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Appendix 1: Notation

Let X represent a sequence of data, and let Xt
B represent an i.i.d. subsequence of length

t of data generated from distribution B.1 Let F be a framework (in this case, a set of
probability distributions or densities).2 Let MF be a method that takes a data sequence
X as input and outputs a distribution B ∈ F; we will typically drop the subscript F from
M as we will be dealing with a single framework at a time. Concretely, M[Xt

B] = O
means that M outputs O after observing the sequence Xt

B . Let D be a distance metric
over distributions (e.g., the Anderson-Darling test). Let Dδ(A, B) be shorthand for
the following inequality: D(A, B) < δ. Finally, let [X, Y ] denote the concatenation
of sequence X with sequence Y .

1 We conjecture that the i.i.d. assumption could be eliminated by defining probability distributions
over sequences of arbitrary length, though this complication would not add conceptual clarity.
2 Let any P( ) functions be either a probability distribution function or probability density function,
as appropriate.

The online version of the original article can be found under doi:10.1007/s11229-014-0408-3.
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Definition A distribution A is absolutely continuous with respect to another distrib-
ution B iff ∀x PB(x) = 0 ⇒ PA(x) = 0.3 That is, if B gives probability 0 to some
event x , then A also gives probability 0 to that same event. Let AC(B) be the set of
distributions which are absolutely continuous with respect to B except for B itself.
Let AC(B, δ) be as AC(B) except restricted to those distributions which are more
than distance δ > 0 away from B.

Definition An estimator M is consistent if∀B ∈ F∀δ>0 lim
n→∞PB(Dδ(M[Xn

B], B))=1.

That is, for all distributions in the framework, the probability that M’s output is arbi-
trarily close to the target distribution approaches 1 as the amount of data increases to
infinity.

Definition An estimator M can be forced to make arbitrary errors if ∀B1 ∈ F ∀δ >

0∀B2 ∈ AC(B1, δ)∩F ∀ε > 0 ∀n2∃n1 PB1,n1,B2,n2(Dδ(M[Xn1
B1

, Xn2
B2

], B2)) ≤ ε. That
is, consider any distribution B2 which is in the framework, is absolutely continuous
with respect to B1, and is more than δ away from B1 (though there might be no such
distribution). Then for any amount of data n2 from B2, there is an amount of data n1
from B1 such that M’s output will still be arbitrarily unlikely to be arbitrarily close to
B2 after seeing the n1 + n2 data.

Appendix 2: Lemma: Consistency ⇒ Arbitrary Errors (within AC)

Proof We prove the contrapositive. If we assume M does not make arbitrary errors
and pass the negation through all the quantifiers, then we have:

∃B1 ∈F ∃δ>0∃B2 ∈ AC(B1, δ)∩F ∃ε>0 ∃n2∀n1 PB1,n1,B2,n2(Dδ(M[Xn1
B1

, Xn2
B2

], B2))>ε

Define ν(B1, B2, δ) = D(B1, B2) − δ; for convenience, we omit the arguments to
ν. In general, ν > 0 since B2 ∈ AC(B1, δ). Note that ν + δ = D(B1, B2). Since
D is a distance, the triangle inequality holds for it, so for any other distribution C ∈
F, D(B1, B2) ≤ D(C, B1)+ D(C, B2). It follows that ν+δ ≤ D(C, B1)+ D(C, B2).
Consider the case where C = M[Xn1

B1
, Xn2

B2
]. For this inequality to be satisfied, it

must be the case that if Dδ(M[Xn1
B1

, Xn2
B2

], B2) is true (i.e. D(C, B2) < δ), then
Dν(M[Xn1

B1
, Xn2

B2
], B1) is false (i.e. D(C, B1) > ν). The fully quantified inequality

above thus entails a statement about the distance of M’s output from B1:

∃B1 ∈F ∃δ>0∃B2 ∈ AC(B1, δ)∩F ∃ε >0 ∃n2∀n1 PB1,n1,B2,n2 (Dν(M[Xn1
B1

, Xn2
B2

], B1))<1−ε

Since this inequality holds for all n1, we know: lim
n1→∞PB1,n1,B2,n2(Dν(M[Xn1

B1
,

Xn2
B2

], B1)) ≤ 1 − ε.
The probability distribution here depends on the probabilities of sequences. Let Y =

[Xn1
B1

, Xn2
B2

], and let Yi be the i’th element of Y . Since we have i.i.d. samples in each sub-
sequence, we have: PB1,n1,B2,n2([Xn1

B1
, Xn2

B2
]) = ∏n1

i=1 PB1(Yi )
∏n2

j=1 PB2(Yn1+ j ).

3 Absolute continuity is typically defined in terms of measures rather than distributions, but we need only
the more specific notion.
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Note that since B2 ∈ AC(B1), if
∏n2

j=1 PB2(Yn1+ j ) > 0, then
∏n2

j=1 PB1(Yn1+ j ) > 0.

Therefore, for fixed n2, as n1 → ∞, this product converges to
∏n1

i=1 PB1(Yi )
∏n2

j=1

PB1(Yn1+ j ) = ∏n1+n2
i=1 PB1(Yi ) = PB1([Xn1+n2

B1
]).

Because the two distributions over sequences are the same in the limit, we can con-
clude lim

n1→∞PB1,n1,B2,n2(Dν(M[Xn1
B1

, Xn2
B2

], B1)) = lim
n1→∞PB1(Dν(M[Xn1+n2

B1
], B1)).

Combining this with the previous inequality yields: lim
n1→∞PB1(Dν(M[Xn1+n2

B1
], B1)) ≤

1 − ε. Since ε > 0, this implies that ∃B ∈ F ∃δ∗ > 0 lim
n→∞PB(Dδ∗(M[Xn

B], B)) �= 1

(where δ∗ = ν). Hence, M is not consistent. �


Appendix 3: Construction: Diligence ⇒ ¬ Arbitrary Errors

We construct the formal definition of diligence from that of “arbitrary errors” (AE) in
a way that makes it clear that diligent methods are not subject to arbitrary errors. The
negation of AE is:

∃B1 ∈F ∃δ>0∃B2 ∈ AC(B1, δ)∩F ∃ε>0 ∃n2∀n1 PB1,n1,B2,n2(Dδ(M[Xn1
B1

, Xn2
B2

], B2))>ε

This condition is, however, insufficiently weak to capture diligence, as we want to
avoid such errors for all pairs of distributions in the framework, not just for some
absolutely continuous pair. We thus strengthen the negation of AE by converting
the three leading existential quantifiers into universal quantifiers and extending the
domain of the universal quantifier over B2 to include those distributions which are not
absolutely continuous with respect to B1:

Definition An estimator M is diligent if

∀B1 ∈F ∀δ>0∀B2 ∈F\B1 ∃ε >0 ∃n2∀n1 PB1,n1,B2,n2(Dδ(M[Xn1
B1

, Xn2
B2

], B2))>ε.

That is, for any pair of distributions in the framework, there is an amount of data n2
from B2 such that M’s output will be arbitrarily close to B2 with positive probability
after seeing n1 + n2 data, for any amount of data n1 from B1.

Definition A framework F is nontrivial iff there exists some B ∈ F such that AC(B)∩
F �= ∅.

Clearly, diligence implies the negation of AE for all nontrivial frameworks. We
thus have the key theorem for this paper:

Theorem No statistical estimator for a (nontrivial) framework is both consistent and
diligent.

Proof Assume M is both consistent and diligent. Its consistency implies that AE holds
for it. Its diligence, along with the nontriviality of the framework, implies that ¬AE
holds for it. Contradiction, and so no M can be both consistent and diligent for a
nontrivial framework. �
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Appendix 4: Generalizing Diligence

A natural generalization of diligence yields a novel methodological virtue: Uniform
Diligence. Uniform diligence is a strengthening of regular (pointwise) diligence in the
same way that uniform consistency is a strengthening of pointwise consistency. Instead
of requiring only that, for each B1, B2 and δ, there be some n2, Uniform Diligence
requires that there be some n2 which works for all such combinations.

Definition An estimator M is uniformly diligent if

∃n2∀B1 ∈ F ∀δ>0 ∀B2 ∈ F\B1 ∃ε>0 ∀n1 PB1,n1,B2,n2(Dδ(M[Xn1
B1

, Xn2
B2

], B2))>ε.

Obviously, consistency and uniform diligence are also incompatible, as the latter is a
strengthening of diligence. The following chart shows three different ways of ordering
the quantifiers in the definition of Diligence, producing methodological virtues of
varying strength. The weakest, Responsiveness, is not incompatible with consistency.
For space and clarity, B is used in place of ∀B1 ∈ F ∀δ > 0 ∀B2 ∈ F \ B1 ∃ε > 0.

Responsiveness Diligence Uniform Diligence

B∀n1∃n2 B∃n2∀n1 ∃n2B∀n1
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