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Bell-CHSH inequalities are trivial algebraic properties satisfied by each line of an Nx4

spreadsheet containing ±1 entries, thus it is surprising that their violation in some

experiments allows us to speculate about the existence of non-local influences in

nature and casts doubt on the existence of the objective external physical reality. Such

speculations are rooted in incorrect interpretations of quantum mechanics and in a

failure of local realistic hidden variable models to reproduce quantum predictions for spin

polarization correlation experiments (SPCE). In these models, one uses a counterfactual

joint probability distribution of only pairwise measurable random variables (A, A′, B, B′)
to prove Bell-CHSH inequalities. In SPCE, Alice and Bob, using 4 incompatible pairs of

experimental settings, estimate imperfect correlations between clicks registered by their

detectors. Clicks announce the detection of photons and are coded by±1. Expectations

of corresponding random variables—E (AB), E (AB′), E (A′B), and E (A′B′)—are estimated

and compared with quantum predictions. These estimates significantly violate CHSH

inequalities. Since variables (A, A′) and (B, B′) cannot be measured jointly, neither Nx4

spreadsheets nor a joint probability distribution of (A, A′, B, B′) exist, thus Bell-CHSH

inequalities may not be derived. Nevertheless, imperfect correlations between clicks

in SPCE may be explained in a locally causal way, if contextual setting-dependent

parameters describing measuring instruments are correctly included in the description.

The violation of Bell-CHSH inequalities may not therefore justify the existence of a spooky

action at the distance, super-determinism, or speculations that an electron can be

both here and a meter away at the same time. In this paper we review and rephrase

several arguments proving that such conclusions are unfounded. Entangled photon pairs

cannot be described as pairs of socks nor as pairs of fair dice producing in each trial

perfectly correlated outcomes. Thus, the violation of inequalities confirms only that the

measurement outcomes and ‘the fate of photons’ are not predetermined before the

experiment is done. It does not allow for doubt regarding the objective existence of

atoms, electrons, and other invisible elementary particles which are the building blocks

of the visible world around us.

Keywords: quantum non-locality, counterfactual definiteness, local realism, non-invasive measurability, Tsirelson

bound, EPR paradox, Bell-CHSH inequalities
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INTRODUCTION

External physical reality existed before we were able to probe it
with our senses and experiments. From early childhood, we learn
that the objects surrounding us continue to exist even when we
stop looking at them.

Another notion imprinted in our genes is the notion of a local
causality. If a baby elephant or a baby antelope does not stand up
immediately after their birth, they will die. Several events which
we observe may be connected by causal chains. The amazing
migration patterns and courtship rituals of birds and butterflies
are encoded in their genes.

Our brains, evolved over millions of years, allow us to
understand that the external physical reality should be governed
by natural laws which we can try to discover. We succeeded
in explaining observable properties of macroscopic objects
assuming the existence of invisible atoms and molecules. Later,
we discovered electrons, nuclei, elementary particles, resonances,
and various fields that play an important role in the Standard
Model. Various conservation laws are obeyed in macroscopic and
in quantum phenomena.

Information about the invisible world is indirect and relative
to how we probe it. Invisible charged elementary particles leave
traces of their passage in photographic emulsion or in different
chambers (sparks, bubble, multi-layer, etc.). They also produce
clicks on detectors.

We accelerate electrons, protons, and ions and by projecting
them on various targets we probe more deeply into the structure
of the matter over smaller and smaller distances. We succeeded
in trapping electrons and ions.We constructed atomic clocks and
ion chips for quantum computing.

It is therefore surprising that the violation of various Bell-
type inequalities [1–5] by some correlations between clicks on the
detectors observed in spin polarization correlation experiments
(SPCE) [6–11] may lead to the conclusion that that there is no
objective physical reality, that the electron may be both here and
a meter away at the same time, that a measurement performed
by Alice in a distant location may change instantaneously an
outcome of Bob’s measurement or that apparently random
choices of experimental settings in SPCE are predetermined due
to super-determinism.

The fact that such conclusions are unfounded has been
pointed out by several authors [12–83]. The violation of the
inequalities confirms only that “unperformed experiments have
no outcomes” [84], that one may not neglect the interaction of a
measuring instrument with a physical system and that the “non-
invasive measurability” assumption is not valid. It confirms the
existence of quantum observables which can only be measured in
incompatible experimental contexts.

It also proves that entangled photon pairs, produced in SPCE,
may not be described as pairs of socks (local realistic hidden
variable models- LRHVM) or as pairs of fair dice (stochastic
hidden variable models-SHVM) [1–4].

We are unable to create any consistent mental picture
of a “photon.” We have the same problem with many
other elementary particles, but the lack of mental pictures
does not mean that they do not exist. These invisible

particles are building blocks of the visible world around us,
including ourselves.

A completely new approach is needed in order to reconcile
the quantum theory with the theory of general relativity, and it
is not certain whether we are smart enough to find it. We will
surely not discover it, however, if we accept quantum magic as
the explanation of phenomena which we do not understand.

The question in the title of this article was first asked by
Einstein during his promenade with Pauli, after it was rephrased
in different contexts by Leggett and Garg [85] and Mermin [86].
In this paper, we defend Einstein’s position [87–89] as we believe
that the moon continues to exist if nobody looks at it.

The paper is organized as follows:
In section Experimental Spreadsheets and Bell-Type

Inequalities we show that Bell-CHSH, Leggett-Garg, and Boole
inequalities [34, 70, 78, 90] are trivial arithmetic properties of
some Nx3 or Nx4 spreadsheets containing±1 entries.

In section Local Realistic Models for EPR-Bohm Experiment
we define LRHVM and explain why these models cannot
reproduce quantum predictions for ideal EPRB experiments
which are impossible to implement.

In section Contextual Description of Spin Polarization
Correlation Experiments we show how, by incorporating in an
LRHVM setting dependent parameters describing measuring
instruments, we may explain in a locally causal way correlations
between distant outcomes observed in SPCE.

In section Subtle Relationship of Probabilistic Models With
Experimental Protocols we explain why Bell-1971 model [2, 91]
and Clauser-Horne model [4] are inconsistent with experimental
protocols used in SPCE.

In section Quantum Mechanics and CHSH Inequalities we
define quantum CHSH inequality [92, 93] and Tsirelson bound
[92] and we reproduce Khrennikov’s recent arguments [43] that
the violation of quantum CHSH inequality confirms the local
incompatibility of some quantum observables.

In section The Roots of Quantum Non-locality we show that
speculations about quantum non-locality are in fact rooted in
the incorrect interpretation of von Neumann/Lüders projection
postulates [94, 95].

In section Apparent Violations of Bell-Boole Inequalities in
Elastic Collision Experiments we discuss simple experiments
with elastically colliding metal balls [54] and we explain
an apparent violation of Bell-Boole inequalities in these
experiments. These experiments allow us to better understand
LRHVM and why they fail to describe SPCE.

Section Conclusions contains some conclusions.

EXPERIMENTAL SPREADSHEETS AND

BELL-TYPE INEQUALITIES

Let us examine properties of a spreadsheet with four columns
each containing N entries ±1. We may have N-identical rows
or 16 different rows permuted in an arbitrary order. The entries
may be coded values representing outcomes of some random
experiment (e.g., flipping of four fair coins). Theymay display the
results of some population survey or represent daily variations of

Frontiers in Physics | www.frontiersin.org 2 September 2020 | Volume 8 | Article 273

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Kupczynski Is the Moon There If Nobody Looks: Bell Inequalities and Physical Reality

some stocks. They also may be created by an artist as a particular
visual display. Thus, the columns in the spreadsheet may be finite
samples of a particular discrete time-series of data or they can be
devoid of any statistical meaning.

If each line of the spreadsheet contains measured values (a. a,
b, b′) of jointly distributed random variables (A, A′, B, B′) taking
the values±1 then b= b′ or b= –b′and then:

|s| = |ab− ab′ + a′b+ a′b′|
= |a(b− b′)| + |a′(b+ b′)| ≤ 2. (1)

From (1) we immediately obtain CHSH inequality:

|s| ≤
∑

a,a′,b,b′
|ab− ab′ + a′b+ a′b′|p(a, a′, b, b′)

≤ |E(AB)− E(AB′)| + |E(A′B)+ E(A′B′)| < 2 (2)

where p(a, a, b, b′) is a joint probability distribution of (A, A′, B,
B′) and E(AB) = ∑

a,b
abp(a, b) is a pairwise expectation of A and

B obtained using a marginal probability distribution p(a, b) =
∑

a′ ,b′
p(a, a′, b, b′).

If A′ = B and B′ = C then E(BB) = 1 and we obtain from
(2) Boule and Leggett-Garg inequalities satisfied by three jointly
distributed variables (A,B,B′):

|E(AB) − E(AC)| + 1+ E(BC) ≤2 ⇒ |E(AB)
− E(AC)| ≤ 1− E(BC) (3)

The Bell (64) inequality |P(Ea, Eb) − P(Ea,Ec)| ≤ 1 + P(Eb,Ec) is a

Boole inequality (3) for P(Ea, Eb) = −E(AB), P(Ea,Ec) = −E(AC) and

P(Eb,Ec) = −E(BC).
All these inequalities are deduced using the inequality (1)

obeyed by any four numbers equal to±1. The inequalities (2) and
(3) are in fact necessary and sufficient conditions for the existence
of a joint probability distribution of only pairwise measurable
±1-valued random variables [18, 19].

The inequalities (2) and (3) are of course also valid if |A|≤1,
|A′|≤1|, |B|≤1, and |B′|≤1.

LOCAL REALISTIC MODELS FOR

EPR-BOHM EXPERIMENT

In physics, Bell-CHSH inequalities [2] were derived in an attempt
to reproduce quantum predictions for impossible to implement
ideal EPRB experiments [96].

In EPRB experiments a source produces a steady flow
of electron- or photon- pairs [60] prepared in a quantum
spin-singlet state. One photon is sent to Alice and another
to Bob in distant laboratories where they measure photons’
spin projections in directions a and b (||a||=||b||=1) and the
outcomes “spin up” or “spin down” are coded ±1. There are no
losses and for any pair of experimental settings Alice’s and Bob’s
measuring stations output correlated pairs of outcomes.

If Alice and Bob perform their experiments using four pairs
of settings [(a, b); (a′, b); (a, b′); and (a′, b′)], then outcomes ±1

are the values of corresponding 4 binary random variables Aa,
Aa′ , Bb, and Bb′ . In [1, 2] these values are determined by some
ontic parameters λ (hidden variables) describing pairs of photons
when they arrive at Alice’s and Bob’s measuring stations. Pairwise
expectations of measured random variables, in different settings,
are all expressed in terms of a unique probability distribution
p(λ) defined on an unspecified probability space3:

E(AaBb) =
∑

λ∈3
Aa( λ)Bb( λ)p(λ)

=
∑

λ

A(Ea, λ)B(Eb, λ)p(λ) (4)

E(AaBb′ ) =
∑

λ∈3
Aa( λ)Bb′ ( λ)p(λ)

=
∑

λ

A(Ea, λ)B(Eb′, λ)p(λ) (5)

E(Aa′Bb) =
∑

λ∈3
Aa′ ( λ)Bb( λ)p(λ)

=
∑

λ

A(Ea′, λ)B(Eb, λ)p(λ) (6)

E(Aa′Bb′ ) =
∑

λ∈3
Aa′ ( λ)Bb′ ( λ)p(λ)

=
∑

λ

A(Ea′, λ)B(Eb′, λ)p(λ) (7)

If in (1) we replace a= Aa (λ)= A(a, λ), a′ = Aa′ (λ)= A(a′, λ),
b= Bb (λ)= B(b, λ), and b′ = Bb′ (λ)= B(b′, λ) we obtain:

|S| =
∑

λ

|A(Ea, λ)B(Eb, λ)− A(Ea, λ)B(Eb′, λ)+ A(Ea, λ)B(Eb, λ)

+A(Ea, λ)B(Eb′, λ)|p(λ) ≤ 2 (8)

Therefore, the expectations (4–7) obey the inequality (2).
Bell used the integration over hidden variables instead of

the summation. In agreement with QM, he insisted that one
cannot measure simultaneously or in a sequence different spin
projections of the same photon, thus the expectations E(Aa Aa′

Bb Bb′ ) have no physical meaning. Nevertheless, the existence of
those counterfactual non-vanishing expectations is necessary in
order to prove (8). Namely there exists a mapping:

λ→ (Aa(λ),Aa′ (λ),Bb(λ),Bb′ (λ)) = (a, a′, b, b′) (9)

which defines a joint probability distribution p(a, a′, b, b′) and
a non-vanishing counterfactual expectation E(Aa Aa′ Bb Bb′ )
[56, 97].

If a joint probability distribution p (a, a′, b, b′) does not exist,
the inequalities (2) and (8) cannot be derived. According to QM,
such joint probability distributions do not exist in EPRB, thus, for
some settings, quantum predictions violate CHSH inequalities.

For an ideal EPRB experiment, QM predicts: E(Aa Bb)=
– a · b= – cos θ and E(Aa) = E(Bb) = 0. If b and b′ are arbitrary
orthogonal unit vectors (b·b′ = 0), a = (b′-b)/

√
2 and a′ = (b

+ b′)/
√
2 then S=[(b′-b)·(b′-b)+(b′ + b)·(b′ + b]/

√
2 = 4/

√
2

= 2
√
2. This value significantly violates CHSH and saturates the
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Tsirelson’s bound [92], which we discuss in section Quantum
Mechanics and CHSH Inequalities.

According to QM: E(AaBa)= –1 and E(AaB−a) = 1 for any
vector a. Thus, Alice and Bob when measuring spin projections
using the settings (a, a) and (a, –a) should obtain perfectly
anti-correlated or correlated outcomes, respectively. At the
same time, these outcomes are believed to be produced in an
irreducible random way, thus one encounters an impossible to
resolve paradox:

“a pair of dice showing always perfectly correlated outcomes.”

In order to reproduce perfect correlations in LRHVM, one
abandons the irreducible randomness and assumes that Alice’s
and Bob’s outcomes are predetermined before measurements are
done. Therefore, there exists a counterfactual joint probability
distribution of all these predetermined outcomes and CHSH
inequalities may not be violated [86, 97–99].

Fortunately, this paradox exists only on paper because an ideal
EPRB experiment does not exist and in SPCE we neither observe
strict correlations nor anti-correlations between clicks.

In the next section we show how imperfect correlations
between clicks in SPCE may be explained in a locally causal way
without evoking quantum magic.

CONTEXTUAL DESCRIPTION OF SPIN

POLARIZATION CORRELATION

EXPERIMENTS

In SPCE, correlated signals/photons, sent by some sources, arrive
at distant measuring stations and produce clicks on the detectors.
There are black counts, laser intensity drifts, photon registration
time delays, etc. Detected clicks have time tags which are different
for Alice and Bob. One has to identify clicks corresponding
to photons that are members of the same entangled “pair
of photons” which is a setting- dependent complicated task.
Correlated clicks are rare events and estimated correlations
depend on the photon-identification procedure used. A detailed
discussion regarding how data is gathered and coincidences
determined may be found, for example in Hess and Philipp [22],
De Raedt et al. [80, 82], Adenier and Khrennikov [100, 101], and
Larsen [102].

Even if all the above-mentioned difficulties had not existed,
QM would not have predicted perfect correlations for real
experiments. Settings of realistic polarizers may not be treated
as mathematical vectors [47], but rather as small spherical angles;
therefore instead of E(Aa Bb)= –a · b= –cos θ we obtain:

E(AaBb = η(Ea)ηEb
∫

Oa

∫

Ob
−Eu · EvdEudEv (10)

where Oa = {Eu ∈ S(2}; |1 − Eu · Ea| ≤ ε} and Ob = {Ev ∈
S(2}; |1− Ev · Eb| ≤ ε}

In order to estimate correlations, Alice and Bob have to
choose correlated time windows. They retain only pairs of
windows containing two types of events: “a click on a detector
1 and a click on a detector 2” or “a click on only one of

the detectors.” Therefore, in SPCE, random variables describing
outcomes of these experiments have three possible values coded
as±1 or 0.

To make a comparison with the notation used in [60] easier,
where more details may be found, we denote different pairs of
settings by (x, y),. . . , (x′, y′) and E(AxBy) = E(AB|x, y).

Imperfect correlations estimated in SPCE may be reproduced
by the following locally causal contextual hidden variable model
[59, 60]:

E(AxBy) =
∑

λ∈3xy

Ax( λ1, λx)By( λ2, λy)px(λx)py(λy)p(λ1, λ2) (11)

E(AxBy′ ) =
∑

λ∈3xy′

Ax( λ1, λx)By′ ( λ2, λy′ )px(λx)py′ (λy′ )p(λ1, λ2) (12)

E(Ax′By) =
∑

λ∈3x′y

Ax′ ( λ1, λx′ )By( λ2, λy)px′ (λx′ )py(λy)p(λ1, λ2) (13)

E(Ax′By′ ) =
∑

λ∈3x′y′

Ax′ ( λ1, λx′ )By′ ( λ2, λy′ )px′ (λx′ )py′ (λy′ )p(λ1, λ2) (14)

E(Ax) =
∑

λ∈3xy

Ax( λ1, λx)px(λx)py(λy)p(λ1, λ2) (15)

E(By) =
∑

λ∈3xy

By( λ2, λy)px(λx)py(λy)p(λ1, λ2) (16)

where Ax (λ1, λx) = 0,±1, Ax′ (λ1, λx′ ) = 0,±1, By (λ2, λy) =
0,±1, and By′ (λ2, λy′ ) = 0,±1. Please note that Ax (λ1, λx′ ),
Ax′ (λ1, λx), By (λ2, λy′ ), and By′ (λ2, λy) are undefined. The
experiments performed in incompatible settings are described by
dedicated probability distributions defined on 4 disjoint hidden
variable spaces:

3xy = 312 ×3x ×3y ;3x′y = 312 ×3x′ ×3y ;3xy′

= 312 ×3x ×3y′ ;3x′y′ = 312 ×3x′ ×3y′ (17)

where 3x
⋂

3x′ = 3y
⋂

3y′ = ∅. Therefore, counterfactual
expectations E (Ax Ax′ ), E (By By′ ), E (Ax Ax′ By By′ ) do not exist
and Bell and CHSH inequalities may not be derived.

The efficiency of detectors is not 100% and it is difficult
to establish correct coincidences between distant clicks because
of time delays. These two problems, called efficiency and
coincidence-time loopholes, were discussed in detail by Larsen
and Gill [103] in terms of the sub-domains of hidden variables
corresponding to four experimental settings. They found that
CHSH inequality has to be modified:

|E(AxBy|3xy) −E(AxBy′ |3xy′ )| + |E(Ax′By|3x′y)

+E(Ax′By′ |3x′y′ )| ≤ 4− 2δ (18)

where δ ∝ p(3xy
⋂

3xy′
⋂

3x′y
⋂

3x′y′ ). In our model p(∅) =
0, thus the only constraint for S in our model is a no-
signaling bound: |S|≤4.

Our model contains enough free parameters to fit any
estimated correlations. For example, if we start with k values of
λ1, k values of λ2, and m values for each λx, λx′ , λy,, and λy′

we have km pairs of (λ1, λx), 3km functions Ax(λ1, λx), and
3km functions By(λ2, λy). We also have m-1 free parameters
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for each px(λx), px′ (λx′ ), py(λy), and py′ (λy′ ) and
(

k(k+1)
2 − 1

)

free parameters for p(λ1, λ2). Thus, we have 4 × 3km functions
to choose and 4(m−1) + k (k−1)/2 free parameters to fit
32 probabilities or eight expectations estimated in experiments
performed using four pairs of settings. If instead of four pairs
of settings Alice and Bob use nine pairs of settings, then we
may increase m and k as needed to fit 72 probabilities or 12
expectation values, etc.

In mathematical statistics we concentrate on observable
events: outcomes of random experiments or results of a
population survey. Joint probability distributions are used only
to describe random experiments producing several outcomes
in each trial e.g., rolling several dice or various data items
describing the same individual drawn from some statistical
population. Probabilistic models describe a scatter of these
outcomes without entering into the details of how outcomes
are created.

Hidden variable probabilistic models introduce some invisible
“hidden events” which determine subsequent real outcomes of
random experiments. In Bell model (4–7), pairs of photons
(“beables”) are described by λ before measurements take place.
Because clicks are predetermined by the values of λ there exists
the mapping (9) and the probability distribution of “hidden
events” described by p(λ) which may be replaced by a joint
distribution p(a, a′, b, b′).

In contextual model (11–17), an outcome of “a click” or
“no-click” is not predetermined and is created in a locally
causal way in function of a hidden parameter describing a
signal (“photon”) arriving at the measuring station and a hidden
parameter describing a measuring instrument in the moment of
their interaction. The model (11–17) gives an insight into how
apparently random outcomes are created in SPCE.

In model (4–7) there exists a joint probability distribution of
all hidden events labeled by λ. In the model (14–17), hidden
events form 4 disjoint probability spaces and there exist only
four distinct joint probability distributions (pxy(λx, λ1, λy, λ2)
on 3xy,. . . , px′y′ (λx′ , λ1, λy′ , λ2) on 3x′y′ ). A joint probability
distribution of all possible hidden events (λx, λ1, λy,, λ2, λx′ ,
λy′ , λ2) does not exist because hidden events (λx, λx′ ) and (λy,
λy′ ) may never occur together. This is why one may not prove
CHSH assuming the existence of such probability distribution
and a non-vanishing E(Ax Ax′ By By′ ) used to prove (2–3, 8) does
not exist.

SUBTLE RELATIONSHIP OF

PROBABILISTIC MODELS WITH

EXPERIMENTAL PROTOCOLS

In 1971, Bell [91] pointed out that whilst one may incorporate
into his model additional hidden variables describing measuring
instruments, it does not invalidate his conclusions because after
the averaging over instrument variables the pairwise expectations
still have to obey CHSH inequalities. We reproduce his reasoning
in the notation consistent with (11–17).

If we average over the variables λx and λy we obtain:

E(AxBy) =
∑

λ1 ,λ2

Ax( λ1)By( λ2)p(λ1, λ2) (19)

E(AxBy′ ) =
∑

λ1 ,λ2

Ax( λ1)By′ ( λ2)p(λ1, λ2) (20)

E(Ax′By) =
∑

λ1 ,λ2

Ax′ ( λ1)By( λ2)p(λ1, λ2) (21)

E(Ax′By′ ) =
∑

λ1 ,λ2

Ax′ ( λ1)By′ ( λ2)p(λ1, λ2) (22)

where

Ax( λ1) =
∑

λx

Ax( λ1, λx)px(λx) ; By( λ2)

=
∑

λy

By( λ2, λy)py(λy) (23)

Ax′ ( λ1) =
∑

λx′

Ax′ ( λ1, λx′ )px′ (λx′ ) ; By′ ( λ2)

=
∑

λy′

By( λ1, λy′ )py′ (λy′ ) (24)

Since |Ax (λ1, λx)|≤1, |Ax′ (λ1, λx′ ) |≤1, |By (λ2, λy) |≤1, |By′

(λ2, λy′ )= |≤1 thus |Ax( λ1)| ≤ 1, |Ax′ ( λ1)| ≤ 1,|By( λ2)| ≤ 1,

|By′ ( λ2)| ≤ 1 and:

|Āx( λ1)||By( λ2) − By′ ( λ2)| + |Āx′ ( λ1)||By( λ2)
+B̄y′ ( λ2)| ≤ 2 (25)

Although the expectations calculated using the Equations (11–
14) and (19–22) have the same values, the two sets of formulas
describe different experiments. In the experiment described by
the Equations (11–14), pairs of photons arrive sequentially to
measuring instruments which produce in a locally causal way “a
click” or “no-click,” and a counterfactual Nx4 spreadsheet of all
possible outcomes does not exist and may not be used to prove
CHSH inequalities. Thus, the estimated pairwise expectations
may significantly violate (8), which they do.

The Equations (19–22) describe an experiment,
impossible to implement, which uses the following two-step
experimental protocol:

1. For each arriving pair of photons estimate the
averages (23–24).

2. Display estimated values|Ax( λ1)| ≤ 1, |Ax′ ( λ1)| ≤ 1,
|By( λ2)| ≤ 1,and |By′ ( λ2)| ≤ 1 in four columns of a
Nx4 spreadsheet.

3. Use all entries of this spreadsheet to estimate
expectations (19–22).

Because the entries of each line of this spreadsheet obey
the inequality (1), if we could implement this protocol
the estimated expectations would obey CHSH for any
finite sample.

There is a significant difference between a probabilistic model
and a hidden variable model. If we average out some variables
in a probabilistic model, we always obtain a marginal probability
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distribution describing some feasible experiment. If we average
out some hidden variables in a hidden variable model, we may
obtain a new hidden variable model which does not correspond
to any feasible experiment.

For a similar reason, the experimental protocol of SHVM
is inconsistent with the protocol used in SPCE. A much more
detailed discussion of a subtle relationship of probabilisticmodels
with experimental protocols may be found in [56].

As we demonstrated with Hans De Raedt [104], different
experimental protocols, based on the same probabilistic
model, may generate significantly different estimates of various
population parameters.

If we want to compare the data obtained in SPCE with
quantum predictions, we have to post- select only pairs of
±1 outcomes which correspond to invisible entangled pairs of
photons. Thus, instead of the Equations (11, 15–16) we obtain:

E(AxBy|Ax 6= 0,By 6= 0) =
∑

λ∈3′
xy

Ax( λ1, λx)By( λ2, λy)px(λx)py(λy)p(λ1, λ2)

(26)

E(Ax|Ax 6= 0,By 6= 0) =
∑

λ∈3′
xy

Ax( λ1, λx)px(λx)py(λy)p(λ1, λ2) (27)

E(By|Ax 6= 0,By 6= 0) =
∑

λ∈3′
xy

By( λ2, λy)px(λx)py(λy)p(λ1, λ2) (28)

where 3′
xy = {λǫ 3xy|Ax (λ1, λx) 6= 0 and By (λ2, λy) 6= 0}.

In a similar way, we transform the expectations (12–14) into
conditional expectations. Using these conditional expectations,
we may not derive CHSH; thus our model does not exclude
their violations in SPCE. It may also explain in a rational way an
apparent violation of no- signaling reported in [79, 80, 100, 101,
105–108]:

E(Ax|Ax 6= 0,By 6= 0) 6= E(Ax|Ax 6= 0,By′ 6= 0);
E(By|Ax 6= 0,By 6= 0) 6= E(By|Ax′ 6= 0,By 6= 0) (29)

The setting-dependence of these marginal expectations does not
prove no-signaling because E (Ax) and E (By) defined by (15–16)
do not depend on the distant measurement settings.

Please note that the expectations (26) may not be transformed
into a factorized form (21).

Naïve quantum predictions for a singlet state cannot explain
the correlations observed in SPCE. One has to use much more
complicated density matrices [109] containing free parameters,
and still some discrepancies between the theoretical predictions
and the data persist. A more detailed discussion of how the data
are analyzed in SPCE and how the apparent violation of no-
signaling may be explained may be found in [60].

Since our description of real data is causally local, all
speculations about quantum non-locality are unfounded.

In the next section we explain that, contrary to what is
believed, probabilistic predictions of QM are not in conflict with
local causality.

QUANTUM MECHANICS AND CHSH

INEQUALITIES

According to the statistical contextual interpretation [29, 52,
57, 89, 110, 111], QM provides probabilistic predictions for
experiments performed in well-defined experimental contexts.
In these experiments, identical preparations of physical systems
are followed by measurements of physical observables. A class
of identical preparations is described by a state vector | ψ〉 or
by a density matrix ρ and a class of equivalent measurements
of an observable A is represented by a Hermitian/self-adjoint
operatorÂ. Outcomes of measurements are eigenvalues of these
operators. In general, outcomes are not pre-determined and they
are created as a result of the interaction of measuring instruments
with physical systems. In the same experimental context, only
the values of compatible physical observables, represented by
commuting operators, give sharp values when measured jointly.

In SPCE, “photon pairs,” prepared by a source, are described
by a density matrix ρ and physical observables A and B by
Hermitian operators Â1 = Â ⊗ I and B̂1 = I ⊗ B̂ defined on a
Hilbert space H = H1 ⊗H2. The correlations between measured
values of these observables are evaluated using a conditional
covariance between A and B [56, 58]:

cov(A,B|ρ) = E(AB|ρ)− E(A|ρ)E(B|ρ) (30)

where, E(A|ρ) = TrρÂ1,E(B|ρ) = TrρAB̂1 and E(AB|ρ) =
TrρÂ1B̂1. If ρ is an arbitrary mixture of separable states then
quantum correlations have to obey CHSH:

|E(AB|ρ)− E(AB′|ρ)| + |E(A′B|ρ)+ E(A′B′|ρ)| ≤ 2 (31)

As we saw in section Experimental Spreadsheets and Bell-Type
Inequalities, the inequality (31) may be significantly violated for
entangled quantum states if specific incompatible pairs of settings
are chosen.

The quantum description is contextual because a triplet
{ρ, Â1, B̂1} depends explicitly on a preparation of “photon
pairs” and on observables (A,B) measured using specific
experimental settings. Different incompatible experimental
settings are therefore described in QM by different specific
Kolmogorov models.

In particular, Cetto et al. [73] have recently demonstrated that
expectations E(AB | ψ), for a singlet state | ψ〉 ∈ H, may be
expressed in terms of the eigenvalues of operators Â = Eσ · Ea and
B̂ = Eσ · Eb using specific dedicated probability distributions. We
reproduce below their results in our notation:

E(AB|ψ) = −Ea · Eb =
∑

αβ

αβpab(α,β) = E(AaBb) (32)
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where Â ⊗ B̂|αβ〉ab = αβ|αβ〉ab, pab(α,β) = |〈ψ |αβ〉ab|2 and
α = ±1 and β = ±1. For the remaining settings we obtain:

E(AB′|ψ) = −Ea · Eb′ =
∑

αβ ′
αβ ′pab′ (α,β ′) = E(Aa′Bb) (33)

E(A′B|ψ) = −Ea′ · Eb =
∑

α′β

α′βpa′b(α′,β) = E(Aa′Bb) (34)

E(A′B′|ψ) = −Ea′ · Eb′ =
∑

α′β ′
α′β ′pa′b′ (α′,β ′) = E(Aa′Bb′ )

(35)

If 4 experiments are performed in incompatible (complementary)
contexts then a joint probability distribution p(αα′ββ ′) and the
expectation values E(AaAa′BbBb′ ) do not exist in agreement with
the contextual model (11–14).

In 1982, Fine [18, 19] demonstrated that Bell-CHSH
inequalities are necessary and sufficient conditions for the
existence of a joint probability distribution of ±1-valued
observables (A,A′,B,B′).

As we saw in section Local Realistic Models for EPR-
Bohm Experiment, QM predicts a significant violation of CHSH
inequality: S= 2

√
2.

In 1980, Tsirelson [92] proved that 2
√
2 is the greatest value of

S allowed by QM:

|S| = |
〈

ψ |Ŝ|ψ
〉

| = |
〈

ψ |ÂB̂− ÂB̂′ + Â′B̂+ Â′B̂′|ψ
〉

| ≤ 2
√
2

(36)

where | ψ〉 ∈ H is an arbitrary pure state and all Hermitian
operators on the left hand side are arbitrary elements of C∗

algebra having their norms (
∥

∥

∥Â
∥

∥

∥ = sup
‖φ‖≤1

〈

φ|À|φ
〉

) smaller or

equal to 1. In order to prove (36), Tsirelson used a following
operator inequality:

Ŝ2 =
(

ÂB̂− ÂB̂′ + Â′B̂+ Â′B̂′
)2

≤ 4I +
[

Â, Â′
] [

B̂, B̂′
]

(37)

From (37) he deduced immediately that
∥

∥

∥Ŝ2
∥

∥

∥ ≤ 4 +
∥

∥

∥

[

Â, Â′
]∥

∥

∥

∥

∥

∥

[

B̂, B̂′
]∥

∥

∥
≤ 4 + 2 × 2 = 8, thus

∥

∥

∥
Ŝ
∥

∥

∥
≤ 2

√
2

proves quantum CHSH inequality (36). Landau [93] defined an
operator Ĉ = 1

2 Ŝ and noticed that if A, A′. B and B′ are ±1-

valued observables (Â2 = I), then the inequality (37) becomes

the equality Ĉ2 = I + 1
4

[

Â1, Â2

]

⊗
[

B̂1, B̂2
]

and
∥

∥

∥
Ĉ
∥

∥

∥
≤ 1.

Recently, Khrennikov discussed various implications of (37).

CHSH inequality may be violated only if both
[

Â1, Â2

]

6= 0 and
[

B̂1, B̂2
]

6= 0. Therefore, the violation of CHSH proves the local

incompatibility of Alice and Bob’s specific physical observables
[43] which has nothing to do with quantum non-locality.

The local incompatibility of some observables allows neither
doubt over the local causality in nature nor the “objective”
existence of elementary particles and atoms.

THE ROOTS OF QUANTUM

NON-LOCALITY

Mathematical models provide abstract idealized descriptions of
physical phenomena and in general are unable to explain, by
detailed causal chains, why such a description is successful.
For example, in Newton’s equations describing the motion of
planets, a small change in the position of one planet at time t
seems to instantaneously change gravitational forces acting on
distant planets. Newton admitted that no intuitive explanation
of this mystery existed, but it did not diminish the value of his
gravitation theory.

According to the special theory of relativity, the physical
influences may not propagate faster than the speed of light c,
thus it became clear that Newton’s theory of gravitation should
be modified. Einstein, by constructing the general theory of
relativity, succeeded in reconciling the special theory of relativity
with Newton’s theory of gravitation which is still used with
success by NASA.

Similarly, in a non-relativistic QM, relativistic effects are
not important. The theory provides algorithms which allow
probabilistic predictions to be made regarding outcomes of
experiments performed in well-defined macroscopic contexts.
A time-dependent Schrodinger equation describes only a time
evolution of a complex valued function (probability amplitude),
which, together with Hermitian/self-adjoint operators, is
used to provide probabilistic predictions for a scatter of
experimental outcomes.

Quantum predictions are consistent with Einsteinian no-
signaling. Quantum field theory (QFT) is explicitly relativistic
and field operators in space-like regions commute.

The speculations about quantum non-locality are only rooted
in incorrect “individual interpretations” of QM according
to which:

1. a pure state vector/wave function |ψ〉 is an attribute of an
individual physical system;

2. a measurement of a physical observable A instantaneously
changes/collapses the initial state vector onto an eigenvector
vector |ai〉 of the corresponding operator Â with a
probability p = 〈ai|ψ〉2;

3. a measurement outcome is an eigenvalue ai corresponding to
the vector |ai〉;

4. if two physical systems, S1 and S2, interacted in the past
and separated, a measurement of the observable A performed
on the system S1 and yielding a result A=ai determines
instantaneously a state vector |φ〉A=ai of the system S2 in a
distant location.

Using (1–4) one concludes that measurements of observables A
and B performed on systems S1 and S2 create in an “irreducible
random way” perfectly correlated outcomes at distant space-like
locations, thus we encounter the same paradox: “a pair of dice
showing perfectly correlated outcomes.”

The statistical contextual interpretation of QM (SCI) [52,
57, 89] is free of paradoxes. According to this interpretation, a
quantum state vector represents only an ensemble of identically
prepared physical systems and, after a von Neumann/Lüders
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projection, a new state describes a different ensemble of physical
systems. Namely: |φ〉A=ai describes all the systems S2 such that
measurements of the observable A on their entangled partners
(systems S1) gave the same outcome A= ai.

The statistical interpretation does not claim that QM provides
the complete description of individual physical systems and the
question of whether quantum probabilities may be deduced from
some more detailed description of quantum phenomena is left
open [46, 52, 59, 61, 87–89, 112, 113].

Lüders projection and its interpretation have been discussed
recently in detail by Khrennikov [44]. We reproduce below a few
statements from the abstract of his article:

“If probabilities are considered to be objective properties of
random experiments, we show that the Lüders projection
corresponds to the passage from joint probabilities describing all
sets of data to some marginal conditional probabilities describing
some particular subsets of data. If one adopts a subjective
interpretation of probabilities, such as Qbism, then the Lüders
projection corresponds to standard Bayesian updating of the
probabilities. The latter represents degrees of beliefs of local
agents about outcomes of individual measurements which are
placed or which will be placed at distant locations. In both
approaches, probability-transformation does not happen in the
physical space, but only in the information space. Thus, all
speculations about spooky interactions or spooky predictions at
a distance are simply misleading.”

In 1998, Ballentine explained in his book that “individual
interpretation” of QM is incorrect: “Once acquired, the habit
of considering an individual particle to have its own wave
function is hard to break. Even though it has been demonstrated
strictly incorrect.” Therefore, talking about “passion at the
distance,” “predictions at the distance,” and “steering at the
distance” may only lead to incorrect mental pictures and create
unnecessary confusion.

In QM, measuring devices always play an active role.
Allahverdyan et al. [110, 111] recently solved the dynamics of
a particular realistic quantum measurement and discussed what
this implies for the interpretation of QM. On page 6 in [110]
they wrote:

“A measurement is the only means through which information
may be gained about a physical system. Both in classical and in
quantum physics, it is a dynamical process which couples this
system S to another system, the apparatus A. Some correlations
are thereby generated between the initial (and possibly final) state
of S and the final state of A.”

Claims that QM is a non-local theory are also based on
an incorrect interpretation of a two-slit experiment. In this
experiment, a wave function (representing an ensemble of
identically prepared electrons) “passes” by two slits, but this
does not mean that a single electron may be in two distinct
places at the same time. If two detectors are placed in front
of the slits, they never click at the same time, thus an electron
(but not the electromagnetic field created by an electron) passes
by only one slit. According to SCI, a wave function is only a

mathematical entity and QM does not provide a detailed space-
time description of how the interference pattern on a screen is
formed by the impacts of individual electrons.

Another root of quantum non-locality is Bell’s insistence that
the violation of Bell-type inequalities in SPCE would mean that a
locally causal description of these experiments is impossible [1]:

“In a theory in which parameters are added to quantum
mechanics to determine the results of individual measurements,

without changing the statistical predictions, there must be a

mechanism whereby the setting of one measuring device can
influence the reading of another instrument, however remote.
Moreover, the signal involved must propagate instantaneously, so
that such a theory could not be Lorentz invariant.”

Consider Alice and Bob, both doing a realistic EPRB-type
experiment. Theo Nieuwenhuizen brought to my attention that
the already nonsensical idea of faster-than-light communication
(i.e., non-locality) becomes evenmore “mind-boggling” when the
experiments have different durations.

Bell’s statement is correct only if one is talking about an ideal
EPRB which does not exist. The violations of various Bell-type
inequalities in real SPCE prove only that these experiments may
not be described by oversimplified hidden variable models. In
SHVM, the outcomes, registered in distant measuring stations,
are produced in an irreducible random way, thus the correlations
between such outcomes are very limited. In LRHVM and in
Eberhard model [5], a fate of a photon/electron is predetermined
before the experiment is performed.

As we explained in section Contextual Description of Spin
Polarization Correlation Experiments, imperfect correlations
in SPCE may be explained in a locally causal way if
instrument parameters are correctly included in a probabilistic
model, closing the so-called Nieuwenhuizen’s contextuality
loophole [65–67].

Bell-CHSH inequalities may also be violated in social sciences
by expectations of ±1–valued random variables, which can only
be measured pairwise but not all together. The violation of
these inequalities in social sciences has nothing to say about the
physical reality and the locality of nature [16, 37, 38, 114–116].
This is why we agree with Khrennikov [43], that we should get
rid of quantum non-locality as it is a misleading notion.

In the next section we discuss simple experiments with
colliding elastically metal balls in which the experimental
outcomes are predetermined but an apparent violation of Bell
and Boole inequalities may be proven [54]. We also discuss
the violation of inequalities by the estimates obtained using
finite samples.

APPARENT VIOLATIONS OF BELL-BOOLE

INEQUALITIES IN ELASTIC COLLISION

EXPERIMENTS

Let us consider a simple experiment with metal balls
colliding elastically:
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1. A 4 kg metal ball and a 1 kg metal ball are placed in some fixed
positions, P1 and P2, on a horizontal perfectly smooth surface.

2. A device D, with a built in random numbers generator, is
imparting on a lighter ball a constant rectilinear velocity with
a speed described by a random variable V taking values v and
distributed according to a probability density fV (v) = 1/10 for
0< v ≤ 10 and the ball is sliding without friction and without
rotating toward the heavier ball.

3. After an elastic head-on collision, the heavier ball starts
moving forward with the speed V1 = 2v/5 and the lighter
ball rebounds backwards with the speed V2 = 3v/5. It is
easy to check that the total linear momentum and energy
are conserved: 1v = 4(2v/5)−1(3v/5) and 1v2 = 4(2v/5)2

+ 1(3v/5)2.
4. After the collision, both balls arrive at two distant measuring

stations, S1 and S2 (treated as black boxes), which for 4
different selected pairs of settings output values (±1) of only
pairwise measurable observables (A, B), (A, C), (B, C), and
(B, B).

5. Before each repetition of the experiment, Alice and Bob
systematically or randomly choose a pair of settings, simply
by pushing appropriate switches on their measuring stations.

6. We assume that boxes function in a locally causal way: the
speed of a ball is measured and setting dependent coded
values ±1 are outputted. Thus, A, B, and C denote physical
observables, which are measured, which means that in the
setting (B, B) the same physical observables are measured by
Alice and Bob.

The observables A, B, and C are functions of hidden random
variables, V1 and V2, which are distributed according to
probability distributions fV1 (v1) = 1/4 and fV2 (v2) = 1/6 on
the intervals [0, 4] and [0, 6], respectively.

Let us now define the specific functions of A(y), B(y), andC(y),
where y = v1 (if Alice is using a setting A) or y = v2 (if (Bob
is using a setting A). We have chosen that, after the collision,
Alice measures the speed of the heavier ball, but it does change
pairwise expectations.

• A(y)=−1 if 0< y ≤ 2 and A(y)= 1 if 2< y,
• B(y)=−1 if 0< y≤ 3 and B(y)= 1 if 3<y,
• C(y)= 1 if 0< y ≤3 and C(y)=−1 if 3<y.

IfV1 = v1 thenV2 = 3v1/2 and the pairwise expectation E(AB) =
4
∫

0
A(v1)B(3v1/2)fV1 (v1)dv1. We see immediately, that E(AB) =

1
4

(

2
∫

0
(−1)(−1)dv1 +

4
∫

2
(1)(1)dv1

)

= 1 and E (AC) = -E (AB)

=-1. In a similar way we evaluate E(BC).

• If v1 ≤ 2 then v2 < 3: B(v1)C(v2)= (−1)(1)=−1.
• If 2< v1 ≤3 then 3< v2 ≤ 4.5: B(v1)C(v2)= (−1)(−1)=1.
• If 3< v1 then 4.5< V2: B(v1)C(v2)= (1)(−1)=−1.

Thus:

E(BC) = −
2
∫

0

fV1 (v1)dv1 +
3
∫

2

fV1 (v1)dv1 −
4
∫

3

fV1 (v1)dv1 (38)

and E(BC)=−2/4+1/4–1/4=−1/2 and E(BB)= –E(BC)=1/2.
We see that Bell (+sign) and Boule (-sign) inequalities (3)

seem to be violated:

|E(AB)− E(AC)| ≤ 1± E(BC) (39)

because |1–(−1)|> 1± 1/2.
The violation of (39) is surprising because the outcomes of our

experiments are predetermined.
However, one has to pay attention before checking Bell-Boole-

inequalities. Despite the fact that in the settings (A,B) and (B,C)
Alice and Bob measure the same physical observable B, the
output values ±1 are the values of 2 different random variables
B(V1) 6= B(V2). Therefore, the inequalities which are violated
are not (39), but inequalities:

|E(A(V1)B(V2))− E(A(V1)C(V2))| ≤ 1± E(B(V1)C(V2)) (40)

Since for each trial, values of random variables [A(V1), B(V1),
B(V2), C(V2)] are predetermined by a value of the initial speed
V imparted on the lighter ball, there exists an “invisible” joint
probability distribution of these random variables and CHSH
inequalities may not be violated:

|S| = |E(A(V1)B(V2))− E(A(V1)C(V2))+ E(B(V1)B(V2))

+E(B(V1)C(V2))| = 1+ 1+ 1

2
− 1

2
≤ 2 (41)

By treating measuring stations as black boxes, Alice and Bob
do not know whether this invisible joint probability exists
and that for each trial the values of measured observables
are predetermined. Therefore they display the data obtained
in different settings using four Mx2 spreadsheets and they
estimate measurable pairwise expectations E(A(V1)B(V2)),
E(A(V1)C(V2)), E(B(V1)C(V2)), and E(B(V1)B(V2)).

These estimates may violate the inequality (41) because, as
we demonstrated in section Introduction, only the estimates
obtained using all ±1 entries of Nx4 spreadsheets strictly obey
CHSH inequality for any finite sample. Alice and Bob do not
know that their outcomes are in fact extracted from specific
lines of invisible Nx4 spreadsheet and that the columns of
Mx2 spreadsheets are simple random samples drawn from the
corresponding complete columns of Nx4 spreadsheet. This is
why, if M and N are large, the estimated pairwise expectations
may not violate the inequality (41) more significantly than is
permitted by sampling errors.

In collision experiments, outcomes are predetermined and
the correlations exist due to the energy and momentum
conservation. In SPCE, the correlations between signals are
created at the source.

There is a big difference between metal balls and photons
in SPCE. In collision experiments, metal balls are distinct
macroscopic objects with well-defined linear momenta.
Measurements of speeds are, with a good approximation,
noninvasive, thus measuring stations in fact register passively
their preexisting values and output specific coded values±1.

In SPCE we cannot observe and follow pairs of photons
moving from the source to the measuring stations. By no means
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can the passage of a photon through a polarization beam splitter
(PBS) be considered as a passive registration of a preexisting “spin
up” or spin down” value. Clicks on the detectors are also the
results of dynamical processes.

In collision experiments all observables are compatible,
therefore Alice’s modifiedmeasuring stationmight output in each
trial values of (A (V1), B (V1)) and Bob’s modified station values
of (B(V2), C(V2)) which might have been displayed using a Nx4
spreadsheet. In SPCE it is impossible because the observables (A,
A′) and (B, B′) are not compatible and their joint probability
distribution and Nx4 spreadsheet do not exist.

The problem of how significantly finite samples, extracted
from a counterfactual spreadsheet Nx4, may violate CHSH
inequalities was studied by Gill [117]. Each pair of arriving
photons are described by a line (±1,±1,±1,±1) from a
counterfactual Nx4 spreadsheet containing predetermined values
of observables (A,A′,B,B′). By randomly assigning setting labels
to the lines and extracting corresponding pairs of outcomes from
these lines, one obtains four simple random samples drawn from
the corresponding pairs of complete columns of Nx4 spreadsheet.
If these simple random samples are used to estimate pairwise
expectations E(AB),E(AB′), E(A′B),E(A′B′) then:

Pr
(〈AB〉obs +

〈

AB′
〉

obs
+
〈

A′B
〉

obs
−
〈

A′B′
〉

obs
≥ 2

)

≤ 1

2
(42)

where 〈AB〉obs is an estimate of E(AB) etc. A more detailed
discussion of various finite sample proofs of Bell-type inequalities
may be found in [57, 117].

Let us see what happens if we display all experimental data
(containing N data items for each pair of settings) in a 4Nx4
spreadsheet and randomly fill the remaining empty spaces by
±1. Pairwise expectations estimated using complete columns of
this spreadsheet strictly obey CHSH inequality. One may ask
a question: why can real data, being subsets of these columns,
violate CHSH more significantly than it is permitted by (42)?
The answer is simple: the outcomes obtained in SPCE for each
pair of incompatible settings are not simple random samples
extracted from corresponding columns of the completed 4Nx4
counterfactual spreadsheet.

In [104] we studied the impact of a sample inhomogeneity on
statistical inference. In particular we generated two large samples
(which were not simple random samples) from some statistical
population and we estimated some population parameters. The
obtained estimates were dramatically different.

De Raedt et al. [82] generated in a computer experiment
quadruplets of raw data (±1,±1,±1,±1). Subsequent setting
-dependent photon identification procedures, mimicking
procedures used in real experiments, allowed the creation
of new data samples containing only pairs (±1,±1) for each
experimental settings. Because these new data sets were not
simple random samples extracted from the raw data, the
estimated values of pairwise expectations, obtained using these
setting- dependent samples, could violate CHSH as significantly
as it was observed in SPCE.

We personally do not believe that the fate of the photons is
predetermined only by the preparation at the source and that

the violation of Bell-CHSH inequalities is the effect of unfair
sampling during a post selection.

For us, clicks registered by distant measuring stations in
SPCE and coded by ±1 are of a completely different nature
than the colors and sizes of socks or the positions and linear
momenta of balls and electrons. Spin projections and clicks
do not exist before the measurements are done. Thus, one
may not describe incoming “pairs of photons” by lines of non-
existing Nx4 spreadsheet containing±1 counterfactual outcomes
of impossible to perform experiments.

CONCLUSIONS

In this article we explained why the speculations about quantum
non-locality and quantum magic are rooted in incorrect
interpretations of QM and/or in incorrect “mental pictures” and
models trying to explain invisible details of quantum phenomena.

For example, a “mental picture” of an ideal EPRB experiment
in which twin photon pairs produce, in an irreducible random
way, strictly correlated or anti-correlated clicks on distant
detectors creates the impossible to resolve paradox:

“a pair of dice showing always perfectly correlated outcomes.”

As we explained in section Local Realistic Models for EPR-Bohm
Experiment, we do not need to worry because the ideal EPRB
experiment does not exist.

In SPCE, setting directions are not mathematical vectors but
only small spherical angles and we neither see nor follow pairs of
entangled photons which produce “click” or “no- click” results on
Alice’s and Bob’s detectors. There are black counts, laser intensity
drifts, etc. Detected clicks have time tags and correlated time-
windows are used to identify and select pairs of clicks created by
the photons belonging to the same entangled pair.

Since various photon- identification procedures are setting –
dependent, final post-selected data may not be described by the
quantum model used to describe the non-existing ideal EPRB.
In SPCE, not only do we not have strict correlations or anti-
correlations between Alice and Bob’s outcomes but marginal
single counts distributions also depend on the distant settings
that seems to violate Einsteinian no- signaling. This violation is
only apparent because single count distributions estimated using
raw data do not depend on the distant settings [60].

Raw and post- selected data in SPCE may be described
in a locally causal way using a contextual model [59, 60] in
which “a click” or “a no-click” are determined using setting
dependent parameters describing a measuring instrument and
parameters describing a signal arriving at the measuring station
at the moment of the measurement. Still, a detailed description
of how “Nature gets this done" is the real mystery underlying
quantum correlations.

In contrast to LRHVM and SHVM, in the contextual
model (11–17) and in QM the outcomes of four incompatible
experiments performed in different settings are described
by dedicated probability distributions defined on disjoint
probability spaces. Only if all the physical observables measured
in SPCE were compatible could these dedicated probability
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distributions be deduced as marginal probability distributions
from a joint probability distribution defined on a unique
probability space.

Khrennikov recently explained in [43, 44] that quantum non-
locality is also rooted in incorrect individual interpretation of QM
and in incorrect interpretation of Lüders projection postulate.

Plotnitsky pointed out in [118] that in QM there is no place
for spooky action at a distance, however his insistence on spooky
predictions at a distance contributes to general confusion [44].

Other convincing arguments against quantum non-locality
have recently been given by Jang [119, 120], Bough [121], Wilsch
et al. [122], and De Raedt et al. [123].

We want also to mention a recent paper of Griffiths [124] in
which he arrives also to the conclusion, that quantum mechanics
is consistent with Einstein’s locality principle and that the notions
of quantum nonlocality and of quantum steering are misleading
and should be abandoned or renamed.

As we mentioned in the introduction, it would be surprising
if the violation of Bell-CHSH inequalities, which are proven
using simple algebraic inequalities satisfied by any quadruplet of
4 integer numbers equal to ±1, might have deep metaphysical
implications. In fact, such metaphysical implications are quite

limited and may be summarized in a few words: “unperformed
experiments have no results” [84].

Therefore, the violation of various Bell-type inequalities may
neither justify the existence of non-local influences nor justify
doubts that atoms, electrons, and the Moon are not there when
nobody looks.
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