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Abstract

If a modal logic L is finitely axiomatisable, then it is of course decidable whether a
finite frame is a frame for L: one just has to check the finitely many axioms in it. If L
is not finitely axiomatisable, then this might not be the case. For example, it is shown
in [7] that the finite frame problem is undecidable for every L between the product
logics K ×K ×K and S5 × S5 × S5. Here we show that the finite frame problem
for the modal product logic K4.3× S5 is decidable. K4.3× S5 is outside the scope
of both the finite axiomatisation results of [4], and the non-finite axiomatisability
results of [11]. So it is not known whether K4.3× S5 is finitely axiomatisable. Here
we also discuss whether our results bring us any closer to either proving non-finite
axiomatisability of K4.3×S5, or finding an explicit, possibly infinite, axiomatisation
of it.

Keywords: products of modal logics, finite frame problem, axiomatisation

1 Introduction and results

The product construction as a combination method for modal logics was intro-
duced in [13,14,4], and has been extensively studied ever since. Modal products
are connected to several other multi-dimensional logical formalisms, see [3,9]
for surveys and references. Here we consider only two-dimensional products,
but the definitions can be generalised to higher dimensions. In what follows
we assume that the reader is familiar with basic notions of propositional multi-
modal logic and its possible world (or relational) semantics, and we use these

1 Sérgio Marcelino was partially supported by FCT and EU FEDER, via the project FCT
PEst-OE/EEI/LA0008/2011, the postdoc grant SFRH/BPD/76513/2011, and the PQDR
initiative of SQIG.
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without explicit references. For concepts and statements not defined or proved
here, consult, for example, [1,2].

Given two Kripke frames F0 = 〈W0, R0〉 and F1 = 〈W1, R1〉, their product
is defined to be the 2-frame

F0 × F1 = 〈W0 ×W1, R̄0, R̄1〉,

where W0×W1 is the Cartesian product of W0 and W1 and, for all x, x′ ∈W0,
y, y′ ∈W1,

〈x, y〉R̄0〈x′, y′〉 iff xR0x
′ and y = y′,

〈x, y〉R̄1〈x′, y′〉 iff yR1y
′ and x = x′.

Frames of this form will be called product frames throughout. Now let L0

and L1 be Kripke complete modal logics in the languages with 20 and 21,
respectively. Their product L0 × L1 is then the set of all bimodal formulas,
in the language having both 20 and 21, that are valid in all product frames
F0×F1, where F0 is a frame for L0, and F1 is a frame for L1. (Here we assume
that 20 is interpreted by R̄0, while 21 is interpreted by R̄1.) Note that L0×L1

always contains the fusion L0⊕L1 of L0 and L1: the smallest normal bimodal
logic that contains L0 for 20 and L1 for 21. Therefore, any product frame
F0 × F1 for L0 × L1 is such that Fi is a frame for Li, for i = 0, 1.

A modal product logic L0×L1 is Kripke complete by definition: it is defined
as a set of formulas that are valid in some class C of frames. However, there
are frames for L0 × L1 that are not in C. So even if it is decidable whether a
finite 2-modal frame is in C or not, the finite frame problem for L0 ×L1 is not
necessarily decidable. If L0 × L1 is finitely axiomatisable, then it is of course
decidable whether a finite frame is a frame for L0×L1: one just has to check the
finitely many axioms in it. But if L0×L1 is not finitely axiomatisable, then this
might not be the case, even if the component logics L0 and L1 are both finitely
axiomatisable, and so the class of product frames for L0×L1 is decidable. We
do not know two-dimensional examples of this kind, but there are non-finitely
axiomatisable higher dimensional product logics with undecidable finite frame
problems (such as K×K×K and S5× S5× S5), see [7].

Below we summarise the known results on the axiomatisation problem for
two-dimensional product logics:

(1) If both unimodal logics L0 and L1 are such that their classes of Kripke
frames are definable by recursive sets of first-order sentences, then their product
L0 × L1 is a recursively enumerable bimodal logic [4].

(2) If both L0 and L1 are finitely axiomatisable by modal formulas having
universal Horn first-order correspondents, then L0×L1 is finitely axiomatisable
[4]. For example, if each Li is either K (the logic of all frames), or K4 (the
logic of all transitive frames), or S4 (the logic of all reflexive and transitive
frames), or S5 (the logic of all equivalence frames), then L0 × L1 is finitely
axiomatisable.

(3) The result in (2) cannot be generalised to products of logics axiomatised
by formulas having universal (but not necessarily Horn) first-order components.
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A counterexample is the finitely axiomatisable modal logic K4.3, determined
by the frames 〈W,R〉, where R is transitive and weakly connected :

∀x, y, z ∈W
(
xRy ∧ xRz → (y = z ∨ yRz ∨ zRy)

)
.

(A rooted transitive and weakly connected relation is a linearly ordered se-
quence of clusters.) As shown in [11], there are product logics with a ‘lin-
ear’ first component that are not axiomatisable finitely: For example, if L0

is any of the logics K4.3, S4.3, Logic of{〈ω,≤〉}, and L1 is any of the logics
K, K4, S4, GL, Grz, then L0 ×L1 is not axiomatisable using finitely many
propositional variables.

However, there are recursively enumerable product logics that are outside
the scope of both (2) and (3) above, so it is not known whether they are finitely
axiomatisable or not. A notable example is K4.3×S5. In this paper we show
the following:

Theorem 1.1 It is decidable whether a finite 2-frame is a frame for K4.3×S5.

It is clearly enough to decide the frame problem for finite rooted 2-frames.
As both being transitive and weakly connected, and being an equivalence rela-
tion are first-order definable, the respective classes of all frames for K4.3 and
S5 are closed under ultraproducts. As K4.3 and S5 are modal logics, their
classes of frames are also closed under point-generated subframes. So, by [10,
Thm.2.10], we obtain that, for every finite rooted 2-frame F, F is a frame for
K4.3× S5 iff F is a p-morphic image of a product frame for K4.3× S5. So it
is enough to show the following:

Theorem 1.2 It is decidable whether a finite rooted 2-frame is a p-morphic
image of a product frame for K4.3× S5.

Note that if every finite frame for K4.3×S5 were the p-morphic image of a
finite product frame for K4.3× S5, then we could enumerate finite frames for
K4.3×S5. As K4.3×S5 is recursively enumerable, we can always enumerate
those finite frames that are not frames for K4.3 × S5. So this would provide
us with a decision algorithm for the finite frame problem. However, take, say,
the 2-frame F = 〈W,≤,W ×W 〉, where W = {x, y} and x ≤ x ≤ y ≤ y. Then
it is easy to see that F is a p-morphic image of 〈ω,≤〉 × 〈ω, ω × ω〉, but there
is no finite product frame G for K4.3 × S5 such that F is a p-morphic image
of G.

To explain our decision algorithm, now we have a closer look at some prop-
erties of 2-frames for K4.3 ⊕ S5, that is, where the first relation is transitive
and weakly connected, and the second relation is an equivalence. To emphasise
these facts, the transitive and weakly connected relations in our 2-frames will
always be denoted by ≤, and the equivalence relations by ∼. This will not
necessarily mean that ≤ is reflexive: there might be ‘reflexive’ points in our
frames with x ≤ x, and some other ‘irreflexive’ ones with y 6≤ y. (This is a
slight abuse of notation, as we will also denote by ≤ the usual — reflexive and
antisymmetric — linear order on the natural numbers.) So from now on, let
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F = 〈W,≤,∼〉 be a 2-frame for K4.3⊕S5. We will use the following notation:

Cx = {x′ : x ≤ x′ and x′ ≤ x},
x < y iff x ≤ y and y 6≤ x,
x� y iff x < y and ∀x′ (x ≤ x′ < y → x′ ∈ Cx),

[x, y] = {u : x ≤ u ≤ y}, [x, y) = {u : x ≤ u < y},
(x, y] = {u : x < u ≤ y}, (x, y) = {u : x < u < y}.

Observe that if x is irreflexive, then Cx is not the ‘≤-cluster’ of x in the usual
sense, but Cx = ∅. Also, the above ‘intervals’ are not the usual ones either, as
x /∈ [x, y] or x /∈ [x, y) for irreflexive x. For any X ⊆W , we let

minX = {x ∈ X : there is no x′ ∈ X with x′ < x}, and

maxX = {x ∈ X : there is no x′ ∈ X with x < x′}.

Note that minX and maxX are nonempty, whenever X is finite and nonempty.
For any n > 0 and X,Y ⊆W , we let

X
n
;Y iff ∀x1, . . . , xn ∈ X

(
x1 ≤ · · · ≤ xn →

∃ y1, . . . , yn ∈ Y (y1 ≤ · · · ≤ yn ∧
∧

1≤i≤n

xi ∼ yi)
)
.

For n = 1, we omit the superscript and write X;Y :

X;Y iff ∀x ∈ X ∃y ∈ Y x ∼ y.

If X = {x} then we write x;Y instead of {x};Y . Clearly, as ∼ is transitive,
; is a transitive relation on the subsets of W : if X;Y and Y ;Z, then
X;Z. Note that if x 6≤ x then Cx = ∅, and so Cx ;Y always holds. Observe

that X;Y does not always follow from X
2
;Y , as there might exist some

x ∈ X with neither x ≤ x′ nor x′ ≤ x, for any x′ ∈ X.
Next, we introduce some important properties of our 2-frames, expressed in

the first-order frame-correspondence language having binary predicate symbols
≤ and ∼. First of all, let

sq(x, y, z, w) iff x ∼ y ≤ z ∧ x ≤ w ∼ z.

When sq(x, y, z, w) holds, we visualise this fact with the picture

q q-
-q q

x

y

w

z

≤

≤

∼ ∼

The locations of x, y, z, w in this picture motivate the notation for the remaining
first-order properties of our frames (l = left, r = right, u = up, d = down):

ψu(x, y, z, w) : sq(x, y, z, w) ∧ [y, z);[x,w]

ψd(x, y, z, w) : sq(x, y, z, w) ∧ [x,w);[y, z]

ψb(x, y, z, w) : ψu(x, y, z, w) ∧ ψd(x, y, z, w)
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ψu2(x, y, z, w) : sq(x, y, z, w) ∧ [y, z)
2
;[x,w]

ψd2(x, y, z, w) : sq(x, y, z, w) ∧ [x,w)
2
;[y, z]

ψ(u,d2)(x, y, z, w) : sq(x, y, z, w)∧
∀a
(
a ∈ [y, z)→ ∃b (b ∈ [x,w] ∧ ψd2(b, a, z, w))

)
Φl : ∀x, y, z

(
x ∼ y ≤ z → ∃wψb(x, y, z, w)

)
Φ+

r : ∀x,w, z
(
x ≤ w ∼ z → ∃y

(
ψu2(x, y, z, w)∧

ψd2(x, y, z, w) ∧ ψ(u,d2)(x, y, z, w)
))

Φ : Φl ∧ Φ+
r

Observe that ψu(x, y, z, w) follows from ψ(u,d2)(x, y, z, w).
Now we are in a position to formulate our main result:

Theorem 1.3 For every finite rooted 2-frame F = 〈W,≤,∼〉 for K4.3 ⊕ S5,
F is a p-morphic image of a product frame for K4.3× S5 iff Φ holds in F.

The formula Φ is quite complex (Π3). Figure 1 shows that we cannot hope
for a much simpler one: F is a frame for S4.3 ⊕ S5, where Φ+

r fails (see the
indicated x,w, z), but Φl,

∀x,w, z
(
x ≤ w ∼ z → ∃y

(
ψu2(x, y, z, w) ∧ ψd2(x, y, z, w)

))
, and

∀x,w, z
(
x ≤ w ∼ z → ∃y

(
ψu2(x, y, z, w) ∧ ψ(u,d2)(x, y, z, w)

))
all hold (the arrows and ellipses represent the reflexive, transitive and weakly
connected ≤, and the triangles and circles the ∼-equivalence classes).

j
j
j

��

��

��

AA

AA

AA ��AA
j
j

��AA

j
j
��

��

AA

AA- - -

- -

�
��

-

x w

z

Fig. 1. A frame F showing that something like Φ is needed.

The paper is organised as follows. The main steps of the proof of Theo-
rem 1.3 are discussed in Section 2. The more technical claims and lemmas are
proved in Section 3. Finally, in Section 4 we discuss some related open prob-
lems, possible extensions of our results, and also whether they bring us any
closer to either proving non-finite axiomatisability of K4.3×S5, or finding an
explicit, possibly infinite, axiomatisation of it.



416 Finite Frames for K4.3×S5 Are Decidable

2 P-morphic images of product frames for K4.3× S5

We begin with a general observation about p-morphic images of transitive and
weakly connected frames.

Claim 2.1 Let f be a p-morphism from some transitive and weakly connected
frame F0 = 〈W0,≤0〉 onto a frame F1 = 〈W1,≤1〉. For all a, b ∈ W0,
x1, . . . , xn ∈ W1, if a ≤0 b and f(a) ≤1 x1 ≤1 · · · ≤1 xn <1 f(b), then
there exist c1, . . . , cn ∈W0 such that a ≤0 c1 ≤0 · · · ≤0 cn <0 b and f(ci) = xi,
for i = 1, . . . , n.

Proof. Take some a, b ∈ W0, x1, . . . , xn ∈ W1 such that a ≤0 b and f(a) ≤1

x1 ≤1 · · · ≤1 xn <1 f(b). By the backward condition on f , there exists
c1, . . . , cn ∈W0 such that a ≤0 c1 ≤0 · · · ≤0 cn and f(ci) = xi, for i = 1, . . . , n.
As ≤0 is transitive, we have a ≤0 cn. As ≤0 is weakly connected, we have
either cn = b, or b ≤0 cn, or cn ≤0 b. But f(cn) = xn <1 f(b), so the first two
cases cannot hold. Therefore, cn <0 b follows. 2

It is straightforward to check that Φ holds in every product frame for
K4.3× S5. And, using Claim 2.1, it is not hard to check either that Φ is
preserved under taking p-morphic images of frames for K4.3⊕S5. So we have:

Proposition 2.2 If F is a p-morphic image of a product frame for K4.3×S5,
then Φ holds in F.

We have to work a bit more to prove the other direction of Theorem 1.3.
Given a rooted 2-frame F = 〈W,≤,∼〉 for K4.3 ⊕ S5, we will define a
‘p-morphism game’ between two players ∀ (male) and ∃ (female) over F. In
this game, ∃ constructs step-by-step, (special) homomorphisms from larger and
larger K4.3 × S5-product frames to F, and ∀ tries to challenge her by point-
ing out possible ‘defects’: reasons why her current homomorphism is not an
onto p-morphism yet. Versions of such games are used for building complete
representations in algebraic logic [5,6], and in connection with axiomatisation
problems of multi-dimensional modal logics [3,8].

We will then show that if Φ holds in a finite rooted frame F for K4.3⊕S5,
then ∃ has a winning strategy in the ω-step game over F. Before defining the
rules of the game, let us introduce some notions we will use throughout. Given
a rooted 2-frame F = 〈W,≤,∼〉 for K4.3 ⊕ S5 and 0 < m,n < ω, we call an
n×m matrix

〈xij ∈W : i < m, j < n〉

a perfect grid, if either m = 1 and x0i ∼ x0j for all i, j < n, or m > 1 and the
following hold:

(pg1) xij ∼ xik, for all i < m, j, k < n,

(pg2) either xij � xi+1
j or xij ∈ Cxi+1

j
, for all i < m− 1, j < n,

(pg3) for all i < m − 1, j < n, if xij � xi+1
j then for all k < n, either

Cxi
j
;Cxi

k
or Cxi

j
;Cxi+1

k
.
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(See Figure 2 for an example, where the arrows and ellipses represent ≤, and
the triangles and circles the ∼-equivalence classes.)

����
����

�
�

�
�

A
A

A
A

����
����

�
�

�
�

A
A

A
A

x01 x11 x21 x31

x00 x10 x20 x30

- -

- -

Fig. 2. A perfect grid 〈xi
j : i < 4, j < 2〉.

Observe that if 〈xij : i < m, j < n〉 is a perfect grid, then for all k < ` ≤ m,

〈xij : k ≤ i ≤ `, j < n〉 is a perfect grid as well. If m = 2 then we call the

2n-tuple 〈x00, . . . , x0n−1, x10, . . . , x1n−1〉 a perfect atomic grid. Clearly, if m > 1

and 〈xij : i < m, j < n〉 is a perfect grid, then 〈xi0, . . . , xin−1, xi+1
0 , . . . , xi+1

n−1〉 is
a perfect atomic grid, for each i < m− 1.

Given an n × m matrix x̄ = 〈xij : i < m, j < n〉 and an n × k matrix

ȳ = 〈yij : i < k, j < n〉 such that xm−1j = y0j , for all j < n, their union x̄ t ȳ is

the n× (m+ k − 1) matrix 〈zij : i < m+ k − 1, j < n〉, defined by taking, for
all j < n,

zij =

{
xij , if i < m,

yi−m+1
j , if m− 1 ≤ i < m+ k − 1.

It is easy to see the following claim:

Claim 2.3 If x̄ = 〈xij : i < m, j < n〉 and ȳ = 〈yij : i < k, j < n〉 are perfect

grids such that xm−1j = y0j , for all j < n, then x̄ t ȳ is a perfect grid as well.

Given a rooted 2-frame F = 〈W,≤,∼〉 for K4.3⊕S5, we define an F-network
to be a tuple N = 〈UN , <N , V N , fN 〉 such that the following hold:

• UN = {u0, . . . , um} for some m < ω,

• <N is an irreflexive linear order on UN with u0 <
N · · · <N um,

• V N = {v0, . . . , vn} for some n < ω,

• fN is a function from UN × V N to W such that 〈fN (ui, vj) : i ≤ m, j ≤ n〉
is a perfect grid.

It is not hard to see, using (pg1) and (pg2), that if N is an F-network, then fN

is a homomorphism from the product frame 〈UN , <N 〉 × 〈V N , V N × V N 〉 to F.
Now we define a game Gω(F) between ∀ and ∃. They build a countable

sequence of F-networks N0 ⊆ N1 ⊆ · · · ⊆ Nk ⊆ . . . . (Here Nk ⊆ Nk+1 means
that UNk ⊆ UNk+1 , <Nk⊆<Nk+1 , V Nk ⊆ V Nk+1 , and fNk ⊆ fNk+1 .) In
round 0, ∀ picks a root r of F, and ∃ responds with UN0 = {u0}, <N0= ∅,
V N0 = {v0}, and fN0(u0, v0) = r.
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In round k (0 < k < ω), some sequence N0 ⊆ · · · ⊆ Nk−1 of F-networks has
already been built. ∀ picks

• a pair 〈u, v〉 ∈ UNk−1 × V Nk−1 , and

• a point w ∈W such that either (a) fNk−1(u, v) ≤ w, or (b) fNk−1(u, v) ∼ w.

In case (a), ∃ can respond in two ways. If there is some u′ ∈ UNk−1 with
u <Nk−1 u′ and fNk−1(u′, v) = w, then she responds with Nk = Nk−1. Other-
wise, she responds (if she can) with some F-network Nk ⊇ Nk−1 such that

• UNk−1 ∪ {u+} ⊆ UNk and fNk(u+, v) = w, for some fresh point u+, and

• V Nk = V Nk−1 .

In case (b), again ∃ can respond in two ways. If there is some v′ ∈ V Nk−1 with
fNk−1(u, v′) = w, then she responds with Nk = Nk−1. Otherwise, she responds
(if she can) with some F-network Nk ⊇ Nk−1 such that

• V Nk = V Nk−1 ∪ {v+} and fNk(u, v+) = w, for some fresh point v+.

If ∃ can respond in each round k for k < ω then she wins the play. We say
that ∃ has a winning strategy in Gω(F) if she can win all plays, whatever moves
∀ takes in the rounds.

Proposition 2.4 Let F be a countable rooted 2-frame for K4.3⊕S5. If ∃ has
a winning strategy in Gω(F), then F is a p-morphic image of a product frame
for K4.3× S5.

Proof. Consider a play of the game Gω(F) when ∀ eventually picks all possible
pairs and corresponding ≤- or ∼-connected points in F (since F is countable, he
can do this). If ∃ uses her strategy, then she succeeds to construct a countable
ascending chain of F-networks whose union gives a p-morphism from some
K4.3× S5-product frame onto F. 2

Proposition 2.5 Let F be a finite rooted 2-frame for K4.3⊕ S5 such that Φ
holds in F. Then ∃ has a winning strategy in Gω(F).

Proof. We prove that, for all k < ω, ∃ can survive round k in every play,
no matter what moves ∀ takes in the rounds. We prove this by induction
on k. For k = 0 this is obvious. So assume inductively that some sequence
N0 ⊆ · · · ⊆ Nk−1 of F-networks has already been built, for some 0 < k < ω.
Suppose that UNk−1 = {u0, . . . , um} such that u0 <

Nk−1 · · · <Nk−1 um, and
V Nk−1 = {v0, . . . , vn}. Next, ∀ picks some 〈u, v〉 ∈ UNk−1×V Nk−1 and w ∈W .
There are several cases, depending on how fNk−1(u, v) and w are related. In
each case we show how ∃ can respond with an Nk satisfying the requirements.
We omit those cases where ∃’s response is fully determined by the rules of the
game.

Case (a).1. fNk−1(u, v) ≤ w, for all u′ ∈ UNk−1 , if u <Nk−1 u′ then

fNk−1(u′, v) 6= w, but there exists u∗ ∈ UNk−1 such that u <Nk−1 u∗ and
fNk−1(u∗, v) 6≤ w.

By the IH, fNk−1 is a homomorphism, and so fNk−1(u, v) ≤ fNk−1(u∗, v)
follows. Thus, by weak connectedness of ≤, we have w < fNk−1(u∗, v). There-
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fore, as UNk−1 is finite, there are <Nk−1-successor points u′, u′′ ∈ UNk−1 such
that

fNk−1(u′, v) ≤ w < fNk−1(u′′, v). (1)

To simplify notation, we let xi = fNk−1(u′, vi), yi = fNk−1(u′′, vi), for all i ≤ n.
By the IH, we have that

〈x0, . . . , xn, y0, . . . , yn〉 is a perfect atomic grid. (2)

We may assume that v = v0, and so we have x0 � y0 by (1) and (2). Therefore,
by (pg3), for each i ≤ n, we have either Cx0

;Cxi
or Cx0

;Cyi
. We now

define wi, for each i ≤ n (see Figure 3). Let w0 = w, so by (1) and (2), we
have w0 ∈ Cx0

. For every 0 < i ≤ n,

• if Cx0
;Cxi

, then we choose some wi ∈ Cxi
with w0 ∼ wi, and

• if Cx0 6;Cxi , then Cx0 ;Cyi and we choose some wi ∈ Cyi with w0 ∼ wi.

q q q b q q qq
q
q
q r r r r r r
r r r r r r
r r r r r r
r r r r r rd
d
d

- - - - - -
- - - - - -

- - - - - -

- - - - - -

- - - - - -

u′ u+u′ u′′ um

x0 ≤ w < y0∗

xi wi

yi
?

vn

vi

v0

Fig. 3. Case (a).1 of the p-morphism game.

Claim 2.5.1

(i) 〈x0, . . . , xn, w0, . . . , wn〉 is a perfect atomic grid.

(ii) 〈w0, . . . , wn, y0, . . . , yn〉 is a perfect atomic grid.

Proof. Let us prove (pg3) first. (i): Let i ≤ n be such that xi � wi. Then
wi /∈ Cxi

, so by the definition of wi, we have

Cx0 6;Cxi , (3)

wi ∈ Cyi
, and so

xi � yi. (4)

Take some j < n. There are two cases:

• wj ∈ Cyj
. Then, by (4) and (2), either Cxi

;Cxj
or Cxi

;Cyj
= Cwj

.

• wj /∈ Cyj
. Then Cx0

;Cxj
by the definition of wj . Therefore, Cxj

6;Cxi

follows by (3), and so Cxi
;Cxj

by Claim 3.1.
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(ii): Let i ≤ n be such that wi � yi. Then wi /∈ Cyi , so

Cx0 ;Cxi , (5)

wi ∈ Cxi
, (6)

and so (4) holds. Take some j < n. There are two cases:

• wj ∈ Cxj
. Then by (6), (4) and (2), either Cwi

= Cxi
;Cxj

= Cwj
or

Cwi
= Cxi

;Cyj
.

• wj /∈ Cxj
. Then Cx0

6;Cxj
by the definition of wj . Therefore, Cxi

6;Cxj

follows by (5), and so we have Cwi
= Cxi

;Cyj
by (6), (4) and (2).

As (pg1) and (pg2) clearly hold in both cases, the proof of Claim 2.5.1 is
completed. 2

Now take a fresh point u+. Let UNk = UNk−1 ∪ {u+}, let <Nk⊇<Nk−1

be such that u′ <Nk u+ <Nk u′′, and let fNk(u+, vi) = wi, for i < n. By
Claim 2.5.1, the obtained Nk is an F-network extending Nk−1 as required.

Case (a).2. fNk−1(u, v) ≤ w, and for all u′ ∈ UNk−1 , if u <Nk−1 u′ then

fNk−1(u′, v) ≤ w and fNk−1(u′, v) 6= w.

q q q q q b bq
q
q
q r r r r r d

d dr r r r r
d dr r r r r
d dr r r r r

- - - - - -
- - - - - -

- - - - - -

- - - - - -

- - - - - -

um u+

Nk−1︷ ︸︸ ︷
∗w

?
Lemma 3.7

vn

v0 - -

Fig. 4. Case (a).2 of the p-morphism game.

Then fNk−1(um, v) ≤ w. We may assume that v = v0 (see Figure 4).
By the IH, we have fNk−1(um, vi) ∼ fNk−1(um, vj), for all i, j ≤ n. So, by
Lemma 3.7, there exists t > 0 and a perfect grid z̄ = 〈z`j : ` ≤ t, j ≤ n 〉 such

that z0j = fNk−1(um, vj), for j ≤ n, and zt0 = w. By the IH, f̄ = 〈fNk−1(ui, vj) :

i ≤ m, j ≤ n〉 is a perfect grid, and so by Claim 2.3, f̄ t z̄ is a perfect grid as
well. Therefore, if we define

• UNk = UNk−1 ∪ {u+` : 0 < ` ≤ t}, u+ = u+t ,

• fNk(u+` , vj) = z`j , for 0 < ` ≤ t, j ≤ n,

then we obtain an F-network Nk extending Nk−1 as required.

Case (b). fNk−1(u, v) ∼ w, and w 6= fNk−1(u, v′) for all v′ ∈ V Nk−1 .

Suppose u = up for some p ≤ m (see Figure 5). By the IH, 〈fNk−1(ui, vj) :
i ≤ p, j ≤ n〉 is a perfect grid, and w ∼ fNk−1(up, v) ∼ fNk−1(up, vn). So by
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︷ ︸︸ ︷? Lemma 3.12 ︷ ︸︸ ︷? Lemma 3.6

vn

v0

v+

Fig. 5. Case (b) of the p-morphism game.

Lemma 3.12, there exist si < ω (i ≤ p) and a perfect grid z̄ = 〈z`j : ` ≤ sp, j ≤
n + 1〉 such that 0 = s0 < s1 < · · · < sp, z

sp
n+1 = w, and zsij = fNk−1(ui, vj),

for i ≤ p, j ≤ n.
By the IH, 〈fNk−1(up+i, vj) : i ≤ m− p, j ≤ n〉 is a perfect grid as well. As

we have w ∼ fNk−1(up, v) ∼ fNk−1(up, vn), by Lemma 3.6 there exist ti < ω
(i ≤ m − p) and a perfect grid ȳ = 〈ytj : t ≤ tm−p, j ≤ n + 1〉 such that

0 = t0 < t1 < · · · < tm−p, y0n+1 = w, and ytij = fNk−1(up+i, vj), for i ≤ m− p,
j ≤ n.

By Claim 2.3, z̄ t ȳ = 〈x`j : ` ≤ sp + tm−p − 1, j ≤ n+ 1〉 is a perfect grid,
and therefore by defining

• UNk = UNk−1 ∪{u+` : ` < sp + tm−p−1, ` 6= si, sp + tj for i ≤ p, j ≤ m− p},
• V Nk = V Nk−1 ∪ {v+},
• fNk(u+` , vj) = x`j , for u+` ∈ UNk , j ≤ n, and

• fNk(up, v
+) = w, fNk(u+` , v

+) = x`n+1, for u+` ∈ UNk ,

we obtain an F-network Nk extending Nk−1 as required. This completes the
proof of Proposition 2.5. 2

3 How Φ helps ∃ to have a winning strategy in Gω(F)

In this section we state and prove the claims and lemmas that are used in
the proof of Proposition 2.5. The material is divided into two subsections. In
Section 3.1 we discuss those statements that describe plays of the game played
‘on the left’, that is, when ∃ makes use of the the fact that the finite frame F
validates Φl. Then in Section 3.2 we describe those plays of the game that are
played ‘on the right’, that is, when ∃ also needs to use the conjunct Φ+

r of Φ.
Throughout, F = 〈W,≤,∼〉 is a finite rooted 2-frame for K4.3 ⊕ S5. We

begin with two claims that are very important throughout:

Claim 3.1 Suppose that Φl holds in F, and let x, y ∈ W be such that x ∼ y.
Then, either Cx ;Cy or Cy ;Cx.
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Proof. Suppose that Cx 6;Cy, that is, there is some a ∈ Cx with a 6;Cy.
Then y ∼ x ≤ a, and so by Φl, there is some b such that ψd(y, x, a, b) holds.
Therefore, y ≤ b and a ∼ b, so b /∈ Cy, and so y < b. Thus, Cy ⊆ [y, b), and so
Cy ;[x, a] = Cx follows by ψd(y, x, a, b). 2

As ; is a transitive relation on the subsets of W , we obtain the following:

Claim 3.2 Suppose that Φl holds in F, let ∅ 6= X ⊆ W be finite such that
x ∼ y for all x, y ∈ X, and let C = {Cx : x ∈ X}. Then 〈C,;〉 is a finite
linearly ordered chain of ‘;-clusters’. In particular,

(i) there is xi ∈ X such that Cxi
is ;-initial in C: Cxi

;C for all C ∈ C;
(ii) there is xf ∈ X such that Cxf

is ;-final in C: C;Cxf
for all C ∈ C.

3.1 Playing on the left

We start with formulating and proving a general structural property of finite
frames validating Φl (Lemma 3.3). Then in Lemma 3.4 we show that this
structural property can be generalised to extensions of perfect atomic grids.
This property is then used in Lemma 3.5 to help ∃ maintaining a perfect grid,
whenever ∀ challenges to extend a perfect atomic grid with a ‘≤-move’ (see
Case (a).2 in the proof of Prop. 2.5). Then Lemma 3.5 is used as the base
case in the inductive proof of Lemma 3.6. Finally, Lemma 3.6 is used in the
inductive proof of Lemma 3.7. This last lemma states that any perfect grid
can be extended by ∃, whenever ∀ plays a ‘≤-move’ of the above kind.

Given x, y, z, w, a ∈W , we write left(x, y, z, w, a) if the following hold:

(le1) sq(x, y, z, w) and x ≤ a ≤ w,

(le2) Cy ;Ca,

(le3) [x, a);Cy,

(le4) either a ∈ Cw, or Ca ;Cy, or Ca ;Cz,

(le5) (a,w);Cz.

Lemma 3.3 Suppose that Φl holds in F. For all x, y, z ∈W , if x ∼ y ≤ y � z
then there exist w∗, a∗ such that left(x, y, z, w∗, a∗) holds.

Proof. By Φl, there exists w with ψb(x, y, z, w). If w ∈ Cx then let w∗ = a∗ =
w, and we clearly have left(x, y, z, w∗, a∗) as required.

So suppose that

there is no w ∈ Cx with ψb(x, y, z, w), (7)

and let
w+ ∈ max {w : x < w and ψb(x, y, z, w)} (8)

(as F is finite, there is such w+ by Φl and (7)). Now there are two cases: either
[x,w+);Cy, or [x,w+) 6;Cy.

Case 1. [x,w+);Cy.
As ψb(x, y, z, w

+) and y � z, we have Cy ;[x,w+]. As y ≤ y, there exists
a ∈ [x,w+] with a;Cy. Let

a∗ ∈ max {a ∈ [x,w+] : a;Cy} (9)
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(there is such a∗ as F is finite). We claim that

left(x, y, z, w+, a∗), (10)

and so w∗ = w+ will do. Indeed, we clearly have x ≤ a∗ ≤ w+, so we have
(le1) by (8). (le2): Let b∗ ∈ Cy be such that a∗ ∼ b∗. By Φl, there exists w′

with ψb(a
∗, b∗, z, w′).

r
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We claim that
ψb(x, y, z, w

′). (11)

Indeed, on the one hand, if b ∈ [y, z) then b ∈ [b∗, z), and so b;[a∗, w′] by
ψb(a

∗, b∗, z, w′). As x ≤ a∗, this implies b;[x,w′]. On the other hand, if
a ∈ [x,w′) then there are two cases:

• a ∈ [x, a∗). Then a ∈ [x,w+), and so a;[y, z] by (8).

• a = a∗ or a ∈ [a∗, w′). Then a;[b∗, z] = [y, z] by ψb(a
∗, b∗, z, w′).

So in both cases we have a;[y, z], and so (11) is proved.
Now (7) and (11) imply that x < w′. Therefore, by (11) and (8), we have

w+ 6< w′. As x ≤ w+ and x ≤ w′, by the weak connectedness of ≤ we have

either w′ = w+ or w′ ≤ w+. (12)

Now we can show (le2), that is, Cy ;Ca∗ . Take some b ∈ Cy. Then b ∈
[b∗, z), and so by ψb(a

∗, b∗, z, w′), we have b;[a∗, w′]. By (12), this implies
b;[a∗, w+], that is, b ∼ a for some a ∈ [a∗, w+]. Thus, a ∈ [x,w+] and
a;Cy, and so by (9), we have a∗ 6< a. As we also have a∗ ≤ a, this implies
a ∈ Ca∗ , as required in (le2).

(le3): As we are in the case when [x,w+);Cy, we also have [x, a∗);Cy

by a∗ ≤ w+, and so (le3) holds.
(le4) and (le5): If a∗ ∈ Cw+ then (le4) holds. If a∗ < w+, then take any

a ∈ [a∗, w+). As a ∈ [x,w+) and we are in the case when [x,w+);Cy, we have
a;Cy, proving Ca∗ ;Cy, and so (le4). Moreover, by (9), we also have a∗ 6< a,
and so a ∈ Ca∗ follows. Therefore, a∗ � w+, and so ∅ = (a∗, w+);Cz, as
required in (le5), completing the proof of (10).

Case 2. [x,w+) 6;Cy.
Then there is some r ∈ [x,w+) with r 6;Cy. Let

r∗ ∈ min {r ∈ [x,w+) : r 6;Cy} (13)

(there is such r∗ as F is finite). As ψb(x, y, z, w
+) by (8), we have

r∗;Cz. (14)
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Now let s∗ ∈ Cz be such that r∗ ∼ s∗. By Φl, there is w∗ with ψb(r
∗, s∗, z, w∗).

Thus, we have
[r∗, w∗);Cz. (15)

We also need to define a∗. To this end, we claim that

{a ∈ [x, r∗] : a;Cy} is not empty. (16)

Indeed, by Φl and y ≤ y, there is a such that ψb(x, y, y, a) holds. Thus, a ∼ y
and [x, a);Cy, and so a 6= r∗ and r∗ 6< a follow from (13). As x ≤ r∗ and
x ≤ a, the weak connectedness of ≤ implies that a ≤ r∗, proving (16). Now let

a∗ ∈ max {a ∈ [x, r∗] : a;Cy} (17)

(there is such a∗ by (16) and the finiteness of F). We claim that

left(x, y, z, w∗, a∗). (18)

Indeed, we have x ≤ a∗ ≤ r∗ ≤ w∗, so (le1) holds.
(le2): As a∗;Cy by (17), there is b∗ ∈ Cy be such that a∗ ∼ b∗. By Φl,

there is s with ψb(b
∗, a∗, r∗, s), and so b∗ ≤ s. As r∗ ∼ s and r∗ 6;Cy by (13),

we have s /∈ Cy = Cb∗ , and so b∗ < s follows. Now take any b ∈ Cy. Then
b ∈ [b∗, s), and so ψb(b

∗, a∗, r∗, s) implies that there is some a ∈ [a∗, r∗] with
a ∼ b. Therefore, a ∈ [x, r∗] and a;Cy, so a∗ 6< a by (17). But we also have
a∗ ≤ a, and so a ∈ Ca∗ follows, as required in (le2).
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(le3): As a∗ ≤ r∗ < w+ by (17), we have [x, a∗);Cy by (13).
For (le4) and (le5), first we claim that

either Ca∗ = Cr∗ or a∗ � r∗. (19)

Indeed, we have a∗ ≤ r∗ by (17). Suppose that Ca∗ 6= Cr∗ , and let a ∈ [a∗, r∗).
Then a ∈ [x,w+) and a < r∗, so a;Cy follows by (13). As a ∈ [x, r∗], we have
a∗ 6< a by (17). Therefore, a ∈ Ca∗ follows from a∗ ≤ a, as required in (19).

(le5): (a∗, w∗);Cz follows from (14), (15) and (19).
(le4): If a∗ ∈ Cw∗ , then (le4) holds. If a∗ < w∗, then by (19) there are two

cases:

• Ca∗ = Cr∗ . Then r∗ < w∗ and Ca∗ ⊆ [r∗, w∗). So Ca∗ ;Cz follows by (15).

• a∗ � r∗. Then Ca∗ ;Cy follows by (13).

So (le4) holds in both cases, completing the proof of (18). 2
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Lemma 3.4 Suppose that Φl holds in F, and let 〈x0, . . . , xn−1, y0, . . . , yn−1〉
be a perfect atomic grid for some n > 0. For all x ∈ W , if x ∼ x0 then there
exists y such that y ∼ y0 and one of the following (I) or (II) holds:

(I) Either y ∈ Cx and for all j < n, if xj � yj then Cxj
;Cx = Cy.

(II) Or x < y and:

(a) For all j < n, if xj ∈ Cyj or xj 6≤ xj, then [x, y);Cyj .

(b) For all j < n, if xj ≤ xj � yj, then there is aj with left(x, xj , yj , y, aj),
that is,

sq(x, xj , yj , y) and x ≤ aj ≤ y, (20)

Cxj
;Caj

, (21)

[x, aj);Cxj
, (22)

either aj ∈ Cy, or Caj ;Cxj , or Caj ;Cyj , (23)

(aj , y);Cyj
. (24)

Proof. There are two cases:

Case 1. For all j < n, either xj ∈ Cyj or xj 6≤ xj .
By (pg1) and Claim 3.2, there is i < n such that

Cyi
is ;-initial in {Cyj

: j < n}. (25)

By Φl, there is some y such that

ψb(x, xi, yi, y). (26)

There are two cases, either y ∈ Cx, or x < y:

• y ∈ Cx. As for all j < n with xj � yj , we have xj 6≤ xj , it follows that
∅ = Cxj

;Cx = Cy, as required in (I).

• x < y. Then [x, y);[xi, yi] by (26). As either xi ∈ Cyi or xi 6≤ xi, we
have [xi, yi] = Cyi

by (pg2). Therefore, by (25) and the transitivity of ;, it
follows that [x, y);Cyj

, for all j < n, as required in (II).

Case 2. There is some j < n such that xj ≤ xj � yj .

By (pg1) and Claim 3.2, there exists some f < n such that Cxf
is ;-final in

{Cxj
: j < n, xj ≤ xj � yj}. Also, there is i < n such that Cyi

is ;-initial in
{Cyj

: j < n, xj ≤ xj � yj , and Cxf
;Cxj

}. Observe that then

Cyi
is ;-initial in {Cyj

: j < n, xj ≤ xj � yj , and Cxi
;Cxj

}, and (27)

Cxi is ;-final in {Cxj : j < n, xj ≤ xj � yj}. (28)

Now, by Lemma 3.3, there exist y∗, a∗ such that

left(x, xi, yi, y
∗, a∗). (29)
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There are two cases, either y∗ ∈ Cx, or x < y∗. If y∗ ∈ Cx, then we let
y = y∗, and claim that (I) holds. Indeed, by (29) we have a∗ ∈ Cx, and so
Cxi

;Ca∗ = Cx = Cy, again by (29). Thus by (28), Cxj
;Cx = Cy for all

j < n with xj ≤ xj � yj . Also, if j < n is such that xj 6≤ xj , then Cxj
= ∅,

and so Cxj ;Cx = Cy, as required in (I).
So suppose that x < y∗. We will define some y, and show that

sq(x, xi, yi, y) and x ≤ a∗ ≤ y, and (30)

(a∗, y);Cyj , for all j < n. (31)

Then
left(x, xi, yi, y, a

∗) (32)

will follow from (29), as the other conjuncts in left(x, xi, yi, y, a
∗) do not depend

on y, but only on a∗. (Observe that (31) is more than what is required in
left(x, xi, yi, y, a

∗): it is for all j < n, not just for i.)
To this end, we consider three cases:

• yi ;Ca∗ . Then we choose some y ∈ Ca∗ such that yi ∼ y, and so (30)–(31)
clearly hold.

• yi 6;Ca∗ and (a∗, y∗);Cyj
, for all j < n. Then we let y = y∗, and (30)–(31)

clearly hold.

• yi 6;Ca∗ and (a∗, y∗) 6;Cyj
, for some j < n. Then let

u∗ ∈ min {u ∈ (a∗, y∗) : u 6;Cyj
for some j < n} (33)

(there is such u∗ as F is finite), and let j∗ < n be such that u∗ 6;Cyj∗ . As
(a∗, y∗);Cyi follows from (29), we then have Cyi 6;Cyj∗ . Therefore, by
(27), we have Cxi

6;Cxj∗ , and so Cxi
;Cyj∗ follows by xi � yi and (pg3).

We also have Cxi
;Ca∗ by (29). Therefore, there are r ∈ Cyj∗ and s ∈ Ca∗

such that r ∼ s. By Φl, there is v∗ such that ψb(r, s, u
∗, v∗) holds. As

u∗ 6;Cyj∗ by (33), we have yj∗ < v∗. So by ψb(r, s, u
∗, v∗), there is some

y ∈ [s, u∗] such that y ∼ yj∗ . Now, as s ∈ Ca∗ , we have x ≤ a∗ ≤ s ≤ y, and
so (30) follows from (pg1). Also, as y ≤ u∗ < y∗, we have (31) by (33).
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So we proved that y satisfies (30)–(32) in all three cases. Note that y is defined
such that

if yi ;Ca∗ then y ∈ Ca∗ . (34)

Next, we show that (30)–(32) imply that (II) holds for y. The following
claim will be used several times:
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Claim 3.4.1 If a∗ < y and j < n is such that Cxi ;Cyj , then Ca∗ ;Cyj .

Proof. By (32), we have Cxi
;Ca∗ . If Cxi

;Cyj
, there exist u ∈ Ca∗ , v ∈ Cyj

with u ∼ v. So by Claim 3.1, we have either Ca∗ ;Cyj
or Cyj

;Ca∗ . If
Cyj ;Ca∗ were the case, then we would have yj ;Ca∗ , and so yi ;Ca∗ would
follow by (pg1). By (34), we would have y ∈ Ca∗ , contradicting a∗ < y.
Therefore, we have Ca∗ ;Cyj

. 2

Proof of (II)(a): Let j < n be such that xj ∈ Cyj
or xj 6≤ xj .

By xi � yi and (pg3), we have

Cxi
;Cyj

. (35)

Now there are two cases: either a∗ ∈ Cy, or a∗ < y. In each case, we claim to
have [x, y);Cyj , as required in (II)(a). Indeed,

• a∗ ∈ Cy. Then [x, y) = [x, a∗), and we have [x, a∗);Cxi
by (32). So

[x, y);Cyj
follows by (35).

• a∗ < y. Then we have:
· [x, a∗);Cxi

by (32), and so [x, a∗);Cyj
by (35);

· Ca∗ ;Cyj by (35) and Claim 3.4.1;
· (a∗, y);Cyj by (31).

Proof of (II)(b): Let j < n be such that xj ≤ xj � yj .
There are two cases, either [x, a∗);Cxj

, or [x, a∗) 6;Cxj
. In both cases, first

we define aj and then show that (20)–(24) (that is, left(x, xj , yj , y, aj)) hold.

• [x, a∗);Cxj
. Then we let aj = a∗, and we clearly have (20) and (22). By

(28), we have Cxj
;Cxi

, and by (32), we have Cxi
;Caj

. So Cxj
;Caj

follows, proving (21). We have (24) by (31). Finally, let us prove (23), that
is, either aj ∈ Cy, or Caj ;Cxj or Caj ;Cyj : Suppose that aj = a∗ < y.
By (32), there are two cases: either Ca∗ ;Cxi or Ca∗ ;Cyi .
· Ca∗ ;Cxi

. Then, by xi � yi and (pg3), we have either Cxi
;Cxj

or
Cxi

;Cyj
, so (23) follows.

· Ca∗ ;Cyi
. If Cxi

;Cxj
, then Cyi

;Cyj
follows by (27), and so we have

Ca∗ ;Cyj . If Cxi 6;Cxj , then by xi � yi and (pg3), we have Cxi ;Cyj .
So by Claim 3.4.1, we have Ca∗ ;Cyj , as required in (23).

• [x, a∗) 6;Cxj . By Lemma 3.3, there are aj , y
∗
j such that

left(x, xj , yj , y
∗
j , aj). (36)

We claim that left(x, xj , yj , aj) as well, that is, (20)–(24) hold. Indeed, by
(36), we have x ≤ aj and [x, aj);Cxj

. As x ≤ a∗ and [x, a∗) 6;Cxj
, by the

weak connectivity of ≤ it follows that

x ≤ aj < a∗ ≤ y, (37)

as required in (20). As (21) and (22) do not depend on y, they hold because
of (36). Next, by (32), we have [x, a∗);Cxi , and so Cxi 6;Cxj follows from
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[x, a∗) 6;Cxj . So by xi � yi and (pg3), we have

Cxi ;Cyj , (38)

and so

[x, a∗);Cyj
. (39)

For (23): We have Caj ;Cyj by (37) and (39). For (24): (37) and (39)
imply (aj , a

∗);Cyj
. So if a∗ ∈ Cy, then (aj , y);Cyj

follows. If a∗ < y,
then Ca∗ ;Cyj

follows by (38) and Claim 3.4.1. Also, we have (a∗, y);Cyj

by (31). Therefore, (aj , y);Cyj
holds, as required.

So we proved (II)(b), and the proof of Lemma 3.4 is completed. 2

Lemma 3.5 Suppose that Φl holds in F, and let 〈x0, . . . , xn−1, y0, . . . , yn−1〉
be a perfect atomic grid for some n > 0. For all x ∈ W , if x ∼ x0 then there
exist k > 0 and a perfect grid 〈z`j : ` ≤ k, j ≤ n〉 such that z0j = xj, zkj = yj,

for j < n, and z0n = x.

Proof. By Lemma 3.4, there is y such that either (I) or (II) of the lemma
holds. If (I) holds, that is, y ∈ Cx, then let k = 1, z0n = x, and z1n = y. Of
course, we let z0j = xj and z1j = yj , for j < n. It is straightforward to show

that 〈z00 , . . . , z0n, z10 , . . . , z1n〉 is a perfect atomic grid.
Suppose that (II) holds, that is x < y, and for all j < n with xj ≤ xj � yj ,

we have some aj as in (II)(b). Then let k > 0, and z0n, . . . z
k
n be such that

x = z0n � · · · � zkn = y (that is, we take a point from each ≤-cluster between
x and y). Of course, we let z0j = xj , z

k
j = yj , for all j < n. Next, we define a

number `j < k, for every j < n as follows:

• If xj ∈ Cyj
or xj 6≤ xj , then let `j = 0.

• If xj ≤ xj � yj , then there are several cases, depending on the location of
aj in [x, y]:
· If aj ∈ Cy, then let `j = k − 1.

· If aj < y and Caj
;Cxj

, then let `j be such that z
`j
n ∈ Caj

.
· If aj < y, Caj

6;Cxj
, and aj ∈ Cx, then let `j = 0.

· If aj < y, Caj
6;Cxj

, and x < aj , then let `j be such that z
`j+1
n ∈ Caj

.

The following claim is a straightforward consequence of (II)(a) and (22)–(24)
in (II)(b):

Claim 3.5.1
(ii) Either Cz0

n
;Cxi

, or (`j = 0 and Cz0
n
;Cyj

).

(ii) z`n ;Cxi and Cz`
n
;Cxi , for all ` with 0 < ` ≤ `j.

(iii) z`n ;Cyi
and Cz`

n
;Cyi

, for all ` with `j < ` < k.

We use Claim 3.5.1(ii) and (iii) to define z`j , for each 0 < ` < k and j < n:

• If 0 < ` ≤ `j , then choose z`j ∈ Cxj such that z`n ∼ z`j .
• If `j < ` < k, then choose z`j ∈ Cyj

such that z`n ∼ z`j .
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As a consequence of Claim 3.5.1, and (21), we obtain the following:

Claim 3.5.2 For all j < n,
(i) either Cz0

n
;Cz0

j
or Cz0

n
;Cz1

j
;

(ii) Cz`
n
;Cz`

j
, whenever 0 < ` < k;

(iii) if xj � yj then either C
z
`j
j

;C
z
`j
n

or C
z
`j
j

;C
z
`j+1
n

.

Now we claim that 〈z`j : ` ≤ k, j ≤ n〉 is a perfect grid as required. Indeed
(pg1) and (pg2) clearly hold. Let us prove that (pg3) holds as well, that is, for
all ` < k, i, j ≤ n,

if z`i � z`+1
i then either Cz`

i
;Cz`

j
or Cz`

i
;Cz`+1

j
. (40)

If i = j, this clearly holds. Otherwise, there are three cases:

• i = n, j < n. Then (40) holds by Claim 3.5.2(i) and (ii).

• i < n, j = n. If z`i � z`+1
i then ` = `i and (40) holds by Claim 3.5.2(iii).

• i, j < n. Again, if z`i � z`+1
i then ` = `i, and so either C

z
`i
i

;C
z
`i
n

or

C
z
`i
i

;C
z
`i+1
n

, by Claim 3.5.2(iii). Now either C
z
`i
i

;C
z
`i
j

or C
z
`i
i

;C
z
`i+1

j

follow by Claim 3.5.2(i) and (ii),

completing the proof of Lemma 3.5. 2

Lemma 3.6 Suppose that Φl holds in F, and let 〈xij : i ≤ m, j < n〉 be a

perfect grid, for some m,n < ω, n > 0. For all x ∈ W , if x ∼ x00 then
there exist ti < ω (i ≤ m) and a perfect grid 〈z`j : ` ≤ tm, j ≤ n〉 such that

0 = t0 < t1 < · · · < tm, ztij = xij, for i ≤ m, j < n, and z0n = x.

Proof. It is by induction on m. For m = 0 the statement is obvious. Suppose
the statement holds for some m < ω. Let 〈xij : i ≤ m + 1, j < n〉 be a

perfect grid, and let x ∈ W be such that x ∼ x00. Then 〈xij : i ≤ m, j < n〉 is
a perfect grid, and so by the IH, there exist ti < ω, for i ≤ m, and a perfect
grid z̄ = 〈z`j : ` ≤ tm, j ≤ n〉 such that 0 = t0 < t1 < · · · < tm, ztij = xij , for

i ≤ m, j < n, and z0n = x. We also have that 〈xm0 , . . . , xmn−1, xm+1
0 , . . . , xm+1

n−1 〉
is a perfect atomic grid, and ztmn ∼ ztm0 = xm0 . So by Lemma 3.5, there exist
k > 0 and a perfect grid ȳ = 〈y`j : ` ≤ k, j ≤ n〉 such that y0j = xmj , for j < n,

y0n = zkm
n and ykj = xm+1

j , for j < n. By Claim 2.3, z̄ t ȳ is a perfect grid as
required. 2
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Lemma 3.7 Suppose that Φl holds in F, and let 〈yj : j ≤ n〉 be such that
yi ∼ yj for i, j ≤ n. For all y ∈ W , if y0 ≤ y then there exist t > 0 and a
perfect grid 〈z`j : ` ≤ t, j ≤ n〉 such that zt0 = y and z0j = yj, for j ≤ n.

Proof. It is by induction on n. If n = 0, then take t > 0 and z00 , . . . , z
t
0 such

that y0 = z00 , y = zt0, either z00 ∈ Cz1
0

or z00 � z10 , and z`0 � z`+1
0 , for all

1 ≤ ` < t. Then 〈z00 , . . . , zt0〉 is clearly a perfect grid.
Now suppose that the statement holds for some n < ω. Let 〈yj : j ≤ n+ 1〉

be such that yi ∼ yj for i, j ≤ n + 1, and take some y ∈ W with y0 ≤ y. By
the IH, there exist m > 0 and a perfect grid 〈xij : i ≤ m, j ≤ n〉 such that

xm0 = y and x0j = yj , for j ≤ n. As yn+1 ∼ y0 = x00, by Lemma 3.6 there

exist ti < ω (i ≤ m) and a perfect grid z̄ = 〈z`j : ` ≤ tm, j ≤ n + 1〉 such

that 0 = t0 < t1 < · · · < tm, ztij = xij , for i ≤ m, j ≤ n, and z0n+1 = yn+1.

Therefore, ztm0 = xm0 = y, z0j = zt0j = x0j = yj , for j ≤ n, and z0n+1 = yn+1,
showing that z̄ is a perfect grid as required. 2

3.2 Playing on the right

Similarly to Section 3.1, here we start with formulating and proving a general
structural property of finite frames validating Φ (Lemma 3.8). Observe that
the ‘right’ conjunct Φ+

r of Φ is kind of ‘stronger’ than its ‘left’ conjunct Φl.
Perhaps this is why the ‘right’ property below is considerably simpler than the
corresponding ‘left’ property (see Lemma 3.3 above). Then in Lemma 3.10 we
show that this structural property can be generalised to extensions of perfect
atomic grids. This property is then used in Lemma 3.11 to help ∃ maintaining
a perfect grid, whenever ∀ challenges to extend a perfect atomic grid with a
‘∼-move’ (see Case (b) in the proof of Prop. 2.5). Finally, Lemma 3.11 is
used as the base case in the inductive proof of Lemma 3.12 that, together with
Lemma 3.6, show that any perfect grid can be extended by ∃, whenever ∀ plays
a ‘∼-move’.

Given x, y, z, w ∈W , we write right(x, y, z, w) if the following hold:

(r1) sq(x, y, z, w),

(r2) either x ∈ Cw or Cx ;Cy,

(r3) either y ∈ Cz, or Cy ;Cx, or Cy ;Cw,

(r4) (y, z);Cw.

Lemma 3.8 Suppose that Φ holds in F. For all x,w, z ∈W , if x ≤ x� w ∼ z
then there exists y∗ such that right(x, y∗, z, w) holds.

Proof. If Cx ;Cz, then there is y∗ ∈ Cz with x ∼ y∗. It is straightforward to
see that right(x, y∗, z, w) holds. So suppose that

Cx 6;Cz, (41)

and let

y+ ∈ min {y : ψall(x, y, z, w)}, (42)
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where ψall(x, y, z, w) is a shorthand for

ψu2(x, y, z, w) ∧ ψd2(x, y, z, w) ∧ ψ(u,d2)(x, y, z, w).

(As F is finite, there is such y+ by Φ+
r .) Now there are two cases: either

[y+, z);Cw, or [y+, z) 6;Cw.

Case 1. [y+, z);Cw.
We claim that right(x, y+, z, w) holds, and so y∗ = y+ will do. Indeed, we
clearly have (r1). (r3) and (r4) hold by [y+, z);Cw. For (r2): By (41),
there is some a ∈ Cx with a 6;Cz. We have ψd2(x, y+, z, w) by (42), and so
x ≤ x ≤ a < w implies that there are b, b′ such that y+ ≤ b ≤ b′ ≤ z, x ∼ b,
and a ∼ b′. Thus b′ /∈ Cz, and so b ≤ b′ < z follows. Now [y+, z);Cw implies
that b;Cw, and so y+ ;Cw follows from y+ ∼ x ∼ b. Therefore, there is
some w′ ∈ Cw with y+ ∼ w′. By Φ+

r , there is y′ such that ψall(x, y
′, y+, w′).

ry′
r
ry+

x

rb′rb rz
r
w

r
a
r
w′

- - - -

@
@

@
@

�
�
�
�

Q
Q

Q
Q

QQ

H
HH

HH
HH

H

It is straightforward to check that ψall(x, y
′, z, w) also holds. So by (42), we

have y′ ∈ Cy+ , and so Cx ;Cy+ follows by x ≤ x < w and ψd2(x, y′, y+, w′),
completing the proof of (r2).

Case 2. [y+, z) 6;Cw.
Then let

b+ ∈ max {b ∈ [y+, z) : b 6;Cw}. (43)

(there is such b+ as F is finite). We have ψ(u,d2)(x, y
+, z, w) by (42), so there

is a+ ∈ [x,w] such that a+ ∼ b+ and

[a+, w)
2
;[b+, z]. (44)

By (43), we have b+ 6;Cw, and so a+ ∈ Cx.
We claim that there exists b∗ such that

b∗ ∈ Cb+ ∪ {b+}, b∗ 6;Cw and b∗ 6;Cz. (45)

Indeed, if b+ 6;Cz then (45) holds for b∗ = b+. So suppose that b+ ;Cz. As by
(43) we also have b+ 6;Cw, it follows that Cz 6;Cw. So by Claim 3.1, we have
Cw ;Cz, and so Cx 6;Cw follows by (41). Also by (41), there is some a∗ ∈ Cx

such that a∗ 6;Cz. By Cw ;Cz, we also have a∗ 6;Cw. As a+ ≤ a∗ ≤ a∗ < w,
by (44) there exists b∗ ∈ [b+, z] with a∗ ∼ b∗. As a∗ 6;Cz, we have b∗ 6;Cz

and b∗ /∈ Cz. Thus b∗ ∈ [b+, z) ⊆ [y+, z) follows. As a∗ 6;Cw, we also have
b∗ 6;Cw. Therefore, by (43), we obtain that b∗ ∈ Cb+ , as required in (45).
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So take some b∗ satisfying (45). By (43), we have

b∗ ∈ max {b ∈ [y+, z) : b 6;Cw}. (46)

We claim that

Cx ;Cb∗ . (47)

Indeed, as we have ψ(u,d2)(x, y
+, z, w) by (42), there is c′ ∈ [x,w] such that

[c′, w)
2
;[b∗, z] and c′ ∼ b∗. As b∗ 6;Cw, it follows that c′ ∈ Cx. Now take any

c ∈ Cx. Then c′ ≤ c ≤ c′ < w, and so there exist b, b′ such that b∗ ≤ b ≤ b′ ≤ z,
c ∼ b and c′ ∼ b′. Thus b′ ∼ b∗ and by (45) we have b′ /∈ Cz and b′ 6;Cw.
Therefore, y+ ≤ b∗ ≤ b ≤ b′ < z follows, and by (46) we have that b′ ∈ Cb∗ .
Therefore, b ∈ Cb∗ as well, as required in (47).

r
ry+

x

rb∗ rb rb′ rz
r
w

r
c
r
c′

- - - -
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Now by (47), there is y∗ ∈ Cb∗ such that x ∼ y∗. We claim that
right(x, y∗, z, w) holds. Indeed, (r1) is clear, (r2) is (47), and (r4) holds by
(46). For (r3): We show that Cy∗ ;Cx. Take some d ∈ Cy∗ = Cb∗ . Then
y+ ≤ d ≤ b∗ < z. As by (42) we have ψu2(x, y+, z, w), this implies that there
exist e, e∗ such that x ≤ e ≤ e∗ ≤ w, e ∼ d and e∗ ∼ b∗.

r
ry+

x

ry∗ rd rb∗ rz
r
w

r
e
r
e∗

- -
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As b∗ 6;Cw by (46), we have e∗ ∈ Cx, and so e ∈ Cx follows, as required. 2

The following claim will be useful in subsequent proofs:

Claim 3.9 Suppose that Φ+
r holds in F. If y+ ∈ min {y : ψu(x, y, z, w)}, then

Cx ;Cy+ .

Proof. If Cx = ∅, then this holds. So take some a ∈ Cx. As a ≤ x ∼ y+, by Φ+
r

there exists b such that ψ(u,d2)(a, b, y
+, x), and so ψu(a, b, y+, x). As x ≤ a ∼ b,
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by Φ+
r again, there exists y′ such that ψu(x, y′, b, a). So we have y′ ≤ b ≤ y+,

and [y′, y+) ∪ {y+};Cx. So it is straightforward to check that ψu(x, y′, z, w)
holds. Therefore, by y+ ∈ min {y : ψu(x, y, z, w)}, we have y′ 6< y+, and so
y′ ∈ Cy+ . Therefore, b ∈ Cy+ follows, proving Cx ;Cy+ . 2

Lemma 3.10 Suppose that Φ holds in F, and let 〈x0, . . . , xn−1, y0, . . . , yn−1〉
be a perfect atomic grid for some n > 0. For all y ∈ W , if y ∼ y0 then there
exists x such that, for every j < n, right(xj , x, y, yj) holds, that is,

sq(xj , x, y, yj), (48)

either xj ∈ Cyj or Cxj ;Cx, (49)

either x ∈ Cy, or Cx ;Cxj
, or Cx ;Cyj

, (50)

(x, y);Cyj
. (51)

Proof. By (pg1), Φl and Claim 3.2, there is i < n such that

Cyi is ;-initial in {Cyj : j < n}. (52)

We claim that there exists x∗ such that

sq(xi, x
∗, y, yi), (53)

Cxi
;Cx∗ , (54)

either x∗ ∈ Cy, or Cx∗ ;Cxi
, or Cx∗ ;Cyi

, (55)

(x∗, y);Cyi . (56)

Indeed, if xi ≤ xi � yi then such an x∗ exists by Lemma 3.8. If xi ∈ Cyi or
xi 6≤ xi, then let x∗ ∈ min {x′ : ψu(xi, x

′, y, yi)} (there exists such x∗ by Φ+
r

and the finiteness of F). Then (53), (55), and (56) follow from ψu(xi, x
∗, y, yi)

and [xi, yi] = Cyi
, and (54) follows from Claim 3.9.

Now we consider two cases:

Case 1. For all j < n, if xj ≤ xj � yj then Cxj ;Cxi .
Then we let x = x∗, and claim that (48)–(51) hold, for all j < n. Indeed, take
some j < n. Then (48) is clear. For (49): If xj ∈ Cyj

or xj 6≤ xj , then (49)
clearly holds. If xj ≤ xj � yj then Cxj

;Cxi
, so (49) follows from (54). For

(50): By (55), there are three cases:

• x ∈ Cy. Then (50) holds.

• Cx ;Cyi . Then Cx ;Cyj by (52).

• Cx ;Cxi
and Cx 6;Cyi

. Then xi ≤ xi � yi, and by (pg3) we have either
Cxi ;Cxj or Cxi ;Cyj . So (50) follows by the transitivity of ;.

Finally, (51) follows from (56) and (52).

Case 2. There is some j < n with xj ≤ xj � yj and Cxj
6;Cxi

.
By (pg1), Φl and Claim 3.2, there is f < n such that

Cxf
is ;-final in {Cxj

: j < n, xj ≤ xj � yj}. (57)
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We claim that
Cxf

;Cyi
. (58)

Indeed, if xi ∈ Cyi or xi 6≤ xi, then this holds by xf � yf and (pg3). If
xi ≤ xi � yi, then Cxf

6;Cxi
by our assumption on Case 2 and (57), and so

Cxf
;Cyi

follows again by xf � yf and (pg3).
As xf ≤ xf ∼ x∗, by Φ+

r and the finiteness of F, there is some x such that

x ∈ min {x′ : ψu(xf , x
′, x∗, xf )}. (59)

We claim that, for all j < n, we have right(xj , x, y, yj), that is, (48)–(51) hold.
Indeed, take some j < n. Then (48) is clear. For (49): By (59) and Claim 3.9,
we have that Cxf

;Cx. If xj /∈ Cyj , then Cxj ;Cx follows by (57).
In order to show (50) and (51), we claim that

either x ∈ Cy, or [x, y);Cyi
. (60)

Indeed, suppose that x /∈ Cy and take some a ∈ [x, y). There are three cases:

• a ∈ [x, x∗) ∪ {x∗}. Then a;Cxf
by (59), and so a;Cyi follows by (58).

• x∗ /∈ Cy and a ∈ Cx∗ . Then by (55), either a;Cyi
, or a;Cxi

. In the latter
case, either Cxi = Cyi , or Cxi ;Cxf

by (57), and so a;Cyi follows by (58).

• a ∈ (x∗, y). Then a;Cyi
by (56).

Now let us show (50): If x /∈ Cy, then we have Cx ;Cyi
by (60), and so

Cx ;Cyj
follows by (52). And for (51): We have (x, y);Cyi

by (60), and so
(x, y);Cyj

follows by (52). 2

Lemma 3.11 Suppose that Φ holds in F, and let 〈x0, . . . , xn−1, y0, . . . , yn−1〉
be a perfect atomic grid for some n > 0. For all y ∈ W , if y ∼ y0 then there
exist k > 0 and a perfect grid 〈z`j : ` ≤ k, j ≤ n〉 such that z0j = xj, zkj = yj,

for j < n, and zkn = y.

Proof. By Lemma 3.10, there is x such that right(xj , x, y, yj) holds, for every
j < n. If x ∈ Cy then let k = 1, z0n = x, z1n = y, and z0j = xj , z

1
j = yj , for

all j < n. It is straightforward to show that 〈z00 , . . . , z0n, z10 , . . . , z1n〉 is a perfect
atomic grid.

If x < y, then let k > 0 and z0n, . . . z
k
n be such that x = z0n � · · · � zkn = y

(that is, we take a point from each ≤-cluster between x and y). Of course,
we let z0j = xj , and zkj = yj , for all j < n. Next, for each j < n, we have

(x, y);Cyj by (51). Therefore, for each 0 < ` < k, there exists z`j ∈ Cyj such

that z`n ∼ z`j . We claim that 〈z`j : ` ≤ k, j ≤ n〉 is a perfect grid as required.
Indeed (pg1) and (pg2) clearly hold. Let us prove that (pg3) holds as well, that
is, for all ` < k, i, j ≤ n, if z`i � z`+1

i then either Cz`
i
;Cz`

j
or Cz`

i
;Cz`+1

j
.

Indeed, if i = j, this clearly holds. Otherwise, there are three cases:

• i = n, j < n. Then Cz0
n

= Cx, and we have either Cx ;Cxj
= Cz0

j
or

Cx ;Cyj
= Cz1

j
by (50). Also, if 0 < ` < k then Cz`

n
⊆ (x, y);Cyj

= Cz`
j

by (51).
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• i < n, j = n. If z`i � z`+1
i , then ` = 0 and xi � yi, and so Cz0

i
= Cxi ;Cx =

Cz0
n

by (49).

• i, j < n. Again, if z`i � z`+1
i then ` = 0 and xi � yi. So by (pg3), either

Cz0
i

= Cxi
;Cxj

= Cz0
j

or Cz0
i

= Cxi
;Cyj

= Cz1
j
,

completing the proof of Lemma 3.11. 2

Lemma 3.12 Suppose that Φ holds in F, and let 〈xij : i ≤ m, j < n〉 be a
perfect grid, for some m,n < ω, n > 0. For all x ∈ W , if x ∼ xm0 then
there exist si < ω (i ≤ m) and a perfect grid 〈z`j : ` ≤ sm, j ≤ n〉 such that

0 = s0 < s1 < · · · < sm, zsij = xij, for j < n, i ≤ m, and zsmn = x,

Proof. It is by induction on m. For m = 0 the statement is obvious. Suppose
the statement holds for some m < ω. Let 〈xij : i ≤ m+ 1, j < n〉 be a perfect

grid, and let x ∈ W be such that x ∼ xm0 . Then 〈xij : 1 ≤ i ≤ m+ 1, j < n〉 is
a perfect grid, and so by the IH, there exist si < ω, for 1 ≤ i ≤ m + 1, and a
perfect grid z̄ = 〈z`j : 1 ≤ ` ≤ sm+1, j ≤ n〉 such that 1 = t1 < t2 < · · · < tm+1,

ztij = xij , for 1 ≤ i ≤ m + 1, j < n, and z
tm+1
n = x. We also have that

〈x00, . . . , x0n−1, x10, . . . , x1n−1〉 is a perfect atomic grid, and zt1n ∼ z
t1
0 = x10. So by

Lemma 3.11, there exist k > 0 and a perfect grid ȳ = 〈y`j : ` ≤ k, j ≤ n〉 such

that y0j = x0j , for j < n, ykj = x1j , for j < n, and ykn = z1n. By Claim 2.3, ȳ t z̄
is a perfect grid as required. 2

4 Discussion

Our results can be extended to S4.3 × S5, even with some simplifications to
the formula Φ. Theorem 1.3 also holds for Logic of{〈ω,<〉} × S5. However, as
the class of all frames for Logic of{〈ω,<〉} is not closed under ultraproducts,
it is not known whether Logic of{〈ω,<〉} × S5 has other finite frames as well,
frames that are not p-morphic images of product frames. It would also be
interesting to know whether any of the logics (such as the decidable K4.3×K,
or the undecidable but recursively enumerable K4.3 × K4) that are within
the scope of the non-finite axiomatisability results of [11] has a decidable finite
frame problem.

Are we any closer to either proving non-finite axiomatisability of K4.3× S5,
or finding an explicit, possibly infinite, axiomatisation of it? On the one hand,
a way of proving that a product logic L is not finitely axiomatisable is con-
structing a sequence 〈Fn : n < ω〉 of finite frames such that no Fn is a frame for
L, but some countable elementary substructure G of a non-trivial ultraproduct
of the Fn is a p-morphic image of a product frame for L. Since the formula Φ
we use to decide the finite frame problem for K4.3 × S5 is a first-order for-
mula in the frame-correspondence language, if it fails in every Fn then, by  Los’
theorem, it fails in any ultraproduct as well, and so it fails in G. But Φ holds
in every product frame and preserved under p-morphic images. So our result
implies that we cannot hope for an argument of this kind to work, and have to
do something else, possibly constructing infinite Fn.

On the other hand, it can be shown that our first-order formula Φ is not
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reflected under ultrafilter extensions, and so not modally definable. However,
there is a bimodal formula ϕ such that

• for every 2-frame F for K4.3⊕ S5, if Φ holds in F, then ϕ is valid in F;

• for every finite 2-frame F for K4.3⊕S5, if ϕ is valid in F, then Φ holds in F.

So if Lϕ is the smallest normal bimodal logic containing K4.3⊕S5 and ϕ, then
we have Lϕ ⊆ K4.3×S5. However, in order to show the converse inclusion, one
would need to show that Lϕ has the finite model property. And we have no idea
about that. Note that it is not known either whether K4.3×S5 has the finite
model property w.r.t. arbitrary (not necessarily product) frames. K4.3t × S5
lacks the finite model property [12], where K4.3t is the temporal extension of
K4.3 with a ‘past box’. Note that K4.3t×S5 (and so K4.3×S5) is decidable
[12].

Acknowledgements. We are grateful to Ian Hodkinson for discussions.
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