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1. Introduction 

 

Computer simulation is widely taken to be the best, and sometimes the only, tool with which to 

study highly complex phenomena. However, in many fields, whether simulation models provide the 

right kind of understanding comparable to that of analytic models has been and remains a 

contentious issue (cf. Galison 1996; Lehtinen and Kuorikoski 2007; Lenhard 2006). Simulation 

models are often themselves difficult to understand and it is often noted that replacing an 

unintelligible phenomenon with an unintelligible model is not epistemic progress. One of the 

principle aims of science is the creation of scientific understanding and the ability to create 

understanding should be one criterion by which computer simulation techniques should be assessed. 

The aim of this paper is to point out that such assessment may often be hampered by a conflation 

between the sense of understanding and understanding proper. This confusion can distort the 

appraisal of simulation models in both ways. On the one hand, simulations can provide 

understanding without the corresponding sense of understanding. On the other hand, evocative 

visuals and vague intuitions about maker’s knowledge can bring about a sense of understanding 

without actual increase in true understanding and thus result in an illusion of understanding. In 

order to improve our understanding of the merits and drawbacks of simulation techniques, we need 

to replace appeals to the sense of understanding (and vague intuitions about intelligibility that may 

depend on it) with explicit criteria of explanatory relevance and rethink the proper way of 
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conceptualizing the role of a single human mind in the collective understanding of the scientific 

community. 

 

Recent philosophical interest in the central role of models in scientific practice has highlighted the 

fact that creating understanding is not just a matter of providing more information about the 

phenomena to be understood. Cognitive limitations of humans set conditions on what can be 

understood, conditions that have to be met by using idealizations, abstractions and outright 

falsehoods (Teller 2001). However, the exponential increase in the computational power available 

to scientists and the spread of standardized simulation packages has meant that computer simulation 

has become an integral modeling tool in almost all sciences. In principle, simulation models are not 

subject to the constraint of analytic tractability and hence can do away with many of the distorting 

idealizations and tractability assumptions of analytic models. However, the very fact that a 

simulation model can do away with such idealizations often makes the simulation model itself 

epistemically opaque: the relationship between the stipulated initial conditions and the simulation 

result cannot be modularly decomposed into suboperations of sufficient simplicity, something that 

could be “grasped” by a cognitively unaided human being (Humphreys 2004, 147-150). If a 

computer simulation itself becomes so complex that we understand it no better than the 

phenomenon being simulated - when the simulation reaches the complexity barrier, as Johannes 

Lenhard puts it (2006) - has our understanding about the phenomenon itself increased?  

 

The structure of the paper is the following. The following section distinguishes between the sense of 

understanding and understanding proper and gives a broadly Wittgensteinian deflationist account of 

the latter. The third section discusses the possible illusions of understanding, sensations of increased 

understanding without accompanying increase in understanding proper, that can ne expected to be 

present in the context of simulation models. The fourth section discusses two possible ways of 
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responding to the epistemic opacity of simulation models: the use of metamodels and the 

reconceptualization of the boundaries of the cognitive subject. All hypothetical simulation models 

discussed are presumed to be “true” or giving an appropriately accurate picture of the simulated 

phenomenon throughout the paper; the question asked is whether a simulation can provide 

understanding, not whether the simulation is correct or not or how we might come to know this.  

 

2. The concept of understanding 

 

Many simulation models are so complex that they go beyond the limits of human understanding. 

The limits of understanding cannot be adequately charted until there is understanding of the concept 

of understanding itself. Yet understanding has thus far received little attention in the literature of the 

philosophy of science. Although the supposed means of conveying understanding – explanation - 

has for a long time constituted one of the most productive branches of the general philosophy of 

science, the product itself has been seen as something that cannot or should not be philosophically 

explicated (Newton-Smith 2000). Even the basic ontological category of understanding seems to be 

unclear; should understanding be conceived as a privileged mental state, as some kind of super-

knowledge, as a cognitive act or even as a special method? 

 

Although there has been considerable discussion of the concept of explanation, the supposed 

correlate of explanation – understanding - has been to a large extent left out of the picture (Newton-

Smith 2000, 131). This curious situation may partly be the result of Hempel’s belief that the concept 

of understanding was pragmatic to the bone, a psychological by-product with no epistemic 

relevance, and that it therefore did not deserve any meticulous philosophical analysis (Hempel 

1965, 413). No doubt another reason has been the dialectics of the theory of explanation, which has 

largely been based on repeated toy examples, historical cases and appeals to intuitions. This 
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methodology has left the theory of explanation largely stipulative in the sense that it has ignored the 

question of why we want explanations in the first place; explanation just is the laying out of the 

causal history of an event (Salmon 1984) or unification of our overall world-view (Kitcher 1989). 

 

Understanding has sometimes been associated specifically with the interpretation of meanings or 

intentional action and has even been seen as somehow distinct from or the opposite of explanation. 

My interest here is in understanding conceived more broadly, as the general objective of (the 

conveying of) explanations. Most strands of thinking about understanding as distinct from 

explanation share an aspect of understanding of understanding that is discarded here; understanding 

itself is thought of first and foremost as a phenomenon hidden inside the mind. This mentalist 

conception of understanding is also presupposed in the recent attack on philosophical theories of 

explanation by J. D. Trout (2002). Trout accuses theories of explanation as relying on a criterion of 

goodness of explanation, according to which a good explanation should produce a feeling or a sense 

of understanding. According to Trout, this sense of understanding has little to do with epistemic 

progress proper and is usually just a result of well-known psychological retrospective and 

overconfidence biases. Theories relying on such unreliable and contingent factors cannot be 

epistemologically interesting. 

 

Michael Scriven already pointed out that it is absurd to identify the sense of understanding with 

understanding itself, since the former can so easily be mistaken (Scriven 1962, 225). Perhaps 

understanding should then be seen as a psychological state or activity that is not transparent to 

introspection of the individual in question? However, Wittgenstein persuasively argued that the 

grammar of understanding is not that of a state-concept in the first place, but similar to that of an 

ability: understanding is attributed according to whether somebody can reliably do something. 

Understanding is not about just possessing knowledge, but about what one can do with the 
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knowledge and how reliably. Note that understanding is only akin to an ability in the sense that it 

would be equally wrong to think of it as a distinct species of (psychological) ability or skill (such as 

a mental faculty), something with a deeper underlying essence. Instead, understanding is a 

regulative or normative concept in the weak sense that it concerns whether people have the ability 

to do things correctly or in a right way. As such, understanding can only be attributed by the 

relevant community according to public criteria (Wittgenstein 1953 [1997], §§ 143-159, 179-184, 

321-324; Baker & Hacker 2005, 357-385; Ylikoski forthcoming; Ylikoski and Kuorikoski 

forthcoming; see also de Regt 2004, 100-102 and Elgin 2007, 39). These criteria do not (indeed 

cannot) primarily concern private cognitive processes, brain states or, even less, subjective feelings, 

but manifest performances. Understanding is akin to an ability, not to a hidden state. It is 

fundamentally public, not private.  

 

Cognitive processes (comprehension) taking place in the privacy of individual minds are a causal 

prerequisite for possible fulfillment of these criteria, but the processes themselves are not 

conceptually primary. They are not the criteria of understanding in the sense that we would have to 

know them in order to say whether somebody really understands something in the same sense that 

we do not need to know the cognitive and neural processes that enable one to ride a bike in order to 

judge whether one can ride a bike. In a sense the Wittgensteinian account is deflationist, since it 

denies that there is a deeper essence of understanding behind the manifest abilities according to 

which understanding is attributed. In cognitive science, mental models of different varieties are the 

standard ways of causally explaining reasoning and comprehension and it appears that these mental 

representations are not propositionally structured, but instead represent dependency relations 

directly or “intrinsically” (cf. Waskan 2009). Yet the postulation of these models addresses a 

different question, i.e., how individuals can achieve what is demanded by the public standards 
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constitutive of the concept of understanding itself1 and the correctness of the internal models is 

judged by the external displays of understanding, not the other way around (Ylikoski forthcoming). 

This is the ‘natural’ cognitive relation between the behavior of the agent and the information 

providing the understanding that Trout correctly leaves for empirical science to investigate (Trout 

2004, 203).  But this does not remove the fact that understanding in itself is a categorically different 

kind of thing.  

 

Whatever computational and memory limitations these cognitive processes have also limit the 

possible manifestations that judgments of understanding are based on. Nor should one deny the 

existence of feelings of illumination or ‘getting it’ associated with increased understanding. This is 

the sense of understanding. The phenomenological state of sense of understanding is only a fallible 

predictor of future performance to be judged against the public criteria. One can judge whether one 

really understands something only by comparing one’s explanatory or inferential performance 

against an external public standard. Wittgenstein’s main concern was, of course, the understanding 

of the meanings of words and utterances, but his general argumentative thrust can be 

straightforwardly generalized to apply to explanatory understanding. Thus we arrive at a 

characterization that is general enough not only in including the natural and the human sciences, but 

also in the way it links and makes intelligible the use of the same word in practical every-day 

matters and language. 

 

What can be said of the criteria that one needs to fulfill in order to be eligible for possession of 

scientific understanding of a theory or a phenomenon? Hank de Regt and Dennis Dieks (2005) 

stress the manner in which the criteria for scientific understanding have changed in the history of 

                                                
1 Jonathan Waskan seems to claim that these mental models make phenomena intelligible (Waskan 2009, ?), which, of 
course, would just lead to a regress: in virtue of what do these mental models make phenomena intelligible? This 
mentalistic way of conceptualizing understanding also leads easily to confusing sense of understanding with 
understanding (cf. ibid., ?)  
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science. It is certainly necessary to allow certain flexibility in the criteria of understanding so as not 

to render all past scientific explanations unsatisfactory or downright unintelligible if they do not 

meet the standards of today. However, certainly understanding per se is such an integral part of our 

conceptual scheme that a complete lack of continuity in historical applications of this concept 

would be hard to accept.  There should also be a place left for unabashedly normative use of the 

concept from our current perspective; we do make judgments as to whether some particular 

phenomenon was understood at some given time, and the grounds for these judgments should have 

continuity with arguments given in some other era. After all, explanatory progress in science is at 

least partly a matter of empirical discovery, not just of conceptual change.  

 

When looking for a common factor in the attributions of understanding of a theory, De Regt and  

Dieks arrive at a conclusion that the attribution of understanding rests on the subject’s ability to 

draw qualitative conclusions about hypothetical changes in the explanatory model without making 

exact calculations with additional inferential aids, such as pen and paper or a calculator (ibid., 151). 

According to them, the criterion of understanding of theories is unaided inferential performance. 

Yet the ultimate goal is not just to understand theories or models, but to understand the phenomena 

that the theories and models are about. 

 

The central idea of inferential performance as the constitutive criterion of understanding can be 

further developed by linking it to James Woodward’s account of scientific explanation in the 

following way: Woodward’s theory of explanation tells us more specifically what kinds of 

inferences are constitutive of understanding, of theories as well as of phenomena that the theories 

are about. According to Woodward (2003), explanation consists of tracing or exhibiting functional 

dependency relations between variables. Explanation is thus doubly contrastive; the functional 

relationship links the possible values of the explanans to possible values of the explanandum. These 
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explanatory relationships provide understanding by giving answers to what-if-things-had-been-

different questions concerning the consequences of counterfactual or hypothetical changes in the 

values of the explanans variable. These answers are the basis of inferential performance constitutive 

of understanding. In the case of causal explanations or explanations given on the basis of a causal 

model, the relevant hypothetical changes to consider are interventions, ideally surgical 

manipulations that affect only the explanans variable of interest and leave the rest of the model 

intact (apart from the changes caused by the change in the explanans variable dictated by the model, 

of course). Thus the conception of understanding as inferential ability is fully compatible with the 

realist (or ontic) idea of understanding as knowledge of causes and mechanisms, as long as causal 

relations are understood as dependencies invariant under interventions. 

 

Woodward’s account intimately links explanatory knowledge to our capacity to function in the 

world as goal-directed manipulators. Whereas the epistemic conception of explanation of the D-N –

model was concerned only with predictive power, Woodward’s theory stresses our role not only as 

passive observers, but also as active agents. Understanding is the ability to make correct inferences 

on the basis of received knowledge and causal knowledge concerns the effects of manipulations and 

therefore licenses inferences about the effects of our actions.2 Understanding thus lies not only in 

correctness of inference, but sometimes also in effectiveness of action based on the information to 

be understood. Although a mechanic may not be able to give a theoretical description about the 

physical laws governing the workings of a combustion engine, he does have an intimate 

understanding about its workings because he can effectively manipulate it – in order to fix an 

engine one has to know the functional roles of the parts and the effects of manipulating them. This 

idea probably underlies Fred Dretske’s unarticulated intuition that one cannot understand how 

                                                
2 Causal reasoning should not be seen as just a conceptual tool in arriving at understanding (as De Regt and Dieks see 
it), but as an end in itself - an important kind of understanding. Of course, different varieties of causal reasoning are 
often a causal means to understanding, even to non-causal understanding, but this is a different issue. 
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something works unless one can build it (Dretske 1994) and Johannes Lenhard’s pragmatic 

conception of understanding (Lenhard 2006). 

 

Understanding thus comes in many varieties and shades, some of which might be considered more 

scientific than others. However, since science is fundamentally a communal activity, extra criteria 

of being able to provide explanations and of being able to justify the information responsible for the 

understanding might be appropriate for attributions of specifically scientific understanding to 

individuals. Since scientific knowledge is often highly systematized into hierarchic sets of 

principles, the ability to justify correct inferences made on the basis of a limited set of theoretical 

principles, i.e., theoretical understanding, also characterizes much, but not all, of specifically 

‘scientific’ understanding. Thus understanding as the ability to make correct inferences also 

accounts for the common intuitions linking understanding to integration of isolated facts into 

background knowledge (as in Schurz and Lambert 1994 and in Elgin 2007) and to unification more 

generally (Friedman 1974; Kitcher 1989). However, whereas unificationists have to adopt a 

stipulative stance in claiming that understanding simply is unification (Barnes 1992), understanding 

as inferential ability follows as a natural consequence from a well-ordered knowledge store or from 

a powerful set of argument patterns. 

 

Understanding is epistemic in the sense that correctness is usually to be understood as truth or 

truthlikeness; understanding is usually seen as factive (Grimm 2006; Trout 2002).3 Understanding is 

also epistemic in the sense that correct inferences about alternative possibilities are crucial in 

finding out new things. At the same time, understanding is pragmatic in the sense that it has an 

intimate connection with our non-theoretical aspirations and also in the sense that it causally 

depends on individual psychological abilities. From this perspective it is not clear why de Regt and 

                                                
3 However, it is primarily the correctness of inferences that matters and that (partial) understanding can therefore be 
provided by models and theories that incorporate significant falsities in the form of idealizations etc. (cf. Elgin 2007). 
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Dieks single out the qualitative predictions concerning consequences of changes in the explanatory 

model, since quantitative mathematical manipulations surely are a form or a dimension of 

understanding as well, usually one regarded as highly scientific (although one can, of course, 

stipulate that intuitive understanding must be arrived at by intuitive means). In fact, the degree of 

externalization of inferences and the amount of explicit calculation that would still count as 

constitutive of understanding vary across scientific disciplines. For example, economists are 

notorious for insisting on proficiency in mathematical model manipulation and for especially 

valuing analytical solutions done with only pen and paper as inferential aids (Lehtinen & 

Kuorikoski 2007).  

 

3. Simulation and the illusion of understanding 

 

We have thus far distinguished between the psychological phenomenon of sense of understanding 

from the degree of understanding itself, which can in turn be operationalized (in the good old-

fashioned strong sense) as the ability to make correct counterfactual inferences about the object of 

understanding. The sense of understanding is only an indicator of understanding proper and it is the 

latter notion that is epistemically and pragmatically relevant. The sense of understanding has an 

important metacognitive role in providing immediate cues according to which we conduct our 

epistemic activities and it is also an important psychological motivating factor for those activities 

(Ylikoski forthcoming). However, if the ability to create understanding is to be taken as an 

important criterion in the final assessment of simulation techniques, this assessment should not be 

based on vague intuitions about understanding, usually dependent on the sense of understanding, or 

on the sense of understanding directly, unless the sense of understanding turns out to be a 

sufficiently reliable indicator of understanding itself. 
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The trouble is that empirical studies seem to indicate that people systematically over-estimate their 

abilities to explain the workings of mechanisms and natural phenomena. As Frank Keil and his 

associates have empirically demonstrated, when given the possibility of comparing their 

explanatory performance (inferential performance) to an external standard, people tend to 

downgrade their assessment of their own explanatory performance and only after learning more 

about the test-case do they begin to raise their self-assessment score towards the initial level. This 

effect is not present in the self-assessment of the subject’s ability to recollect facts and hence is not 

simply an aspect of the alleged general overconfidence bias. (Keil 2003; Mills and Keil 2004; 

Rozenblit and Keil 2002) People are systematically overconfident specifically about their 

explanatory understanding. To the extent that self-assessment of understanding is normally based 

on the sense of understanding (which I see no reason to doubt), this suggests that the sense of 

understanding is an unreliable indicator of understanding. 

 

The miscalibration of the sense of understanding is a general phenomenon. However, there is a 

possibility that the sense of understanding is especially biased in some specific contexts. In 

principle, the sense of understanding can be misleading in both ways: something can be understood 

without an accompanying sense of understanding (tacit learning) and there can be a sense of 

understanding without a corresponding increase in inferential ability. I will here focus on the latter 

possibility, the danger of illusion of understanding (Ylikoski forthcoming), since there are a number 

of reasons to expect4 that this danger might be especially severe in the context of simulation studies.  

 

3.1. Mistaking understanding of sub-operations for understanding of the process 

 

                                                
4 It is important to admit that the following worries are in the end empirical psychological hypotheses. 
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Even if the sense of understanding were a reliable indicator of inferential performance when applied 

to simple inferential tasks, the danger of miscalibration can be expected to increase when the task 

becomes more complex. First, simply the fact that the overall cognitive load increases probably 

makes self-evaluation more unreliable. Second, complex inferential tasks are something that the 

agent rarely encounters, thus there is less feedback and external benchmarks against which the 

sense of understanding could have been calibrated. In the case of simulated complex systems, both 

of these worries are present. An additional worry is that the sense of understanding of a simple sub-

task can be mistaken as an indicator for true understanding of the more complicated task. 

 

As Roman Frigg and Julian Reiss point out (2009), at the bottom level of the foundational transition 

rules on which the simulation is built on, simulations are always in principle understandable, since 

the changes of the states of basic elements (for example state-transition rules for single cells in a 

cellular automata model) follow well defined rules laid down in the programming of the 

simulation.5 These rules themselves are usually simple and intuitive and thus relatively easy to 

understand, but the inferences concerning the results of interactions of these elements are well 

beyond our limited cognitive powers. The danger of an illusion of understanding arises from the 

possibility that since one does understand the behaviour of the parts and consequently experiences a 

sense of understanding this sense of understanding is taken to indicate that one also understands the 

behaviour of the whole. However, it is well known that unless the system-level property is 

exceptionally well-behaving (for example is nearly aggregative in William Wimsatt’s (2000) sense), 

one cannot simply infer from the properties of the parts to a property of the whole. 

 

Model builders themselves are probably relatively immune to this illusion. In fact, the frequent talk 

about emergence may be seen as a placeholder for the acknowledged lack of understanding of why 

                                                
5 Also, in principle, every simulation run is just a long deduction and hence understandable by a cognitive agent with 
sufficient working memory. 
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the whole behaves as it does even when the behavior of the parts is understood. The problem 

becomes more acute when knowledge and understanding are transferred and assessed across 

disciplinary boundaries. 

 

3.2. Visualization confused with insight 

 

Paul Humphreys, Johannes Lenhard and Eric Winsberg have all recently emphasized the 

importance of visualization in rendering simulation results understandable. There is no doubt that 

additional visual representations of the simulation results are an efficient cognitive aid in the 

creation of understanding (e.g. Herbert and Bell 1997): we are visually oriented creatures and it 

makes sense to utilize also those cognitive capacities that involve sight and spatial comprehension. 

However, it should be noted that merely looking at colorful pictures or animations may not by itself 

provide grounds for making any additional counterfactual inferences, answers to more what-if-

things-had-been-different questions, about the simulated phenomenon. Conflating knowledge of 

dynamics with knowledge of underlying causes can be a source of illusion of understanding in the 

context of analytic models as well, but “seeing how the system works”, preferably in vivid color, 

probably enhances the sense of understanding. To see this consider a model that can be represented 

both as an analytic model and as a simulation: the Lotka-Volterra model. 

 

The standard Lotka-Volterra model is a pair of first-order, non-linear differential equations that are 

used to describe the population dynamics of a predator and its prey. The two equations are:  

dx/dt = x(a-by)  

dy/dt = -y(c-dx) 

In which the x is the hare population and y is the lynx population, a tells us how fast the hare 

population grows, b tells us how efficiently the hares are eaten up by the lynxes, c tells us how fast 
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the lynxes reproduce and d tells how how fast the lynxes perish. In this form, the model has no 

analytic solution, but it is relatively easy to explore the dynamics numerically (even without a 

computer) and the dynamics are usually represented graphically. The graph shows how the 

population trajectories oscillate and the reason for this systemic behavior is easy to understand: 

over-predation leads to a fall in the prey-population, which leads to a fall in the predator population, 

which makes it possible for the prey-population to grow and so forth.  

 

 The essence of the Lotka-Volterra model can also be simulated with a cellular automata model. 

With a running cellular automata model, one can see how local over-predation leads to 

disappearance of the pray which leads to decline in the predator population and so forth. Because 

each state of a given cell on the screen can now be given an interpretation as a “concrete”, though 

artificial, hare, lynx or pasture (especially if the cell states are given appropriate color codes), the 

simulation creates a feeling of seeing the dynamics in action, not just as an abstract representation. 

There is a sense of understanding of the abstract oscillatory dynamics. However, no new what-if-

things-had-been-different questions (at least relating to non-spatial issues, of which the original 

model is silent) can be answered about the population dynamics on the basis of the cellular 

automata model. Hence, there is no increase in understanding proper, only an illusion of enhanced 

understanding.  

 

As with the previous worry, this illusion is probably an issue mostly in contexts in which the 

visualizations are presented to a non-expert audience, who lack knowledge of the required context 

specific benchmarks and previous encounters with the kind of data that would be required for 

competent self-assessment of understanding. Neither is the illusion of understanding created by 

pictures limited to simulation results. For example, adding irrelevant brain pictures to a neuro-
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scientific research report makes the report more convincing for non-experts and even students of the 

relevant field (Skolnick Weisberg et. al. 2008). 

 

3.3. Manipulability of dynamics confused with understanding of mechanism 

 

Johannes Lenhard (2006) argues that because of epistemic opacity of simulations, traditional (D-N 

style) conceptions of explanation and understanding are inapplicable. In their place, Lenhard 

advocates “a pragmatic conception” of understanding based on our practical ability to manipulate 

the simulated phenomenon according to what we have learned from manipulating the simulation 

model. This fits well with the conception of understanding as akin to an ability advocated in the 

previous section, but it is nonetheless crucial to explicate just what is and what is not understood 

when only the results of changes in the initial conditions or parameter values are known. 

 

Knowledge of dependencies between inputs and outputs provides understanding of why some the 

end-results (the outputs) are the way they are rather than something else. For example, let us 

suppose that some agent based model evolves into an equilibrium E with certain characteristic C 

and that characteristic is dependent on the parameter value P. If we had found this out, for example 

by performing multiple runs with different parameter values, we would have (limited) 

understanding about why E has property C rather than C’. However, unless we know how that 

dependency itself is dependent on the structural features of the model, say that if the agents obeyed 

a slightly different decision rule, then the dependency between P and C would be different in some 

predictable way, we would not have understanding of why the system behaves as it does, i.e., 

understanding of the mechanism. By manipulating the initial settings we may be able to get the 

simulation to do what we want it to do, but this is different from understanding why it does so. 
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It is important to notice that this is a different worry from the obvious underdetermination problem 

that many possible causal mechanisms could produce the same observable results (in the context of 

simulations the underdetermination problem is often called equifinality). The illusion of 

understanding arising from the manipulability of the system can arise even when the simulation 

does capture the right causal constituents of the simulated system. If the simulation is based on 

totally wrongheaded causal assumptions, the understanding it provides is simply false. 

 

3.4. The idea of maker’s knowledge 

 

Fred Dretske once asserted (1994) that in order to really understand a system, one should possess 

the knowledge that would, in principle, enable one to build the system. Also Joshua Epstein’s motto 

“If you didn’t grow it, you didn’t explain it” (1999) could be (although perhaps slightly 

uncharitably) be interpreted as an expression of the same idea. As was noted above, there is a sense 

in which assembling a working system guarantees at least some proficiency in answering what-if-

things-had-been-different questions and thus understanding. However, this understanding should be 

distinguished from the common but unfounded intuition of maker’s knowledge: a special privileged 

epistemic access a maker has into his or her creation. 

 

One of the first things to do when verifying or validating a simulation model is to see whether the 

program can reproduce some results known to be true of or similar to the simulated phenomenon 

(benchmarking). This is not an easy task. As was already noted, the sense of satisfaction in getting 

the computer do what you wanted it to do can be confused with understanding what is happening. 

Simulations also feel more concrete than analytic models. A simulation model is an artificial 

physical system, ecology, economy or society with which the researcher can experiment (cf. Peck 

2008). Thus it seems like something that the researcher has actually built, rather than a set of 
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stipulated assumptions and a conclusion deduced from them. However, since understanding is 

ultimately a matter of correct inferences concerning the effects of counterfactual changes, if the 

creator cannot make these inferences, no amount of spilled blood, sweat or tears can make the 

creator understand why the creation behaves as it does. 

 

4. Improving our understanding 

 

Since the sense of understanding is in general unreliable, and in simulation context possibly biased, 

indicator of understanding, we ought to replace it with something else as the central metacognitive 

criterion of assessment. As was already noted, the sense of understanding plays a crucial role in 

motivating research and providing immediate heuristic cues by which the model building is guided. 

Thus it may not be possible or even sensible to try to altogether ignore the sense of understanding 

during the process of model building. Since what is central to understanding is the ability to make 

inferences about the effect of local changes in the system under study, what can be explained by 

what, explicating the dependencies that ground these inferences also explicate the kind and degree 

of understanding. Thus the kind and degree of understanding can be explicated by stating the known 

relations of explanatory relevance. This should be the fundamental criterion against which models 

should be assessed. Explicating relationships of explanatory relevance can also be an effective 

strategy in calibrating the sense of understanding: reflecting whether one can actually answer any 

new w-questions concerning some puzzling aspect of a simulation or the simulated phenomenon 

can be used as a quick check on whether any understanding has been created. 

 

The trouble is that when simulations become epistemically opaque, relations of explanatory 

relevance become hard or impossible to formulate for a cognitively unaided human. If it is indeed 

the case that simulation models that break the complexity barrier provide only limited 
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understanding, how should we try to incorporate them into our overall scientific understanding of 

the world? First, we might try to build humanly tractable models about the simulations themselves. 

This strategy of metamodelling is an approach sometimes taken in agent based computational 

economics, for example. Second, we might simply have to rethink the place of the individual human 

mind in our collective scientific endeavor.   

 

4.1. Metamodels 

 

In order for a complex simulation to be understandable for a cognitively unaided human individual, 

it needs to be described in such a way that inferences concerning hypothetical local changes become 

feasible. Thus one way of improving understanding about simulations is to build additional 

explanatory representations, metamodels, about them. When the interaction of system parts 

becomes intractable, one way to gain some inferential power concerning possible paths of 

development for the system as a whole is to build a new representation of the simulation at a higher 

level of abstraction. As an example, Cosma Rohilla Shalizi and Christopher Moore (2003) claim 

that the way to create understanding of complex  bottom-up simulations is to throw away micro-

information in such a way, that the information left describes (in the sense of enabling to make 

distinctions between) macro-states with Markovian dynamics, i.e. the behaviour of the cellular 

automata system is described in such a level, that the future state of the system is independent of its 

past when conditioned on the present state. (Shalizi & Moore 2003, 10) Markov property can be 

naturally seen as a kind of modularity condition for stochastic processes, since it enables inferences 

concerning the effects of temporally localized changes in the process. In order to gain some 

inferential power concerning possible paths of development, we need a new representation of the 

CA at a higher level of description, the Markovian stochastic process. This stochastic process can 
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be considered as an explanatory model of the original CA, which, although a model in itself, is also 

conceived as a system to be modelled in its own right.  

 

The building of “empirical” metamodels6 using standard statistical techniques on the data generated 

by the simulation is standard practise in some fields using micro-simulation, such as agent-based 

computational economics (ACE) (Kleijnen & Sargent 2000). For example, Bunn and Oliveira 

(2001) construct an ACE model of a wholesale electricity market to explore the possible effects of 

the New Electricity Trading Arrangements (NETA) introduced in the United Kingdom in March 

2001. Their model incorporates strategically interacting market participants (electricity generators 

and energy purchasers for end-use customers); a system operator; interactions between a bilateral 

market, a balancing mechanism, and a settlement process; determination of day-ahead mark-ups on 

previous day price offers by means of reinforcement learning; and daily dynamic constraints. The 

result is an enormously complicated repeated stochastic game. In order to make some sense of their 

results, they use their simulation data to fit a number of simple econometric models describing the 

characteristics of market equilibria under NETA as functions of both market structure and agent 

characteristics. As with the cellular automata models, the mere possibility of recreating some macro 

phenomenon of interest from micro-foundations is not enough for understanding of the 

phenomenon to be created. What is required is a representation that enables unaided answers to 

what-if-things-had-been-different questions concerning hypothetical changes in the values of 

variables or parameters. 

 

4.2. Extending the understanding subject 

 

                                                
6 Providing understanding of the simulated phenomena is not the only aim of metamodelling. Of independent interest 
may be the brute behaviour of the output, calibration or sensitivity/robustness analysis. Consequently, these different 
aims entail different metamodelling strategies (Kleijnen & Sargent 2000). Notice that the term metamodel is sometimes 
also used to refer to a kind of metatheory, according to which the simulation should be constructed and carried out. 
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There is no a priori assurance that all the pragmatically and theoretically important systems could 

be captured in such representations that would allow a cognitive agent with human limitations to 

reliably make counterfactual inferences about them.7 Adding new layers of representation, models 

of models, may not also always be the most sensible thing to do. So far this essay has been about 

understanding as possessed by individual human beings. However, limiting the proper place of 

inferential activity to the mind of a lone heroic theorist might simply be misguided, since a great 

part of our cognitive practices are in any case best seen as distributed outside our minds and bodies 

(see e.g…). In a very important sense, we can understand the world better not because we have 

become smarter, but because we have cumulatively made our environment smarter. The question of 

the proper unit of cognition is especially pertinent in the case of scientific understanding, which is 

both massively distributed (within research groups and across the scientific community) and 

massively extended.  

 

For Paul Humphreys (2004; forthcoming), the most important philosophical question that 

computational science in general and simulation in particular pose is whether we should rethink the 

very anthropocentric enlightenment conception of epistemology, i.e., should we let go of the 

presupposition that the individual human mind is the primary or default cognitive/epistemological 

subject. Of course, the idea of extended cognition is now generally accepted, but there is a specific 

point about the sense of understanding that is worth making here: the sense of understanding has 

probably been one major motivation for unreflectively presuming that it is the individual mind that 

should be taken as the seat of knowledge and understanding. For Descartes, the sense of 

understanding even acted as a foundational epistemic principle: the things that we understand most 

clearly should be taken as the most secure basis of all knowledge. Our epistemic activities are to a 

                                                
7 Herbert Simon famously argued that most evolved or designed complex systems are likely to be modular and 
hierarchical (Simon 1962). However, see also Kashtan and Alon 2005 for some crucial limitations to Simon’s argument.  
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large degree motivated by the psychological sense of satisfaction accompanying understanding, but 

it is still a mistake to confuse this sensation for the ultimate goal itself. 

 

The deflationist and anti-mentalistic conception of understanding advocated here thus supports the 

idea that epistemological anthropocentrism should be, if not discarded, at least weakened. If the 

sense of understanding itself has no epistemic value, then we cannot use it to argue that attributions 

of understanding should be limited to conscious minds. In fact, unless there is some epistemic 

reason to think otherwise, the question of whether an extended cognitive system of a mind and a 

computer can be said to understand something even when the unaided mind is incapable of doing it 

becomes mostly definitional. In such a case, the only epistemically relevant facts of the matter are 

that the extended system can reliably answer a range of what-if-things-had-been-different questions 

about the simulated phenomenon, can successfully infer and explain, but the constrained cognitive 

system (the human) cannot. Insofar as the human-computer pair is reliably integrated to the 

appropriate scientific community (for example the computer and the code can be subjected to 

effective error control that is independent of particular simulation results), whether the extended 

system “really” understands or not becomes a non-issue. The human may not understand the 

simulation, but the human-computer pair may understand the simulated phenomenon. In fact, as 

was briefly noticed above, we already attribute understanding to extended cognitive systems, since 

even traditional analytic modeling, which essentially involves the use of pen and paper, should also 

be seen as extended cognition (Giere 2002, Kuorikoski and Lehtinen 2009). 

 

The extent that understanding is allowed to seep outside our skulls varies across scientific 

disciplines and probably reflects important and deeply ingrained differences in methodological 

presuppositions and epistemic situation. Physicists do not seem to be worried about offloading 

cognition to machines, probably because of their relative confidence in their basic theory (from 
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which the simulation assumptions are derived), familiarity with technology and heavy computation 

and, most importantly, because they have no choice. Economists are less sanguine, probably 

because the underlying theory is not that strong and the investigated systems are heterogeneous and 

constantly changing thus creating the need for general and robust models. Many theoretical 

economists also conceptualize their research as economic “thinking” and thus uphold the romantic 

image of the lone heroic theoretician, unraveling the secrets of society within his or her mind (the 

contentious history of the epistemic importance of introspection probably also plays a role). 
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