Finite Frames for K4.3×S5 are Decidable

Agi Kurucz
Department of Informatics
King's College London
Strand, London WC2R 2LS, U.K.
Sérgio Marcelino ${ }^{1}$
Dep. Matemática
Instituto Superior Técnico
Universidade Técnica de Lisboa, Portugal
and
SQIG, Instituto de Telecomunicações, Lisboa, Portugal

Abstract

If a modal logic L is finitely axiomatisable, then it is of course decidable whether a finite frame is a frame for L : one just has to check the finitely many axioms in it. If L is not finitely axiomatisable, then this might not be the case. For example, it is shown in [7] that the finite frame problem is undecidable for every L between the product $\operatorname{logics} \mathbf{K} \times \mathbf{K} \times \mathbf{K}$ and $\mathbf{S 5} \times \mathbf{S 5} \times \mathbf{S 5}$. Here we show that the finite frame problem for the modal product logic $\mathbf{K 4 . 3} \times \mathbf{S 5}$ is decidable. $\mathbf{K 4 . 3 \times \mathbf { S 5 } \text { is outside the scope }}$ of both the finite axiomatisation results of [4], and the non-finite axiomatisability results of [11]. So it is not known whether $\mathbf{K 4 . 3} \times \mathbf{S 5}$ is finitely axiomatisable. Here we also discuss whether our results bring us any closer to either proving non-finite axiomatisability of $\mathbf{K 4 . 3} \times \mathbf{S 5}$, or finding an explicit, possibly infinite, axiomatisation of it.

Keywords: products of modal logics, finite frame problem, axiomatisation

1 Introduction and results

The product construction as a combination method for modal logics was introduced in $[13,14,4]$, and has been extensively studied ever since. Modal products are connected to several other multi-dimensional logical formalisms, see $[3,9]$ for surveys and references. Here we consider only two-dimensional products, but the definitions can be generalised to higher dimensions. In what follows we assume that the reader is familiar with basic notions of propositional multimodal logic and its possible world (or relational) semantics, and we use these

[^0]without explicit references. For concepts and statements not defined or proved here, consult, for example, $[1,2]$.

Given two Kripke frames $\mathfrak{F}_{0}=\left\langle W_{0}, R_{0}\right\rangle$ and $\mathfrak{F}_{1}=\left\langle W_{1}, R_{1}\right\rangle$, their product is defined to be the 2 -frame

$$
\mathfrak{F}_{0} \times \mathfrak{F}_{1}=\left\langle W_{0} \times W_{1}, \bar{R}_{0}, \bar{R}_{1}\right\rangle
$$

where $W_{0} \times W_{1}$ is the Cartesian product of W_{0} and W_{1} and, for all $x, x^{\prime} \in W_{0}$, $y, y^{\prime} \in W_{1}$,

$$
\begin{array}{lll}
\langle x, y\rangle \bar{R}_{0}\left\langle x^{\prime}, y^{\prime}\right\rangle & \text { iff } & x R_{0} x^{\prime} \text { and } y=y^{\prime}, \\
\langle x, y\rangle \bar{R}_{1}\left\langle x^{\prime}, y^{\prime}\right\rangle & \text { iff } & y R_{1} y^{\prime} \text { and } x=x^{\prime} .
\end{array}
$$

Frames of this form will be called product frames throughout. Now let L_{0} and L_{1} be Kripke complete modal logics in the languages with \square_{0} and \square_{1}, respectively. Their product $L_{0} \times L_{1}$ is then the set of all bimodal formulas, in the language having both \square_{0} and \square_{1}, that are valid in all product frames $\mathfrak{F}_{0} \times \mathfrak{F}_{1}$, where \mathfrak{F}_{0} is a frame for L_{0}, and \mathfrak{F}_{1} is a frame for L_{1}. (Here we assume that \square_{0} is interpreted by \bar{R}_{0}, while \square_{1} is interpreted by \bar{R}_{1}.) Note that $L_{0} \times L_{1}$ always contains the fusion $L_{0} \oplus L_{1}$ of L_{0} and L_{1} : the smallest normal bimodal logic that contains L_{0} for \square_{0} and L_{1} for \square_{1}. Therefore, any product frame $\mathfrak{F}_{0} \times \mathfrak{F}_{1}$ for $L_{0} \times L_{1}$ is such that \mathfrak{F}_{i} is a frame for L_{i}, for $i=0,1$.

A modal product logic $L_{0} \times L_{1}$ is Kripke complete by definition: it is defined as a set of formulas that are valid in some class \mathcal{C} of frames. However, there are frames for $L_{0} \times L_{1}$ that are not in \mathcal{C}. So even if it is decidable whether a finite 2-modal frame is in \mathcal{C} or not, the finite frame problem for $L_{0} \times L_{1}$ is not necessarily decidable. If $L_{0} \times L_{1}$ is finitely axiomatisable, then it is of course decidable whether a finite frame is a frame for $L_{0} \times L_{1}$: one just has to check the finitely many axioms in it. But if $L_{0} \times L_{1}$ is not finitely axiomatisable, then this might not be the case, even if the component logics L_{0} and L_{1} are both finitely axiomatisable, and so the class of product frames for $L_{0} \times L_{1}$ is decidable. We do not know two-dimensional examples of this kind, but there are non-finitely axiomatisable higher dimensional product logics with undecidable finite frame problems (such as $\mathbf{K} \times \mathbf{K} \times \mathbf{K}$ and $\mathbf{S 5} \times \mathbf{S 5} \times \mathbf{S 5}$), see [7].

Below we summarise the known results on the axiomatisation problem for two-dimensional product logics:
(1) If both unimodal logics L_{0} and L_{1} are such that their classes of Kripke frames are definable by recursive sets of first-order sentences, then their product $L_{0} \times L_{1}$ is a recursively enumerable bimodal logic [4].
(2) If both L_{0} and L_{1} are finitely axiomatisable by modal formulas having universal Horn first-order correspondents, then $L_{0} \times L_{1}$ is finitely axiomatisable [4]. For example, if each L_{i} is either \mathbf{K} (the logic of all frames), or $\mathbf{K 4}$ (the logic of all transitive frames), or $\mathbf{S} 4$ (the logic of all reflexive and transitive frames), or $\mathbf{S 5}$ (the logic of all equivalence frames), then $L_{0} \times L_{1}$ is finitely axiomatisable.
(3) The result in (2) cannot be generalised to products of logics axiomatised by formulas having universal (but not necessarily Horn) first-order components.

A counterexample is the finitely axiomatisable modal logic $\mathbf{K 4 . 3}$, determined by the frames $\langle W, R\rangle$, where R is transitive and weakly connected:

$$
\forall x, y, z \in W(x R y \wedge x R z \rightarrow(y=z \vee y R z \vee z R y))
$$

(A rooted transitive and weakly connected relation is a linearly ordered sequence of clusters.) As shown in [11], there are product logics with a 'linear' first component that are not axiomatisable finitely: For example, if L_{0} is any of the logics $\mathbf{K 4 . 3}$, S4.3, Logic_of $\{\langle\omega, \leq\rangle\}$, and L_{1} is any of the logics $\mathbf{K}, \mathbf{K} 4, \mathbf{S} 4, \mathbf{G L}, \mathbf{G r z}$, then $L_{0} \times L_{1}$ is not axiomatisable using finitely many propositional variables.

However, there are recursively enumerable product logics that are outside the scope of both (2) and (3) above, so it is not known whether they are finitely axiomatisable or not. A notable example is $\mathbf{K 4 . 3} \times \mathbf{S 5}$. In this paper we show the following:
Theorem 1.1 It is decidable whether a finite 2-frame is a frame for $\mathbf{K 4 . 3} \times \mathbf{S 5}$.
It is clearly enough to decide the frame problem for finite rooted 2-frames. As both being transitive and weakly connected, and being an equivalence relation are first-order definable, the respective classes of all frames for K4.3 and S5 are closed under ultraproducts. As K4.3 and S5 are modal logics, their classes of frames are also closed under point-generated subframes. So, by [10, Thm.2.10], we obtain that, for every finite rooted 2 -frame $\mathfrak{F}, \mathfrak{F}$ is a frame for $\mathbf{K 4 . 3} \times \mathbf{S 5}$ iff \mathfrak{F} is a p-morphic image of a product frame for $\mathbf{K} 4.3 \times \mathbf{S} 5$. So it is enough to show the following:
Theorem 1.2 It is decidable whether a finite rooted 2-frame is a p-morphic image of a product frame for $\mathbf{K} 4.3 \times \mathbf{S 5}$.

Note that if every finite frame for $\mathbf{K} \mathbf{4 . 3} \times \mathbf{S} 5$ were the p-morphic image of a finite product frame for $\mathbf{K 4 . 3} \times \mathbf{S 5}$, then we could enumerate finite frames for $\mathbf{K 4 . 3} \times \mathbf{S 5}$. As K4.3 $\times \mathbf{S 5}$ is recursively enumerable, we can always enumerate those finite frames that are not frames for $\mathbf{K 4 . 3} \times \mathbf{S 5}$. So this would provide us with a decision algorithm for the finite frame problem. However, take, say, the 2-frame $\mathfrak{F}=\langle W, \leq, W \times W\rangle$, where $W=\{x, y\}$ and $x \leq x \leq y \leq y$. Then it is easy to see that \mathfrak{F} is a p-morphic image of $\langle\omega, \leq\rangle \times\langle\omega, \omega \times \omega\rangle$, but there is no finite product frame \mathfrak{G} for $\mathbf{K 4 . 3} \times \mathbf{S 5}$ such that \mathfrak{F} is a p-morphic image of \mathfrak{G}.

To explain our decision algorithm, now we have a closer look at some properties of 2-frames for $\mathbf{K 4 . 3} \oplus \mathbf{S 5}$, that is, where the first relation is transitive and weakly connected, and the second relation is an equivalence. To emphasise these facts, the transitive and weakly connected relations in our 2-frames will always be denoted by \leq, and the equivalence relations by \sim. This will not necessarily mean that \leq is reflexive: there might be 'reflexive' points in our frames with $x \leq x$, and some other 'irreflexive' ones with $y \not \leq y$. (This is a slight abuse of notation, as we will also denote by \leq the usual - reflexive and antisymmetric - linear order on the natural numbers.) So from now on, let
$\mathfrak{F}=\langle W, \leq, \sim\rangle$ be a 2 -frame for $\mathbf{K 4 . 3} \oplus \mathbf{S 5}$. We will use the following notation:

$$
\begin{aligned}
& C_{x}=\left\{x^{\prime}: x \leq x^{\prime} \text { and } x^{\prime} \leq x\right\}, \\
& x<y \quad \text { iff } \quad x \leq y \text { and } y \not \leq x, \\
& x \ll y \quad \text { iff } \quad x<y \text { and } \forall x^{\prime}\left(x \leq x^{\prime}<y \rightarrow x^{\prime} \in C_{x}\right) \text {, } \\
& {[x, y]=\{u: x \leq u \leq y\}, \quad[x, y)=\{u: x \leq u<y\},} \\
& (x, y]=\{u: x<u \leq y\}, \quad(x, y)=\{u: x<u<y\} .
\end{aligned}
$$

Observe that if x is irreflexive, then C_{x} is not the ' \leq-cluster' of x in the usual sense, but $C_{x}=\emptyset$. Also, the above 'intervals' are not the usual ones either, as $x \notin[x, y]$ or $x \notin[x, y)$ for irreflexive x. For any $X \subseteq W$, we let
$\min X=\left\{x \in X:\right.$ there is no $x^{\prime} \in X$ with $\left.x^{\prime}<x\right\}$, and
$\max X=\left\{x \in X:\right.$ there is no $x^{\prime} \in X$ with $\left.x<x^{\prime}\right\}$.
Note that $\min X$ and $\max X$ are nonempty, whenever X is finite and nonempty. For any $n>0$ and $X, Y \subseteq W$, we let

$$
\begin{aligned}
& X \stackrel{n}{\sim} Y \quad \text { iff } \quad \forall x_{1}, \ldots, x_{n} \in X\left(x_{1} \leq \cdots \leq x_{n} \rightarrow\right. \\
& \exists y_{1}, \ldots, y_{n} \in Y\left(y_{1} \leq \cdots \leq y_{n} \wedge \bigwedge_{1 \leq i \leq n}\right. \\
&\left.\left.x_{i} \sim y_{i}\right)\right) .
\end{aligned}
$$

For $n=1$, we omit the superscript and write $X \leadsto Y$:

$$
X \leadsto Y \quad \text { iff } \quad \forall x \in X \exists y \in Y x \sim y
$$

If $X=\{x\}$ then we write $x \leadsto Y$ instead of $\{x\} \leadsto Y$. Clearly, as \sim is transitive, \leadsto is a transitive relation on the subsets of W : if $X \leadsto Y$ and $Y \leadsto Z$, then $X \leadsto Z$. Note that if $x \not \leq x$ then $C_{x}=\emptyset$, and so $C_{x} \leadsto Y$ always holds. Observe that $X \leadsto Y$ does not always follow from $X \stackrel{2}{\sim} Y$, as there might exist some $x \in X$ with neither $x \leq x^{\prime}$ nor $x^{\prime} \leq x$, for any $x^{\prime} \in X$.

Next, we introduce some important properties of our 2-frames, expressed in the first-order frame-correspondence language having binary predicate symbols \leq and \sim. First of all, let

$$
\mathrm{sq}(x, y, z, w) \quad \text { iff } \quad x \sim y \leq z \wedge x \leq w \sim z .
$$

When $\mathrm{sq}(x, y, z, w)$ holds, we visualise this fact with the picture

The locations of x, y, z, w in this picture motivate the notation for the remaining first-order properties of our frames ($l=$ left, $r=$ right, $u=$ up, $d=$ down):

$$
\begin{array}{ll}
\psi_{u}(x, y, z, w): & \mathrm{sq}(x, y, z, w) \wedge[y, z) \sim[x, w] \\
\psi_{d}(x, y, z, w): & \mathrm{sq}(x, y, z, w) \wedge[x, w) \leadsto[y, z] \\
\psi_{b}(x, y, z, w): & \psi_{u}(x, y, z, w) \wedge \psi_{d}(x, y, z, w)
\end{array}
$$

$$
\begin{aligned}
& \psi_{u^{2}}(x, y, z, w): \operatorname{sq}(x, y, z, w) \wedge[y, z) \stackrel{2}{\sim}[x, w] \\
& \psi_{d^{2}}(x, y, z, w): \operatorname{sq}(x, y, z, w) \wedge[x, w) \stackrel{2}{\sim}[y, z] \\
& \psi_{\left(u, d^{2}\right)}(x, y, z, w): \operatorname{sq}(x, y, z, w) \wedge \\
& \forall a\left(a \in[y, z) \rightarrow \exists b\left(b \in[x, w] \wedge \psi_{d^{2}}(b, a, z, w)\right)\right) \\
& \Phi_{l}: \forall x, y, z\left(x \sim y \leq z \rightarrow \exists w \psi_{b}(x, y, z, w)\right) \\
& \Phi_{r}^{+}: \forall x, w, z\left(x \leq w \sim z \rightarrow \exists y\left(\psi_{u^{2}}(x, y, z, w) \wedge\right.\right. \\
& \\
& \Phi: \Phi_{l} \wedge \Phi_{r}^{+}
\end{aligned}
$$

Observe that $\psi_{u}(x, y, z, w)$ follows from $\psi_{\left(u, d^{2}\right)}(x, y, z, w)$.
Now we are in a position to formulate our main result:
Theorem 1.3 For every finite rooted 2-frame $\mathfrak{F}=\langle W, \leq, \sim\rangle$ for $\mathbf{K 4 . 3} \oplus \mathbf{S 5}$, \mathfrak{F} is a p-morphic image of a product frame for $\mathbf{K} 4.3 \times \mathbf{S 5}$ iff Φ holds in \mathfrak{F}.

The formula Φ is quite complex $\left(\Pi_{3}\right)$. Figure 1 shows that we cannot hope for a much simpler one: \mathfrak{F} is a frame for $\mathbf{S 4 . 3} \oplus \mathbf{S 5}$, where Φ_{r}^{+}fails (see the indicated $x, w, z)$, but Φ_{l},

$$
\begin{aligned}
& \forall x, w, z\left(x \leq w \sim z \rightarrow \exists y\left(\psi_{u^{2}}(x, y, z, w) \wedge \psi_{d^{2}}(x, y, z, w)\right)\right), \text { and } \\
& \forall x, w, z\left(x \leq w \sim z \rightarrow \exists y\left(\psi_{u^{2}}(x, y, z, w) \wedge \psi_{\left(u, d^{2}\right)}(x, y, z, w)\right)\right)
\end{aligned}
$$

all hold (the arrows and ellipses represent the reflexive, transitive and weakly connected \leq, and the triangles and circles the \sim-equivalence classes).

Fig. 1. A frame \mathfrak{F} showing that something like Φ is needed.

The paper is organised as follows. The main steps of the proof of Theorem 1.3 are discussed in Section 2. The more technical claims and lemmas are proved in Section 3. Finally, in Section 4 we discuss some related open problems, possible extensions of our results, and also whether they bring us any closer to either proving non-finite axiomatisability of $\mathbf{K 4 . 3} \times \mathbf{S 5}$, or finding an explicit, possibly infinite, axiomatisation of it.

$2 \quad \mathrm{P}$-morphic images of product frames for $\mathrm{K} 4.3 \times \mathrm{S} 5$

We begin with a general observation about p-morphic images of transitive and weakly connected frames.
Claim 2.1 Let f be a p-morphism from some transitive and weakly connected frame $\mathfrak{F}_{0}=\left\langle W_{0}, \leq_{0}\right\rangle$ onto a frame $\mathfrak{F}_{1}=\left\langle W_{1}, \leq_{1}\right\rangle$. For all $a, b \in W_{0}$, $x_{1}, \ldots, x_{n} \in W_{1}$, if $a \leq_{0} b$ and $f(a) \leq_{1} x_{1} \leq_{1} \cdots \leq_{1} x_{n}<_{1} f(b)$, then there exist $c_{1}, \ldots, c_{n} \in W_{0}$ such that $a \leq_{0} c_{1} \leq_{0} \cdots \leq_{0} c_{n}<_{0} b$ and $f\left(c_{i}\right)=x_{i}$, for $i=1, \ldots, n$.

Proof. Take some $a, b \in W_{0}, x_{1}, \ldots, x_{n} \in W_{1}$ such that $a \leq_{0} b$ and $f(a) \leq_{1}$ $x_{1} \leq_{1} \cdots \leq_{1} x_{n}<_{1} f(b)$. By the backward condition on f, there exists $c_{1}, \ldots, c_{n} \in W_{0}$ such that $a \leq_{0} c_{1} \leq_{0} \cdots \leq_{0} c_{n}$ and $f\left(c_{i}\right)=x_{i}$, for $i=1, \ldots, n$. As \leq_{0} is transitive, we have $a \leq_{0} c_{n}$. As \leq_{0} is weakly connected, we have either $c_{n}=b$, or $b \leq_{0} c_{n}$, or $c_{n} \leq_{0} b$. But $f\left(c_{n}\right)=x_{n}<_{1} f(b)$, so the first two cases cannot hold. Therefore, $c_{n}<_{0} b$ follows.

It is straightforward to check that Φ holds in every product frame for $\mathbf{K 4 . 3} \times \mathbf{S 5}$. And, using Claim 2.1, it is not hard to check either that Φ is preserved under taking p-morphic images of frames for $\mathbf{K 4 . 3} \oplus \mathbf{S 5}$. So we have:

Proposition 2.2 If \mathfrak{F} is a p-morphic image of a product frame for $\mathbf{K 4 . 3} \times \mathbf{S 5}$, then Φ holds in \mathfrak{F}.

We have to work a bit more to prove the other direction of Theorem 1.3. Given a rooted 2 -frame $\mathfrak{F}=\langle W, \leq, \sim\rangle$ for $\mathbf{K 4 . 3} \oplus \mathbf{S 5}$, we will define a 'p-morphism game' between two players \forall (male) and \exists (female) over \mathfrak{F}. In this game, \exists constructs step-by-step, (special) homomorphisms from larger and larger $\mathbf{K 4 . 3} \times \mathbf{S 5}$-product frames to \mathfrak{F}, and \forall tries to challenge her by pointing out possible 'defects': reasons why her current homomorphism is not an onto p-morphism yet. Versions of such games are used for building complete representations in algebraic logic [5,6], and in connection with axiomatisation problems of multi-dimensional modal logics $[3,8]$.

We will then show that if Φ holds in a finite rooted frame \mathfrak{F} for $\mathbf{K 4 . 3} \oplus \mathbf{S 5}$, then \exists has a winning strategy in the ω-step game over \mathfrak{F}. Before defining the rules of the game, let us introduce some notions we will use throughout. Given a rooted 2-frame $\mathfrak{F}=\langle W, \leq, \sim\rangle$ for $\mathbf{K 4 . 3} \oplus \mathbf{S 5}$ and $0<m, n<\omega$, we call an $n \times m$ matrix

$$
\left\langle x_{j}^{i} \in W: i<m, j<n\right\rangle
$$

a perfect grid, if either $m=1$ and $x_{i}^{0} \sim x_{j}^{0}$ for all $i, j<n$, or $m>1$ and the following hold:
(pg1) $\quad x_{j}^{i} \sim x_{k}^{i}$, for all $i<m, j, k<n$,
(pg2) either $x_{j}^{i} \ll x_{j}^{i+1}$ or $x_{j}^{i} \in C_{x_{j}^{i+1}}$, for all $i<m-1, j<n$,
(pg3) for all $i<m-1, j<n$, if $x_{j}^{i} \ll x_{j}^{i+1}$ then for all $k<n$, either $C_{x_{j}^{i}} \leadsto C_{x_{k}^{i}}$ or $C_{x_{j}^{i}} \leadsto C_{x_{k}^{i+1}}$.
(See Figure 2 for an example, where the arrows and ellipses represent \leq, and the triangles and circles the \sim-equivalence classes.)

Fig. 2. A perfect grid $\left\langle x_{j}^{i}: i<4, j<2\right\rangle$.
Observe that if $\left\langle x_{j}^{i}: i<m, j<n\right\rangle$ is a perfect grid, then for all $k<\ell \leq m$, $\left\langle x_{j}^{i}: k \leq i \leq \ell, j<n\right\rangle$ is a perfect grid as well. If $m=2$ then we call the $2 n$-tuple $\left\langle x_{0}^{0}, \ldots, x_{n-1}^{0}, x_{0}^{1}, \ldots, x_{n-1}^{1}\right\rangle$ a perfect atomic grid. Clearly, if $m>1$ and $\left\langle x_{j}^{i}: i<m, j<n\right\rangle$ is a perfect grid, then $\left\langle x_{0}^{i}, \ldots, x_{n-1}^{i}, x_{0}^{i+1}, \ldots, x_{n-1}^{i+1}\right\rangle$ is a perfect atomic grid, for each $i<m-1$.

Given an $n \times m$ matrix $\bar{x}=\left\langle x_{j}^{i}: i<m, j<n\right\rangle$ and an $n \times k$ matrix $\bar{y}=\left\langle y_{j}^{i}: i<k, j<n\right\rangle$ such that $x_{j}^{m-1}=y_{j}^{0}$, for all $j<n$, their union $\bar{x} \sqcup \bar{y}$ is the $n \times(m+k-1)$ matrix $\left\langle z_{j}^{i}: i<m+k-1, j<n\right\rangle$, defined by taking, for all $j<n$,

$$
z_{j}^{i}= \begin{cases}x_{j}^{i}, & \text { if } i<m, \\ y_{j}^{i-m+1}, & \text { if } m-1 \leq i<m+k-1\end{cases}
$$

It is easy to see the following claim:
Claim 2.3 If $\bar{x}=\left\langle x_{j}^{i}: i<m, j<n\right\rangle$ and $\bar{y}=\left\langle y_{j}^{i}: i<k, j<n\right\rangle$ are perfect grids such that $x_{j}^{m-1}=y_{j}^{0}$, for all $j<n$, then $\bar{x} \sqcup \bar{y}$ is a perfect grid as well.

Given a rooted 2-frame $\mathfrak{F}=\langle W, \leq, \sim\rangle$ for $\mathbf{K 4 . 3} \oplus \mathbf{S 5}$, we define an \mathfrak{F}-network to be a tuple $N=\left\langle U^{N},<^{N}, V^{N}, f^{N}\right\rangle$ such that the following hold:

- $U^{N}=\left\{u_{0}, \ldots, u_{m}\right\}$ for some $m<\omega$,
- $<^{N}$ is an irreflexive linear order on U^{N} with $u_{0}<^{N} \cdots<^{N} u_{m}$,
- $V^{N}=\left\{v_{0}, \ldots, v_{n}\right\}$ for some $n<\omega$,
- f^{N} is a function from $U^{N} \times V^{N}$ to W such that $\left\langle f^{N}\left(u_{i}, v_{j}\right): i \leq m, j \leq n\right\rangle$ is a perfect grid.
It is not hard to see, using (pg1) and (pg2), that if N is an \mathfrak{F}-network, then f^{N} is a homomorphism from the product frame $\left\langle U^{N},\left\langle^{N}\right\rangle \times\left\langle V^{N}, V^{N} \times V^{N}\right\rangle\right.$ to \mathfrak{F}.

Now we define a game $\mathcal{G}_{\omega}(\mathfrak{F})$ between \forall and \exists. They build a countable sequence of \mathfrak{F}-networks $N_{0} \subseteq N_{1} \subseteq \cdots \subseteq N_{k} \subseteq \ldots$ (Here $N_{k} \subseteq N_{k+1}$ means that $U^{N_{k}} \subseteq U^{N_{k+1}},<^{N_{k}} \subseteq<^{N_{k+1}}, V^{N_{k}} \subseteq V^{N_{k+1}}$, and $f^{N_{k}} \subseteq f^{N_{k+1}}$.) In round $0, \forall$ picks a root r of \mathfrak{F}, and \exists responds with $U^{N_{0}}=\left\{u_{0}\right\},<^{N_{0}}=\emptyset$, $V^{N_{0}}=\left\{v_{0}\right\}$, and $f^{N_{0}}\left(u_{0}, v_{0}\right)=r$.

In round $k(0<k<\omega)$, some sequence $N_{0} \subseteq \cdots \subseteq N_{k-1}$ of \mathfrak{F}-networks has already been built. \forall picks

- a pair $\langle u, v\rangle \in U^{N_{k-1}} \times V^{N_{k-1}}$, and
- a point $w \in W$ such that either (a) $f^{N_{k-1}}(u, v) \leq w$, or (b) $f^{N_{k-1}}(u, v) \sim w$. In case (a), \exists can respond in two ways. If there is some $u^{\prime} \in U^{N_{k-1}}$ with $u<^{N_{k-1}} u^{\prime}$ and $f^{N_{k-1}}\left(u^{\prime}, v\right)=w$, then she responds with $N_{k}=N_{k-1}$. Otherwise, she responds (if she can) with some \mathfrak{F}-network $N_{k} \supseteq N_{k-1}$ such that
- $U^{N_{k-1}} \cup\left\{u^{+}\right\} \subseteq U^{N_{k}}$ and $f^{N_{k}}\left(u^{+}, v\right)=w$, for some fresh point u^{+}, and
- $V^{N_{k}}=V^{N_{k-1}}$.

In case (b), again \exists can respond in two ways. If there is some $v^{\prime} \in V^{N_{k-1}}$ with $f^{N_{k-1}}\left(u, v^{\prime}\right)=w$, then she responds with $N_{k}=N_{k-1}$. Otherwise, she responds (if she can) with some \mathfrak{F}-network $N_{k} \supseteq N_{k-1}$ such that

- $V^{N_{k}}=V^{N_{k-1}} \cup\left\{v^{+}\right\}$and $f^{N_{k}}\left(u, v^{+}\right)=w$, for some fresh point v^{+}.

If \exists can respond in each round k for $k<\omega$ then she wins the play. We say that \exists has a winning strategy in $\mathcal{G}_{\omega}(\mathfrak{F})$ if she can win all plays, whatever moves \forall takes in the rounds.
Proposition 2.4 Let \mathfrak{F} be a countable rooted 2-frame for $\mathbf{K} 4 . \mathbf{3} \oplus \mathbf{S 5}$. If \exists has a winning strategy in $\mathcal{G}_{\omega}(\mathfrak{F})$, then \mathfrak{F} is a p-morphic image of a product frame for $\mathbf{K} 4.3 \times \mathbf{S 5}$.
Proof. Consider a play of the game $\mathcal{G}_{\omega}(\mathfrak{F})$ when \forall eventually picks all possible pairs and corresponding \leq - or \sim-connected points in \mathfrak{F} (since \mathfrak{F} is countable, he can do this). If \exists uses her strategy, then she succeeds to construct a countable ascending chain of \mathfrak{F}-networks whose union gives a p -morphism from some $\mathbf{K} 4.3 \times \mathbf{S 5}$-product frame onto \mathfrak{F}.
Proposition 2.5 Let \mathfrak{F} be a finite rooted 2-frame for $\mathbf{K 4 . 3} \oplus \mathbf{S 5}$ such that Φ holds in \mathfrak{F}. Then \exists has a winning strategy in $\mathcal{G}_{\omega}(\mathfrak{F})$.
Proof. We prove that, for all $k<\omega, \exists$ can survive round k in every play, no matter what moves \forall takes in the rounds. We prove this by induction on k. For $k=0$ this is obvious. So assume inductively that some sequence $N_{0} \subseteq \cdots \subseteq N_{k-1}$ of \mathfrak{F}-networks has already been built, for some $0<k<\omega$. Suppose that $U^{N_{k-1}}=\left\{u_{0}, \ldots, u_{m}\right\}$ such that $u_{0}<^{N_{k-1}} \cdots<^{N_{k-1}} u_{m}$, and $V^{N_{k-1}}=\left\{v_{0}, \ldots, v_{n}\right\}$. Next, \forall picks some $\langle u, v\rangle \in U^{N_{k-1}} \times V^{N_{k-1}}$ and $w \in W$. There are several cases, depending on how $f^{N_{k-1}}(u, v)$ and w are related. In each case we show how \exists can respond with an N_{k} satisfying the requirements. We omit those cases where \exists 's response is fully determined by the rules of the game.
Case (a).1. $f^{N_{k-1}}(u, v) \leq w$, for all $u^{\prime} \in U^{N_{k-1}}$, if $u<^{N_{k-1}} u^{\prime}$ then $\overline{f^{N_{k-1}}\left(u^{\prime}, v\right)} \neq w$, but there exists $u^{*} \in U^{N_{k-1}}$ such that $u<^{N_{k-1}} u^{*}$ and $f^{N_{k-1}}\left(u^{*}, v\right) \not \leq w$.

By the $\mathrm{IH}, f^{N_{k-1}}$ is a homomorphism, and so $f^{N_{k-1}}(u, v) \leq f^{N_{k-1}}\left(u^{*}, v\right)$ follows. Thus, by weak connectedness of \leq, we have $w<f^{N_{k-1}}\left(u^{*}, v\right)$. There-
fore, as $U^{N_{k-1}}$ is finite, there are $<^{N_{k-1}}$-successor points $u^{\prime}, u^{\prime \prime} \in U^{N_{k-1}}$ such that

$$
\begin{equation*}
f^{N_{k-1}}\left(u^{\prime}, v\right) \leq w<f^{N_{k-1}}\left(u^{\prime \prime}, v\right) \tag{1}
\end{equation*}
$$

To simplify notation, we let $x_{i}=f^{N_{k-1}}\left(u^{\prime}, v_{i}\right), y_{i}=f^{N_{k-1}}\left(u^{\prime \prime}, v_{i}\right)$, for all $i \leq n$. By the IH, we have that

$$
\begin{equation*}
\left\langle x_{0}, \ldots, x_{n}, y_{0}, \ldots, y_{n}\right\rangle \text { is a perfect atomic grid. } \tag{2}
\end{equation*}
$$

We may assume that $v=v_{0}$, and so we have $x_{0} \ll y_{0}$ by (1) and (2). Therefore, by (pg3), for each $i \leq n$, we have either $C_{x_{0}} \leadsto C_{x_{i}}$ or $C_{x_{0}} \leadsto C_{y_{i}}$. We now define w_{i}, for each $i \leq n$ (see Figure 3). Let $w_{0}=w$, so by (1) and (2), we have $w_{0} \in C_{x_{0}}$. For every $0<i \leq n$,

- if $C_{x_{0}} \leadsto C_{x_{i}}$, then we choose some $w_{i} \in C_{x_{i}}$ with $w_{0} \sim w_{i}$, and
- if $C_{x_{0}} \not \nrightarrow C_{x_{i}}$, then $C_{x_{0}} \leadsto C_{y_{i}}$ and we choose some $w_{i} \in C_{y_{i}}$ with $w_{0} \sim w_{i}$.

Fig. 3. Case (a). 1 of the p-morphism game.

Claim 2.5.1

(i) $\left\langle x_{0}, \ldots, x_{n}, w_{0}, \ldots, w_{n}\right\rangle$ is a perfect atomic grid.
(ii) $\left\langle w_{0}, \ldots, w_{n}, y_{0}, \ldots, y_{n}\right\rangle$ is a perfect atomic grid.

Proof. Let us prove (pg3) first. (i): Let $i \leq n$ be such that $x_{i} \ll w_{i}$. Then $w_{i} \notin C_{x_{i}}$, so by the definition of w_{i}, we have

$$
\begin{equation*}
C_{x_{0}} \nsucc C_{x_{i}} \tag{3}
\end{equation*}
$$

$w_{i} \in C_{y_{i}}$, and so

$$
\begin{equation*}
x_{i} \ll y_{i} . \tag{4}
\end{equation*}
$$

Take some $j<n$. There are two cases:

- $w_{j} \in C_{y_{j}}$. Then, by (4) and (2), either $C_{x_{i}} \leadsto C_{x_{j}}$ or $C_{x_{i}} \leadsto C_{y_{j}}=C_{w_{j}}$.
- $w_{j} \notin C_{y_{j}}$. Then $C_{x_{0}} \leadsto C_{x_{j}}$ by the definition of w_{j}. Therefore, $C_{x_{j}} \nsim C_{x_{i}}$ follows by (3), and so $C_{x_{i}} \leadsto C_{x_{j}}$ by Claim 3.1.
(ii): Let $i \leq n$ be such that $w_{i} \ll y_{i}$. Then $w_{i} \notin C_{y_{i}}$, so

$$
\begin{align*}
& C_{x_{0}} \leadsto C_{x_{i}}, \tag{5}\\
& w_{i} \in C_{x_{i}}, \tag{6}
\end{align*}
$$

and so (4) holds. Take some $j<n$. There are two cases:

- $w_{j} \in C_{x_{j}}$. Then by (6), (4) and (2), either $C_{w_{i}}=C_{x_{i}} \leadsto C_{x_{j}}=C_{w_{j}}$ or $C_{w_{i}}=C_{x_{i}} \leadsto C_{y_{j}}$.
- $w_{j} \notin C_{x_{j}}$. Then $C_{x_{0}} \nsim C_{x_{j}}$ by the definition of w_{j}. Therefore, $C_{x_{i}} \not \psi_{\rightarrow} C_{x_{j}}$ follows by (5), and so we have $C_{w_{i}}=C_{x_{i}} \leadsto C_{y_{j}}$ by (6), (4) and (2).
As (pg1) and (pg2) clearly hold in both cases, the proof of Claim 2.5.1 is completed.

Now take a fresh point u^{+}. Let $U^{N_{k}}=U^{N_{k-1}} \cup\left\{u^{+}\right\}$, let $<^{N_{k}} \supseteq<^{N_{k-1}}$ be such that $u^{\prime}<^{N_{k}} u^{+}<^{N_{k}} u^{\prime \prime}$, and let $f^{N_{k}}\left(u^{+}, v_{i}\right)=w_{i}$, for $i<n$. By Claim 2.5.1, the obtained N_{k} is an \mathfrak{F}-network extending N_{k-1} as required.

Case (a).2. $f^{N_{k-1}}(u, v) \leq w$, and for all $u^{\prime} \in U^{N_{k-1}}$, if $u<^{N_{k-1}} u^{\prime}$ then $\overline{f^{N_{k-1}}\left(u^{\prime}, v\right)} \leq w$ and $f^{N_{k-1}}\left(u^{\prime}, v\right) \neq w$.

Fig. 4. Case (a). 2 of the p-morphism game.
Then $f^{N_{k-1}}\left(u_{m}, v\right) \leq w$. We may assume that $v=v_{0}$ (see Figure 4). By the IH, we have $f^{N_{k-1}}\left(u_{m}, v_{i}\right) \sim f^{N_{k-1}}\left(u_{m}, v_{j}\right)$, for all $i, j \leq n$. So, by Lemma 3.7, there exists $t>0$ and a perfect grid $\bar{z}=\left\langle z_{j}^{\ell}: \ell \leq t, j \leq n\right\rangle$ such that $z_{j}^{0}=f^{N_{k-1}}\left(u_{m}, v_{j}\right)$, for $j \leq n$, and $z_{0}^{t}=w$. By the $\mathrm{IH}, \bar{f}=\left\langle f^{N_{k-1}}\left(u_{i}, v_{j}\right)\right.$: $i \leq m, j \leq n\rangle$ is a perfect grid, and so by Claim 2.3, $\bar{f} \sqcup \bar{z}$ is a perfect grid as well. Therefore, if we define

- $U^{N_{k}}=U^{N_{k-1}} \cup\left\{u_{\ell}^{+}: 0<\ell \leq t\right\}, u^{+}=u_{t}^{+}$,
- $f^{N_{k}}\left(u_{\ell}^{+}, v_{j}\right)=z_{j}^{\ell}$, for $0<\ell \leq t, j \leq n$,
then we obtain an \mathfrak{F}-network N_{k} extending N_{k-1} as required.
Case (b). $f^{N_{k-1}}(u, v) \sim w$, and $w \neq f^{N_{k-1}}\left(u, v^{\prime}\right)$ for all $v^{\prime} \in V^{N_{k-1}}$.
Suppose $u=u_{p}$ for some $p \leq m$ (see Figure 5). By the IH, $\left\langle f^{N_{k-1}}\left(u_{i}, v_{j}\right)\right.$: $i \leq p, j \leq n\rangle$ is a perfect grid, and $w \sim f^{N_{k-1}}\left(u_{p}, v\right) \sim f^{N_{k-1}}\left(u_{p}, v_{n}\right)$. So by

Fig. 5. Case (b) of the p-morphism game.
Lemma 3.12, there exist $s_{i}<\omega(i \leq p)$ and a perfect grid $\bar{z}=\left\langle z_{j}^{\ell}: \ell \leq s_{p}, j \leq\right.$ $n+1\rangle$ such that $0=s_{0}<s_{1}<\cdots<s_{p}, z_{n+1}^{s_{p}}=w$, and $z_{j}^{s_{i}}=f^{N_{k-1}}\left(u_{i}, v_{j}\right)$, for $i \leq p, j \leq n$.

By the IH, $\left\langle f^{N_{k-1}}\left(u_{p+i}, v_{j}\right): i \leq m-p, j \leq n\right\rangle$ is a perfect grid as well. As we have $w \sim f^{N_{k-1}}\left(u_{p}, v\right) \sim f^{N_{k-1}}\left(u_{p}, v_{n}\right)$, by Lemma 3.6 there exist $t_{i}<\omega$ $(i \leq m-p)$ and a perfect grid $\bar{y}=\left\langle y_{j}^{t}: t \leq t_{m-p}, j \leq n+1\right\rangle$ such that $0=t_{0}<t_{1}<\cdots<t_{m-p}, y_{n+1}^{0}=w$, and $y_{j}^{t_{i}}=f^{N_{k-1}}\left(u_{p+i}, v_{j}\right)$, for $i \leq m-p$, $j \leq n$.

By Claim 2.3, $\bar{z} \sqcup \bar{y}=\left\langle x_{j}^{\ell}: \ell \leq s_{p}+t_{m-p}-1, j \leq n+1\right\rangle$ is a perfect grid, and therefore by defining

- $U^{N_{k}}=U^{N_{k-1}} \cup\left\{u_{\ell}^{+}: \ell<s_{p}+t_{m-p}-1, \ell \neq s_{i}, s_{p}+t_{j}\right.$ for $\left.i \leq p, j \leq m-p\right\}$,
- $V^{N_{k}}=V^{N_{k-1}} \cup\left\{v^{+}\right\}$,
- $f^{N_{k}}\left(u_{\ell}^{+}, v_{j}\right)=x_{j}^{\ell}$, for $u_{\ell}^{+} \in U^{N_{k}}, j \leq n$, and
- $f^{N_{k}}\left(u_{p}, v^{+}\right)=w, f^{N_{k}}\left(u_{\ell}^{+}, v^{+}\right)=x_{n+1}^{\ell}$, for $u_{\ell}^{+} \in U^{N_{k}}$,
we obtain an \mathfrak{F}-network N_{k} extending N_{k-1} as required. This completes the proof of Proposition 2.5.

3 How Φ helps \exists to have a winning strategy in $\mathcal{G}_{\omega}(\mathfrak{F})$

In this section we state and prove the claims and lemmas that are used in the proof of Proposition 2.5. The material is divided into two subsections. In Section 3.1 we discuss those statements that describe plays of the game played 'on the left', that is, when \exists makes use of the the fact that the finite frame \mathfrak{F} validates Φ_{l}. Then in Section 3.2 we describe those plays of the game that are played 'on the right', that is, when \exists also needs to use the conjunct Φ_{r}^{+}of Φ.

Throughout, $\mathfrak{F}=\langle W, \leq, \sim\rangle$ is a finite rooted 2-frame for $\mathbf{K 4 . 3} \oplus \mathbf{S 5}$. We begin with two claims that are very important throughout:
Claim 3.1 Suppose that Φ_{l} holds in \mathfrak{F}, and let $x, y \in W$ be such that $x \sim y$. Then, either $C_{x} \leadsto C_{y}$ or $C_{y} \leadsto C_{x}$.

Proof. Suppose that $C_{x} \not \nrightarrow C_{y}$, that is, there is some $a \in C_{x}$ with $a \not \nrightarrow C_{y}$. Then $y \sim x \leq a$, and so by Φ_{l}, there is some b such that $\psi_{d}(y, x, a, b)$ holds. Therefore, $y \leq b$ and $a \sim b$, so $b \notin C_{y}$, and so $y<b$. Thus, $C_{y} \subseteq[y, b)$, and so $C_{y} \leadsto[x, a]=C_{x}$ follows by $\psi_{d}(y, x, a, b)$.

As \leadsto is a transitive relation on the subsets of W, we obtain the following:
Claim 3.2 Suppose that Φ_{l} holds in \mathfrak{F}, let $\emptyset \neq X \subseteq W$ be finite such that $x \sim y$ for all $x, y \in X$, and let $\mathcal{C}=\left\{C_{x}: x \in X\right\}$. Then $\langle\mathcal{C}, \sim\rangle$ is a finite linearly ordered chain of $\leadsto \rightarrow$-clusters'. In particular,
(i) there is $x_{i} \in X$ such that $C_{x_{i}}$ is \leadsto-initial in $\mathcal{C}: C_{x_{i}} \leadsto C$ for all $C \in \mathcal{C}$;
(ii) there is $x_{f} \in X$ such that $C_{x_{f}}$ is \leadsto-final in $\mathcal{C}: C \leadsto C_{x_{f}}$ for all $C \in \mathcal{C}$.

3.1 Playing on the left

We start with formulating and proving a general structural property of finite frames validating Φ_{l} (Lemma 3.3). Then in Lemma 3.4 we show that this structural property can be generalised to extensions of perfect atomic grids. This property is then used in Lemma 3.5 to help \exists maintaining a perfect grid, whenever \forall challenges to extend a perfect atomic grid with a ' \leq-move' (see Case (a). 2 in the proof of Prop. 2.5). Then Lemma 3.5 is used as the base case in the inductive proof of Lemma 3.6. Finally, Lemma 3.6 is used in the inductive proof of Lemma 3.7. This last lemma states that any perfect grid can be extended by \exists, whenever \forall plays a ' \leq-move' of the above kind.

Given $x, y, z, w, a \in W$, we write left (x, y, z, w, a) if the following hold:
(le1) $\quad \mathrm{sq}(x, y, z, w)$ and $x \leq a \leq w$,
(le2) $C_{y} \leadsto C_{a}$,
(le3) $\quad[x, a) \sim C_{y}$,
(le4) either $a \in C_{w}$, or $C_{a} \leadsto C_{y}$, or $C_{a} \leadsto C_{z}$,
(le5) $\quad(a, w) \leadsto C_{z}$.
Lemma 3.3 Suppose that Φ_{l} holds in \mathfrak{F}. For all $x, y, z \in W$, if $x \sim y \leq y \ll z$ then there exist w^{*}, a^{*} such that $\operatorname{left}\left(x, y, z, w^{*}, a^{*}\right)$ holds.
Proof. By Φ_{l}, there exists w with $\psi_{b}(x, y, z, w)$. If $w \in C_{x}$ then let $w^{*}=a^{*}=$ w, and we clearly have left $\left(x, y, z, w^{*}, a^{*}\right)$ as required.

So suppose that

$$
\begin{equation*}
\text { there is no } w \in C_{x} \text { with } \psi_{b}(x, y, z, w) \text {, } \tag{7}
\end{equation*}
$$

and let

$$
\begin{equation*}
w^{+} \in \max \left\{w: x<w \text { and } \psi_{b}(x, y, z, w)\right\} \tag{8}
\end{equation*}
$$

(as \mathfrak{F} is finite, there is such w^{+}by Φ_{l} and (7)). Now there are two cases: either $\left[x, w^{+}\right) \leadsto C_{y}$, or $\left[x, w^{+}\right) \nsim C_{y}$.
Case 1. $\left[x, w^{+}\right) \sim C_{y}$.
As $\psi_{b}\left(x, y, z, w^{+}\right)$and $y \ll z$, we have $C_{y} \leadsto\left[x, w^{+}\right]$. As $y \leq y$, there exists $a \in\left[x, w^{+}\right]$with $a \sim C_{y}$. Let

$$
\begin{equation*}
a^{*} \in \max \left\{a \in\left[x, w^{+}\right]: a \leadsto C_{y}\right\} \tag{9}
\end{equation*}
$$

(there is such a^{*} as \mathfrak{F} is finite). We claim that

$$
\begin{equation*}
\operatorname{left}\left(x, y, z, w^{+}, a^{*}\right) \tag{10}
\end{equation*}
$$

and so $w^{*}=w^{+}$will do. Indeed, we clearly have $x \leq a^{*} \leq w^{+}$, so we have (le1) by (8). (le2): Let $b^{*} \in C_{y}$ be such that $a^{*} \sim b^{*}$. By Φ_{l}, there exists w^{\prime} with $\psi_{b}\left(a^{*}, b^{*}, z, w^{\prime}\right)$.

We claim that

$$
\begin{equation*}
\psi_{b}\left(x, y, z, w^{\prime}\right) \tag{11}
\end{equation*}
$$

Indeed, on the one hand, if $b \in[y, z)$ then $b \in\left[b^{*}, z\right)$, and so $b \sim\left[a^{*}, w^{\prime}\right]$ by $\psi_{b}\left(a^{*}, b^{*}, z, w^{\prime}\right)$. As $x \leq a^{*}$, this implies $b \leadsto\left[x, w^{\prime}\right]$. On the other hand, if $a \in\left[x, w^{\prime}\right)$ then there are two cases:

- $a \in\left[x, a^{*}\right)$. Then $a \in\left[x, w^{+}\right)$, and so $a \leadsto[y, z]$ by (8).
- $a=a^{*}$ or $a \in\left[a^{*}, w^{\prime}\right)$. Then $a \sim\left[b^{*}, z\right]=[y, z]$ by $\psi_{b}\left(a^{*}, b^{*}, z, w^{\prime}\right)$.

So in both cases we have $a \sim[y, z]$, and so (11) is proved.
Now (7) and (11) imply that $x<w^{\prime}$. Therefore, by (11) and (8), we have $w^{+} \nless w^{\prime}$. As $x \leq w^{+}$and $x \leq w^{\prime}$, by the weak connectedness of \leq we have

$$
\begin{equation*}
\text { either } w^{\prime}=w^{+} \text {or } w^{\prime} \leq w^{+} \tag{12}
\end{equation*}
$$

Now we can show (le2), that is, $C_{y} \leadsto C_{a^{*}}$. Take some $b \in C_{y}$. Then $b \in$ $\left[b^{*}, z\right)$, and so by $\psi_{b}\left(a^{*}, b^{*}, z, w^{\prime}\right)$, we have $b \leadsto\left[a^{*}, w^{\prime}\right]$. By (12), this implies $b \leadsto\left[a^{*}, w^{+}\right]$, that is, $b \sim a$ for some $a \in\left[a^{*}, w^{+}\right]$. Thus, $a \in\left[x, w^{+}\right]$and $a \leadsto C_{y}$, and so by (9), we have $a^{*} \nless a$. As we also have $a^{*} \leq a$, this implies $a \in C_{a^{*}}$, as required in (le2).
(le3): As we are in the case when $\left[x, w^{+}\right) \sim C_{y}$, we also have $\left[x, a^{*}\right) \sim C_{y}$ by $a^{*} \leq w^{+}$, and so (le3) holds.
(le4) and (le5): If $a^{*} \in C_{w^{+}}$then (le4) holds. If $a^{*}<w^{+}$, then take any $a \in\left[a^{*}, w^{+}\right)$. As $a \in\left[x, w^{+}\right)$and we are in the case when $\left[x, w^{+}\right) \leadsto C_{y}$, we have $a \leadsto C_{y}$, proving $C_{a^{*}} \leadsto C_{y}$, and so (le4). Moreover, by (9), we also have $a^{*} \nless a$, and so $a \in C_{a^{*}}$ follows. Therefore, $a^{*} \ll w^{+}$, and so $\emptyset=\left(a^{*}, w^{+}\right) \leadsto C_{z}$, as required in (le5), completing the proof of (10).
Case 2. $\left[x, w^{+}\right) \not \nrightarrow C_{y}$.
Then there is some $r \in\left[x, w^{+}\right)$with $r \not \nrightarrow C_{y}$. Let

$$
\begin{equation*}
r^{*} \in \min \left\{r \in\left[x, w^{+}\right): r \not \ngtr C_{y}\right\} \tag{13}
\end{equation*}
$$

(there is such r^{*} as \mathfrak{F} is finite). As $\psi_{b}\left(x, y, z, w^{+}\right)$by (8), we have

$$
\begin{equation*}
r^{*} \leadsto C_{z} . \tag{14}
\end{equation*}
$$

Now let $s^{*} \in C_{z}$ be such that $r^{*} \sim s^{*}$. By Φ_{l}, there is w^{*} with $\psi_{b}\left(r^{*}, s^{*}, z, w^{*}\right)$. Thus, we have

$$
\begin{equation*}
\left[r^{*}, w^{*}\right) \leadsto C_{z} . \tag{15}
\end{equation*}
$$

We also need to define a^{*}. To this end, we claim that

$$
\begin{equation*}
\left\{a \in\left[x, r^{*}\right]: a \leadsto C_{y}\right\} \text { is not empty. } \tag{16}
\end{equation*}
$$

Indeed, by Φ_{l} and $y \leq y$, there is a such that $\psi_{b}(x, y, y, a)$ holds. Thus, $a \sim y$ and $[x, a) \leadsto C_{y}$, and so $a \neq r^{*}$ and $r^{*} \nless a$ follow from (13). As $x \leq r^{*}$ and $x \leq a$, the weak connectedness of \leq implies that $a \leq r^{*}$, proving (16). Now let

$$
\begin{equation*}
a^{*} \in \max \left\{a \in\left[x, r^{*}\right]: a \leadsto C_{y}\right\} \tag{17}
\end{equation*}
$$

(there is such a^{*} by (16) and the finiteness of \mathfrak{F}). We claim that

$$
\begin{equation*}
\operatorname{left}\left(x, y, z, w^{*}, a^{*}\right) \tag{18}
\end{equation*}
$$

Indeed, we have $x \leq a^{*} \leq r^{*} \leq w^{*}$, so (le1) holds.
(le2): As $a^{*} \leadsto C_{y}$ by (17), there is $b^{*} \in C_{y}$ be such that $a^{*} \sim b^{*}$. By Φ_{l}, there is s with $\psi_{b}\left(b^{*}, a^{*}, r^{*}, s\right)$, and so $b^{*} \leq s$. As $r^{*} \sim s$ and $r^{*} \nsim C_{y}$ by (13), we have $s \notin C_{y}=C_{b^{*}}$, and so $b^{*}<s$ follows. Now take any $b \in C_{y}$. Then $b \in\left[b^{*}, s\right)$, and so $\psi_{b}\left(b^{*}, a^{*}, r^{*}, s\right)$ implies that there is some $a \in\left[a^{*}, r^{*}\right]$ with $a \sim b$. Therefore, $a \in\left[x, r^{*}\right]$ and $a \sim C_{y}$, so $a^{*} \nless a$ by (17). But we also have $a^{*} \leq a$, and so $a \in C_{a^{*}}$ follows, as required in (le2).

(le3): As $a^{*} \leq r^{*}<w^{+}$by (17), we have $\left[x, a^{*}\right) \leadsto C_{y}$ by (13).
For (le4) and (le5), first we claim that

$$
\begin{equation*}
\text { either } C_{a^{*}}=C_{r^{*}} \text { or } a^{*} \ll r^{*} \tag{19}
\end{equation*}
$$

Indeed, we have $a^{*} \leq r^{*}$ by (17). Suppose that $C_{a^{*}} \neq C_{r^{*}}$, and let $a \in\left[a^{*}, r^{*}\right)$. Then $a \in\left[x, w^{+}\right.$) and $a<r^{*}$, so $a \leadsto C_{y}$ follows by (13). As $a \in\left[x, r^{*}\right]$, we have $a^{*} \nless a$ by (17). Therefore, $a \in C_{a^{*}}$ follows from $a^{*} \leq a$, as required in (19).
(le5): $\left(a^{*}, w^{*}\right) \leadsto C_{z}$ follows from (14), (15) and (19).
(le4): If $a^{*} \in C_{w^{*}}$, then (le4) holds. If $a^{*}<w^{*}$, then by (19) there are two cases:

- $C_{a^{*}}=C_{r^{*}}$. Then $r^{*}<w^{*}$ and $C_{a^{*}} \subseteq\left[r^{*}, w^{*}\right)$. So $C_{a^{*}} \leadsto C_{z}$ follows by (15).
- $a^{*} \ll r^{*}$. Then $C_{a^{*}} \leadsto C_{y}$ follows by (13).

So (le4) holds in both cases, completing the proof of (18).

Lemma 3.4 Suppose that Φ_{l} holds in \mathfrak{F}, and let $\left\langle x_{0}, \ldots, x_{n-1}, y_{0}, \ldots, y_{n-1}\right\rangle$ be a perfect atomic grid for some $n>0$. For all $x \in W$, if $x \sim x_{0}$ then there exists y such that $y \sim y_{0}$ and one of the following (I) or (II) holds:
(I) Either $y \in C_{x}$ and for all $j<n$, if $x_{j} \ll y_{j}$ then $C_{x_{j}} \leadsto C_{x}=C_{y}$.
(II) Or $x<y$ and:
(a) For all $j<n$, if $x_{j} \in C_{y_{j}}$ or $x_{j} \not \leq x_{j}$, then $[x, y) \leadsto C_{y_{j}}$.
(b) For all $j<n$, if $x_{j} \leq x_{j} \ll y_{j}$, then there is a_{j} with $\operatorname{left}\left(x, x_{j}, y_{j}, y, a_{j}\right)$, that is,

$$
\begin{align*}
& \mathrm{sq}\left(x, x_{j}, y_{j}, y\right) \text { and } x \leq a_{j} \leq y, \tag{20}\\
& C_{x_{j}} \leadsto C_{a_{j}}, \tag{21}\\
& {\left[x, a_{j}\right) \sim C_{x_{j}},} \tag{22}\\
& \text { either } a_{j} \in C_{y}, \text { or } C_{a_{j}} \leadsto C_{x_{j}}, \text { or } C_{a_{j}} \leadsto C_{y_{j}}, \tag{23}\\
& \left(a_{j}, y\right) \leadsto C_{y_{j}} . \tag{24}
\end{align*}
$$

Proof. There are two cases:
Case 1. For all $j<n$, either $x_{j} \in C_{y_{j}}$ or $x_{j} \not \leq x_{j}$.
By (pg1) and Claim 3.2, there is $i<n$ such that

$$
\begin{equation*}
C_{y_{i}} \text { is } \leadsto \text {-initial in }\left\{C_{y_{j}}: j<n\right\} . \tag{25}
\end{equation*}
$$

By Φ_{l}, there is some y such that

$$
\begin{equation*}
\psi_{b}\left(x, x_{i}, y_{i}, y\right) \tag{26}
\end{equation*}
$$

There are two cases, either $y \in C_{x}$, or $x<y$:

- $y \in C_{x}$. As for all $j<n$ with $x_{j} \ll y_{j}$, we have $x_{j} \not \leq x_{j}$, it follows that $\emptyset=C_{x_{j}} \leadsto C_{x}=C_{y}$, as required in (I).
- $x<y$. Then $[x, y) \leadsto\left[x_{i}, y_{i}\right]$ by (26). As either $x_{i} \in C_{y_{i}}$ or $x_{i} \not \leq x_{i}$, we have $\left[x_{i}, y_{i}\right]=C_{y_{i}}$ by (pg2). Therefore, by (25) and the transitivity of \sim, it follows that $[x, y) \leadsto C_{y_{j}}$, for all $j<n$, as required in (II).

Case 2. There is some $j<n$ such that $x_{j} \leq x_{j} \ll y_{j}$.
By (pg1) and Claim 3.2, there exists some $f<n$ such that $C_{x_{f}}$ is \leadsto-final in $\left\{C_{x_{j}}: j<n, x_{j} \leq x_{j} \ll y_{j}\right\}$. Also, there is $i<n$ such that $C_{y_{i}}$ is \leadsto-initial in $\left\{C_{y_{j}}: j<n, x_{j} \leq x_{j} \ll y_{j}\right.$, and $\left.C_{x_{f}} \leadsto C_{x_{j}}\right\}$. Observe that then

$$
\begin{align*}
& C_{y_{i}} \text { is } \leadsto \text {-initial in }\left\{C_{y_{j}}: j<n, x_{j} \leq x_{j} \ll y_{j}, \text { and } C_{x_{i}} \leadsto C_{x_{j}}\right\} \text {, and } \tag{27}\\
& C_{x_{i}} \text { is } \leadsto \text {-final in }\left\{C_{x_{j}}: j<n, x_{j} \leq x_{j} \ll y_{j}\right\} . \tag{28}
\end{align*}
$$

Now, by Lemma 3.3, there exist y^{*}, a^{*} such that

$$
\begin{equation*}
\operatorname{left}\left(x, x_{i}, y_{i}, y^{*}, a^{*}\right) \tag{29}
\end{equation*}
$$

There are two cases, either $y^{*} \in C_{x}$, or $x<y^{*}$. If $y^{*} \in C_{x}$, then we let $y=y^{*}$, and claim that (I) holds. Indeed, by (29) we have $a^{*} \in C_{x}$, and so $C_{x_{i}} \leadsto C_{a^{*}}=C_{x}=C_{y}$, again by (29). Thus by (28), $C_{x_{j}} \leadsto C_{x}=C_{y}$ for all $j<n$ with $x_{j} \leq x_{j} \ll y_{j}$. Also, if $j<n$ is such that $x_{j} \not \leq x_{j}$, then $C_{x_{j}}=\emptyset$, and so $C_{x_{j}} \leadsto C_{x}=C_{y}$, as required in (I).

So suppose that $x<y^{*}$. We will define some y, and show that

$$
\begin{align*}
& \operatorname{sq}\left(x, x_{i}, y_{i}, y\right) \text { and } x \leq a^{*} \leq y, \text { and } \tag{30}\\
& \left(a^{*}, y\right) \leadsto C_{y_{j}}, \text { for all } j<n . \tag{31}
\end{align*}
$$

Then

$$
\begin{equation*}
\operatorname{left}\left(x, x_{i}, y_{i}, y, a^{*}\right) \tag{32}
\end{equation*}
$$

will follow from (29), as the other conjuncts in left $\left(x, x_{i}, y_{i}, y, a^{*}\right)$ do not depend on y, but only on a^{*}. (Observe that (31) is more than what is required in left $\left(x, x_{i}, y_{i}, y, a^{*}\right)$: it is for all $j<n$, not just for i.)

To this end, we consider three cases:

- $y_{i} \leadsto C_{a^{*}}$. Then we choose some $y \in C_{a^{*}}$ such that $y_{i} \sim y$, and so (30)-(31) clearly hold.
- $y_{i} \not \nrightarrow C_{a^{*}}$ and $\left(a^{*}, y^{*}\right) \leadsto C_{y_{j}}$, for all $j<n$. Then we let $y=y^{*}$, and (30)-(31) clearly hold.
- $y_{i} \not \chi_{\rightarrow} C_{a^{*}}$ and $\left(a^{*}, y^{*}\right) \not \chi_{\rightarrow} C_{y_{j}}$, for some $j<n$. Then let

$$
\begin{equation*}
u^{*} \in \min \left\{u \in\left(a^{*}, y^{*}\right): u \not \chi_{\rightarrow} C_{y_{j}} \text { for some } j<n\right\} \tag{33}
\end{equation*}
$$

(there is such u^{*} as \mathfrak{F} is finite), and let $j^{*}<n$ be such that $u^{*} \not x_{\rightarrow} C_{y_{j^{*}}}$. As $\left(a^{*}, y^{*}\right) \leadsto C_{y_{i}}$ follows from (29), we then have $C_{y_{i}} \not \nsim C_{y_{j^{*}}}$. Therefore, by (27), we have $C_{x_{i}} \nsim C_{x_{j^{*}}}$, and so $C_{x_{i}} \leadsto C_{y_{j^{*}}}$ follows by $x_{i} \ll y_{i}$ and (pg3). We also have $C_{x_{i}} \leadsto C_{a^{*}}$ by (29). Therefore, there are $r \in C_{y_{j^{*}}}$ and $s \in C_{a^{*}}$ such that $r \sim s$. By Φ_{l}, there is v^{*} such that $\psi_{b}\left(r, s, u^{*}, v^{*}\right)$ holds. As $u^{*} \not \chi_{\Delta} C_{y_{j^{*}}}$ by (33), we have $y_{j^{*}}<v^{*}$. So by $\psi_{b}\left(r, s, u^{*}, v^{*}\right)$, there is some $y \in\left[s, u^{*}\right]$ such that $y \sim y_{j^{*}}$. Now, as $s \in C_{a^{*}}$, we have $x \leq a^{*} \leq s \leq y$, and so (30) follows from (pg1). Also, as $y \leq u^{*}<y^{*}$, we have (31) by (33).

So we proved that y satisfies (30)-(32) in all three cases. Note that y is defined such that

$$
\begin{equation*}
\text { if } y_{i} \leadsto C_{a^{*}} \text { then } y \in C_{a^{*}} \tag{34}
\end{equation*}
$$

Next, we show that (30)-(32) imply that (II) holds for y. The following claim will be used several times:

Claim 3.4.1 If $a^{*}<y$ and $j<n$ is such that $C_{x_{i}} \leadsto C_{y_{j}}$, then $C_{a^{*}} \leadsto C_{y_{j}}$.
Proof. By (32), we have $C_{x_{i}} \leadsto C_{a^{*}}$. If $C_{x_{i}} \leadsto C_{y_{j}}$, there exist $u \in C_{a^{*}}, v \in C_{y_{j}}$ with $u \sim v$. So by Claim 3.1, we have either $C_{a^{*}} \leadsto C_{y_{j}}$ or $C_{y_{j}} \leadsto C_{a^{*}}$. If $C_{y_{j}} \leadsto C_{a^{*}}$ were the case, then we would have $y_{j} \leadsto C_{a^{*}}$, and so $y_{i} \leadsto C_{a^{*}}$ would follow by (pg1). By (34), we would have $y \in C_{a^{*}}$, contradicting $a^{*}<y$. Therefore, we have $C_{a^{*}} \leadsto C_{y_{j}}$.
Proof of (II)(a): Let $j<n$ be such that $x_{j} \in C_{y_{j}}$ or $x_{j} \not \leq x_{j}$.
By $x_{i} \ll y_{i}$ and (pg3), we have

$$
\begin{equation*}
C_{x_{i}} \leadsto C_{y_{j}} . \tag{35}
\end{equation*}
$$

Now there are two cases: either $a^{*} \in C_{y}$, or $a^{*}<y$. In each case, we claim to have $[x, y) \leadsto C_{y_{j}}$, as required in (II)(a). Indeed,

- $a^{*} \in C_{y}$. Then $[x, y)=\left[x, a^{*}\right)$, and we have $\left[x, a^{*}\right) \leadsto C_{x_{i}}$ by (32). So $[x, y) \leadsto C_{y_{j}}$ follows by (35).
- $a^{*}<y$. Then we have:
$\cdot\left[x, a^{*}\right) \leadsto C_{x_{i}}$ by (32), and so $\left[x, a^{*}\right) \leadsto C_{y_{j}}$ by (35);
- $C_{a^{*}} \leadsto C_{y_{j}}$ by (35) and Claim 3.4.1;
- $\left(a^{*}, y\right) \leadsto C_{y_{j}}$ by (31).

Proof of (II)(b): Let $j<n$ be such that $x_{j} \leq x_{j} \ll y_{j}$.
There are two cases, either $\left[x, a^{*}\right) \sim C_{x_{j}}$, or $\left[x, a^{*}\right) \not \nrightarrow C_{x_{j}}$. In both cases, first we define a_{j} and then show that (20)-(24) (that is, left $\left.\left(x, x_{j}, y_{j}, y, a_{j}\right)\right)$ hold.

- $\left[x, a^{*}\right) \leadsto C_{x_{j}}$. Then we let $a_{j}=a^{*}$, and we clearly have (20) and (22). By (28), we have $C_{x_{j}} \leadsto C_{x_{i}}$, and by (32), we have $C_{x_{i}} \leadsto C_{a_{j}}$. So $C_{x_{j}} \leadsto C_{a_{j}}$ follows, proving (21). We have (24) by (31). Finally, let us prove (23), that is, either $a_{j} \in C_{y}$, or $C_{a_{j}} \leadsto C_{x_{j}}$ or $C_{a_{j}} \leadsto C_{y_{j}}$: Suppose that $a_{j}=a^{*}<y$. By (32), there are two cases: either $C_{a^{*}} \leadsto C_{x_{i}}$ or $C_{a^{*}} \leadsto C_{y_{i}}$.
- $C_{a^{*}} \leadsto C_{x_{i}}$. Then, by $x_{i} \ll y_{i}$ and (pg3), we have either $C_{x_{i}} \leadsto C_{x_{j}}$ or $C_{x_{i}} \leadsto C_{y_{j}}$, so (23) follows.
- $C_{a^{*}} \leadsto C_{y_{i}}$. If $C_{x_{i}} \leadsto C_{x_{j}}$, then $C_{y_{i}} \leadsto C_{y_{j}}$ follows by (27), and so we have $C_{a^{*}} \leadsto C_{y_{j}}$. If $C_{x_{i}} \nsim C_{x_{j}}$, then by $x_{i} \ll y_{i}$ and (pg 3), we have $C_{x_{i}} \leadsto C_{y_{j}}$. So by Claim 3.4.1, we have $C_{a^{*}} \leadsto C_{y_{j}}$, as required in (23).
- $\left[x, a^{*}\right) \not \chi_{\sim} C_{x_{j}}$. By Lemma 3.3, there are a_{j}, y_{j}^{*} such that

$$
\begin{equation*}
\operatorname{left}\left(x, x_{j}, y_{j}, y_{j}^{*}, a_{j}\right) \tag{36}
\end{equation*}
$$

We claim that left $\left(x, x_{j}, y_{j}, a_{j}\right)$ as well, that is, (20)-(24) hold. Indeed, by (36), we have $x \leq a_{j}$ and $\left[x, a_{j}\right) \leadsto C_{x_{j}}$. As $x \leq a^{*}$ and $\left[x, a^{*}\right) \not \chi_{\leadsto} C_{x_{j}}$, by the weak connectivity of \leq it follows that

$$
\begin{equation*}
x \leq a_{j}<a^{*} \leq y \tag{37}
\end{equation*}
$$

as required in (20). As (21) and (22) do not depend on y, they hold because of (36). Next, by (32), we have $\left[x, a^{*}\right) \leadsto C_{x_{i}}$, and so $C_{x_{i}} \not \overbrace{\rightarrow} C_{x_{j}}$ follows from
$\left[x, a^{*}\right) \not \chi_{\triangleleft} C_{x_{j}}$. So by $x_{i} \ll y_{i}$ and (pg3), we have

$$
\begin{equation*}
C_{x_{i}} \leadsto C_{y_{j}} \tag{38}
\end{equation*}
$$

and so

$$
\begin{equation*}
\left[x, a^{*}\right) \leadsto C_{y_{j}} \tag{39}
\end{equation*}
$$

For (23): We have $C_{a_{j}} \leadsto C_{y_{j}}$ by (37) and (39). For (24): (37) and (39) imply $\left(a_{j}, a^{*}\right) \leadsto C_{y_{j}}$. So if $a^{*} \in C_{y}$, then $\left(a_{j}, y\right) \leadsto C_{y_{j}}$ follows. If $a^{*}<y$, then $C_{a^{*}} \leadsto C_{y_{j}}$ follows by (38) and Claim 3.4.1. Also, we have $\left(a^{*}, y\right) \leadsto C_{y_{j}}$ by (31). Therefore, $\left(a_{j}, y\right) \leadsto C_{y_{j}}$ holds, as required.
So we proved (II)(b), and the proof of Lemma 3.4 is completed.
Lemma 3.5 Suppose that Φ_{l} holds in \mathfrak{F}, and let $\left\langle x_{0}, \ldots, x_{n-1}, y_{0}, \ldots, y_{n-1}\right\rangle$ be a perfect atomic grid for some $n>0$. For all $x \in W$, if $x \sim x_{0}$ then there exist $k>0$ and a perfect grid $\left\langle z_{j}^{\ell}: \ell \leq k, j \leq n\right\rangle$ such that $z_{j}^{0}=x_{j}, z_{j}^{k}=y_{j}$, for $j<n$, and $z_{n}^{0}=x$.
Proof. By Lemma 3.4, there is y such that either (I) or (II) of the lemma holds. If (I) holds, that is, $y \in C_{x}$, then let $k=1, z_{n}^{0}=x$, and $z_{n}^{1}=y$. Of course, we let $z_{j}^{0}=x_{j}$ and $z_{j}^{1}=y_{j}$, for $j<n$. It is straightforward to show that $\left\langle z_{0}^{0}, \ldots, z_{n}^{0}, z_{0}^{1}, \ldots, z_{n}^{1}\right\rangle$ is a perfect atomic grid.

Suppose that (II) holds, that is $x<y$, and for all $j<n$ with $x_{j} \leq x_{j} \ll y_{j}$, we have some a_{j} as in (II)(b). Then let $k>0$, and $z_{n}^{0}, \ldots z_{n}^{k}$ be such that $x=z_{n}^{0} \ll \cdots \ll z_{n}^{k}=y$ (that is, we take a point from each \leq-cluster between x and $y)$. Of course, we let $z_{j}^{0}=x_{j}, z_{j}^{k}=y_{j}$, for all $j<n$. Next, we define a number $\ell_{j}<k$, for every $j<n$ as follows:

- If $x_{j} \in C_{y_{j}}$ or $x_{j} \not \leq x_{j}$, then let $\ell_{j}=0$.
- If $x_{j} \leq x_{j} \ll y_{j}$, then there are several cases, depending on the location of a_{j} in $[x, y]$:
- If $a_{j} \in C_{y}$, then let $\ell_{j}=k-1$.
- If $a_{j}<y$ and $C_{a_{j}} \leadsto C_{x_{j}}$, then let ℓ_{j} be such that $z_{n}^{\ell_{j}} \in C_{a_{j}}$.
- If $a_{j}<y, C_{a_{j}} \nsim C_{x_{j}}$, and $a_{j} \in C_{x}$, then let $\ell_{j}=0$.
- If $a_{j}<y, C_{a_{j}} \not \nrightarrow C_{x_{j}}$, and $x<a_{j}$, then let ℓ_{j} be such that $z_{n}^{\ell_{j}+1} \in C_{a_{j}}$.

The following claim is a straightforward consequence of (II)(a) and (22)-(24) in (II)(b):
Claim 3.5.1
(ii) Either $C_{z_{n}^{0}} \leadsto C_{x_{i}}$, or ($\ell_{j}=0$ and $C_{z_{n}^{0}} \leadsto C_{y_{j}}$).
(ii) $z_{n}^{\ell} \leadsto C_{x_{i}}$ and $C_{z_{n}^{\ell}} \leadsto C_{x_{i}}$, for all ℓ with $0<\ell \leq \ell_{j}$.
(iii) $z_{n}^{\ell} \leadsto C_{y_{i}}$ and $C_{z_{n}^{\ell}} \leadsto C_{y_{i}}$, for all ℓ with $\ell_{j}<\ell<k$.

We use Claim 3.5.1(ii) and (iii) to define z_{j}^{ℓ}, for each $0<\ell<k$ and $j<n$:

- If $0<\ell \leq \ell_{j}$, then choose $z_{j}^{\ell} \in C_{x_{j}}$ such that $z_{n}^{\ell} \sim z_{j}^{\ell}$.
- If $\ell_{j}<\ell<k$, then choose $z_{j}^{\ell} \in C_{y_{j}}$ such that $z_{n}^{\ell} \sim z_{j}^{\ell}$.

As a consequence of Claim 3.5.1, and (21), we obtain the following:
Claim 3.5.2 For all $j<n$,
(i) either $C_{z_{n}^{0}} \leadsto C_{z_{j}^{0}}$ or $C_{z_{n}^{0}} \leadsto C_{z_{j}^{1}}$;
(ii) $C_{z_{n}^{\ell}} \leadsto C_{z_{j}^{\ell}}$, whenever $0<\ell<k$;
(iii) if $x_{j} \ll y_{j}$ then either $C_{z_{j} \ell_{j}} \leadsto C_{z_{n}^{\ell_{j}}}$ or $C_{z_{j} \ell_{j}} \leadsto C_{z_{n}^{\ell_{j}+1}}$.

Now we claim that $\left\langle z_{j}^{\ell}: \ell \leq k, j \leq n\right\rangle$ is a perfect grid as required. Indeed (pg1) and (pg2) clearly hold. Let us prove that (pg3) holds as well, that is, for all $\ell<k, i, j \leq n$,

$$
\begin{equation*}
\text { if } z_{i}^{\ell} \ll z_{i}^{\ell+1} \text { then either } C_{z_{i}^{\ell}} \leadsto C_{z_{j}^{\ell}} \text { or } C_{z_{i}^{\ell}} \leadsto C_{z_{j}^{\ell+1}} \text {. } \tag{40}
\end{equation*}
$$

If $i=j$, this clearly holds. Otherwise, there are three cases:

- $i=n, j<n$. Then (40) holds by Claim 3.5.2(i) and (ii).
- $i<n, j=n$. If $z_{i}^{\ell} \ll z_{i}^{\ell+1}$ then $\ell=\ell_{i}$ and (40) holds by Claim 3.5.2(iii).
- $i, j<n$. Again, if $z_{i}^{\ell} \ll z_{i}^{\ell+1}$ then $\ell=\ell_{i}$, and so either $C_{z_{i}^{\ell_{i}}} \leadsto C_{z_{n}^{\ell_{i}}}$ or $C_{z_{i}^{\ell_{i}}} \leadsto C_{z_{n}^{\ell_{i}+1}}$, by Claim 3.5.2(iii). Now either $C_{z_{i}^{\ell_{i}}} \leadsto C_{z_{j}^{\ell_{i}}}$ or $C_{z_{i}^{\ell_{i}}} \leadsto C_{z_{j}^{\ell_{i}+1}}$ follow by Claim 3.5.2(i) and (ii),
completing the proof of Lemma 3.5.
Lemma 3.6 Suppose that Φ_{l} holds in \mathfrak{F}, and let $\left\langle x_{j}^{i}: i \leq m, j<n\right\rangle$ be a perfect grid, for some $m, n<\omega, n>0$. For all $x \in W$, if $x \sim x_{0}^{0}$ then there exist $t_{i}<\omega(i \leq m)$ and a perfect grid $\left\langle z_{j}^{\ell}: \ell \leq t_{m}, j \leq n\right\rangle$ such that $0=t_{0}<t_{1}<\cdots<t_{m}, z_{j}^{t_{i}}=x_{j}^{i}$, for $i \leq m, j<n$, and $z_{n}^{0}=x$.
Proof. It is by induction on m. For $m=0$ the statement is obvious. Suppose the statement holds for some $m<\omega$. Let $\left\langle x_{j}^{i}: i \leq m+1, j<n\right\rangle$ be a perfect grid, and let $x \in W$ be such that $x \sim x_{0}^{0}$. Then $\left\langle x_{j}^{i}: i \leq m, j<n\right\rangle$ is a perfect grid, and so by the IH , there exist $t_{i}<\omega$, for $i \leq m$, and a perfect $\operatorname{grid} \bar{z}=\left\langle z_{j}^{\ell}: \ell \leq t_{m}, j \leq n\right\rangle$ such that $0=t_{0}<t_{1}<\cdots<t_{m}, z_{j}^{t_{i}}=x_{j}^{i}$, for $i \leq m, j<n$, and $z_{n}^{0}=x$. We also have that $\left\langle x_{0}^{m}, \ldots, x_{n-1}^{m}, x_{0}^{m+1}, \ldots, x_{n-1}^{m+1}\right\rangle$ is a perfect atomic grid, and $z_{n}^{t_{m}} \sim z_{0}^{t_{m}}=x_{0}^{m}$. So by Lemma 3.5, there exist $k>0$ and a perfect grid $\bar{y}=\left\langle y_{j}^{\ell}: \ell \leq k, j \leq n\right\rangle$ such that $y_{j}^{0}=x_{j}^{m}$, for $j<n$, $y_{n}^{0}=z_{n}^{k_{m}}$ and $y_{j}^{k}=x_{j}^{m+1}$, for $j<n$. By Claim 2.3, $\bar{z} \sqcup \bar{y}$ is a perfect grid as required.

Lemma 3.7 Suppose that Φ_{l} holds in \mathfrak{F}, and let $\left\langle y_{j}: j \leq n\right\rangle$ be such that $y_{i} \sim y_{j}$ for $i, j \leq n$. For all $y \in W$, if $y_{0} \leq y$ then there exist $t>0$ and a perfect grid $\left\langle z_{j}^{\ell}: \ell \leq t, j \leq n\right\rangle$ such that $z_{0}^{t}=y$ and $z_{j}^{0}=y_{j}$, for $j \leq n$.
Proof. It is by induction on n. If $n=0$, then take $t>0$ and $z_{0}^{0}, \ldots, z_{0}^{t}$ such that $y_{0}=z_{0}^{0}, y=z_{0}^{t}$, either $z_{0}^{0} \in C_{z_{0}^{1}}$ or $z_{0}^{0} \ll z_{0}^{1}$, and $z_{0}^{\ell} \ll z_{0}^{\ell+1}$, for all $1 \leq \ell<t$. Then $\left\langle z_{0}^{0}, \ldots, z_{0}^{t}\right\rangle$ is clearly a perfect grid.

Now suppose that the statement holds for some $n<\omega$. Let $\left\langle y_{j}: j \leq n+1\right\rangle$ be such that $y_{i} \sim y_{j}$ for $i, j \leq n+1$, and take some $y \in W$ with $y_{0} \leq y$. By the IH , there exist $m>0$ and a perfect grid $\left\langle x_{j}^{i}: i \leq m, j \leq n\right\rangle$ such that $x_{0}^{m}=y$ and $x_{j}^{0}=y_{j}$, for $j \leq n$. As $y_{n+1} \sim y_{0}=x_{0}^{0}$, by Lemma 3.6 there exist $t_{i}<\omega(i \leq m)$ and a perfect grid $\bar{z}=\left\langle z_{j}^{\ell}: \ell \leq t_{m}, j \leq n+1\right\rangle$ such that $0=t_{0}<t_{1}<\cdots<t_{m}, z_{j}^{t_{i}}=x_{j}^{i}$, for $i \leq m, j \leq n$, and $z_{n+1}^{0}=y_{n+1}$. Therefore, $z_{0}^{t_{m}}=x_{0}^{m}=y, z_{j}^{0}=z_{j}^{t_{0}}=x_{j}^{0}=y_{j}$, for $j \leq n$, and $z_{n+1}^{0}=y_{n+1}$, showing that \bar{z} is a perfect grid as required.

3.2 Playing on the right

Similarly to Section 3.1, here we start with formulating and proving a general structural property of finite frames validating Φ (Lemma 3.8). Observe that the 'right' conjunct Φ_{r}^{+}of Φ is kind of 'stronger' than its 'left' conjunct Φ_{l}. Perhaps this is why the 'right' property below is considerably simpler than the corresponding 'left' property (see Lemma 3.3 above). Then in Lemma 3.10 we show that this structural property can be generalised to extensions of perfect atomic grids. This property is then used in Lemma 3.11 to help \exists maintaining a perfect grid, whenever \forall challenges to extend a perfect atomic grid with a ' \sim-move' (see Case (b) in the proof of Prop. 2.5). Finally, Lemma 3.11 is used as the base case in the inductive proof of Lemma 3.12 that, together with Lemma 3.6 , show that any perfect grid can be extended by \exists, whenever \forall plays a '~-move'.

Given $x, y, z, w \in W$, we write $\operatorname{right}(x, y, z, w)$ if the following hold:
(r1) $\mathbf{s q}(x, y, z, w)$,
(r2) either $x \in C_{w}$ or $C_{x} \leadsto C_{y}$,
(r3) either $y \in C_{z}$, or $C_{y} \leadsto C_{x}$, or $C_{y} \leadsto C_{w}$,
(r4) $\quad(y, z) \leadsto C_{w}$.
Lemma 3.8 Suppose that Φ holds in \mathfrak{F}. For all $x, w, z \in W$, if $x \leq x \ll w \sim z$ then there exists y^{*} such that $\operatorname{right}\left(x, y^{*}, z, w\right)$ holds.

Proof. If $C_{x} \leadsto C_{z}$, then there is $y^{*} \in C_{z}$ with $x \sim y^{*}$. It is straightforward to see that $\operatorname{right}\left(x, y^{*}, z, w\right)$ holds. So suppose that

$$
\begin{equation*}
C_{x} \not \nrightarrow C_{z}, \tag{41}
\end{equation*}
$$

and let

$$
\begin{equation*}
y^{+} \in \min \left\{y: \psi_{\text {all }}(x, y, z, w)\right\} \tag{42}
\end{equation*}
$$

where $\psi_{\text {all }}(x, y, z, w)$ is a shorthand for

$$
\psi_{u^{2}}(x, y, z, w) \wedge \psi_{d^{2}}(x, y, z, w) \wedge \psi_{\left(u, d^{2}\right)}(x, y, z, w)
$$

(As \mathfrak{F} is finite, there is such y^{+}by Φ_{r}^{+}.) Now there are two cases: either $\left[y^{+}, z\right) \leadsto C_{w}$, or $\left[y^{+}, z\right) \not \not \leadsto C_{w}$.
Case 1. $\left[y^{+}, z\right) \leadsto C_{w}$.
We claim that $\operatorname{right}\left(x, y^{+}, z, w\right)$ holds, and so $y^{*}=y^{+}$will do. Indeed, we clearly have (r1). (r3) and (r4) hold by $\left[y^{+}, z\right) \leadsto C_{w}$. For (r2): By (41), there is some $a \in C_{x}$ with $a \not \chi_{\rightarrow} C_{z}$. We have $\psi_{d^{2}}\left(x, y^{+}, z, w\right)$ by (42), and so $x \leq x \leq a<w$ implies that there are b, b^{\prime} such that $y^{+} \leq b \leq b^{\prime} \leq z, x \sim b$, and $a \sim b^{\prime}$. Thus $b^{\prime} \notin C_{z}$, and so $b \leq b^{\prime}<z$ follows. Now $\left[y^{+}, z\right) \leadsto C_{w}$ implies that $b \sim C_{w}$, and so $y^{+} \leadsto C_{w}$ follows from $y^{+} \sim x \sim b$. Therefore, there is some $w^{\prime} \in C_{w}$ with $y^{+} \sim w^{\prime}$. By Φ_{r}^{+}, there is y^{\prime} such that $\psi_{\text {all }}\left(x, y^{\prime}, y^{+}, w^{\prime}\right)$.

It is straightforward to check that $\psi_{\text {all }}\left(x, y^{\prime}, z, w\right)$ also holds. So by (42), we have $y^{\prime} \in C_{y^{+}}$, and so $C_{x} \leadsto C_{y^{+}}$follows by $x \leq x<w$ and $\psi_{d^{2}}\left(x, y^{\prime}, y^{+}, w^{\prime}\right)$, completing the proof of (r2).

Case 2. $\left[y^{+}, z\right) \nsim C_{w}$.
Then let

$$
\begin{equation*}
b^{+} \in \max \left\{b \in\left[y^{+}, z\right): b \nsim \rightarrow C_{w}\right\} . \tag{43}
\end{equation*}
$$

(there is such b^{+}as \mathfrak{F} is finite). We have $\psi_{\left(u, d^{2}\right)}\left(x, y^{+}, z, w\right)$ by (42), so there is $a^{+} \in[x, w]$ such that $a^{+} \sim b^{+}$and

$$
\begin{equation*}
\left[a^{+}, w\right) \stackrel{2}{\leadsto}\left[b^{+}, z\right] . \tag{44}
\end{equation*}
$$

By (43), we have $b^{+} \not \chi_{\rightarrow} C_{w}$, and so $a^{+} \in C_{x}$.
We claim that there exists b^{*} such that

$$
\begin{equation*}
b^{*} \in C_{b^{+}} \cup\left\{b^{+}\right\}, b^{*} \not \chi_{\rightarrow} C_{w} \text { and } b^{*} \not \chi_{\rightarrow} C_{z} . \tag{45}
\end{equation*}
$$

Indeed, if $b^{+} \not \nrightarrow C_{z}$ then (45) holds for $b^{*}=b^{+}$. So suppose that $b^{+} \leadsto C_{z}$. As by (43) we also have $b^{+} \not \nrightarrow C_{w}$, it follows that $C_{z} \not \iota_{\rightarrow} C_{w}$. So by Claim 3.1, we have $C_{w} \leadsto C_{z}$, and so $C_{x} \nsim C_{w}$ follows by (41). Also by (41), there is some $a^{*} \in C_{x}$ such that $a^{*} \nsim C_{z}$. By $C_{w} \leadsto C_{z}$, we also have $a^{*} \not \mathcal{A}_{\rightarrow} C_{w}$. As $a^{+} \leq a^{*} \leq a^{*}<w$, by (44) there exists $b^{*} \in\left[b^{+}, z\right]$ with $a^{*} \sim b^{*}$. As $a^{*} \not \psi_{\rightarrow} C_{z}$, we have $b^{*} \not \chi_{\rightarrow} C_{z}$ and $b^{*} \notin C_{z}$. Thus $b^{*} \in\left[b^{+}, z\right) \subseteq\left[y^{+}, z\right)$ follows. As $a^{*} \not \chi_{\sim} C_{w}$, we also have $b^{*} \nsim C_{w}$. Therefore, by (43), we obtain that $b^{*} \in C_{b^{+}}$, as required in (45).

So take some b^{*} satisfying (45). By (43), we have

$$
\begin{equation*}
b^{*} \in \max \left\{b \in\left[y^{+}, z\right): b \nsim C_{w}\right\} \tag{46}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
C_{x} \leadsto C_{b^{*}} . \tag{47}
\end{equation*}
$$

Indeed, as we have $\psi_{\left(u, d^{2}\right)}\left(x, y^{+}, z, w\right)$ by (42), there is $c^{\prime} \in[x, w]$ such that $\left[c^{\prime}, w\right) \stackrel{2}{\sim}\left[b^{*}, z\right]$ and $c^{\prime} \sim b^{*}$. As $b^{*} \nprec \rightarrow C_{w}$, it follows that $c^{\prime} \in C_{x}$. Now take any $c \in C_{x}$. Then $c^{\prime} \leq c \leq c^{\prime}<w$, and so there exist b, b^{\prime} such that $b^{*} \leq b \leq b^{\prime} \leq z$, $c \sim b$ and $c^{\prime} \sim b^{\prime}$. Thus $b^{\prime} \sim b^{*}$ and by (45) we have $b^{\prime} \notin C_{z}$ and $b^{\prime} \not \chi_{\sim} \bar{C}_{w}$. Therefore, $y^{+} \leq b^{*} \leq b \leq b^{\prime}<z$ follows, and by (46) we have that $b^{\prime} \in C_{b^{*}}$. Therefore, $b \in C_{b^{*}}$ as well, as required in (47).

Now by (47), there is $y^{*} \in C_{b^{*}}$ such that $x \sim y^{*}$. We claim that $\operatorname{right}\left(x, y^{*}, z, w\right)$ holds. Indeed, (r1) is clear, (r2) is (47), and (r4) holds by (46). For (r3): We show that $C_{y^{*}} \leadsto C_{x}$. Take some $d \in C_{y^{*}}=C_{b^{*}}$. Then $y^{+} \leq d \leq b^{*}<z$. As by (42) we have $\psi_{u^{2}}\left(x, y^{+}, z, w\right)$, this implies that there exist e, e^{*} such that $x \leq e \leq e^{*} \leq w, e \sim d$ and $e^{*} \sim b^{*}$.

As $b^{*} \nsim \rightarrow C_{w}$ by (46), we have $e^{*} \in C_{x}$, and so $e \in C_{x}$ follows, as required.
The following claim will be useful in subsequent proofs:
Claim 3.9 Suppose that Φ_{r}^{+}holds in \mathfrak{F}. If $y^{+} \in \min \left\{y: \psi_{u}(x, y, z, w)\right\}$, then $C_{x} \leadsto C_{y^{+}}$.

Proof. If $C_{x}=\emptyset$, then this holds. So take some $a \in C_{x}$. As $a \leq x \sim y^{+}$, by Φ_{r}^{+} there exists b such that $\psi_{\left(u, d^{2}\right)}\left(a, b, y^{+}, x\right)$, and so $\psi_{u}\left(a, b, y^{+}, x\right)$. As $x \leq a \sim b$,
by Φ_{r}^{+}again, there exists y^{\prime} such that $\psi_{u}\left(x, y^{\prime}, b, a\right)$. So we have $y^{\prime} \leq b \leq y^{+}$, and $\left[y^{\prime}, y^{+}\right) \cup\left\{y^{+}\right\} \leadsto C_{x}$. So it is straightforward to check that $\psi_{u}\left(x, y^{\prime}, z, w\right)$ holds. Therefore, by $y^{+} \in \min \left\{y: \psi_{u}(x, y, z, w)\right\}$, we have $y^{\prime} \nless y^{+}$, and so $y^{\prime} \in C_{y^{+}}$. Therefore, $b \in C_{y^{+}}$follows, proving $C_{x} \leadsto C_{y^{+}}$.
Lemma 3.10 Suppose that Φ holds in \mathfrak{F}, and let $\left\langle x_{0}, \ldots, x_{n-1}, y_{0}, \ldots, y_{n-1}\right\rangle$ be a perfect atomic grid for some $n>0$. For all $y \in W$, if $y \sim y_{0}$ then there exists x such that, for every $j<n$, $\operatorname{right}\left(x_{j}, x, y, y_{j}\right)$ holds, that is,

$$
\begin{align*}
& \operatorname{sq}\left(x_{j}, x, y, y_{j}\right) \text {, } \tag{48}\\
& \text { either } x_{j} \in C_{y_{j}} \text { or } C_{x_{j}} \leadsto C_{x} \text {, } \tag{49}\\
& \text { either } x \in C_{y} \text {, or } C_{x} \leadsto C_{x_{j}} \text {, or } C_{x} \leadsto C_{y_{j}} \text {, } \tag{50}\\
& (x, y) \leadsto C_{y_{j}} . \tag{51}
\end{align*}
$$

Proof. By (pg1), Φ_{l} and Claim 3.2, there is $i<n$ such that

$$
\begin{equation*}
C_{y_{i}} \text { is } \leadsto \text {-initial in }\left\{C_{y_{j}}: j<n\right\} . \tag{52}
\end{equation*}
$$

We claim that there exists x^{*} such that

$$
\begin{align*}
& \operatorname{sq}\left(x_{i}, x^{*}, y, y_{i}\right), \tag{53}\\
& C_{x_{i}} \leadsto C_{x^{*}}, \tag{54}\\
& \text { either } x^{*} \in C_{y}, \text { or } C_{x^{*}} \leadsto C_{x_{i}}, \text { or } C_{x^{*}} \leadsto C_{y_{i}}, \tag{55}\\
& \left(x^{*}, y\right) \leadsto C_{y_{i}} . \tag{56}
\end{align*}
$$

Indeed, if $x_{i} \leq x_{i} \ll y_{i}$ then such an x^{*} exists by Lemma 3.8. If $x_{i} \in C_{y_{i}}$ or $x_{i} \not \leq x_{i}$, then let $x^{*} \in \min \left\{x^{\prime}: \psi_{u}\left(x_{i}, x^{\prime}, y, y_{i}\right)\right\}$ (there exists such x^{*} by Φ_{r}^{+} and the finiteness of \mathfrak{F}). Then (53), (55), and (56) follow from $\psi_{u}\left(x_{i}, x^{*}, y, y_{i}\right)$ and $\left[x_{i}, y_{i}\right]=C_{y_{i}}$, and (54) follows from Claim 3.9.

Now we consider two cases:
Case 1. For all $j<n$, if $x_{j} \leq x_{j} \ll y_{j}$ then $C_{x_{j}} \leadsto C_{x_{i}}$.
Then we let $x=x^{*}$, and claim that (48)-(51) hold, for all $j<n$. Indeed, take some $j<n$. Then (48) is clear. For (49): If $x_{j} \in C_{y_{j}}$ or $x_{j} \not \leq x_{j}$, then (49) clearly holds. If $x_{j} \leq x_{j} \ll y_{j}$ then $C_{x_{j}} \leadsto C_{x_{i}}$, so (49) follows from (54). For (50): By (55), there are three cases:

- $x \in C_{y}$. Then (50) holds.
- $C_{x} \leadsto C_{y_{i}}$. Then $C_{x} \leadsto C_{y_{j}}$ by (52).
- $C_{x} \leadsto C_{x_{i}}$ and $C_{x} \nsim C_{y_{i}}$. Then $x_{i} \leq x_{i} \ll y_{i}$, and by (pg3) we have either $C_{x_{i}} \leadsto C_{x_{j}}$ or $C_{x_{i}} \leadsto C_{y_{j}}$. So (50) follows by the transitivity of \leadsto.
Finally, (51) follows from (56) and (52).
Case 2. There is some $j<n$ with $x_{j} \leq x_{j} \ll y_{j}$ and $C_{x_{j}} \not \overbrace{>} C_{x_{i}}$.
By (pg1), Φ_{l} and Claim 3.2, there is $f<n$ such that

$$
\begin{equation*}
C_{x_{f}} \text { is } \leadsto \text {-final in }\left\{C_{x_{j}}: j<n, x_{j} \leq x_{j} \ll y_{j}\right\} . \tag{57}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
C_{x_{f}} \leadsto C_{y_{i}} . \tag{58}
\end{equation*}
$$

Indeed, if $x_{i} \in C_{y_{i}}$ or $x_{i} \not \leq x_{i}$, then this holds by $x_{f} \ll y_{f}$ and (pg3). If $x_{i} \leq x_{i} \ll y_{i}$, then $C_{x_{f}} \not \nrightarrow C_{x_{i}}$ by our assumption on Case 2 and (57), and so $C_{x_{f}} \leadsto C_{y_{i}}$ follows again by $x_{f} \ll y_{f}$ and (pg3).

As $x_{f} \leq x_{f} \sim x^{*}$, by Φ_{r}^{+}and the finiteness of \mathfrak{F}, there is some x such that

$$
\begin{equation*}
x \in \min \left\{x^{\prime}: \psi_{u}\left(x_{f}, x^{\prime}, x^{*}, x_{f}\right)\right\} . \tag{59}
\end{equation*}
$$

We claim that, for all $j<n$, we have $\operatorname{right}\left(x_{j}, x, y, y_{j}\right)$, that is, (48)-(51) hold. Indeed, take some $j<n$. Then (48) is clear. For (49): By (59) and Claim 3.9, we have that $C_{x_{f}} \leadsto C_{x}$. If $x_{j} \notin C_{y_{j}}$, then $C_{x_{j}} \leadsto C_{x}$ follows by (57).

In order to show (50) and (51), we claim that

$$
\begin{equation*}
\text { either } x \in C_{y} \text {, or }[x, y) \leadsto C_{y_{i}} \text {. } \tag{60}
\end{equation*}
$$

Indeed, suppose that $x \notin C_{y}$ and take some $a \in[x, y)$. There are three cases:

- $a \in\left[x, x^{*}\right) \cup\left\{x^{*}\right\}$. Then $a \leadsto C_{x_{f}}$ by (59), and so $a \leadsto C_{y_{i}}$ follows by (58).
- $x^{*} \notin C_{y}$ and $a \in C_{x^{*}}$. Then by (55), either $a \leadsto C_{y_{i}}$, or $a \leadsto C_{x_{i}}$. In the latter case, either $C_{x_{i}}=C_{y_{i}}$, or $C_{x_{i}} \leadsto C_{x_{f}}$ by (57), and so $a \leadsto C_{y_{i}}$ follows by (58).
- $a \in\left(x^{*}, y\right)$. Then $a \leadsto C_{y_{i}}$ by (56).

Now let us show (50): If $x \notin C_{y}$, then we have $C_{x} \leadsto C_{y_{i}}$ by (60), and so $C_{x} \leadsto C_{y_{j}}$ follows by (52). And for (51): We have $(x, y) \leadsto C_{y_{i}}$ by (60), and so $(x, y) \sim C_{y_{j}}$ follows by (52).
Lemma 3.11 Suppose that Φ holds in \mathfrak{F}, and let $\left\langle x_{0}, \ldots, x_{n-1}, y_{0}, \ldots, y_{n-1}\right\rangle$ be a perfect atomic grid for some $n>0$. For all $y \in W$, if $y \sim y_{0}$ then there exist $k>0$ and a perfect grid $\left\langle z_{j}^{\ell}: \ell \leq k, j \leq n\right\rangle$ such that $z_{j}^{0}=x_{j}, z_{j}^{k}=y_{j}$, for $j<n$, and $z_{n}^{k}=y$.
Proof. By Lemma 3.10, there is x such that $\operatorname{right}\left(x_{j}, x, y, y_{j}\right)$ holds, for every $j<n$. If $x \in C_{y}$ then let $k=1, z_{n}^{0}=x, z_{n}^{1}=y$, and $z_{j}^{0}=x_{j}, z_{j}^{1}=y_{j}$, for all $j<n$. It is straightforward to show that $\left\langle z_{0}^{0}, \ldots, z_{n}^{0}, z_{0}^{1}, \ldots, z_{n}^{1}\right\rangle$ is a perfect atomic grid.

If $x<y$, then let $k>0$ and $z_{n}^{0}, \ldots z_{n}^{k}$ be such that $x=z_{n}^{0} \ll \cdots \ll z_{n}^{k}=y$ (that is, we take a point from each \leq-cluster between x and y). Of course, we let $z_{j}^{0}=x_{j}$, and $z_{j}^{k}=y_{j}$, for all $j<n$. Next, for each $j<n$, we have $(x, y) \leadsto C_{y_{j}}$ by (51). Therefore, for each $0<\ell<k$, there exists $z_{j}^{\ell} \in C_{y_{j}}$ such that $z_{n}^{\ell} \sim z_{j}^{\ell}$. We claim that $\left\langle z_{j}^{\ell}: \ell \leq k, j \leq n\right\rangle$ is a perfect grid as required. Indeed (pg1) and (pg2) clearly hold. Let us prove that (pg3) holds as well, that is, for all $\ell<k, i, j \leq n$, if $z_{i}^{\ell} \ll z_{i}^{\ell+1}$ then either $C_{z_{i}^{\ell}} \leadsto C_{z_{j}^{\ell}}$ or $C_{z_{i}^{\ell}} \leadsto C_{z_{j}^{\ell+1}}$. Indeed, if $i=j$, this clearly holds. Otherwise, there are three cases:

- $i=n, j<n$. Then $C_{z_{n}^{0}}=C_{x}$, and we have either $C_{x} \leadsto C_{x_{j}}=C_{z_{j}^{0}}$ or $C_{x} \leadsto C_{y_{j}}=C_{z_{j}^{1}}$ by (50). Also, if $0<\ell<k$ then $C_{z_{n}^{\ell}} \subseteq(x, y) \leadsto C_{y_{j}}=C_{z_{j}^{\ell}}$ by (51).
- $i<n, j=n$. If $z_{i}^{\ell} \ll z_{i}^{\ell+1}$, then $\ell=0$ and $x_{i} \ll y_{i}$, and so $C_{z_{i}^{0}}=C_{x_{i}} \leadsto C_{x}=$ $C_{z_{n}^{0}}$ by (49).
- $i, j<n$. Again, if $z_{i}^{\ell} \ll z_{i}^{\ell+1}$ then $\ell=0$ and $x_{i} \ll y_{i}$. So by (pg3), either $C_{z_{i}^{0}}=C_{x_{i}} \leadsto C_{x_{j}}=C_{z_{j}^{0}}$ or $C_{z_{i}^{0}}=C_{x_{i}} \leadsto C_{y_{j}}=C_{z_{j}^{1}}$,
completing the proof of Lemma 3.11.
Lemma 3.12 Suppose that Φ holds in \mathfrak{F}, and let $\left\langle x_{j}^{i}: i \leq m, j<n\right\rangle$ be a perfect grid, for some $m, n<\omega, n>0$. For all $x \in W$, if $x \sim x_{0}^{m}$ then there exist $s_{i}<\omega(i \leq m)$ and a perfect grid $\left\langle z_{j}^{\ell}: \ell \leq s_{m}, j \leq n\right\rangle$ such that $0=s_{0}<s_{1}<\cdots<s_{m}, z_{j}^{s_{i}}=x_{j}^{i}$, for $j<n, i \leq m$, and $z_{n}^{s_{m}}=x$,
Proof. It is by induction on m. For $m=0$ the statement is obvious. Suppose the statement holds for some $m<\omega$. Let $\left\langle x_{j}^{i}: i \leq m+1, j<n\right\rangle$ be a perfect grid, and let $x \in W$ be such that $x \sim x_{0}^{m}$. Then $\left\langle x_{j}^{i}: 1 \leq i \leq m+1, j<n\right\rangle$ is a perfect grid, and so by the IH , there exist $s_{i}<\omega$, for $1 \leq i \leq m+1$, and a perfect grid $\bar{z}=\left\langle z_{j}^{\ell}: 1 \leq \ell \leq s_{m+1}, j \leq n\right\rangle$ such that $1=t_{1}<t_{2}<\cdots<t_{m+1}$, $z_{j}^{t_{i}}=x_{j}^{i}$, for $1 \leq i \leq m+1, j<n$, and $z_{n}^{t_{m+1}}=x$. We also have that $\left\langle x_{0}^{0}, \ldots, x_{n-1}^{0}, x_{0}^{1}, \ldots, x_{n-1}^{1}\right\rangle$ is a perfect atomic grid, and $z_{n}^{t_{1}} \sim z_{0}^{t_{1}}=x_{0}^{1}$. So by Lemma 3.11, there exist $k>0$ and a perfect grid $\bar{y}=\left\langle y_{j}^{\ell}: \ell \leq k, j \leq n\right\rangle$ such that $y_{j}^{0}=x_{j}^{0}$, for $j<n, y_{j}^{k}=x_{j}^{1}$, for $j<n$, and $y_{n}^{k}=z_{n}^{1}$. By Claim 2.3, $\bar{y} \sqcup \bar{z}$ is a perfect grid as required.

4 Discussion

Our results can be extended to $\mathbf{S 4 . 3} \times \mathbf{S 5}$, even with some simplifications to the formula Φ. Theorem 1.3 also holds for $\operatorname{Logic_ of~}\{\langle\omega,<\rangle\} \times \mathbf{S 5}$. However, as the class of all frames for Logic of $\{\langle\omega,<\rangle\}$ is not closed under ultraproducts, it is not known whether Logic_of $\{\langle\omega,<\rangle\} \times \mathbf{S} \mathbf{5}$ has other finite frames as well, frames that are not p-morphic images of product frames. It would also be interesting to know whether any of the logics (such as the decidable $\mathbf{K 4 . 3} \times \mathbf{K}$, or the undecidable but recursively enumerable $\mathbf{K 4 . 3} \times \mathbf{K 4}$) that are within the scope of the non-finite axiomatisability results of [11] has a decidable finite frame problem.

Are we any closer to either proving non-finite axiomatisability of $\mathbf{K 4 . 3} \times \mathbf{S 5}$, or finding an explicit, possibly infinite, axiomatisation of it? On the one hand, a way of proving that a product logic L is not finitely axiomatisable is constructing a sequence $\left\langle\mathfrak{F}_{n}: n<\omega\right\rangle$ of finite frames such that no \mathfrak{F}_{n} is a frame for L, but some countable elementary substructure \mathfrak{G} of a non-trivial ultraproduct of the \mathfrak{F}_{n} is a p-morphic image of a product frame for L. Since the formula Φ we use to decide the finite frame problem for $\mathbf{K 4 . 3} \times \mathbf{S 5}$ is a first-order formula in the frame-correspondence language, if it fails in every \mathfrak{F}_{n} then, by Los' theorem, it fails in any ultraproduct as well, and so it fails in \mathfrak{G}. But Φ holds in every product frame and preserved under p-morphic images. So our result implies that we cannot hope for an argument of this kind to work, and have to do something else, possibly constructing infinite \mathfrak{F}_{n}.

On the other hand, it can be shown that our first-order formula Φ is not
reflected under ultrafilter extensions, and so not modally definable. However, there is a bimodal formula φ such that

- for every 2-frame \mathfrak{F} for $\mathbf{K 4 . 3} \oplus \mathbf{S 5}$, if Φ holds in \mathfrak{F}, then φ is valid in \mathfrak{F};
- for every finite 2-frame \mathfrak{F} for $\mathbf{K 4 . 3} \oplus \mathbf{S 5}$, if φ is valid in \mathfrak{F}, then Φ holds in \mathfrak{F}. So if L_{φ} is the smallest normal bimodal logic containing $\mathbf{K 4 . 3} \oplus \mathbf{S} 5$ and φ, then we have $L_{\varphi} \subseteq \mathbf{K 4 . 3} \times \mathbf{S 5}$. However, in order to show the converse inclusion, one would need to show that L_{φ} has the finite model property. And we have no idea about that. Note that it is not known either whether $\mathbf{K 4 . 3} \times \mathbf{S 5}$ has the finite model property w.r.t. arbitrary (not necessarily product) frames. K4.3 ${ }^{t} \times \mathbf{S} 5$ lacks the finite model property [12], where $\mathbf{K 4 . 3}{ }^{t}$ is the temporal extension of $\mathbf{K 4 . 3}$ with a 'past box'. Note that $\mathbf{K 4 . 3}{ }^{t} \times \mathbf{S 5}$ (and so $\mathbf{K 4 . 3} \times \mathbf{S 5}$) is decidable [12].
Acknowledgements. We are grateful to Ian Hodkinson for discussions.

References

[1] Blackburn, P., M. de Rijke and Y. Venema, "Modal Logic," Cambridge University Press, 2001.
[2] Chagrov, A. and M. Zakharyaschev, "Modal Logic," Oxford Logic Guides 35, Clarendon Press, Oxford, 1997.
[3] Gabbay, D., A. Kurucz, F. Wolter and M. Zakharyaschev, "Many-Dimensional Modal Logics: Theory and Applications," Studies in Logic and the Foundations of Mathematics 148, Elsevier, 2003.
[4] Gabbay, D. and V. Shehtman, Products of modal logics. Part I, Journal of the IGPL 6 (1998), pp. 73-146.
[5] Hirsch, R. and I. Hodkinson, Complete representations in algebraic logic, Journal of Symbolic Logic 62 (1997), pp. 816-847.
[6] Hirsch, R. and I. Hodkinson, "Relation Algebras by Games," Studies in Logic and the Foundations of Mathematics 147, Elsevier, North Holland, 2002.
[7] Hirsch, R., I. Hodkinson and A. Kurucz, On modal logics between $\mathbf{K} \times \mathbf{K} \times \mathbf{K}$ and S5 \times S5 \times S5, Journal of Symbolic Logic 67 (2002), pp. 221-234.
[8] Kurucz, A., On axiomatising products of Kripke frames, Journal of Symbolic Logic 65 (2000), pp. 923-945.
[9] Kurucz, A., Combining modal logics, in: P. Blackburn, J. van Benthem and F. Wolter, editors, Handbook of Modal Logic, Studies in Logic and Practical Reasoning 3, Elsevier, 2007 pp. 869-924.
[10] Kurucz, A., On the complexity of modal axiomatisations over many-dimensional structures, in: L. Beklemishev, V. Goranko and V. Shehtman, editors, Advances in Modal Logic, Volume 8, College Publications, 2010 pp. 256-270.
[11] Kurucz, A. and S. Marcelino, Non-finitely axiomatisable two-dimensional modal logics, Journal of Symbolic Logic (to appear).
[12] Reynolds, M., A decidable temporal logic of parallelism, Notre Dame Journal of Formal Logic 38 (1997), pp. 419-436.
[13] Segerberg, K., Two-dimensional modal logic, Journal of Philosophical Logic 2 (1973), pp. 77-96.
[14] Shehtman, V., Two-dimensional modal logics, Mathematical Notices of the USSR Academy of Sciences 23 (1978), pp. 417-424, (Translated from Russian).

[^0]: ${ }^{1}$ Sérgio Marcelino was partially supported by FCT and EU FEDER, via the project FCT PEst-OE/EEI/LA0008/2011, the postdoc grant SFRH/BPD/76513/2011, and the PQDR initiative of SQIG.

