Skip to main content
Log in

Main Problems of Diagrammatic Reasoning. Part I: The generalization problem

  • Published:
Foundations of Science Aims and scope Submit manuscript

Abstract

The paper attempts to analyze in some detail the main problems encountered in reasoning using diagrams, which may cause errors in reasoning, produce doubts concerning the reliability of diagrams, and impressions that diagrammatic reasoning lacks the rigour necessary for mathematical reasoning. The paper first argues that such impressions come from long neglect which led to a lack of well-developed, properly tested and reliable reasoning methods, as contrasted with the amount of work generations of mathematicians expended on refining the methods of reasoning with formulae and predicate calculus. Next, two main groups of problems occurring in diagrammatic reasoning are introduced. The second group, called diagram imprecision, is then briefly summarized, its detailed analysis being postponed to another paper. The first group, called collectively the generalization problem, is analyzed in detail in the rest of the paper. The nature and causes of the problems from this group are explained, methods of detecting the potentially harmful occurrences of these problems are discussed, and remedies for possible errors they may cause are proposed. Some of the methods are adapted from similar methods used in reasoning with formulae, several other problems constitute new, specifically diagrammatic ways of reliable reasoning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnheim R. (1969) Visual thinking. University of California Press, Berkeley, CA

    Google Scholar 

  • Bundy A., Richardson J. (1999) Proofs about lists using ellipsis. In: Ganzinger H., McAllester D., Voronkov V. (eds) Logic for programming and automated reasoning. LNAI 1705. Springer-Verlag, Berlin, pp 1–12

    Chapter  Google Scholar 

  • DIAGRAMS. (1992). Reasoning with diagrammatic representations (1992 AAAI spring symposium). Menlo Park: CAAAAI Press.

  • Dove, I. (2002). Can pictures prove? Logique & Analyse, 179–180, 309–340.

  • Dubnov, Y. S. (1955). Oshibky v geometricheskykh dokazatyelstvakh (in Russian). Moscow: GITTL. [English translation: Dubnov, Y. S. (1963). Mistakes in geometric proofs. Boston, MA: Heath].

  • Foo, N. Y., Pagnucco, M., & Nayak, A. C. (1999). Diagrammatic proofs. In Proceedings of 16th International Joint Conference on Artificial Intelligence (IJCAI-99) (pp. 378–383), Stockholm, August 1999. Morgan Kaufmann.

  • Frege, G. (1879). Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens. Halle a. S: Louis Nebert [English edition: Frege, G. (1879). Begriffsschrift, a formula language, modeled upon that of arithmetic, for pure thought. Reprinted in: van Heijenoort, J. (Ed.), (1967). From Frege to Godel: A source book in mathematical logic (pp. 1879–1931). Cambridge, MA: Harvard University Press].

  • Giaquinto M. (2007) Visual thinking in mathematics: An epistemological study. Oxford University Press, Oxford

    Book  Google Scholar 

  • Greaves M. (2001) The philosophical status of diagrams. CSLI Publications, Stanford, CA

    Google Scholar 

  • Jamnik M. (2001) Mathematical reasoning with diagrams: From intuition to automation. CSLI Publications, Stanford, CA

    Google Scholar 

  • King, J. R., & Schattschneider, D. (Eds.), (1997). Geometry turned on!: Dynamic software in learning, teaching, and research. Washington, DC: Mathematical Association of America.

  • Kulpa Z. (1983) Are impossible figures possible? Signal Processing 5(3): 201–220

    Google Scholar 

  • Kulpa Z. (1987) Putting order in the impossible. Perception 16: 201–214

    Article  Google Scholar 

  • Kulpa Z. (2003a) Self-consistency, imprecision, and impossible cases in diagrammatic representations. Machine GRAPHICS & VISION 12(1): 147–160

    Google Scholar 

  • Kulpa, Z. (2003b). From picture processing to interval diagrams. IFTR Reports 4/2003, Warsaw, 313 pp. See http://www.ippt.gov.pl/zkulpa/diagrams/fpptid.html.

  • Kulpa, Z. (2009a). Main problems of diagrammatic reasoning: Part II: The imprecision problem (in preparation).

  • Kulpa, Z. (2009b). Representing sets in diagrams: Spaces of all triangles (in preparation).

  • Le T.L., Kulpa Z. (2003) Diagrammatic spreadsheet. Machine GRAPHICS & VISION 12(1): 133–146

    Google Scholar 

  • Le T.L., Kulpa Z. (2004) Diagrammatic spreadsheet: An overview. In: Blackwell A., Marriott K., Shimojima A. (eds) Diagrammatic representation and inference. LNAI 2980. Springer-Verlag, Berlin, pp 420–423

    Google Scholar 

  • Lemon O., Pratt I. (1997) Spatial logic and the complexity of diagrammatic reasoning. Machine GRAPHICS & VISION 6(1): 77–88

    Google Scholar 

  • Lindsay R.K. (2000) Playing with diagrams. In: Anderson M., Cheng P., Haarslev V. (eds) Theory and application of diagrams. LNAI 1889. Springer-Verlag, Berlin, pp 300–313

    Chapter  Google Scholar 

  • Luengo, I. (1995). Diagrams in geometry. Ph.D. Thesis, Indiana University, Bloomington, IN.

  • MacInnis, R., McKinna, J., Parsons, J., & Dyckhoff, R. (2004). A mechanised environment for Frege’s Begriffsschrift notation. In Proceedings of Mathematical User-Interfaces Workshop 2004, Bialowieza, Poland, September 18, 2004. See http://www.activemath.org/~paul/MathUI04/proceedings/FregesBegriffsSchrift.html.

  • Maxwell E.A. (1959) Fallacies in mathematics. Cambridge University Press, Cambridge

    Google Scholar 

  • Miller, N. (2001). A diagrammatic formal system for Euclidean geometry. Ph.D. Thesis, Cornell University, Ithaca, NY.

  • Muzalewski, M. (1993). An outline of PC Mizar. Brussels: Foundation Philippe le Hodey. See http://mizar.org/project/bibliography.html.

  • Needham T. (1997) Visual complex analysis. Clarendon Press, Oxford

    Google Scholar 

  • Nelsen, R. B. (1993). Proofs without words: Exercises in visual thinking. Washington, DC: The Mathematical Association of America.

  • Otte M. (2006) Proof-analysis and continuity. Foundations of Science 11: 121–155

    Article  Google Scholar 

  • Pollet M., Sorge V., Kerber M. (2004) Intuitive and formal representations: The case of matrices. In: Asperti A., Bancerek G., Trybulec A. (eds) Mathematical knowledge management. LNCS 3119. Springer-Verlag, Berlin, pp 317–331

    Google Scholar 

  • Shin S.-J. (1994) The logical status of diagrams. Cambridge University Press, Cambridge, MA

    Google Scholar 

  • Winterstein, D. (2004). Using diagrammatic reasoning for theorem proving in a continuous domain (263 pp.). Ph.D. Thesis, The University of Edinburgh, Edinburgh.

  • Winterstein D., Bundy A., Jamnik M. (2000) A proposal for automating diagrammatic reasoning in continuous domains. In: Anderson M., Cheng P., Haarslev V. (eds) Theory and application of diagrams. LNAI 1889. Springer-Verlag, Berlin, pp 286–299

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zenon Kulpa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulpa, Z. Main Problems of Diagrammatic Reasoning. Part I: The generalization problem. Found Sci 14, 75–96 (2009). https://doi.org/10.1007/s10699-008-9148-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10699-008-9148-5

Keywords

Navigation