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Abstract 

The Gene Ontology is an important tool for the 
representation and processing of information 
about gene products and functions. It provides 
controlled vocabularies for the designations of 
cellular components, molecular functions, and 
biological processes used in the annotation of 
genes and gene products. These constitute 
three separate ontologies, of cellular com-
ponents), molecular functions and biological 
processes, respectively. The question we 
address here is: how are the terms in these 
three separate ontologies related to each other? 
We use statistical methods and formal 
ontological principles as a first step towards 
finding answers to this question. 

1 Introduction 

 (Zhu et al 2004) noted that creating a model of 
the dynamics of molecular interaction networks 
offers enormous potential for understanding 
systems biology. Existing work has led to the 
development of databases and ontologies which 
provide classifications and annotations based on a 
gene product’s function, location, structure and so 
on, as for example in PANTHER (Thomas PD et al 
2003), a library of protein families and subfamilies 
indexed by function, and the Gene Ontology 
Annotation1 (GOA) (Camon et al 2003).  

Further progress requires a robust formal 
ontology of structures, locations, functions and 
processes, linked together via relations such as 
is_part_of, is_located_at, is_realized_by, and so 

                                                      
1 http://www.ebi.ac.uk/GOA/ 

forth. As a step along this road, we provide a 
methodology for deriving and representing 
association rules between the entities present 
within the separate ontologies of the Gene 
Ontology.2 (Gene Ontology Consortium, 2001). 
Such rules will be able to situate a biological 
process in relation to a cellular location to an 
agent. They will be able to relate lower-granularity 
molecular functions in relation to higher-
granularity biological processes, and establish 
other sorts of relations between entities in different 
parts of GO. 

A preliminary study in this area (Burgun et al 
2004) combines ontological, lexical and statistical 
principles. Their study provides association rules 
on a selected set of 23 gene products that were 
potentially involved in enterocyte differentiation 
and that showed similar levels of expression. 
(Clelland and Oinn) provide commonly annotated 
terms based on the CluSTr database (Kriventseva 
et al 2001), which has recently been incorporated 
into the QuickGO browser.3 Association rules have 
been used for mining gene expression data by 
(Creighton and Hanash 2003). (Ogren et al 2004) 
studied the compositional nature of the GO terms 
and described the dependencies among them. 

Our investigation draws on the fact that terms 
from GO’s separate ontologies are often used to 
annotation the same gene or gene product. We 
draw on the TIGR database to establish the 
corresponding patterns of association between 
terms in GO when taken in its entirety.  

In what follows we describe the results of this 
work We analysed all of TIGR’s 84,833 

                                                      
2 http://www.geneontology.org/ 
3 http://www.ebi.ac.uk/ego/ 



annotations, pertaining to the 41,502 distinct gene 
products present within GOA and focusing on the 
TIGR database within the February 2004 edition of 
GO. These associations were mined to establish 
association links between GO terms using standard 
statistical database techniques based on the so-
called apriori algorithm and using a part of speech 
tagger. The discovered links  were then analysed 
on the basis of methods drawn from foundational 
ontology. 

2 Gene Ontology 

2.1 The Cellular Component Ontology  

GO’s cellular component (cc) vocabulary consists 
of terms such as flagellum, chromosome, ferritin, 
extracellular matrix and virion. This ontology is 
the GO counterpart of anatomy within the medical 
framework. GO includes in this vocabulary both 
the extracellular environment of cells and the cells 
themselves (that is, cell is subsumed in GO by 
cellular component).  

2.2 The Molecular Function Ontology  

GO’s  definition of molecular function (mf) is: “the 
action characteristic of a gene product.” The mf 
vocabulary accordingly subsumes terms describing 
actions, for example: ice nucleation, binding, or 
protein stabilization. 

2.3 The Biological Process Ontology  

A biological process (bp) is defined in GO as: “A 
phenomenon marked by changes that lead to a 
particular result, mediated by one or more gene 
products”. Terms in bp can be quite specific 
(glycolysis) or very general (death). GO’s mf and 
bp terms are clearly closely interrelated. The 
biological process of anti-apoptosis, for example, 
certainly involves the molecular function now 
labelled apoptosis inhibitor activity. Such 
molecular functions should stand to biological 
processes in a part-of relation. At the same time, 
however, GO’s authors insist that part-of holds 
only between entities within a single vocabulary, 
and they thus provide no guidance as to the cross-
vocabulary relations between the terms. We 
published a series of papers pointing out these and 
similar problems in GO as currently constituted 
(Smith et al 2004; Smith et al 2003; Kumar and 
Smith 2004; Kumar and Smith 2003). 

3 TIGR database annotations 

The Institute for Genome Research (TIGR)'s 
Genome Projects are a collection of curated 
databases containing DNA and protein sequence, 
gene expression, cellular role, protein family, and 
taxonomic data for microbes, plants and humans. 

(http://www.tigr.org/) TIGR has manually curated 
GO annotation for 6 bacterial genomes (V. 
cholerae, S. oneidensis, B. anthracis, G. 
sulfurreducens, P. syringae, and C. burnetii) and 
two eukaryotes (Arabidopsis thaliana, and 
Trypanosoma brucei). In addition, automated 
annotation has effected for Expressed Sequence 
Tags from several species. 

The TIGR database is a rich source of 
information about gene indices based on genetic 
sequence. TGICL is a pipeline for the analysis of 
large Expressed Sequence Tags (EST) and mRNA 
databases in which the sequences are first clustered 
on the basis of pairwise sequence similarity and 
then assembled by individual clusters (Pertia et al 
2003). Association rules between GO terms will 
enable us to determine the clusters of gene 
expression functions and locations in a way that 
will add to the knowledge that is contained within 
representations of such clusters on the basis of the 
gene indices only. 

4 Methods 

Associations between GO terms were established 
on the basis of the annotations in the TIGR 
databases.  

4.1 Statistical approach 

All the annotations from the TIGR database 
present within GO’s association table were 
selected and placed into a separate table GO terms 
were then separated into three separate tables, 
depending on which of the three GO vocabularies 
they belong to. 

Those GO terms which belong to two different 
ontologies within GO but are annotated to the same 
gene products were then separated out for analysis. 
Three new tables were then created containing 
those annotations where cc and mf terms, mf and 
bp terms, and cc and bp terms are annotated 
together. 

The distinct term tuples present were grouped 
together and their count was used to provide a 
measure for weighting an association – which is to 
say how many times two GO terms from two 
distinct axes are annotated together (Table 1). The 
co-occurrence of terms within the annotations were 
then combined together (Table 2). 
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Table 1. Associations between terms belonging 
to cc and mf, together with an index of how many 

times such associations occur within the annotation 
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Table 2. Associations between terms belonging 
all three of GO’s ontologies with an index of how 

many times such associations occur within the 
annotation 

GO’s hierarchy has thus far not been considered. 
Rather we have focused only on the terms 
themselves to which the annotations are made. For 
each GO term used for annotation and for each 
subsuming term in GO’s is_a hierarchy, we can 
establish the distance of the former from the latter. 
(Resnik 1995) has pointed out that the semantic 
similarity of terms as one traverses the hierarchical 
tree reduces by a factor of log(p(c)) where p(c) is 
the probability of finding a child for the term when 
seeking information. Table 3 thus represents a 
quantification of this semantic similarity, which 
can be used to extend the results presented here by 
using an approach similar to that advanced in 
(Azuahe and Bodenreider, 2004). 
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Table 3. Associations between GO terms 
belonging to cc and mf taking hierarchy into 

consideration 

4.2 Association rule induction 

Association rule induction was originally 
developed for so-called market basket analysis, 
which aims at finding regularities in the shopping 
behaviour of customers of supermarkets, mail-
order companies, online stores etc. (Borgelt and 
Kruse, 2002) Association rules are designed to 
help in isolating those sets of products that are 
frequently bought together. This information is 
expressed in the form of rules like "A customer 
who buys bread and wine is likely to buy cheese 
also." 

Algorithms for inducing association rules from a 
set of transactions (the market baskets or shopping 
carts bought by customers) usually work in two 

steps: First, the so-called frequent item sets are 
determined by searching the subset lattice of all 
items. For this search there are, in principle, two 
approaches: the breadth first search, as employed 
by the apriori algorithm (Agrawal et al. 1994), and 
the depth first search, on which the eclat algorithm 
(Zaki et al. 1997) is based. Second, rules are 
constructed from the frequent item sets and filtered 
with respect to  some quality criterion. 

In the GO context, we use association rule 
induction to discover links between the ontologies 
in which a gene product is described. That is, we 
are interested in rules that predict cc from mf or 
bp, or rules that describe which mfs in which ccs 
constitute a bp, and so forth.  

4.2.1 Assessment of association rules 
The number of combinatorially possible rules 

here is very high. Consequently we need criteria to 
assess and thus to filter out those association rules 
which are of serious importance. The standard 
measures for this purpose are the support and the 
confidence of a rule. 

The support of an association rule can be defined 
in two different ways: as the fraction of all 
transactions to which the rule is applicable (that is, 
which contain all items in the antecedent of the 
rule) or the fraction of all transactions for which 
the rule is correct (that is, which contain all items 
appearing in the rule, regardless of whether in 
antecedent or consequent). We take the second 
approach. 

The confidence of an association rule is the 
fraction of cases in which it is correct relative to 
those in which it is applicable, that is, the ratio of 
the number of transactions that contain all items in 
the rule to the number of transactions that contain 
all items in the antecendent. 

A user controls the search for association rules 
by providing minimum values for support and 
confidence of the rules to be found. From these 
values there can be derived a pruning criterion for 
the search for frequent item sets in the subset 
lattice as well as filtering criteria for the rules 
themselves. Only rules that meet both criteria are 
reported. More intuitively: we are looking for 
association rules that can be applied often (are 
above some minimum level of support) and that 
make reliable predictions (are above some 
minimum level of confidence). 

4.2.2 Application to Gene Ontology 
In our application of association rule induction 

to the analysis of GO we viewed each gene product 
annotated to a GO term as a transaction. We thus 
have as many transactions as there are gene 
products in the data set. We then looked for 
frequent co-occurrences of terms within such 



transactions and reported them in the form of 
association rules. For the search itself we used a 
well-known implementation of the apriori 
algorithm by (Borgelt and Kruse 2002). 

In addition to filtering based on minimum 
support and minimum confidence, we also 
introduced one further selection criterion by 
requiring that the consequent of a rule must come 
from a different GO ontology than the terms in the 
antecedent of the rule, since rules containing only 
terms from one ontology are likely to recover only 
the term hierarchy of that ontology, which is not 
what is needed here. Such filtering can be achieved 
with the apriori implementation we used via the 
specification of which part of an association rule 
an item may appear in. 

4.3 Experimental results  

We ran the apriori program three times, each time 
restricting the consequent of the rules to a different 
ontology. This was required as GO has three 
orthogonal ontologies and one needed to treat each 
of them as an antecedent and a consequent with 
one another. Examples of rules we found are: 

 
membrane [cc] 
  � oligopeptide transport [bp]; 
     transporter activity [mf] 
     (0.106%/44, 100.0%) 
 
binding [mf] 
  � mitochondrial transport [bp]; 
     mitochondrial inner membrane [cc] 
     (0.106%/44, 100.0%) 
 
protein biosynthesis [bp] 
  � ribosome [cc]; 
     structural constituent of ribosome [mf] 
     (0.504%/209, 90.4%) 
 
The two letters in brackets after each term denote 

the axis the term comes from. The numbers in 
parentheses at the end of each rule describe the 
quality of the rule as (S%/A, C%), where S is the 
support of the rule as a percentage of gene 
products to which the rule is applicable, A is the 
absolute number of gene products to which it is 
applicable (which is designed to complement the 
information regarding support), and C is the 
confidence of the rule. 

In the GO context S is the percentage of gene 
product IDs to which the relevant rule is applicable 
(i.e., the percentage of gene product IDs which are 
annotated with all the terms in the antecedent in 
the rule), A is the absolute number of gene product 
IDs to which the rule is applicable, and C is the 
percentage of gene product IDs for which the rule 

makes the correct prediction relative to those to 
which the rule is applicable. Thus for example: 

 
ribosome [cc]  
� ribosome biogenesis [bp];  

protein biosynthesis [mf]  
(0.212%/88, 93.2%) 

 
tells us that 88 gene product IDs (~0.2%) are 
annotated with the terms ribosome biogenesis and 
protein biosynthesis, of which 93.2% (i.e. 82) are 
also annotated with the term ribosome.  

4.4 Dependencies based on Part-of-speech 
Tagging: 

The terms within GO were tagged with a part-of-
speech tagger Qtag4 (Mason, 2004) in order to 
understand the linguistic dependencies between the 
terms (for example, between adjective and noun or 
between adverb and verb).  

We tagged all the GO terms and also their 
definitions. The definition tags supplement the GO 
term tags since definitions are more elaborate and 
the specificity of the tagger also increases when it 
deals with complete sentences rather than with the 
collections of words by which GO terms are 
constituted. 

Among the terms, we find 1813 adjectives, 29 
adverbs, 2808 nouns, 11 prepositions and 57 verbs. 
Among the term definitions, we found 3460 
adjectives, 252 adverbs, 4837 nouns, 21 
prepositions and 595 verbs. The lowest specificity 
is found for chemical names. 

Unfortunately very few of the interesting part-of-
speech generated dependencies can be captured on 
the basis of an analysis of GO terms alone. This is 
because there are very few cases of such 
dependencies where both terms involved are 
present within GO. Examples are: heme transport 
and heme transporter activity or growth and 
invasive growth. In many other cases, however, we 
have complex GO terms whose constituents are not 
themselves present in GO. Thus photoreactive 
repair is present, but not repair or photoreaction. 
Hypersensitive response is present but not 
response and hypersensitivity. Terms like during, 
within and without play an important role in GO’s 
compositional structure, but they are not 
themselves present within GO. (For more 
examples see (Smith et al. 2004).) To rectify this 
defect and to make the corresponding information 
accessible to software applications ways must be 
found to link GO to third-party ontologies in which 
the corresponding constituent terms are themselves 
subjected to formal treatment. 

                                                      
4 http://web.bham.ac.uk/O.Mason/software/tagger/ 



Our statistical approach, apriori-generated 
association rules and lexical tagging yielded a 
range of different sorts of associations, for example 
between a location and a process, a process and a 
function, a function and another function, a process 
and another process, an agent and a function and so 
on. One needs a formal ontology, too, in order to 
express those relations within a single framework 
and thus to create a robust representation scheme 
that can serve as the basis for automated reasoning. 

5 Basic Formal Ontology 

To do full justice to the information content of 
GO and to the rules we isolated requires a formal 
ontological scheme which encompasses both 
continuants and endurants, and both processes and 
functions, and which further has the facility to deal 
with entities found on different levels of 
granularity (here on the molecular, cellular, and 
whole-organism levels). Basic Foundational 
Ontology (BFO) is a framework of this type, the 
essentials of which can be summarized as follows. 

BFO consists of two complementary ontologies, 
called SNAP (a snapshot ontology of continuant 
entities existing at a time) and SPAN (a four-
dimensional ontology of processes unfolding 
themselves through time. (Smith and Grenon, 
forthcoming) 

The entities recognized by SNAP ontologies 
have continuous existence in time, preserve their 
identity through change and exist in toto at every 
moment at which they exist at all. They include: 
independent SNAP entities (substances and their 
aggregates, parts, and boundaries), and dependent 
SNAP entities such as qualities, roles, conditions, 
functions, dispositions, powers, etc.  

SPAN entities, in contrast, have temporal parts 
which means that they unfold themselves in 
successive phases and can be segmented via 
segmentation of the temporal intervals which they 
occupy. SPAN entities include processes in the 
narrow sense, as well as the instantaneous temporal 
boundaries of processes, the temporal extents of 
processes, and so on.  

5.1 Formal-Ontological Relations 

Formal relations are those types of relations 
which can traverse the SNAP-SPAN divide; thus 
they are relations which glue SNAP and SPAN 
entities together.  

A number of parameters can then be used in the 
construction of sub-ontologies within the wider 
BFO framework: 

– the ontologies from which the relata derive, 
expressed as an ordered list, called the signature of 
the relation 

– the directionality of the relation 

The principal signatures in the binary case are as 
follows: 

– <SNAP, SNAP> 
– <SPAN, SPAN>  
– <SNAP, SPAN> 
– <SPAN, SNAP> 

The first two signatures comprehend relations 
between ontologies with different domains or 
granularities. The latter comprehend the relations 
of realization and participation for example 
between a function and the process which is its 
functioning, or between an activity and its agent. 

Below, we present various relations which can 
exist between entities in GO and which were found 
on the basis of our analysis of the TIGR database. 
Some of the relations require extending the 
association rules to include those entities which are 
absent within GO but included within its 
compositional structure along the lines described 
above. 

5.1.1 Relations with Signature <SNAP, SNAP> 
and <SPAN, SPAN> 

Transgranular Part-Whole Relations: The 
relations crossing ontologies of different levels of 
granularity are pre-eminently relations of part and 
whole. The <SNAP, SNAP> relations between 
independent SNAP entities are already present 
within GO. Example: nuclear inclusion body part-
of nucleus.  

Our association rules uncovered transgranular 
part-whole relations between dependent SNAP 
entities. For example: transposase activity � DNA 
transposition  (1.2%/505, 91.5%). Unlike BFO 
however GO does not clearly distinguish between 
functions and processes; hence the above example 
should be interpreted as involving both a 
transgranular relation between SNAP dependent 
entities:  

transposase function  
� DNA transposition function 

and a transgranular relation between SPAN 
entities:  

transposase activity  
� DNA transposition function 

This does justice to the fact that DNA transposition  
activity consists of various activities as its parts, of 
which is transposase activity. 

5.1.2 Relations with Signature <SNAP 
Independent, SPAN> 

Participation: The relation of participation, for 
example of a runner in a race, is a species of 
dependence. There are different kinds of 
participation, which we can order along the 
following dimensions:  



 
 

 
Figure 1. Modes of Participation 

Perpetration: A substance perpetrates an action 
(direct and agentive participation in a process).  
Initiation: A substance initiates a process. 
Example:. 

electron transport � electron transporter 
activity  (0.3%/137, 96.4%)  

needs to be extended (by drawing on those terms 
which form part of GO’s compositional structure 
but are not themselves included in GO ) by:  

electron transport � electron transporter  

Perpetuation: A substance sustains a process. 
Perpetuation normally presupposes that at some 
earlier time an entity entered into the relation of 
initiation with the process in question. However, 
perpetuators are of course not by necessity 
themselves initiators. Example,  

proteolysis and peptidolysis � subtilase activity  
(0.2%/63, 96.8%),  

which again needs to be extended by:  

proteolysis and peptidolysis � subtilase  

Termination: A substance terminates a process 
(for example an operator terminates the projection 
of a film). Termination normally presupposes that 
there has obtained in the immediately prior interval 
of time a relation of perpetuation. Processes cannot 
pass from initiation to termination instantaneously. 
Example: 
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In the above example, the association between 
carbon-monoxide oxygenase and electron transport 
are that of termination. There is an additional 
association to the location of this process in the 
mitochondrial membranes. 
 

Facilitation: A substance plays a secondary role in 
a process. Example:  

protein biosynthesis � large ribosomal subunit  
(0.1%/56, 98.2%) 

Hindrance, prevention: A substance has a 
negative effect on the unfolding of a process. 
Example:  

DNA transposition � transposase activity  
(1.2%/505, 91.5%).  

While transposase initiates DNA transposition, it 
also causes an auto-inhibition later.  
 
Mediation: A substance plays an indirect role in 
the unfolding of a process relating other 
participants. Example: 
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In this relationship, formate dehydrogenase plays 
the role of a mediator of electron transport.  

Patiency: A substance is being acted on by a 
process. Example: 
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In this relationship, provirus is being integrated by 
the process of provirus integration. 

5.1.3 Relations with Signature <SNAP 
Dependent, SPAN> 

Realization: There are three main modes of 
realization, which result by applying the 
distinctions dealt with in 5.1.2 (initiation, 
termination and persistence) but substituting 
“function” for “activity”. 
 
Initiation: electron transport � electron 
transporter function   
 
Termination. electron transport � carbon-
monoxide oxygenase function   

5.1.4 Relations with Signature <SPAN, SNAP> 
Relations between Processes and Substances 
 
Creation: A process brings into being a substance. 
Example:  
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As in the previous cases, this association can be 
extended to: 

steroid � 3(or17)beta-hydroxysteroid 
dehydrogenase activity 

Sustaining in being: A process sustains in being a 
substance. 
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The protease inhibitor activity maintains the 
membrane structure. Further work needs to be 
done to understand the granularity of such 
relations. 

Degradation: A process has negative effects upon 
a substance. Example:  
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This relation associates a lyase activity with the 
degradation of D-amino-acid dehydrogenase 
complex. 

5.1.5 Spatiotemporal projection 
Temporal Projection. Processes are directly 
projectible onto the axis of time. And a substance 
is indirectly projectible onto a period of time 
through the mediation of a process in which it is 
involved. Examples: 
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While we cannot infer such projections directly 
from a single association rule, we can get a rough 
approximation if we consider more than one rule 
together.  
 
Spatial Projection. Processes are projectible also 
onto the SPAN spatiotemporal regions in which 
they occur, as also onto the (SNAP) spatial regions 
where they start and end. Examples:  

membrane � oligopeptide transport; 
transporter activity  (0.1%/44, 100.0%)    

ribosome � ribosome biogenesis; protein 
biosynthesis  (0.2%/88, 93.2%)   

6 Discussion 

The association rules yielded by our 
methodology are only the beginning of a process of 
deciphering the ontological relations across various 
granularities within the extended GO framework. 
We need to formally analyse all the rules in order 
to understand how best they fit within formal 
ontology and how they can be put together to 
create larger ontologies within systems biology. 

In validating  these associations one method is to 
consider those associations which have been 
detected on the basis of the annotations present 
within GO coming from other source databases. 
Clearly if a rule obtains across a plurality of 
databases then the corresponding association will 
be stronger. One disadvantage of this method, 
however, is that annotations of gene products from 
different databases to GO are not uniform and so 
the results cannot be relied upon beyond a certain 
limit of accuracy. Various other aspects of 
annotations, for instance, the species under 
investigation or the pertinent strength of evidence 
will need to be considered. 

A further extension of the work will be to predict 
“unknown” entities. A large number of annotations 
is made to the three GO terms cellular component 
unknown, molecular function unknown and 
biological process unknown. In those caseswhere 
there we have association rules without such 
unknown terms but otherwise relating to the same 
entities, it could be that the relevant unknown 
entity will be able to be predicted. This can be 
done with annotations from a single database 
source or by putting together annotations from 
multiple sources. We need to do further work in 
this area. For example, in the following example, 
we can establish that in the case where mf is GTP 
binding and cc is membrane, the known bf is either 
pathogenesis or sporulation (sensu Bacteria) or 
protein secretion of metabolism. Thus it is 
probable that the unknown process here 
corresponds to one or other of these alternatives.  



.��������

��	�������

,�������������

�  ���������

��������

	�	������ ���������

� 1���������

	�	������ 
����������#
��
��

,������$�

1���������

	�	������ �������
�������� 1���������

	�	������ 	������
	� 1���������

	�	������ ��������2�����

�

��!��)��

1���������

 

7 Acknowledgements 

Work on this paper was carried out under the 
auspices of the Wolfgang Paul Program of the 
Humboldt Foundation and also of the EU Network 
of Excellence in Semantic Datamining and the 
project "Forms of Life" sponsored by the 
Volkswagen Foundation. 

References  

Agrawal R, Srikant R. Fast algorithms for mining 
association rules in large databases . Proc 
International Conference on Very Large 
Databases, Santiage, Chile, (Morgan Kaufmann, 
1994) 478-499. 

Azuaje FJ, Bodenreider O. Incorporating 
Ontology-Driven Similarity Knowledge into 
Functional Genomics: An Exploratory Study. 
Proc IEEE Fourth Symposium on Bioinformatics 
and Bioengineering 2004. (In press) 

Borgelt C, Kruse R. Induction of Association 
Rules: Apriori Implementation. in: 15th 
Conference on Computational Statistics 
(Compstat 2002, Berlin, Germany) Physica 
Verlag, Heidelberg, Germany 2002 

Burgun A, Bodenreider O, Aubry M, Mosser J. 
Dependence Relations in Gene Ontology: A 
Preliminary Study. Gene Ontology Workshop, 
Leipzig, May 2004. 

Camon E, Magrane M, Barrell D, Lee V, Dimmer 
E, Maslen J, Binns D, Harte N, Lopez R, 
Apweiler R. The Gene Ontology Annotation 
(GOA) Database: sharing knowledge in Uniprot 
with Gene Ontology. Nucleic Acids Res. 2004 
Jan 1;32 Database issue:D262-6. 

Clelland S, Oinn T. Comparing protein structure 
and function: mapping CluSTr into GO and 
analysis of the results. 
http://www.ebi.ac.uk/ego/project.pdf?&format=s
imple 

Creighton C, Hanash S. Mining gene expression 
databases for association rules. Bioinformatics. 
2003 Jan;19(1):79-86.  

Gene Ontology Consortium. Creating the Gene 
Ontology. Genome Res. 2001. 11: 1425-1433. 

Kriventseva, E. V., Fleischmann, W., Zdobnov, E. 
M., Apweiler, R. (2001). CluSTr: a database of 
clusters of SWISS-PROT+TrEMBL proteins. 
Nucleic Acids Res 29: 33-36 

Kumar A, Smith B. Towards a Proteomics 
Metaclassification. Proc IEEE Fourth 
Symposium on Bioinformatics and 
Bioengineering 2004. (In press) 

Kumar A, Smith B. The Universal Medical 
Language System and the Gene Ontology: Some 
Critical Reflections. Lecture Notes in Computer 
Science. 2003 Sep; 2821/2003: 135 – 148.  

Mason, O. Automatic Processing of Local 
Grammar Patterns. Proceedings of the 7th 
Annual Colloquium for the UK Special Interest 
Group for Computational Linguistics, University 
of Birmingham, 6-7th January 2004, p.166-171. 

Ogren PV, Cohen KB, Acquaah-Mensah GK, 
Eberlein J, Hunter L. The Compositional 
Structure of Gene Ontology Terms. Pacific 
Symposium on Biocomputing 2004;9:214-225  

Pertea G, Huang X, Liang F, Antonescu V, Sultana 
R, Karamycheva S, Lee Y, White J, Cheung F, 
Parvizi B, Tsai J, Quackenbush J. TIGR Gene 
Indices clustering tools (TGICL): a software 
system for fast clustering of large EST datasets. 
Bioinformatics. 2003 Mar 22;19(5):651-2. 

Resnik P. “Using information content to evaluate 
semantic similarity in a taxonomy”, in Proc. of 
the 14th International Joint Conference on 
Artificial Intelligence, Montreal, pp. 448-453, 
1995.  

Smith B and Grenon P. The Cornucopia of Formal 
Relations, forthcoming in DIALECTA 

Smith B, Koehler J, Kumar A. On the Application 
of Formal Principles to Life Science Data: A 
Case Study in the Gene Ontology. in: Proc DILS 
2004. (Lecture Notes in Bioinformatics Nr. 2994)  

Smith, B., Williams, J., Schulze-Kremer, S.: The 
Ontology of the Gene Ontology. In: Proc. 
Annual Symposium of the American Medical 
Informatics Association (2003) 609-613 

Thomas PD, Campbell MJ, Kejariwal A, Mi H, 
Karlak B, Daverman R, Diemer K, Muruganujan 
A, Narechania A. PANTHER: a library of 
protein families and subfamilies indexed by 
function. Genome Res. 2003 Sep;13(9):2129-41.  

Zhu H, Huang S, Dhar P. The next step in systems 
biology: simulating the temporospatial dynamics 
of molecular network. Bioessays. 2004 
Jan;26(1):68-72. 


