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Abstract

The system of Syllogistic presented by J. SÃlupecki is a minimal, ÃLukasiewicz style
system that includes all the theses present in Aristotle’s writings. The axiomatic
system is quite simple but it has no straightforward semantic counterpart. In the
paper the semantics of the SÃlupecki’s system is investigated: two approaches are used
which lead to its two semantic characteristics. One is based on typically defined
models, the other is a model-based decision procedure, using the notion of a Horn
formula.
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Introduction

For many centuries Aristotle’s Syllogistic was a dominant part of logic. Achievements in
the field of mathematical logic in the 19th and the beginning of the 20th century changed
that situation and pushed it into the margin of the discipline. The situation changed again
when J. ÃLukasiewicz [4] presented Syllogistic as an axiomatic system built on classical
propositional calculus (PL). The logical work of Aristotle was thus introduced into the
mainstream of contemporary formal logic. The idea of investigating Syllogistic from the
standpoint of modern formal logic was commonly accepted but the details of ÃLukasiewicz’s
axiomatisation became a subject of a discussion. The discussion on Syllogistic is still open
and new ideas appear from time to time, e.g. recently computer science oriented logicians
began to take part (see [5]).

One of the alternative proposals was given by J. SÃlupecki [8]. He accepted the general
idea of constructing Syllogistic as a quantifier free theory based on PL, used the same
language with the same primitive symbols, but changed the content of the theory by
changing the axioms. His intention was to axiomatise a set of those formulae of the
language of ÃLukasiewicz’s Syllogistic that are true in S. Leśniewski’s ontology. According
to SÃlupecki, the main difference between the systems concerns empty names. In contrast to
the system of ÃLukasiewicz, which is commonly interpreted as describing relations between
non-empty names, Leśniewski’s ontology accepts the use of empty names. SÃlupecki used
the so called strong interpretation of universal sentences, in which one of the conditions
for such a sentence is that both names are non-empty. As a result, SÃlupecki defined a
system that is weaker then the one of ÃLukasiewicz.
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The later works [6, 7] proved, however, that SÃlupecki’s axiomatisation is not adequate
with respect to the intended semantics, being sound but not complete with respect to it.

The system, failing to fulfil its intended specification, seems to be interesting for a
different reason, namely, it is the smallest system built in the style of ÃLukasiewicz that
includes all the theses present in the works of Aristotle. The conversion syllogisms of four
figures, laws of the logical square and laws of conversion are theses of the system. On the
other hand, all axioms of the system were present in the original works of Aristotle, so no
weaker system can have this property. In this sense SÃlupecki’s system is a minimal system
of Aristotle’s Syllogistic. Thus, it may be seen as a system that is closest to Aristotle’s
original logic as it appears in his writings.

Surprisingly, SÃlupecki’s system is almost absent in the literature. This is probably a
result of the fact that the majority of works on the subject are strongly connected with the
intuitions built on interpretations of Syllogistic sentences in set theory. SÃlupecki’s system,
although clear on the syntactic level, does not fit into any of those interpretations.

The motivation behind the present paper is to draw attention to SÃlupecki’s system.
The main contribution of the paper is the semantic characterisation of the system, which
has not been constructed so far. Apart from that, model-based decision procedures are
presented for the system, similar to the procedure defined in [3] for ÃLukasiewicz’s system.

1 The axiomatic system of SÃlupecki

We start with defining the language of Syllogistic. The alphabet contains name variables
S, P,M, . . . , two-argument operators forming universal and particular sentences of Syllo-
gistic: a, i for affirmative and e, o for negative, used with infix notation (sentences SaP
and SiP can be read respectively all S are P and some S are P, sentences SeP and SoP
– no S are P and some S are not P) and operators of PL: ¬,∧,∨,→,≡ with the standard
meaning. We will also use metalanguage symbols (possibly with subscripts): X ,Y, . . . for
names, α, β, . . . for propositions, ` for assertion and a for rejection of a proposition. The
language of Syllogistic can be defined (in Backus-Naur notation) as follows:

α ::= XaX | X iX | ¬α | α ∧ α | α ∨ α | α → α | α ≡ α,

where X represents the category of name variables. Operators e and o are introduced by
the following abbreviations:

SeP , ¬SiP,

SoP , ¬SiP.

Formulae built from operators a and i and their arguments will be called atomic
formulae. Any atomic formula and any implication α → β, where α is a conjunction of
atomic formulae and β is an atom, will be called a Horn formula.

The axiomatic system presented by SÃlupecki (further referred to as S) is defined by
the rules of Modus Ponens (MP ) and substitution for name variables (Sub) of the usual
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schemata. The axioms of the system are all the substitutions of the theses of classical
propositional calculus in the language and the following specific axioms:

SaP → SiP, (1)

SiP → PiS, (2)

MaP ∧ SaM → SaP, (3)

MaP ∧ SiM → SiP. (4)

All the axioms are present in Aristotle’s writings and traditional logic being its contin-
uation. Axiom (1) is one of the laws of the logical square, axiom (2) is the law of convertion
for particular affirmative sentences, axioms (3) and (4) are respectively syllogisms Barbara
and Datisi. Because of that, no proper subsystem of S can be strong enough to contain
Aristotle’s logic. On the other hand, all the syllogisms of four figures, laws of the logical
square and conversion laws can be proved in the system.

In particular, the following formulae are theses of S:

PaS → SiP (5)

derived from (1) and (2);
MiP ∧MaS → SiP, (6)

PiM ∧MaS → SiP (7)

and
MaP ∧MiS → SiP (8)

all derived from (4) and (2);
MaP ∧MaS → SiP (9)

derived from (8) and (1).
Moreover,

MiN ∧MaS ∧NaP → SiP (10)

and
NiM ∧MaS ∧NaP → SiP (11)

can be derived from (4) in combination with respectively (7) and (6).
The following notions of chain and connection are taken from [9].

Definition 1 A chain from one variable to another is defined recursively as follows.
(i) XaY is a chain from X to Y, for any X and Y.
(ii) If α is a chain from X to Z, then α∧ZaY is a chain from X to Y, for any X , Y and
Z.

For example the formulae SaM ∧MaP and SaM ∧MaN ∧NaP are both chains from
S to P .
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Definition 2 A conjunction of atoms α connects variable X with variable Y if and only
if there exists a chain β from X to Y such that α contains every atom occurring in β as
a conjunct.

Lemma 1 For any X and Y if a conjunction of atoms α connects X with Y, then the
formula α → XaY is a thesis of S.

Proof The result can be obtained by a straightforward induction on the length of the
chain from X to Y with the use of axiom (3). ¤

The considerations concerning SÃlupecki’s system will be based on some results con-
cerning ÃLukasiewicz’s system (further referred to as ÃL), so we have to introduce formally
the later system as well. ÃL is defined in the same manner as S, by the rules MP and
Sub with all substitutions of the theses of classical propositional calculus as axioms. The
specific axioms are (3), (8) and the following:

SaS, (12)

SiS. (13)

It is easy to see that (1) can be derived from (13) and (8); (2) – from (12) and (8);
and (4) – from (1) and (8). Thus, S is contained in ÃL.

Furthermore, the following lemma can be derived from the investigations presented in
[9].

Lemma 2 For any formula α of the form β → XaY or β → X iY, where X 6= Y and β
is a conjunction of atoms, the following two conditions are equivalent:

(i) α is a thesis of ÃL;
(ii) α is a thesis S.

Proof (ii) ⇒ (i) imediatelly follows from the fact that S is contained in ÃL.
For (i) ⇒ (ii) proofs of lemmas XV and XVI from [9] will be used. In these proofs it

is shown that the formula β → XaY (where X and Y are different variables) is a theorem
of ÃL iff β connects X with Y and the formula β → XaY (where X and Y are different
variables) is a theorem of ÃL iff one of the following conditions holds: (a) β contains X iY
or YiX as a conjunct; (b) β connects X with Y or Y with X ; (c) there exists a variable Z
such that β connects Z with X and contains YiZ or ZiY as a conjunct; (d) there exists
a variable Z such that β connects Z with Y and contains X iZ or ZiX as a conjunct; (e)
there exists a variable Z such that β connects Z with X and Z with Y; (f) there exist
variables Z and V such that β connects Z with X and V with Y and contains ZiV or ViZ
as a conjunct.

To complete the proof it is enough to show that for all of these cases the considered
formulae are also theses of S. For the formulae of the form β → XaY that fact is guaran-
teed by Lemma 1. For the formulae of the form β → X iY it is a consequence of the fact
that the following formulae are axioms or theses of S: (1) for case (a), (2) and (5) for case
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(b), (6) and (7) for case (c), (4) and (8) for case (d), (9) for case (e), (10) and (11) for
case (f) and, for cases (b) – (f), Lemma 1. ¤

Thus, when Horn formulae of the language are concerned, the difference between
ÃLukasiewicz’s and SÃlupecki’s systems is limited to the formulae in the consequent of which
the same name variable appears twice. In ÃL all such formulae are theses, in S we only
have:

SaP → PiP. (14)

On the other hand, in the intended interpretation, any Horn formula with the consequence
of the form XaX or X iX in which variable X occurs in the ancedent is valid. Many of
them are not theses of S, for example:

SiP → SaS, (15)

SiP → SiS, (16)

SaP → SiS, (17)

SaP → SaS, (18)

SaP → PaP. (19)

A. Pietruszczak in [7] shows that adding formula (15) to S leads to a system that is
complete with respect to the semantics given by SÃlupecki.

Since the system of Pietruszczak lies clearly between S and ÃL, the result from Lemma
2 also applies to it. Thus, we may notice that including or excluding empty names in
models have influence only on Horn formulae with consequents of the form XaX or X iX .

The rejected counterpart of S was introduced by B. Iwanuś in [1]. The following
rejection rules: rejection by Modus Ponens (MP−1), rejection by substitution (Sub−1),
rejection by composition (Comp−1) are used (the rule (Comp−1) used in the present paper
is equivalent to the one introduced by SÃlupecki for rejection for ÃLukasiewicz’s system, which
was also used by Iwanuś).

Rule MP−1 takes the form: ` α → β;a β

a α
.

Rule Sub−1 takes the form: a e(α)
a α

,

where e is a substitution.
Rule Comp−1 takes the form:

a α → β1; . . . ;a α → βn

a α → β1 ∨ . . . ∨ βn
, n ≥ 1,

where α is a conjunction of atoms and βi(1 ≤ i ≤ n) are atoms.
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The following formulae are rejected axioms:

SaM ∧MaM → SiS, (20)

SaM ∧MaP ∧ SaS ∧ PaP → MaM, (21)

SaM ∧ PaM ∧ SaS ∧ PaP ∧MaM → SiP. (22)

The intuitive meaning of the rejected axioms of the system is not quite clear. Thus,
we shall treat them technically, as sufficient for completeness results.

The following lemmas proved in [1] state the fact that the refutation counterpart for
SÃlupecki’s system is adequate.

Lemma 3 Every formula of the language of Syllogistic is either a thesis or a rejected
formula of S and no formula is both a thesis and a rejected formula.

Lemma 4 If a Horn formula α is not a thesis of S, then the SÃlupecki’s system plus α
entails one of the rejected axioms.

Lemma 3 will be used in the completeness proof in the next section, while Lemma 4 will
be useful for designing the decision procedures in Section 3.

2 Models for SÃlupecki’s system

Let us first recall the semantic results about ÃL. The following structure is a model for the
system: MÃL = 〈B, f, I ÃL〉, where B is a non-empty family of non-empty sets, f is a function
from the set of name variables to B and I ÃL is a function whose argument is function f
and value is a set of atomic formulae, such that:

XaY ∈ I ÃL(f) ⇐⇒ f(X ) ⊂ f(Y)
X iY ∈ I ÃL(f) ⇐⇒ f(X ) ∩ f(Y) 6= ∅

Informally we think of the function I ÃL as an interpretation of atomic formulae and of
the set I ÃL(f) as the set of atomic formulae that are true in modelMÃL. Next we inductively
define the notion of truth in the modelMÃL for arbitrary formula αMÃL (written: MÃL |= α)
as follows:
(i) for any atomic α, MÃL |= α iff α ∈ I ÃL(f);
(ii) the notion of truth in MÃL preserves classical truth conditions for PL operators.

Let ÃL be the set of all the models MÃL (models based on interpretation function I ÃL

with different sets B and functions f). We shall understand that a formula is valid in ÃL
iff it is true in all models from ÃL.

The following adequacy theorem comes from [9] (its proof using standard tools for
completeness proofs insetead of axiomatic refutation used by SÃlupecki is given in [2]).

Theorem 1 ÃL is sound and complete with respect to the class ÃL.
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Now we are ready to present a model suitable for S. The following structure is a model
for the system: MS = 〈B, f, g, IS〉, where, as in the case of ÃL, B is a non-empty family of
non-empty sets, f is a function from the set of name variables of the language to B. The
additional element g is a function from the set of name variables of the language to set
{0, 1}. Thus, an ordered pair: 〈f(X ), g(X )〉 is attached to every name variable X .

IS is a function whose arguments are functions f and g and its value is a set of atomic
formulae, such that:

XaY ∈ IS(f, g) ⇐⇒ f(X ) ⊂ f(Y)
or f(X ) = f(Y) and g(X ) = g(Y) = 1

X iY ∈ IS(f, g) ⇐⇒ f(X ) 6= f(Y) and f(X ) ∩ f(Y) 6= ∅
or f(X ) = f(Y) and |f(X )| ≥ 2
or f(X ) = f(Y) and g(X ) = g(Y) = 1

Note that the inclusion present in the condition for XaY is proper.
The inductive definition of the notion of truth in the modelMS for an arbitrary formula

α is the same as for MÃL.
Let S be the set of all models MS (models based on IS with different sets B and

functions f and g). We shall understand that a formula is valid in S iff it is true in all
models from S.

In order to match the axiomatic system the model structure does not follow directly
SÃlupecki’s initial motivation. To capture its intuitive meaning let us compare it with ÃL.

For atomic formulae with two different name variables the interpretations I ÃL(f) and
IS(f, g) behave in the same way, i.e. the same atomic sentences of that type are true in
both interpretations. On the other hand, for atomic formulae with two identical arguments
(technically the same set in a model) an additional function g, independent from f , is being
used. The function g determines which of the sentences of the form XaX and X iX are
valid in S. The value of the function g can be seen as a separate property of a name. For
some names g gives 1, for others 0, regardless of the extension of the name.

Moreover, the second condition for the formulae of the form X iY (f(X ) = f(Y) and
|f(X )| ≥ 2), corresponds to thesis (14) of S.

The class of models S is based on non-empty sets, like the semantics for ÃL. To get a
little closer to SÃlupecki’s idea we shall define another class of models S’ in which empty
sets are allowed. The structures are equivalent in the sense that the set of valid formulae
of both is the same.

S’ is the class of all models MS’ = 〈B, f, g, IS’〉, where B is a non-empty family of
arbitrary sets, f and g are functions as in MS, and IS’ is a function analogous to IS

defined as follows:

XaY ∈ IS’(f, g) ⇐⇒ ∅ 6= f(X ) ⊂ f(Y)
or f(X ) = f(Y) and g(X ) = g(Y) = 1

X iY ∈ IS’(f, g) ⇐⇒ f(X ) 6= f(Y) and f(X ) ∩ f(Y) 6= ∅
or f(X ) = f(Y) and |f(X )| ≥ 2
or f(X ) = f(Y) and g(X ) = g(Y) = 1
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Theorem 2 An arbitrary formula α of the language of Syllogistic is valid in S’ if and
only if it is valid in S.

Proof Let us first observe that if non-empty sets are considered the interpretations
IS’ and IS they always give the same value.

If α is valid in S’, then it is true in all models from S’, including all models defined on
non-empty sets. Consequently α is valid in S.

If, on the other hand, α is not valid in S’, then there exists a modelM1 = 〈B1, f1, g1, IS’〉
∈ S’, such thatM1 6|= α. If ∅ 6∈ B1, for a modelM2 = 〈B1, f1, g1, IS〉 ∈ S we haveM2 6|= α.

Otherwise we can construct a model M3 = 〈B3, f3, g3, IS〉 ∈ S, such that M3 6|= α
in the following way. Let o be an object which is not an element of the set

⋃{f1(X ) :
X appears in α}. B3, f3, g3 are defined as follows:

B3 = B1 ∪ {o}

f3 =
{ {o} if f1(X ) = ∅

f1(X ) otherwise

g3 = g1

To complete the proof it is enough to show that for arbitrary atomic formula β, M1 |= β
iff M3 |= β.

Let β = XaY. If M1 |= β, then (i) ∅ 6= f1(X ) ⊂ f1(Y) or (ii) f1(X ) = f1(Y) and
g1(X ) = g1(Y) = 1. In case (i) since both f1(X ) and f1(Y) are non-empty f3(X ) =
f1(X ) and f3(Y) = f1(Y) and consequently f3(X ) ⊂ f3(Y) and M3 |= β. In case (ii)
if f1(X ) = f1(Y) = ∅, then f3(X ) = f3(Y) = {o} and if f1(X ) = f1(Y) 6= ∅, then
f3(X ) = f1(X ) = f1(Y) = f3(Y). Since g3(X ) = g1(X ) = g1(Y) = g3(Y) = 1, M3 |= β.

If M3 |= β, then (i) f3(X ) ⊂ f3(Y) or (ii) f3(X ) = f3(Y) and g3(X ) = g3(Y) = 1. In
case (i), since, to fulfil the condition, none of f3(X ), f3(Y) may equal {o}, ∅ 6= f1(X ) ⊂
f1(Y) and M1 |= β. In case (ii) either f3(X ) = f3(Y) = {o} and f1(X ) = f1(Y) = ∅
or f3(X ) = f3(Y) 6= {o} and f1(X ) = f3(X ) = f3(Y) = f1(Y). Since g1(X ) = g3(X ) =
g3(Y) = g1(Y) = 1, M1 |= β.

Now, let β = X iY. If M1 |= β, then (i) f1(X ) 6= f1(Y) and f1(X ) 6= f1(Y) 6= ∅ or
(ii) f1(X ) = f1(Y) and |f1(X )| ≥ 2 or (iii) f1(X ) = f1(Y) and g1(X ) = g1(Y) = 1. In
cases (i) and (ii) f3(X ) = f1(X ) and f3(Y) = f1(Y) and obviously M3 |= β. In case
(iii) if f1(X ) = f1(Y) = ∅, then f3(X ) = f3(Y) = {o} and if f1(X ) = f1(Y) 6= ∅, then
f3(X ) = f1(X ) = f1(Y) = f3(Y). Since g3(X ) = g1(X ) = g1(Y) = g3(Y) = 1, M3 |= β.

If M3 |= β, then (i) f3(X ) 6= f3(Y) and f3(X ) 6= f3(Y) 6= ∅ or (ii) f3(X ) = f3(Y)
and |f3(X )| ≥ 2 or (iii) f3(X ) = f3(Y) and g3(X ) = g3(Y) = 1. In cases (i) and (ii),
since to fulfil the condition, none of f3(X ), f3(Y) may equal {o}, f3(X ) = f1(X ) and
f3(Y) = f1(Y) and obviously M1 |= β. In case (iii), like in case (ii) for β = XaY,
f1(X ) = f1(Y) g1(X ) = g1(Y) = 1 and consequently M1 |= β. ¤

To construct a completeness proof for S we shall use the following two lemmas.
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Lemma 5 For any formula α of a form β → XaY or β → X iY, where X 6= Y and
β is a conjunction of atoms, if α is not a thesis of S, then there exists a model M =
〈B, f, g, IS〉 ∈ S such that M 6|= α and f(X ) 6= f(Y).

Proof By virtue of Lemma 2, if α is not a thesis of S, then it is not a thesis of ÃL. Thus,
there exists a model M′ = 〈B′, f ′, I ÃL〉 ∈ ÃL, such that M′ 6|= α. Obviously, f ′(X ) 6= f ′(Y).
Now it is enough to put B = B′, f = f ′ and g(X ) = 1, for every X , to get M 6|= α. ¤

Lemma 6 Let M1=〈B1, f1, g1, IS〉 and M2=〈B2, f2, g2, IS〉 be models from S. Let further
M3=〈B1×B2, g3, f3, IS〉, where f3(X ) = f1(X )× f2(X ) and g3(X ) = min(g1(X ), g2(X )).
(i) If M1 |= XaY and M2 |= XaY, then M3 |= XaY.
(ii) If M1 |= X iY and M2 |= X iY, then M3 |= X iY.

Proof In the proof two cases have to be considered: (a) f1(X ) 6= f1(Y) or f2(X ) 6= f2(Y)
and (b) f1(X ) = f1(Y) and f2(X ) = f2(Y).

(i) In case (a) f3(X ) = (f1(X )×f2(X )) 6= f3(Y) = (f1(Y)×f2(Y)) and f3(X ) ⊂ f3(Y).
Thus M3 |= XaY. In case (b) f3(X ) = (f1(X ) × f2(X )) = f3(Y) = (f1(Y) × f2(Y)).
Since M1 |= XaY and M2 |= XaY, g1(X ) = g1(Y) = g2(X ) = g2(Y) = 1. Thus
g3(X ) = g3(Y) = 1 and consequently M3 |= XaY.

(ii) In case (a), since f1(X )∩ f1(Y) 6= ∅ and f2(X )∩ f2(Y) 6= ∅ also f3(X )∩ f3(Y) 6= ∅
and consequently M3 |= X iY. In case (b) f3(X ) = f3(Y). If |f1(X )| ≥ 2 or |f2(X )| ≥ 2,
then also |f3(X )| ≥ 2 and consequentlyM3 |= X iY. Otherwise, g1(X ) = g1(Y) = g2(X ) =
g2(Y) = 1. Thus g3(X ) = g3(Y) = 1 and consequently M3 |= X iY. ¤

Theorem 3 System S is sound and complete with respect to the class S.

Proof Because of Lemma 3 it is enough to show that all the theses are valid and all
the rejected formulae are not. For all the axioms it is a usual routine to check that
if the antecedent of an axiom is true in a model, then the consequent of the axiom is
true in the model as well. Rejected axioms are false in the following models: for axiom
(20) B = {1, 2}, f(S) = {1}, f(M) = {1, 2}, g(S) = 0, g(M) = 1, for axiom (21) B =
{1, 2, 3}, f(S) = {1}, f(M) = {1, 2}, f(P ) = {1, 2, 3}, g(S) = g(P ) = 1, g(M) = 0, B =
{1, 2}, f(S) = {1}, f(P ) = {2}, f(M) = {1, 2}, g(S) = g(P ) = g(M) = 1. Rule MP
preserves the truth and MP−1 preserves falsehood, because the system is based on PL.
Analogical facts hold for Sub and Sub−1 because, if a formula is satisfied in all models, a
substitution for name variables cannot change that fact.

To complete the proof we have to show that rule Comp−1 leads from false formulae to
a formula that is also false. In order to do that it is enough to prove that for a conjunction
of atoms α and atoms β1 and β2 if α → β1 and α → β2 are false, then α → β1 ∨ β2 is also
false. Extending it for rule Comp−1 for an arbitrary n, can be done by a straightforward
induction. Let B1 and B2 be the families of sets for which there exist functions f1, g1,
f2 and g2 such that α → β1 is falsified by M1=〈B1, f1, g1, IS〉 and α → β2 is falsified by
M2=〈B2, f2, g2, IS〉.
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By Lemma 5 if βi (i ∈ {1, 2}) is built with the use of two different variables X and
Y, than fi can be defined in such a way that fi(X ) 6= fi(Y). If, on the other hand, βi

(i ∈ {1, 2}) is of the form X iX , then functions f1 and f2 can be defined in such a way,
that |f1(X )| = |f2(X )| = 1 — otherwise Mi 6|= α → βi would not hold.

We will now show that for M3=〈B1 × B2, g3, f3, IS〉, where f3(X ) = f1(X ) × f2(X )
and g3(X ) = min(g1(X ), g2(X )) M3 6|= α → β1 ∨ β2. By Lemma 6 M3 |= α. We have to
show that M3 6|= β1 and M3 6|= β2. If βi (i ∈ {1, 2}) is of the form XaY or X iY (X 6= Y),
then f3(X ) 6= f3(Y). Furthermore, in the case of XaY we have f3(X ) 6⊂ f3(Y) and in
the case of X iY we have f3(X ) ∩ f3(Y) = ∅. Thus M3 6|= βi. Otherwise βi = XaX or
βi = X iX . In both cases g3(X ) = 0. Morover, in the case of X iX f3(X) = f1 × f2 is a
singleton. Consequently M3 6|= βi. ¤

3 Matrices for Horn formulae

In this section we construct a different semantic characterisation of S. The presence of
rule Comp−1 allows us to state the following disjunction property. Let α be a conjunction
of atoms and βi(1 ≤ i ≤ n) be atoms.

α → β1 ∨ . . . ∨ βn is a thesis of S
if and only if one of the formulae

α → β1 or . . . or α → βn, n ≥ 1, is a thesis of the system.

That property in axiomatic systems based on PL (in which any formula has an equiv-
alent formula in a conjunctive normal form) reduces the problem of the truth of arbitrary
formulae to Horn formulae.

The following matrices a1 and i1, combined with the classical interpretation for con-
junction and implication, give the interpretation for Horn formulae of S.

a x y z v w

x 0 0 0 1 1
y 0 1 0 1 1
z 0 0 1 0 1
v 0 0 0 0 1
w 0 0 0 0 1

i x y z v w

x 0 0 0 1 1
y 0 1 0 1 1
z 0 0 1 0 1
v 1 1 0 1 1
w 1 1 1 1 1

Table 1: Matrices a1 and i1

Theorem 4 A Horn formula of the language of Syllogistic is a thesis of S iff value 1 is
obtained for all the substitutions of values from set {x, y, z, v, w} for name variables,
using matrices a1, i1 and classical matrices for conjunction and implication.

Proof By virtue of Lemma 3 (ii) it is enough to show that rules MP and Sub are preserved
(which, in the case of MP, is ensured through the use of classical matrix for implication,
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which is normal and in the case of Sub is obvious), axioms are true for all substitutions of
values for name variables (routine checking is left to the Reader) and there exist substi-
tutions for which the rejected axioms are false. The required substitutions are as follows:
S/x and M/w in axiom (20); S/y, P/w and M/v in axiom (21); S/y, P/z and M/w in
axiom (22). ¤

Theorem 4 shows that to decide whether a Horn formula (indeed, as mentioned above,
the procedure can be syntactically extended for arbitrary formulae) is a thesis of S, it is
enough to consider its substitutions in a domain of 5 constant names, no matter how long
the formula is. This property can be interesting from the computational point of view.

In fact, these matrices define one of many possibilities of relations between the five
constant names that can be used for such a procedure. With the classical interpretation
of conjunction and implication there is no smaller domain that fulfils such a condition.

However, the number of names can be reduced to 4 by applying a different interpre-
tation for propositional operators. On the basis of ÃLukasiewicz’s 3-valued propositional
logic, defined by matrices in Table 2, matrices a2 and i2 can be used to obtain an inter-

∧ 0 1
2 1

0 0 0 0
1
2 0 1

2
1
2

1 0 1
2 1

→ 0 1
2 1

0 1 1 1
1
2

1
2 1 1

1 0 1
2 1

Table 2: 3-valued ÃLukasiewicz logic tables for conjunction and implication

pretation for Horn formulae of S.

a x y z v

x 1 1 0 1
y 0 0 0 1
z 0 0 1

2 1
v 0 0 0 1

i x y z v

x 1 1 0 1
y 1 1 0 1
z 0 0 1

2 1
v 1 1 1 1

Table 3: Matrices a2 and i2

Theorem 5 A Horn formula of the language of Syllogistic is a thesis of S iff value 1 is
obtained for all the substitutions of values from set {x, y, z, v} for name variables, using
matrices a2, i2 and ÃLukasiewicz’s 3-valued matrices for conjunction and implication.

Proof ÃLukasiewicz’s 3-valued matrix for implication is normal, so the rule MP is pre-
served. Checking that the axioms are true in the matrix system is, just as in the proof
of Theorem 4, left to the Reader. Substitutions in which rejected axioms are false are as
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follows: S/z and M/v in axiom (20); S/x, P/v and M/y in axiom (21); S/x, P/z and
M/v in axiom (22). ¤

The number of names used for the decision procedure can be further reduced by using
yet another interpretation of propositional operators, defined by the 4-valued matrices
for conjunction and implication presented in Table 4. The matrix for conjunction is
ÃLukasiewicz’s 4-valued logic and the one for implication is his 4-valued modal logic from
[4].

∧ 0 n1 n2 1
0 0 0 0 0
n1 0 n1 n1 n1

n2 0 n1 n2 n2

1 0 n1 n2 1

→ 0 n1 n2 1
0 1 1 1 1
n1 n2 1 n2 1
n2 n1 n1 1 1
1 0 n1 n2 1

Table 4: 4-valued interpretation of conjunction and implication

In that case the following 3-valued matrices a3, i3 for predicates are adequate.

a y z v

y n1 0 1
z 0 n2 1
v 0 0 n1

i y z v

y n1 0 1
z 0 n2 1
v 1 1 1

Table 5: Matrices a3 and i3

Theorem 6 A Horn formula of the language of Syllogistic is a thesis of S iff value 1
is obtained for all the substitutions of values from set {y, z, v} for name variables, us-
ing matrices a3, i3 and the presented in Table 5, 4-valued matrices for conjunction and
implication.

Proof Again, the matrix for the implication is normal, so rule MP is preserved. Checking
that the axioms are true in the matrix system is a usual routine. Substitutions in which
rejected axioms are false are as follows: S/z and M/v in axiom (20); S/z, P/v and M/z
in axiom (21); S/y, P/z and M/v in axiom (22). ¤

It is interesting to compare the above matrices with analogous matrices for ÃL shown
in Table 6, introduced in [3].

Matrices coincide when two different name constants appear in the same atomic for-
mula, and the difference lies in the formulae with the same name appearing twice. For S
in such situations values n1 and n2, which can be interpreted as undetermined values, are
used. The value of the formula viv in matrix i3 is an exception stemming from the fact
that formula (14) is a thesis of the system.
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a y z v

y 1 0 1
z 0 1 1
v 0 0 1

i y z v

y 1 0 1
z 0 1 1
v 1 1 1

Table 6: Matrices for ÃL

Conclusions

SÃlupecki’s system of Syllogistic considered in the paper is the minimal quantifier free sys-
tem of Syllogistic based on classical propositional calculus (built in the style of ÃLukasiewicz)
including the laws of Aristotle’s logic. The system defines the meaning of general and par-
ticular affirmative sentences of Syllogistic, which do not have a direct interpretation in
set theory. The semantics for the calculus was introduced. Decision procedures for the
system, based on models, were also presented.

Acknowledgements

I wish to thank prof. Andrzej Pietruszczak for his valuable advice and helpful comments
on earlier versions of this paper.

References
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