we shall use the symbol P). A Segerberg-style axiomatization of ‘P’
can be formulated as follows:

P(α � β, ϕ) ≡ P(α,ϕ) ∧ P(β, ϕ) (60)

P(0, ϕ) (61)

P(α,ϕ ∨ ψ) ≡ P(α,ϕ) ∧ P(α,ψ) (62)

P(α,⊥) (63)

P(α,ϕ) ∧ F(α,ϕ) → α = 0 ∨ (ϕ ≡ ⊥) (64)

Formulas (60)–(63) are analogous to formulas (41) and (44) for prohibition.
Formula (64) states that no action or state should be at the same time
forbidden and strongly permitted. Formulas (60)–(64) correspond to axioms
defining strong permission in [12,18].

Let us notice that strong permission has some properties that are regarded
as permission paradoxes. However, they are paradoxical only when we want
to connect them with weak permission (lack of prohibition) usually used in
natural language. In the context of strong permission (free choice permis-
sion) they are quite natural.

Then the weakest strong prohibition can be characterized by two postu-
lates expressing the necessary and sufficient conditions for its occurrence:

F#(α,ϕ) → P(α,¬ϕ) (65)

O(β, ψ) ∧ ¬Oa(0) → (O(α,ϕ) ∧ P(α,ϕ) → F#(α,¬ϕ)) (66)

The first postulate is a necessary condition for the weakest strong prohibition
establishing dependence between it and the strong permission. The second
one, the sufficient condition, states that if there exists any obligation in the
normative system and obligations are consistent, then the fact that it is at
the same time obligatory and strongly permitted to execute α in such a way
that ϕ is its result implies that it is forbidden (in the F#-sense) to execute
any action that realizes the complement of α or brings about ¬ϕ as a result.

It is worth noting that formula (66) is a non-quantifier version of the
formula below:

(∃β, ψ O(β, ψ)) ∧ ¬Oa(0) =⇒ O(α,ϕ) ∧ P(α,ϕ) → F#(α,¬ϕ)

Strong prohibition can be also used to obtain the most specific obligation.
Thus, provided there exists any obligation in the normative system and
obligations are consistent, the weakest strong prohibition implies the most
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specific obligation:

O(β, ψ) ∧ ¬Oa(0) → (F#(α,ϕ) → O(α,¬ϕ)) (67)

A similar intuition about the relationship between strong permission and
obligation understood as the most specific norm was presented in [1,5,11].

4.4.3. Specific a-norms and s-norms. The most general prohibition in
a normative system which takes into consideration a-norms and s-norms
can also be introduced in a different way. Let us first recall formula (22) in
which a model-theoretic counterpart of the most general prohibition (ILLa

s)
is defined on the basis of sets of transitions representing prohibited actions
(ILLa) and prohibited states (ILLs). We can now reproduce the same
reasoning on the level of logic.

The most general prohibited action and the most general prohibited
proposition can be defined as follows:

F#
a (α) � Fa(α) & ∀β (Fa(β) =⇒ β � α) (68)

F#
s (ϕ) � Fs(ϕ) & ∀ψ (Fs(ψ) =⇒ ϕ → ψ) (69)

With those definitions we can easily see that the following equation which
establishes a relation between the most general prohibition in general and
the most general prohibited actions and states, holds:

F#(α,ϕ) ≡ (F#
a (α) ∧ F#

s (ϕ)) (70)

5. Conclusions and Further Work

This paper presents a framework that enables reasoning about action and
state norms in a unified manner. Its main achievements are: (1) the model-
theoretic structure for action and state obligations and prohibitions for gen-
eral norms, (2) the notion of specific norms, (3) the binary operators for
obligation and prohibition introduced into the language of logic and their
meaning defined on the basis of two separate simple logics (deontic action
logic and deontic state logic). The defined operators have been proved to be
adequate with respect to the model.

Several ideas can be further developed. Since in our theory we take into
account only one-step actions (transitions), we are interested in extending
it to sequences of actions. As we have shown in [9] the move from one-step
actions to their sequences is far from trivial.

Other important issues of action theory in general, and deontic action
logic in particular, are agency and agents. We do not introduce agents into



938 P. Kulicki, R. Trypuz

our formalism explicitly, but we tacitly assume that actions are carried out
by them. We can extend the system by incorporating agents into names of
basic actions in the way that is analogical to [13,14], where agents’ names
are parts of transition atoms. That would enable us to extend the presented
solutions in a multi-agent system direction.
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Appendix: Proofs of the Properties of DASF

The counterpart of conditions (2)–(6) are the following formulas (71), (73),
(74), (76) and (78) respectively.

A ∈ ILLa
s(w) & B ∈ ILLa

s(w) =⇒ A ∪ B ∈ ILLa
s(w) (71)

1. A ∈ ILLa
s(w) Assumption

2. B ∈ ILLa
s(w) Assumption

3. ∃A′,XA = A′ ∪ means(w,X) & Definition 2, 1
A′ ∈ ILLa(w) & X ∈ ILLs(w)

4. ∃B′,Y B = B′ ∪ means(w, Y ) & Definition 2, 2
B′ ∈ ILLa(w) & Y ∈ ILLs(w)

5. A′ ∪ B′ ∈ ILLa(w) (2), 3, 4
6. X ∪ Y ∈ ILLs(w) (2), 3, 4
7. (A′ ∪ B′) ∪ means(w,X ∪ Y ) ∈ ILLa

s(w) Definition 2, 5, 6
A ∪ B ∈ ILLa

s(w) (72), 7

http://creativecommons. org/licenses/by/4.0/
http://creativecommons. org/licenses/by/4.0/
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For the proof we used the following equation:

(A′ ∪ B′) ∪ means(w,X ∪ Y ) = (A′ ∪ B′) ∪ means(w, X) ∪ means(w, Y )

= (A′ ∪ means(w, X)) ∪ (B′ ∪ means(w, Y ))

= A ∪ B (72)

∅ ∈ ILLa
s(w) (73)

By (3) we have that ∅ ∈ ILLa(w) and ∅ ∈ ILLs(w). By means property we
have also that means(w, ∅) = ∅. Then by Definition 2 we obtain (73).

A ∈ REQa
s(w) & B ∈ REQa

s(w) =⇒ A ∩ B ∈ REQa
s(w) (74)

1. A ∈ REQa
s(w) Assumption

2. B ∈ REQa
s(w) Assumption

3. ∃A′,XA = A′ ∩ means(w,X) & Definition 1, 1
(A′ ∈ REQa(w) & − X ∈ ILLs(w) or
−A′ ∈ ILLa(w) & X ∈ REQs(w))

4. ∃B′,Y B = B′ ∩ means(w, Y )& Definition 1, 2
B′ ∈ REQa(w) & − Y ∈ ILLs(w) or
−B′ ∈ ILLa(w) & Y ∈ REQs(w)

3a. A′ ∈ REQa(w) & − X ∈ ILLs(w) 3: case a
4a. B′ ∈ REQa(w) & − Y ∈ ILLs(w) 4: case a
5. A′ ∩ B′ ∈ REQa(w) (4), 3a, 4a
6. −X ∪ −Y ∈ ILLs(w) (2), 3a, 4a
7. (A′ ∩ B′) ∩ −means(w,−X ∪ −Y ) ∈ REQa(w) Definition 1, 5, 6

A ∩ B ∈ REQa
s(w) (75), 7

(A′ ∩ B′) ∩ −means(w, −X ∪ −Y ) = (A′ ∩ B′) ∩ means − (w, −X ∪ −Y )

= (A′ ∩ B′) ∩ means(w, X ∩ Y )

= (A′ ∩ B′) ∩ means(w, X) ∩ means(w, Y )

= A ∩ B

(75)

The complete proof is a proof by cases. Steps 3 and 4 of the proof are
disjunctions. Thus, there are four cases to be considered. We present one of
them starting from steps 3a and 4a, the remaining three cases are analogous.
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A ∈ REQa
s(w) and B ∈ ILLa

s(w) =⇒ A ∩ −B ∈ REQa
s(w) (76)

1. A ∈ REQa
s(w) Assumption

2. B ∈ ILLa
s(w) Assumption

3. ∃A′,XA = A′ ∩ means(w,X) & Definition 1, 1
(A′ ∈ REQa(w) & − X ∈ ILLs(w) or
−A′ ∈ ILLa(w) & X ∈ REQs(w))

4. ∃B′,Y B = B′ ∪ means(w, Y ) & Definition 2, 2
B′ ∈ ILLa(w) & Y ∈ ILLs(w)

3a. A′ ∈ REQa(w) & − X ∈ ILLs(w) 3: case a
5. A′ ∩ −B′ ∈ REQa (5), 3a, 4
6. −X ∪ Y ∈ ILLs (2), 3a, 4
7. (A′ ∩ −B′) ∩ −means(w,−X ∪ Y ) ∈ REQa(w) Definition 1, 5, 6

A ∩ −B ∈ REQa
s(w) (77), 7

For the proof we used the following equation:

(A′ ∩ −B′) ∩ −means(w,−X ∪ Y )

= (A′ ∩ −B′) ∩ means − (w,−X ∪ Y )

= (A′ ∩ −B′) ∩ means(w,X ∩ −Y )

= (A′ ∩ −B′) ∩ means(w,X) ∩ means(w,−Y ) = A ∩ −B

(77)

As in the previous proof this one is a proof by cases with respect to step
3. The remaining case is analogous.

A ∈ REQa
s(w) =⇒ −A ∈ ILLa

s(w) (78)

1. A ∈ REQa
s(w) Assumption

2. ∃A′,XA = A′ ∩ means(w,X) & Definition 1, 1
(A′ ∈ REQa(w) & − X ∈ ILLs(w) or
−A′ ∈ ILLa(w) & X ∈ REQs(w))

2a. A′ ∈ REQa(w) & − X ∈ ILLs(w) 2: case a
3. −A′ ∈ ILLa(w) & − X ∈ ILLs(w) (6), 3
4. −A′ ∪ means(w,−X) ∈ ILLa

s(w) Definition 2
−A ∈ ILLa

s(w) 4

Again, the remaining case of the proof is omitted as analogous to the pre-
sented one.
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