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Abstract The paper offers a logical characterisation of multi-step actions in the con-
text of deontic notions of obligation, permission and prohibition. Deontic notions for
sequentially composed actions (procedures or instructions) are founded on deontic
notions for one-step actions. The present work includes a formal study of situations
where execution of a multi-step action has been unsuccessful and provides normative
analysis of such actions.

Keywords Deontic action logic · Sequential composition of actions ·
Successful and unsuccessful actions · Logic of procedures

1 Introduction

When complex planned actions are executed, it sometimes happens that they can be
started but cannot be continued until their successful end. In other words, a planned
action, a procedure or an instruction, may be only partially executable if its realisation
meets unexpected obstacles. The subject is especially important since nowadays pro-
cedures govern more and more activities in business, administration and other fields
of social life. People are often assessed on the basis of the way how they follow
procedures rather than the results they achieve.

What should one do when a procedure or an instruction cannot be continued at
some point of its execution? How to make sure that a given procedure does not have
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such a dead end trap? According to our best knowledge those issues have attracted
little attention in action logic and action theory in general so far. They differ from the
problems of standard planning research, where one is primarily focused on organising
actions to achieve “as best as possible some prestated objectives” (Ghallab et al. 2004)
and, on the other hand, from analysing preconditions which make attempts successful,
as in Lorini and Herzig (2008).

In the paper we set up formal tools by means of which those questions can be
expressed, hoping that further research will provide the answers. We found a deon-
tic action logic adequate for the analysis of the execution of actions according to
procedures or instructions.

In the early eighties of the twentieth century, through the works of Segerberg (1982)
and Meyer (1987), deontic logic was brought back to von Wright’s initial idea of
studying deontic notions in close relation to actions. The results of research, described
in the works (Trypuz and Kulicki 2009, 2010, 2011; Trypuz 2014) contributed to a
better understanding of deontic action logic systems, especially those based on finite
Boolean algebra of actions. In the systems in question Boolean algebra is treated as a
simple theory of actions providing a precise meaning for action constructors such as:
action complement, indeterministic choice between actions and parallel execution.We
want to apply the results of that research to setting up the logic of possibly unsuccessful
(partially successful) complex actions.

We want to focus particularly on a sequential composition of actions. We build a
framework where we can analyse a way in which sequences of actions interplay with
Boolean and deontic operators. We are able to express what we find most interesting
and challenging – the deontic characterisation of partially executable complex actions,
for instance, what it means to impose the regulation “you ought to do α and then β” or
“you are allowed to do α and then β”, taking into account the fact that action α can be
carried out in several ways, some of which may exclude the possibility of executing
β afterwards. Thus, we have to start with modelling sequentially composed actions
themselves to obtain their representation adequate for answering the questions.

We derive our theory, directly or indirectly, from the modelling of sequences of
actions, widely known in computer science in the form of such formalisms as Kleene
algebra, propositional dynamic logic (PDL) (in which Boolean and Kleene algebras
are directly or indirectly essential components) or Hoare logic (Kleene 1956; Fischer
and Ladner 1979; Hoare 1969; Hoare et al. 2011). Those systems show their usefulness
in the analysis of algorithms, programs andmore general phenomena of agents’ behav-
iour. They were also connected with deontic notions in e.g. Meyer (1987), Dignum
et al. (1996), Meyden (1996), Castro and Maibaum (2009) and recently Dong and Li
(2103); Prisacariu and Schneider (2012). Especially the article (Prisacariu and Schnei-
der 2012) presents an approach similar to the one adopted in this paper. Its authors,
Prisacariu and Schneider, built a deontic action logic on the foundation of an algebraic
structure which they call synchronous Kleene algebra. The structure combines parallel
and sequential execution of actions and a free choice operator on actions. The deontic
characterisation of complex actions, including multi-step actions, is defined on the
basis of deontic values of simple state-to-state transitions. They introduce an algebra
of actions independent of their model-theoretic structure and then define the model
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for an algebraically defined normal form.Moreover, they combine their deontic action
logic with PDL.

In the present paper we propose an alternative system based on results presented
in Trypuz and Kulicki (2011). We focus on the algebraic description of complex
actions (especially sequentially composed ones) with a special interest in action iden-
tity defined on the basis of a model-theoretic structure for actions.

In most of the recent papers concerning deontic action logic PDL operators are
employed. It is essential for PDL to consider what is true after a given action has
been performed. We have decided not to express our results in that framework for
two reasons. The first reason is that in our considerations we disregard the results
of actions. We are only interested in finding out which complex action (consisting of
many consecutive steps) should start at a certain point and be continued in consecutive
situations. The second reason is simplicity: to solve our scientific problem we decided
to use as simple formal tools as possible.We have found Segerberg-style deontic action
logic from the 1980s less complex than PDL and at the same time adequate for our
purposes.

The first attempt to design the proposed system was published in Kulicki and
Trypuz (2012). Now we present a slightly different version avoiding the drawbacks
of the previous one. We have also significantly changed the way the system is
shown.

The paper is structured as follows. In Sect. 2 we formulate basic intuitions con-
cerning the theory of successful and unsuccessful actions, build its model and provide
an action algebra, sound and complete with respect to the model. We present a new
interpretation of actions which takes into account their successful and unsuccessful
manifestations. The key issues of action identity are also discussed here.

In Sect. 3 we put forward a semantic characterisation of deontic operators for
sequentially composed actions. We build it on the deontic characterisation of one-
step actions, i.e., we assume that for each situation we know which one-step actions
are permitted, forbidden and obligatory (Sect. 3.2). While defining the deontic values
of actions we take into account the distinction between successful and unsuccessful
realisations of sequentially composed actions—we point out that it is of particular
importance in the indeterministic environment. Satisfaction conditions for the basic
formulas of deontic logic of multi-step actions are defined in Sect. 3.3.

In Sect. 4 we show how deontic properties of multi-step actions emerge from the
properties of one-step actions. In particular, in Sect. 4.1, we introduce an example
of one-step deontic logic being sound and complete with respect to a model of the
kind. Then, in two subsequent sections, we derive a model for sequentially composed
actions and the respective logic.

2 Action model and its formalisation

2.1 Basic intuitions

The basic element which we use to build a formal model for a deontic action logic is a
representation of two types of entities: actions and states (situations). When we write
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about actions we understand them primarily as action types, i.e., kinds of action, not
action tokens, i.e., individual events.

In any reasonable formalisation of action theory, at least some of the actions bring
about transitions between situations. Actions change something. When actions are
understood as transitions two questions arise:

(1) Is it possible that a transition between the same two states is a result of carrying
out two or more different actions?

(2) Should we distinguish between an action which an agent chooses to carry out in
a given situation and its possible realisations understood as the different possible
ways the action might unfold in time1 (depending on the conditions)?

The answers to the questions may be different in various contexts. They depend
on the notion of action and the granularity of description. In the present paper we
do not assume any form of determinism [the determinism may have the form of a
functionality restriction (Castro and Maibaum 2009; Kulicki and Trypuz 2012) or the
assumption of linearity of time which effects actions (Lorini and Herzig 2008)]. A
similar model with no deterministic restrictions was used in Gabbay et al. (2014).

As mentioned in the introduction, in this paper we are mostly interested in study-
ing sequentially composed actions. They are constructed from one-step actions. An
important issue is that such complex actions may be unsuccessful in two ways:

(1) the first step of an action is impossible in a given situation or
(2) an action can be started but, after completing a part of its performance, it cannot

be continued in the intended direction.

One step actions can be unsuccessful in the first sense, whereas the second way of
being unsuccessful is specific for multi-step actions.

The conception of actions as (successful or unsuccessful) attempts was discussed
by Lorini and Herzig in (2008). According to the authors an agent performs an action
in an unsuccessful way in a given situation if and only if it cannot try to perform the
action there or its execution precondition does not hold. Ignoring other assumptions
accepted by the authors (like, for example, the determinism of actions and the fact that
all actions are one step transitions) their understanding of unsuccessfulness of actions
conceptually corresponds to our first meaning of unsuccessfulness above.

Finally, let us note that in order to combine sequentially composed actions using
parallel composition we adopt (like in Prisacariu and Schneider 2012, Lorini and
Herzig 2008) a synchronicity assumption that all basic actions take the same amount
of time. Thus we can think of our model as a system similar to an indeterministic
Turing machine.

2.2 Formal model

Our action frame is a triple:

AS = 〈W, E,Step〉

1 See Sect. 5.2 in Trypuz (2007).
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where W is a nonempty, finite set of situations (Kripkean possible worlds), E is a
nonempty, finite set of basic action types used for a cross-situation identification of
actions and Step is a set of action steps.

Every element of Step is a triple 〈w1, w2, e〉, where w1, w2 ∈ W are initial and
final states respectively and e ∈ E is a label of an action causing a transition from w1
to w2. Intuitively elements of Step represent different ways of performing actions in
certain situations.We shall call them action steps. Subsets ofStep represent actions, so
we can model a parallel execution of two actions by the intersection of respective sets
of action steps and a free choice between two actions by a sum of the respective sets.

As mentioned in the previous subsection we do not impose any restrictions on a
model. Thus, it may happen that we have an indeterministic execution of an action,
e.g., 〈w1, w2, e〉 ∈ Step and 〈w1, w3, e〉 ∈ Step andw2 �= w3 and, on the other hand,
that a transition between the same two states is a result of execution of two different
actions, e.g., 〈w1, w2, e1〉 ∈ Step and 〈w1, w2, e2〉 ∈ Step and e1 �= e2.

The set of all action steps executable in the state w will be referred to by “exe(w)”
and defined as follows:

exe(w) � {〈w,w′, e〉 : 〈w,w′, e〉 ∈ Step} (1)

To model actions that are sequentially composed of other actions we introduce
transitions which enable us to grasp the intuitive notion of a sequence of action steps.

A transition is a triple 〈w1, w2, s〉, where w1, w2 ∈ S and s ∈ Seq , where Seq is
a set of finite, possibly empty, sequences of action steps from Step, w1 is an initial
state of the first transition, w2 is a final state of the last transition and each element of
s starts at the state in which the previous one ends. We allow s to be empty and in that
case w1 = w2. The sequence s, the third element of our triple, if nonempty, contains
complete information about the transition, since w1 occurs in its first element and
w2—in its last element. Thus, the two remaining elements: w1 and w2 are redundant
in that case. We keep them explicitly shown for the sake of readability. It is worth
mentioning that Segerberg in (2009) builds his action theory for the purpose of deontic
consideration in a similar way. The basic elements of his action theory are paths (which
correspond to our sequences) being sequences of points. Each finite path has its first
and last element. Two paths can be combined into one if the last element of the first
path is the same as the last element of the second path. In Segerberg’s framework it
is possible to extract all the steps a path is made of and two paths with the same first
and last point are not necessarily the same.

Henceforward we shall use the symbol T rans for the set of all transitions con-
structed from action steps from Step. More formally we can define the notion of
transition (i.e. a sequence of action steps) in AS inductively in the following way:

– For any w ∈ W a triple 〈w,w, []〉2 is a transition.
– If 〈w1, w2, s〉 (s ∈ Seq) is a transition and 〈w2, w3, e〉 is an action step from Step
then 〈w1, w3, s′〉, where s′ is a result of adding the action step 〈w2, w3, e〉 at the
end of the sequence s, is also a transition.

2 The symbol [] denotes an empty sequence of action types.
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Using the concept of transition which we have just introduced, we can represent an
arbitrary action by a set of transitions. In particular, one-step actions are represented
by sets of one-step transitions, i.e., transitions with a sequence of length 1.

In a natural way we can define a sequential composition of sets of transitions. Let
T1 and T2 be subsets of T rans. Then3

T1 ◦ T2 � {〈w1, w2, s〉 | ∃ w′, s1, s2 (s = s1 ⊕ s2 &

〈w1, w
′, s1〉 ∈ T1 &〈w′, w2, s2〉 ∈ T2)}

(2)

Similarly to our definition of the function exe, now we define a function “exe∗” as
a set of transitions executable in a given situation, formally:

exe∗(w) � {〈w,w′, s〉 : 〈w,w′, s〉 ∈ T rans} (3)

2.3 Identity of actions in the model

The key issue that enables us to operate on actions is the identity relation. To define it
let us first introduce the appropriate formal language4:

α ::= 0 | skip | ai | α � α | α � α | α;α (4)

where ai belongs to a finite set of basic actions (or in other words action generators)
Act0, 0 is the impossible action, skip is a special action of doing nothing analogous
to the skip program used in the theory of programming, α �β—α or β is a free choice
between α and β; α � β—α and β is a parallel execution of α and β. Act is a set of
all actions which can be expressed in the language (Act0 ⊆ Act).

One-step actions (basic actions and their combinations achieved by the use of oper-
ators � and � or, in other words, actions which do not contain sequential composition
“;” and skip) are interpreted as non-empty sets of one-step transitions. By synchronic-
ity assumption all one-step actions take the same amount of time. The special actions
0 and skip do not take any time—0 is impossible, so it cannot be executed, skip can
be understood as doing nothing in no time.

When we come to the multiple-step actions, we consider transitions that are fully
realised from their beginning to the end and transitions that represent only the initial,
proper part of the action and cannot lead to its end (i.e., they finish in a state in which
the remaining part of the action cannot be carried out). We shall refer to the former as
successful transitions, and to the latter as unsuccessful transitions (see Fig. 1 and its
caption).

3 The symbol ⊕ stands for a concatenation of sequences from Seq.
4 We do not introduce action complement (negation) to our language. The operator is not essential for our
task and in the context of sequential composition causes the well known intuitive and technical problems
(see e.g. Broersen 2004).
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Fig. 1 In the figure on the left, we can see the interpretation of action “(a; c)�(b; c)” (for better readability,
we use language letters as labels for transitions). Bold and non-dashed lines (transitions) represent their
successful parts whereas the bold and dashed ones—unsuccessful parts. An agent has a choice to carry out
a; c (a and then c) or b; c (b and then c). Only the first choice guarantees a successful execution of the
whole action. If the agent decided in w1 to do b, it would be trapped—there is no way to carry out c after
b. In the figure on the right, we can see the interpretation of action “b; d” in the same model. There is only
one way to fulfil the action and it is a successful path

Fig. 2 In the first two figures we can see actions α = (a; (c � d)) � (b; c) and β = (e; g) � ( f ; e),
respectively. To execute α an agent has a choice either to do a and then c or d, or to carry out b and then
c. We can see that the first option is completely successful, whereas the second one is only unsuccessful.
Similarly we should go through the interpretation of action β to understand its nature. In the third figure
we have the interpretation of action α; β in the same model. After sequentially combining the two actions,
the sequence leading from w1 through w2 to w5 becomes unsuccessful because there is no way to perform
β in the state w5

Fig. 3 In all the three figures we have a model with four transitions: a, b, c, d. In the first two figures one
can see a visualisation of two complex actions: α = (a; d)� b and β = a; c respectively. In the third figure
on the right the free choice between actions α and β, i.e. α � β, is presented. Let us note that the action
a; d in the first figure cannot be succesfully performed—only its initial part, a, is executable. That fact is
represented by the bold and dashed line over the transition a. However, the line does not occur in the model
of action α � β. That is because a is the initial part of a succesful sequence realising the action β

Now we can ask, whether it is possible to predict the successful and unsuccessful
transitions of complex actions on the basis of successful and unsuccessful transitions
they are made up of? The answer if positive. Before we formally set it out, let us
illustrate how it works on examples—see Figs. 2, 3 and 4 illustrating sequential com-
position, free choice and parallel composition of actions respectively.
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Fig. 4 In the first two figures we can see actions α = a; b and β = a; c. In the third figure on the right
we can see the action α � β. The intersection of paths representing α and β is empty, so is the successful
part of α � β. The common initial part of α and β—a—becomes an unsuccessful part of α � β. It is worth
stressing that the action a is per se still executable here, but from the point of view of the “context”, i.e.,
what was really planned, carrying its out does not fulfill intended direction, i.e., the action α � β

2.4 Interpretation of successful and unsuccessful parts of actions

Formally we represent successful and unsuccessful transitions as two separate sets.
The sets are determined by two functions: “suc” and “unsuc”. The function “suc” is
defined below.

Interpretation function suc for successful transitions

suc : Act −→ 2Seq is defined as follows:

〈w1, w2, [〈w1, w2, e〉]〉 ∈ suc(ai ) �⇒
∀ w′

1, w
′
2 〈w′

1, w
′
2, [〈w′

1, w
′
2, e〉]〉 ∈ suc(ai )

(5)

suc(skip) = {〈w,w, []〉 : w ∈ W} (6)

suc(0) = ∅ (7)

suc(α � β) = suc(α) ∪ suc(β) (8)

suc(α � β) = suc(α) ∩ suc(β) (9)

suc(α;β) = suc(α) ◦ suc(β) (10)

The interpretation for basic actions ai are sets of one-step transitions—see (5). The
intended interpretation for successful basic one-step action is such that (i) it is always
successful, when it is in the model and (ii) one-step transitions with the same label
belong to the interpretation of the same action generator. Condition (6) states that skip
can be carried out in any situation. It is worth stressing that its execution does not take
any time. We do it without passing through any sequences. The impossible action 0
can never be successfully executed.

For unsuccessful transitions the situation is more complicated since they behave
less nicely in the context of the operations on actions. Thus, to define unsuc (for
unsuccessful transitions) we need to introduce three auxiliary functions on sets of
transitions.
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The first function is “beg”. For a set of transitions T , the function provides a set of
their initial fragments (i.e., beginnings):

beg(T ) = {〈w1, w2, s1〉 ∈ T rans : ∃ w3, s2, s (s1 ⊕ s2 = s&

〈w1, w3, s〉 ∈ T & 〈w2, w3, s2〉 ∈ T rans)} (11)

Let us notice that the initial fragments do not need to be proper, so we have T ⊆
beg(T ).

The next function is “max”. From a set of transitions T it selects only maximal
transitions, i.e., no proper initial fragment of a transition from T can be an element of
the resulting set:

max(T ) = {u ∈ T : ∀ u′ ∈ T (u ∈ beg({u′}) �⇒ u′ = u)} (12)

The last of the three functions is “ f in”. Its arguments are two sets of transitions: T1
and T2. The function results in a set of transitions from T1 which have no continuation
in T2:

f in(T1, T2) = {〈w1, w2, s〉 : 〈w1, w2, s〉 ∈ T1 &

¬∃ w3, s
′〈w2, w3, s

′〉 ∈ T2} (13)

Below, we define the interpretation function unsuc, using the functions beg, max
and f in.

Interpretation function unsuc for unsuccessful transitions
Assuming that

all(α) = suc(α) ∪ unsuc(α)

unsuc : Act −→ 2Seq is defined as follows:

unsuc(ai ) = unsuc(skip) = unsuc(0) = ∅ (14)

unsuc(α � β) = max
(
(unsuc(α) − beg(suc(β))) ∪
(unsuc(β) − beg(suc(α)))

) (15)

unsuc(α � β) = max
(
beg(all(α)) ∩ beg(all(β)))−

beg(suc(α) ∩ suc(β))
) (16)

unsuc(α;β) = unsuc(α) ∪ f in(suc(α), all(β)) ∪
(suc(α) ◦ unsuc(β))

(17)

Condition (14) states that action generators (being one-step actions) and skip do not
have unsuccessful executions. Moreover, the impossible action 0 cannot be executed
in any way, so it has no unsuccessful transitions either. Condition (15) states that
unsuccessful transitions of a free choice of actions α and β consists of unsuccessful
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transitions of α and β that are not the beginnings of successful transitions of β and α

respectively. Function max eliminates non-maximal elements from the resulting set
to maintain uniqueness. Condition (16) constructs unsuc(α � β) as a set of maximal
common beginnings of successful and unsuccessful transitions connected with α and
β that are not successful for α � β. Condition (17) states that the set of unsuccessful
transitions of α;β consists of unsuccessful transitions of α, elements of suc(α) that do
not have a continuation inβ andunsuccessful transitions ofβ attached as a continuation
to α.

Let us notice that an element of unsuc(α) cannot be an initial fragment of any
element of suc(α), formally:

unsuc(α) ∩ beg(suc(α)) = ∅ (18)

Finally, the interpretation of actions is a function into a pair of sets of transitions.
It is defined as follows:

I(α) = 〈suc(α), unsuc(α)〉 (19)

Provided

suc(α,w) = suc(α) ∩ exe∗(w) (20)

unsuc(α,w) = unsuc(α) ∩ exe∗(w) (21)

by Iw(α) we understand a local interpretation of an action, i.e., interpretation rela-
tivised to some situation w:

Iw(α) = 〈suc(α,w), unsuc(α,w)〉 (22)

2.5 Axiomatisation of action algebra

In this sectionwe list some important tautologies of the system constituting its axioma-
tisation. The set of tautologies contains: monoid axioms for “�” and “0” (associativity
and left-right identity):

(α � β) � γ = α � (β � γ ) (23)

α � 0 = 0 � α = α (24)

monoid axioms for “;” and “skip” (associativity and left-right identity):

α; (β; γ ) = (α;β); γ (25)

α; skip = skip;α = α (26)

commutativity axiom for “�”:
α � β = β � α (27)
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“;” distributes over “�” on both the left and right:

α; (β � γ ) = (α;β) � (α; γ ) (α � β); γ = (α; γ ) � (β; γ ) (28)

0 is the left annihilator for “;”:
0; α = 0 (29)

idempotency axiom for “�”:
α � α = α (30)

It is worth mentioning that the structure (Act,�, ; , 0, skip) does not form idem-
potent semiring, because 0 is not the right annihilator for “;”, i.e., the formula:

α; 0 = 0

(which is e.g. an axiom of Kleene algebra) is not a tautology. Additionally we have
idempotency, commutativity and associativity axioms for “�”, distributivity “�” over
“�” and absorption:

α � α = α (31)

α � β = β � α (32)

(α � β) � γ = β � (α � γ ) (33)

α � (β � γ ) = (α � β) � (α � γ ) (34)

(α � β) � β = β &α � (α � β) = α (35)

Finally, two laws limited to the restricted kinds of complex actions are tautologies:
weak distributivity and intersection with skip. Weak distributivity of “�” over “;”
takes the following form:

α, β do not contain “;′′ and “skip′′ �⇒ (α; γ ) � (β; δ) = (α � β); (γ � δ) (36)

Formula (36) corresponds to an axiom of synchronous Kleene algebra from Prisacariu
and Schneider (2012). Intersection with skip is governed by the following law:

α does not contain “skip′′ �⇒ (α � skip) = 0 (37)

The law does not hold for an arbitrary action α. Let us consider α which is equal
to β � skip, when β does not contain skip. Then

(α � skip) = (β � skip) � skip = 0 � skip = skip (38)

We can generalise the above equations to the following form:

(α � skip) = 0 or (α � skip) = skip (39)
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Let us now focus on actions of the form α; 0. Intuitively we understand them as
the ones that cannot be continued from some point. We have already noticed that in
our system such actions do not have to equal 0 (i.e., they are not always completely
impossible).We can use that fact to observe that any unsuccessful action in our algebra
fulfils the following equation:

α = α; 0 (40)

Any action different from 0, satisfying condition (40) is a dead end trap. Formally we
define the operator trap:

trap(α) � (α �= 0) ∧ (α = α; 0) (41)

2.6 Soundness and completeness of the algebra with respect to the intended model

To verify that (23)–(37) are indeed tautologies, one must check that both sides of
equations have the same values of functions suc and unsuc. For suc it is quite an easy
task. For unsuc it is not that straightforward, but the proofs can be obtained by routine
algebraic transformations. Equations (23)–(37) allow us to transform each action into
an equivalent action in the normal form defined below.

Normal form of an action
Any action of a from:

a1 � . . . � an,

where a1, . . . an ∈ Act0(n ≥ 1) is a quasiatom. Action skip and any action
of the form:

α1; . . . ;αn,

where α1, . . . αn−1 (n ≥ 1) are quasi-atoms and αn is a quasiatom or 0 is a
sequent. An action is in the normal form iff it is a free choice of sequents, i.e.
has the form:

α1 � . . . � αn,

where α1, . . . αn (n ≥ 1) are sequents.

Theorem 1 For any action α there exists an action β in the normal form such that
α = β.

Proof To prove the theorem it is enough to use distributivity laws (28), (34) and (36),
absorption law (35), and (37). ��
Theorem 2 Axiomatisation is complete
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Proof The theorem is a consequence of the previous one. Let α and β be actions which
are not equal in the algebra. If so, the difference between their normal forms α1 and
β1 is other than the order of disjuncts and conjuncts or their repetitions. Let us now
consider a model in which all basic actions occurring in α1 and β1 are executable. In
such a model the interpretations of α1 and β1 differ, so α and β are not equal in the
model. ��

3 Deontic operators for sequentially composed actions

3.1 Intuitive introduction

We assume that deontic characterisation of sequentially composed actions is deter-
mined by deontic characterisation of one-step actions which constitute them. That
excludes direct regulation of deontic values of multi-step actions. It is a simplification
(one may even say a limitation), but it has the advantage of making our model more
transparent. Still we can create or verify complex procedures by analysingwhat should
be done in each state of their realisation. Then an agent can execute them being sure
that it will comply with local regulations.

We assume that for each situation we know which one-step actions are permitted,
forbidden and obligatory. On that basis we reconstruct deontic characterisation of
sequentially composed actions. The difficulty lies in the fact that, after the execution
of the first step of a sequentially composed action an agent is in a different situation,
with different local deontology (i.e., description of the situation including norms). We
must also remember that we may find nondeterministic choice at each step. To set out
a deontic value of an action we have to look at its every possible execution.

Accepting such an approach, what remains to be done is to define how deontic
operators interactwith a sequential composition.A one-step deontic action logicwhich
is the base for the realisation of purpose can be chosen from many existing ones, see
e.g., Trypuz and Kulicki (2013) to review some of them. This makes our solution
flexible enough to be adopted to different normative scenarios.

To define the deontic value of an action we need to take into account successful and
unsuccessful executions of sequentially composed actions. It is especially important
if we assume that an agent does not have to be aware of all the obstacles it can face
and all the regulations which apply to its plan during its realisation.

Thus, taking into account what has been said abovewe say that amulti-step action is
permitted in our theory if each action stepmaking it up is permitted in a situationwhere
it is planned to be triggered. Also unsuccessful attempts to perform a permitted action
have to be permitted—an agent should not find itself in a situationwhen choosing away
to perform a permitted action ends up in a situation where following the plan further
is not permitted, even if that attempt is at the end unsuccessful as a dead end trap. A
multi-step action is prohibited if each possible successful or unsuccessful realisation
of that action contains at least one prohibited action step.

As far as obligatory multi-step actions are concerned they are treated as good
procedures and instructions. As such they should always lead to their final result.
There should be no way to fail during their realisation; thus there should be no dead
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end traps in obligatory actions. Moreover, we believe that any initial fragment of an
obligatory action should be obligatory. Thus, an action is obligatory only if every way
of its realisation is required at each step.

Finally it seems reasonable to explain why the unsuccessful realisations of actions
are taken into account when considering deontics. In our paper we tackle a situation
in which one starts with deontic modelling of one-step action and then, on that basis,
tries to do the same with complex actions, especially sequences. Unsuccessfulness
of complex actions naturally emerges when one can freely combine basic actions to
create a plan. That type of unsuccessfulness is not a result of “unexpected causes” but
rather the nature of actions which are combined; some sequences are unsuccessful by
nature, e.g., none can go to Warsaw and see La Gioconda (since the painting is not
exhibited there).

3.2 Formalisation of deontology

Let us now put forward a formal model for the above intuitions. Let us notice that
some intuitions will be expressed on the level of satisfaction conditions in the next
section.

The semantic definition of our logic is based on the following deontic extension of
the action frame AS used in the previous section:

DAS = 〈W, E,Step,LEG, ILL,REQ〉,

where W , E and Step are characterised as in AS and LEG, ILL, REQ are deontic
functions fromW to 22

Step
, representing (sets of sets of) action steps: legal, illegal and

required in a specific state respectively. At this point we do not specify their properties
and mutual relations—we shall do that in Sect. 4.1. Here we would like to focus the
reader’s attention only on the way in which the counterparts of deontic functions for
sequences emerge from LEG, ILL, REQ.

Thus, on the basis of the functionsLEG, ILL andREQwe define similar functions
describing legal, illegal and required sets of transitions. Let us use symbols LEG∗,
ILL∗ and REQ∗ respectively for the new functions. They transform the states from
W into 22

T rans
. We intend LEG∗(s) and REQ∗(s) to be defined in such a way that

each step of each transition is legal (required) in an appropriate state and that ILL∗(s)
must have some illegal steps in each transition.

For formal definitions of the sets we need the following auxiliary functions: ini ,
f so and rem. Let T ⊆ T rans be a set of transitions and w ∈ W a state.
Having in mind Fig. 1 one may think that T = {〈w1, w4, s1〉, 〈w1, w5, s2〉}, where

s1 = [〈w1, w2, a〉, 〈w2, w4, c〉] and s2 = [〈w1, w3, b〉, 〈w3, w5, d〉]. We shall refer to
that example below in order to explain the newly introduced functions.

Function ini for a given set of transitions T and a given situation w1 provides a set
of initial steps:

ini(T, w1) = {t ∈ Step : ∃ w′ ∈ W, s ∈ Seq

such that 〈w1, w
′, [t] ⊕ s〉 ∈ T } (42)

In our example ini(T, w1) = {[〈w1, w2, a〉], [〈w1, w3, b〉]}.
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Function f so (first step outcomes) for a given set of transitions T and a given
situation w1 returns a set of states that are reachable from w1 by the first step of any
transition from T :

fso (T, w1) = {w′ ∈ W : ∃ t ∈ ini(T, w1), e ∈ E
such that t = 〈w1, w

′, e〉 ∈ Step} (43)

In our example fso (T, w1) = {w2, w3}.
Finally, rem, remainders of a set of transitions T with respect to the initial state w1

and the first step outcome w2, returns a set of transitions starting from w2 obtained
from transitions from T by removing their first steps:

rem(T, w1, w2) = {〈w2, w3, s〉 ∈ T rans : w2 ∈ f so (T, w1)&

∃ t ∈ Step such that 〈w1, w3, [t |s]〉 ∈ T } (44)

In our example, rem(T, w1, w2) = {〈w2, w4, [〈w2, w4, c〉]〉} and rem(T, w1,

w3) = {〈w3, w5, [〈w3, w5, d〉]〉}.
Below we formally define LEG∗, ILL∗ and REQ∗ with the use of ini , f so and

rem.

Definitions of LEG∗, ILL∗ and REQ∗ for transitions
For any T ⊆ Trans:

T ∈ ILL∗(w) iff ∀ t = 〈w1, w2, s〉 ∈ T , there exists an action step u of
the sequence s, and a set X , such that u ∈ X ∈ ILL(w).

T ∈ LEG∗(w) iff T = ∅ or the following two conditions hold:
(i) ini(T, w) ∈ LEG(w),
(ii)∀ w′ ∈ f so(T, w), rem(T, w,w′) ∈ LEG∗(w′).

T ∈ REQ∗(w) iff T = ∅ or the following two conditions hold:
(i) ini(T, w) ∈ REQ(w) or ini(T, w) = ∅,
(ii)∀ w′ ∈ f so(T, w), rem(T, w,w′) ∈ REQ∗(w′).

It is worth mentioning that for the purposes of the recursive definition of theREQ∗,
∅ is an element ofREQ∗(w) for anyw. That allows us also to treat the initial fragments
of obligatory actions as obligatory. At the same time we do not want to treat the
impossible action 0 itself as obligatory.We shall prevent that by placing an appropriate
requirement in satisfaction conditions for the operator “O” (see below).

3.3 Satisfaction conditions

The basic language of DAL is defined in the following way:

ϕ ::= α = α | P(α) | F(α) | O(α) | ¬ϕ | ϕ ∧ ϕ, (45)
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where α stands for the names of actions defined by (4), “P(α)” – α is (strongly)
permitted; “F(α)” – α is forbidden, “O(α)” – α is obligatory.

Now we are ready to formulate satisfaction conditions for a formula of DAL in a
state s of a model M:

Satisfaction conditions for multi-step actions
Providing I(α) = 〈suc(α), unsuc(α)〉 and
Iw(α) = 〈suc(α,w), unsuc(α,w)〉:

M, w |� F(α) ⇐⇒ suc(α,w) ∪ unsuc(α,w) ∈ ILL∗(w)

M, w |� P(α) ⇐⇒ suc(α,w) ∪ unsuc(α,w) ∈ LEG∗(w)

M, w |� O(α) ⇐⇒ suc(α,w) ∈ REQ∗(w)&
suc(α,w) �= ∅& unsuc(α,w) = ∅

M, w |� α = β ⇐⇒ I(α) = I(β)

M, w |� ¬ϕ ⇐⇒ M, w �|� ϕ

M, w |� ϕ ∧ ψ ⇐⇒ M, w |� ϕ & M, w |� ψ

For a permitted (forbidden) action we require that both successful and unsuccessful
transitions are legal (illegal). For obligatory actions we require that such an action
cannot be unsuccessfully started, so the set of unsuccessful transitions has to be empty.
Obligatory actions have to be possible, so the set of successful transitions has to be
non-empty. Of course transition sets for all states have to be required.

The concepts of satisfiability, validity and tautology are defined in the standard way.
Finally, let us notice that for nonempty one-step actions satisfaction conditions are

much simpler and can be expressed as below.

Satisfaction conditions for nonempty one-step sequence
Providing Iw(α) = 〈suc(α,w),∅〉,
where suc(α,w) = {〈w,w′, [〈w,w′, e〉]〉, . . . },

M, w |� F(α) ⇐⇒ suc(α,w) ∈ ILL∗(w)

⇐⇒ {〈w,w′, e〉, . . . } ∈ ILL(w)

M, w |� P(α) ⇐⇒ suc(α,w) ∈ LEG∗(w)

⇐⇒ {〈w,w′, e〉, . . . } ∈ LEG(w)

M, w |� O(α) ⇐⇒ suc(α,w) ∈ REQ∗(w)

⇐⇒ {〈w,w′, e〉, . . . } ∈ REQ(w)

4 From one-step to multi-step deontic logic

As we have stated at the end of the previous section, satisfaction conditions for one-
step actions can be expressed by using only sets LEG(w), ILL(w) and REQ(w)
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(without “∗”). It means that a logic for sequential actions emerges from a logic for
one-step actions. In the next section we use a fragment of a minimal one-step deontic
action logic from Trypuz and Kulicki (2013) without action negation as an example.
Then in Sects. 4.2 and 4.3 we extend it to a multi-step case.

4.1 A model and logic for one-step actions

In this system we connect deontic notions with actions both on the level of syntax and
in formal semantics. That is why LEG(w), ILL(w) andREQ(w) have been defined
as functions from W to 22

Step
. Since in the present paper we use a nondeterministic

model in which an action can have different outcomes even if it is executed twice in
the same state, we have to modify slightly their definitions.

Now the functions LEG(w), ILL(w) andREQ(w) have values in 2Step. We also
assume that whenever t1 = 〈w,w1, e〉 belongs to some X in LEG(w), ILL(w) or
REQ(w), then for any w2, t2 = 〈w,w2, e〉 also belongs to X . The condition has to
do with the fact that an action undertaken by an agent may have different outcomes
independently of the agent’s will and behaviour and it states that the action (not the
outcomes) are the subject of deontic qualification.

Other properties ofLEG(s), ILL(s) andREQ(s) are characterised as follows. For
anyw ∈ W and X,Y ∈ 2Step,LEG(w) and ILL(w) satisfy the following principles:

X ∈ LEG(w)&Y ⊆ X �⇒ Y ∈ LEG(w) (46)

X ∈ LEG(w)&Y ∈ LEG(s) �⇒ X ∪ Y ∈ LEG(w) (47)

X ∈ ILL(w)&Y ⊆ X �⇒ Y ∈ ILL(w) (48)

X ∈ ILL(w)&Y ∈ ILL(w) �⇒ X ∪ Y ∈ ILL(w) (49)

For any w, LEG(w) and ILL(w) have only the empty set in common:

LEG(w) ∩ ILL(w) = {∅} (50)

A necessary condition for two elementary transitions to be required is that their inter-
section should be required too5:

X ∈ REQ(w)&Y ∈ REQ(w) �⇒ X ∩ Y ∈ REQ(w) (51)

An impossible action is never required:

∅ �∈ REQ(w) (52)

There is no state w ∈ W in which all transitions are illegal:

exe(w) �∈ ILL(w) (53)

5 Henceforward universal quantifications over whole formulas are left implicit.
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If X is an action required in w and its intersection with action Y is empty, then Y
is illegal in s:

X ∈ REQ(w) & X ∩ Y = ∅ �⇒ Y ∈ ILL(w) (54)

The following tautologies of the system, along with the algebra of one-step actions,
form its axiomatisation:

P(α � β) ≡ P(α) ∧ P(β) (55)

F(α � β) ≡ F(α) ∧ F(β) (56)

F(α) ∧ P(α) ≡ (α = 0) (57)

O(α) ∧ O(β) → O(α � β) (58)

¬(O(α) ∧ F(α)) (59)

O(α) ∧ (α � β = 0) → F(β) (60)

Formula (60) is a complement-free way to express the economy law from Trypuz
and Kulicki (2013):

O(α) → F(α)

From (60) and (59) we can derive

¬O(0) (61)

and
O(α) ∧ O(β) → (α � β �= 0) (62)

4.2 Multi-step model consequences

The above definitions determine the values of functions LEG∗, ILL∗ and REQ∗
(for any state as their arguments) to inherit most properties imposed on the values of
functions LEG, ILL and REQ. Thus, for any state w ∈ W we have:

T1 ∈ LEG∗(w)&T2 ⊆ T1 �⇒ T2 ∈ LEG∗(w) (63)

T1 ∈ LEG∗(w)&T2 ∈ LEG∗(w) �⇒ (T1 ∪ T2) ∈ LEG∗(w) (64)

T1 ∈ ILL∗(w)&T2 ⊆ T1 �⇒ T2 ∈ ILL∗(w) (65)

T1 ∈ ILL∗(w)&T2 ∈ ILL∗(w) �⇒ (T1 ∪ T2) ∈ ILL∗(w) (66)

T1 ∈ REQ∗(w)&T2 ∈ REQ∗(w) �⇒ (T1 ∩ T2) ∈ REQ∗(w) (67)

exe∗(w) �∈ ILL∗(w) (68)

Let us sketch the proofs of the above properties. (63) holds by (46) since ini(T2) ⊆
ini(T1), f so(T2, w) ⊆ f so(T1, w) and, for any w′ ∈ f so(T2, w), rem(T2, w,w′) ⊆
rem(T1, w,w′). (64) holds by (47) since ini(T1 ∪ T2) = ini(T1)∪ ini(T2), f so(T1 ∪
T2, w) = f so(T1, w) ∪ f so(T2, w) and, for any s′ ∈ f so(T1 ∪ T2, w), rem(T1 ∪
T2, w,w′) = rem(T1, w,w′) ∪ rem(T1, w,w′). (65) and (66) are obvious. For (67),
if T1 ∩ T2 = ∅ then the property holds by the definition of REQ∗. Otherwise we

123



Synthese (2015) 192:1117–1138 1135

have to check that ini(T1 ∩ T 2) ∈ REQ and that for each w′ ∈ f so(T1 ∩ T 2, w)

rem(T1 ∩ T2, w′, w′′) ∈ REQ∗. The former is guarantied by (51). For the latter the
remainders have to be analysed step by step and in each stage (51) should be applied.
For (68) it is enough to notice that a set of one-step transitions that are based on
action labels that are not illegal in w (the set is not empty by (53)) is not a member of
ILL∗(w). Thus, by (65), it is not a member of exe(w) either.

Moreover, we have an additional property concerning ∅ and transition with an
empty sequence of steps 〈w,w, []〉 for any w:

∅ ∈ REQ∗(w) (69)

〈w,w, []〉 ∈ REQ∗(w) (70)

(69) is guaranteed by the definition of REQ∗. For (70) we need to notice that
ini t〈w,w, []〉 = ∅ and there is no w′ ∈ f so(〈w,w, []〉). Thus, conditions (i) and
(ii) from the definition of REQ∗ are fulfilled.

On the other hand, the following counterpart of property (54) does not hold:

X ∈ REQ∗(w) and X ∩ Y = ∅ �⇒ Y ∈ ILL∗(w) (71)

X ∩ Y = ∅ when X and Y have elements of different lengths.

4.3 Multi-step logic

Let us start with the laws of multi-step logic with deontic operators without sequential
composition and skip.

It is interesting to what extent the multi-step logic inherits the laws of the one-step
logic. Formulas (55), (56), (57) and (59) are tautologies in the multi-step system.

To see that formula (55) is valid, it is enough to recall that suc(α � β) =
suc(α) ∪ suc(β) and notice that unsuc(α � β) ⊆ beg(all(α) ∪ all(β)) and
unsuc(α) ∪ unsuc(β) ⊆ beg(all(α � β)). Thus, by the satisfaction condition for
P (55) is valid. The validity of (56) follows immediately from the satisfaction con-
ditions for F, and properties (66). The validity of (57) follows immediately from the
conditions for P and F. To see that (59) is valid let us suppose α is obligatory in a state
w. Then, for w, suc(α) �= ∅ and suc(α,w) ∈ REQ∗(w) ⊆ LEG∗(w). Thus, for any
u ∈ suc(α) each action label must be an element of respectiveREQ(w′) ⊆ LEG(w′).
ButLEG(w′) and ILL(w′) are disjoint for any state. Thus, u cannot contain an illegal
fragment and consequently ¬F(α).

On the other hand (58), (60) and (62) are not tautologies. However, the following
weaker versions of (58) and (60) are:

α �= skip ∧ β �= skip → (O(α) ∧ O(β) ∧ ¬trap(α � β) → O(α � β)) (72)

α �= skip ∧ β �= skip → (O(α) ∧ (α � β = 0) → F(β)) (73)
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Basic laws with sequential composition or skip are as follows:

O(α;β) → O(α) (74)

F(α) → F(α;β) (75)

P(α;β) → P(α) (76)

P(α) → P(α; 0) (77)

¬O(α; 0) (78)

O(skip) (79)

The validity of (74)–(79) follows directly from the satisfaction conditions for P, F
and O. We shall not explain all of them. Let us just focus on two which at first glance
may seem paradoxical.

Formula (77) is a derivative of formula P(0) for one step actions (it follows directly
from (57)), which we have accepted after Segerberg (1982). It states that an impossible
action is permitted as it cannot have any bad effects. Any attempt to perform action
a; 0 can contain only fragments of a. Thus, if a is permitted, then a; 0 should also be
permitted. The difference is that a is completely realised and action a; 0 is not, since
after a an agent should perform an impossible action (which of course is not possible)
but it should not affect permissibility.

Formula (79) states that skip understood as “no action in no time” is obligatory.
Why should it be so? The technical reason is that skip can be added at the beginning
and at the end of any action α without changing it. If α is obligatory, to keep the
consistency of the satisfaction conditions, skip should also be obligatory. Intuitively
it is not that obvious. To defend (79) we can only say that skip is inevitable – in no
time it is impossible to do anything else then skip. Thus, (79) corresponds to the law
of standard deontic logic stating that tautology is obligatory.

The following formula reflects the requirement of no traps6 (dead ends) for oblig-
atory actions:

trap(α) → ¬O(α � β) (80)

A procedure must not give an agent the possibility of making a wrong choice. (80) is
essential for our notion of obligatory complex actions in which we connect them with
procedures.

(80)was assumed in the satisfaction condition for obligation. In fact the requirement
on the model level is even stronger—there can be no dead end transitions within the
interpretation of obligatory action.However, in the language of logicwe cannot express
it fully since we do not have the access to single transitions.

We conjecture that formulas (23)–(80) with the rules of Modus Ponens and Substi-
tution constitute a complete axiomatisation of the system, but we have not formulated
the proof yet.

6 trap is defined by (41).
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Among their consequences are:

P(α) → P(skip) (81)

P(α) → P(α � β) (82)

F(α) → F(α � β) (83)

P(0) F(0) ¬O(0) (84)

5 Conclusion and future perspectives

We have presented a deontic action framework taking into account unsuccessful
sequences of actions. It has been founded on deontic action logic and its model for
one-step actions.Within that setting it is possible to treat actions as instructions or pro-
cedures that an agent can realise step-by-step being sure that each step of a permitted
action is permitted and eachwayof starting an obligatory action allows continuing such
an action to its end. In our framework we have introduced the interpretation function
for actions that takes into account their successful and unsuccessful executions.

The system can be extended in a straightforward way by imposing additional condi-
tions on the model (e.g. determinism of action outcomes) or by enriching the language
with modalities and PDL operators.

Another interesting extension of the system could be obtained by adding action
negation (complement). Such an extension is, however, more challenging because of
the well known technical problems occurring in systems in which sequential compo-
sition coexists with action negation.
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