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1 Conceptual Considerations on Harmony

1.1 Gentzen’s Observation and Gentzen’s Thesis

Gentzen observed a ‘remarkable systematic’ in the ‘inference patterns’ for

symbols of the calculus of natural deduction and suggested that ‘by mak-

ing these thoughts more precise it should be possible to establish on the

basis of certain requirements that the elimination rules are functions of the

corresponding introduction rules.’1 One of the objectives of this paper is

to fill this specify such a function: I will specify a process by which it is

possible to determine the elimination rules of logical constants from their

introduction rules, and conversely, to determine the introduction rules from

the elimination rules.

I will then use this result to clarify some issues surrounding a famous

remark of Gentzen’s. The observation of the ‘remarkable systematic’ lead

Gentzen to put forward what might be called ‘Gentzen’s Thesis’: ‘The intro-

ductions constitute, so to speak, the “definitions” of the symbols concerned,

and the eliminations are in the end only consequences thereof, which could

be expressed thus: In the elimination of a symbol, the formula in question,

whose outer symbol it concerns, may only “be used as that which it means

on the basis of the introduction of this symbol”.’2 Gentzen’s Thesis invites

being fleshed out in a comprehensive theory, which is of course what Michael

Dummett has done in his proof-theoretic justification of deduction or proof-

theoretic semantics. Dummett employs the notions of harmony and stability

to specify which rules of inferences can count as defining the meanings of

the logical constants they govern. The intuitive philosophical content of

harmony and stability is that harmony obtains if the grounds for asserting

a proposition match the consequences of accepting it, and stability obtains

if the converse also holds. Rules of inference define the meanings of a logical
1Gerhard Gentzen: ‘Untersuchungen über das logische Schließen’, Mathematische

Zeitschrift 39 (1935), 176-210, 405-431, p.189
2Ibid.
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constant they govern if and only if they are stable. There are, however,

two notions of harmony at play in Dummett’s work. One of them has a

formally precise characterisation in terms of Gentzen’s cut-elimination as

transposed to natural deduction, i.e. in Prawitz work on the normalisation

of deductions. A deduction in normal form can be described, in Gentzen’s

words, as on without detours: it is a particularly direct deduction3. This

is a result applying to a logic in which rules of inference occur. The other

notion of harmony is more difficult to pin down. Dummett seems to intend

this notion of harmony to apply to the forms of rules of inferences no matter

what logic they might occur in. In Dummett’s writings, this notion is never

made formally precise, but, as I shall argue, Gentzen’s functions can be used

to achieve this aim. Stability, too, is not as clear as normalisation, but I

shall argue that Gentzen’s functions provide us with a way of achieving a

formally precise characterisation of this notion, too.

The formal details are given in section 2. The next section contains

conceptual considerations about what harmony and stability amount to.

Although I’ll quote quite extensively from Dummett’s The Logical Basis

of Metaphysics (henceforth LBM ), my aim is not exegetical. My aim is to

provide a formally precise way of defining harmony and stability on the basis

of Dummett’s work. This is will capture much of what Dummett intends

these notions to convey, but it is not exactly what he had in mind, because

on my account, classical negation as well as intuitionist negation turn out

to be governed by harmonious rules, whereas Dummett thinks this is only

holds for the latter.

I end the paper with a discussion of a conjecture of Dummett’s concern-

ing the relation between harmony, stability and conservative extensions.
3Ibid., p.177
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1.2 Dummett on Harmony, Normalisation, Conservative Ex-
tensions and Stability

Dummett singles out two features of the use of expressions that are of cen-

tral importance for specifying their meanings. The two features are intended

to apply very generally to all kinds of expressions, but I’m only concerned

with the logical constants. ‘The first category [of principles governing our

linguistic practice] consists of those that have to do with the circumstances

that warrant an assertion [. . .] we need to know when we are entitled to make

any given assertion, and when we are required to acknowledge it as true. [. . .

Furthermore,] in acquiring language, we learn a variety of principles deter-

mining the consequences of possible utterances; these compose the second of

our two categories of principles that govern our linguistic practices.’ (LBM

211f) Applied to the logical constants, the first feature of their use corre-

sponds to applications of introduction rules, the second one to applications

of elimination rules in a calculus of natural deduction.

Dummett’s informal explanation of harmony is that it is a relation that

ought to hold between these two features of the use of expressions. ‘The two

complementary features of any practice ought to be in harmony with each

other [. . .] The notion of harmony is difficult to make precise but intuitively

compelling: it is obviously not possible for the two features of the use of any

expression to be determined quite independently. Given what is conven-

tionally accepted as serving to establish the truth of a given statement, the

consequences cannot be fixed arbitrarily; conversely, given what accepting

a statement as true is taken to involve, it cannot be arbitrarily determined

what is to count as establishing it as true.’ (LBM 215) Thus, in the case

of the logical constants, the grounds for asserting a formula with main op-

erator Ξ, i.e. the conditions under which an introduction rule for Ξ can be

applied, should match, in some way to be made precise, the consequences of

asserting a formula with main operator Ξ, i.e. the conditions under which
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an elimination rule for Ξ can be applied. The converse should also hold,

which will be of importance for the notion of stability. Thus the introduc-

tion rules should somehow determine the elimination rules, and conversely,

the elimination rules should somehow determine the introduction rules for

Ξ.

When Dummett applies the notion of harmony to the logical constants,

he gives two quite different ways of spelling it out formally. One is connected

to the notion of a conservative extension. Let L1 be a logic with language

L1, a deductive system R1 and a consequence relation `L1 ; let L2 be a logic

with language L2 and a deductive system R2 extending L1 by new symbols

and R1 by rules for them, resulting in a consequence relation `L2 . Then `L2

is a conservative extension of `L1 iff, X `L2 B iff X `L1 B, if X,B ∈ L1.

‘What is it for the introduction rules and the elimination rules governing a

logical constant to be in harmony? We saw that harmony, in the general

sense, obtains between the verification-conditions or application-conditions

of a given expression and the consequences of applying it when we cannot,

by appealing to its conventionally accepted application conditions and the

invoking the conventional consequences of applying it, establish as true some

statement which we should have had no other means of establishing: in

other words, when the language is, in a transferred sense, a conservative

extension of what remains of it when the given expression is deleted from

its vocabulary.’ (LBM 247) This is one notion of harmony.4

Following this (LBM 247ff), Dummett characterises another notion of

harmony, connected to normalisation of deductions. Dummett demands

that for harmony to obtain between introduction and elimination rules for

a logical constant Ξ maximal formulas with Ξ as main connective can be

removed from deductions, where a maximal formula is one that has been
4It is worth noting a difficulty with Dummett’s discussion: failure of conservativeness

gives us no reason to blame a constant, rather than some feature of the fragment of the
language without it.
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introduced by an application of an introduction rule and is major premise of

an application of an elimination rule. Dummett calls the context in which

a maximal formula occurs in a deduction a local peak, and thus harmony

obtains if local peaks can be removed from deductions. Thus the requirement

of harmony between introduction and elimination rules for a logical constant

Ξ gets its formal content from the requirement that any maximal formula

may be removed from deductions and local peaks may be levelled by applying

reduction procedures. Reduction procedures are methods for reordering

deductions in such a way that these ‘detours’ are avoided. Applying the

reduction procedures should always turn deductions into new deductions.

Trivial as this observation may sound, it shows that the point of having

harmonious rules is not that they exhibit some feature independently of any

logic in which they might occur, but rather that harmony, so understood, is

a feature relative to the logic a rule is part of.

Normalisation is quite different from conservativeness. Depending on

how classical logic, for instance, is formulated, its negation may be con-

servative over its positive fragment, although deductions don’t normalise.

I will, however, show later that, under certain conditions, normalisability

entails conservativeness.

To keep the two notions of harmony apart, Dummett concludes that ‘we

ought, therefore, to distinguish between “intrinsic harmony” and “harmony

in context”, or “total harmony”. We may continue to treat the eliminability

of local peaks as a criterion for intrinsic harmony; this is a property solely

of the rules governing the logical constant in question. For total harmony,

however, we shall demand that the addition of that logical constant produce

a conservative extension of the logical theory to which it is added. This

notion is in a high degree relative to context, that is, the base theory to

which the addition is being made.’ (LBM 250) In the following, I won’t

call ‘total harmony’ harmony at all, but stick to conservativeness. It is the
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notion of intrinsic harmony I am mostly interested in.

There is a certain ambiguity in the notion of intrinsic harmony. On the

one hand, as the quote in the last paragraph shows, Dummett presents it as

a feature that applies to rules of inference independently of formal systems

they form part of. At the same time, the criterion Dummett suggests for

whether intrinsic harmony obtains is one that can only be applied to formal

systems that rules are part of, not to rules in isolation: whether local peaks

can be levelled depends on whether the reduction procedures for removing

local peaks from deductions always turn deductions into deductions, which

is a feature that is applicable only to rules as part of a formal system.

Dummett’s initial discussion of harmony also suggests a notion of harmony

that applies to the form of rules of inference: introduction rules should

determine the elimination rules, as the grounds for asserting a proposition

should match the consequences of accepting it. We might say that looking

at the introduction rule alone, we should be able somehow to ‘read off’

its elimination rule. As such, as a notion applying to the forms of rules

of inference, this notion is independent of formal systems, even though, of

course, the point of having a rule of inference is to have it as part of a formal

system.

That Dummett envisages a notion of harmony that applies to the shape

of rules of inference independently of formal systems is corroborated by his

discussion of stability. Stability is a stronger notion than harmony. ‘If there

is harmony between these conventional consequences and the grounds we

admit for asserting [a statement], this guarantees that we shall not assert it

when its meaning does not justify our doing so, that we do not treat as a

ground for it what should not warrant the consequences that we draw. It

does not show that we should be willing to assert the statement whenever

those consequences would be warranted, and hence whenever we should be

entitled to do so. [. . .] The demand that such a condition be met goes beyond
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the requirement of harmony: we may call it stability.’ (LBM 287) Dummett

describes a process of justifying introduction rules relative to elimination

rules and conversely, which is a process in which formal systems don’t come

in, at least initially. Looking at the introduction rules alone we should be

able to determine which elimination rules are harmonious with them, and

conversely. ‘If we use an upwards justification procedure, harmony validates

a putative elimination rule; if we use a downwards justification procedures, it

validates a putative introduction rule. In either case, harmony is guaranteed

between valid rules. But, to verify that stability obtains, we have to appeal

to both justification procedures. Suppose that we adopt the downwards

justification procedure, and start with a set E of elimination rules. By

our procedure, we can determine which introduction rules are valid: say

these form a set I. Now, with respect to this set of I of introduction

rules, the upwards justification procedure is well-defined: so we can use

it to determine which elimination rules are valid, according to the criteria

of the upwards procedure. If we get back by this means to the set E , or

some set interderivable with E in the ordinary sense, in the presence of I,

stability prevails. Otherwise not. [. . .] Obviously, if we had adopted the

upwards justification procedure, with a set I of introduction rule as basis,

we could perform the converse test for stability. First finding the set E

of elimination rules, we could apply the downwards procedure to discover

which introduction rules were validated by it. If we got back to the set I,

stability would obtain; otherwise not.’ (LBM 288) In this section, Dummett

only talks of rules of inference which are determined from each other, so the

criterion is one applied to the forms of rules of inference by themselves, not

relative to formal systems they may be part of. Dummett, it is fair to say,

does not in fact specify a general procedure for determining introduction

and elimination rules from each other.5 The function Gentzen speaks of,
5He does, however, specify ways of deciding whether a give set of introduction and

elimination rules satisfies criteria of validity: but these don’t actually allow us to determine
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which I will give in section 2.2, will do precisely that.

Finally, Dummett’s Conjecture concerns the relation between the two

notions of harmony. ‘Although this distinction [between total and intrinsic

harmony] was drawn in the preceding chapter, we have since proceeded as

though intrinsic harmony was all that mattered; but it is total harmony that

must prevail if the point of the requirement of harmony is to be attained,

namely that, for every logical constant, its addition to the fragment of the

language containing only the other logical constants should produce a con-

servative extension of that fragment. We may conjecture that the problem is

a minor one, however: that is, that intrinsic harmony implies total harmony

in a context where stability prevails.’ (LBM 290) This conjecture stands in

need of interpretation, as I’ll show in the last section.

1.3 Towards Definitions of Harmony and Stability

1.3.1 Two Notions of Harmony

The discussion of the last section suggests that besides Dummett’s notion of

total harmony or conservativeness, here are two furhter notions of harmony

at play in Dummett’s writings:

1.) Harmony is a feature detectable in the rules governing a logical con-

stant: Introduction and elimination rules for a constant are in harmony if

the latter can somehow be read off the former (or conversely): the form

of the introduction rules determines the form of the elimination rules (or

conversely). In the following I will sometimes call this notion of harmony

‘the first notion of harmony’, or simply ‘harmony’.

2.) Harmony holds if the rules for a constant yield a suitable induction

clause for a normalisation theorem: Introduction and elimination rules for a

constant are in harmony if maximal formulas may be removed from deduc-

tions. To distinguish this notion from the first, let’s call it normality, but

rules of inference, so I won’t go into that here.
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I’ll sometimes refer to it as ‘the second notion of harmony’.

The first notion of harmony is a feature of rules independently of a logic they

are part of. It is a common feature all rules of a certain kind are supposed

to exhibit. It is to do with a special uniformity in the form of these rules—

the focus here is on Gentzen’s ‘remarkable systematic’. Contrary to that,

normality is a feature rules can only have relative to a logic they are part of—

the focus here is on Gentzen’s notion of removing detour from deductions.

There is no suggestion that there is a common feature of all rules which

occur in logics which normalise.

As suggested by Dummett’s writings, the relation between the two no-

tions of harmony is the following. It has not been made formally precise

what how to determine elimination from introduction rules or conversely.

Dummett fails to specify a method for doing so. Thus the first notion of

harmony remains an informal notion, which has no precise formal content

that would allow us to establish whether rules of formal systems are in

harmony. Contrary to that, normality is a formally precise notion. Thus

normality suggests itself as giving formally precise content to the notion of

harmony.6

The path Dummett choses here, however, creates a certain tension.

There is a tendency in Dummett’s writings to make harmony a notion as in-

dependent of specific formal systems as possible. At the same time the way

the notion is made precise ties it rather closely to specific formal systems—

indeed, it is nonsensical to sever normality from the context of a specific

formal system. But it is crucial to realise what the point of harmony is:

namely that harmonious rules lend themselves in a particularly general and

straightforward way as the basis of normalisation proofs, as I shall show in
6Notice also, incidentally, how this dialectics of the development of the two notions of

harmony manifests itself in Chapter II of Prawitz’ Natural Deduction, which is entitled
‘The Inversion Principle’ and starts of with a discussion of harmony and ends with the
specification of the reduction procedures for removing maximal formulas from deductions,
i.e. the crucial machinery needed for establishing normality of rules of inference of a logic.
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section 2: the point of the first notion of harmony is to enable us in a gen-

eral way to specify rules of inference for formal systems in which deductions

normalise.7

What is more problematic is the following. If Dummett suggests that

normality provides a formally precise way of cashing out the notion of har-

mony, then how are we to cash out formally the notion of stability? His

way of spelling out Gentzen’s Thesis is to lay down that the meaning of a

logical constant may be defined by introduction and elimination rules if they

are stable. Thus it is the notion of stability which is crucial to Dummett’s

proof-theoretic semantics. Stability is supposed to be harmony plus some

kind of converse of harmony. But normalisation is only a formal criterion

for harmony, not stability: it has no suitable converse. So we have no for-

mally precise way of cashing out the crucial notion of stability. And that’s

a problem, because in the absence of a formally precise notion of stability,

it is hard to see what role it could play in proof-theory.

Dummett does, however, hint at a way of cashing out the notion of sta-

bility, when he talks about determining elimination rules from introduction

rules and conversely. In section 2.2 I will make this idea precise by expli-

cating Gentzen’s ‘remarkable systematic’ between the forms of introduction

and elimination rules, and use this to define a notion of harmony in section

2.3. However, it’ll turn out that the notion of stability which arises from

demanding the reversability of the process of ‘reading off’ introduction rules

from elimination rules or elimination rules from introduction rules would not

define a notion of stability which adds anything to harmony: they would be

equivalent. To extract a substantial notion of stability, I suggest we look at

some other things Dummett says about this notion. But first, I’ll say a bit
7As a matter of fact, of course, in, for instance, intuitionist logic, the harmony the rules

for its constants exhibit suffices for their normality to hold as well. But this is due only
to the special features of intuitionist logic, not per se to the notion of harmony. It will
emerge in the next section that there are rules which Dummett thinks exhibit harmony1,
but they can occur in a logic where normality fails.
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more about the notion of harmony I am going to define and its relation to

normalisability.

1.3.2 Harmony

As already mentioned, the idea for my answer to the question of how to

make the first notion of harmony formally precise can be found in Gentzen’s

observation of the ‘remarkable systematic’ in the inference patterns and that

it should be possible to specify a function mapping introduction rules onto

elimination rules. Gentzen does not say anything more about the function,

and as far as I know there is no attempt in the literature to specify it.8 Dum-

mett tries to capture some of Gentzen’s idea with his notions of harmony

and stability, but what he has to say on that issue is a long way from the en-

visaged mathematical precision of Gentzen’s remark. Specifying Gentzen’s

function gives a formally precise content to the first notion of harmony: the

mapping of introduction to elimination rules the function provides explains

what it means to determine or ‘read off’ elimination rules from introduction

rules. The process I am going to specify can be inverted, so that elimination

rules can also be mapped onto introduction rules, but this does not result

in a suitable definition of the notion of stability: it is trivially the case that

the process can be inverted, hence if stability is merely ‘harmony plus its

converse’ it would not have any content over and above that of harmony.

Previous discussions have, to my knowledge, assumed that there is one

kind of rule of inference and that the meanings of the connectives are given

either uniformly by introduction rules or by elimination rules, the others

being determined relative to them by some principle of harmony. In section

2.2 I shall give two kinds of general forms of rules of inference, one where ini-

tially an introduction rule for a connective is given and one where initially an
8Zucker and Tragesser do not quite succeed in doing so, as on their account there are

occasions where a set of introduction rules is given, but ‘there does not seem to be a
suitable set of [elimination] rules’ (‘The Adequacy Problem for Inferential Logic’, p.506).
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elimination rule is given, and I shall specify for each kind a general method

for determining the elimination and introduction rules for the connective.

I shall, however, loosen the ties between harmony and stability on the

one hand and normalisation on the other. I shall define harmony and sta-

bility to be features of operational rules that are indeed independent of any

formal systems they may occur in: they are features operational rules ex-

hibit merely by virtue of their form. Contrary to that, normalisation is to

do with deductions in formal systems. The point of having these notions of

harmony and stability is of course that they nonetheless play a vital role in

the proof of normalisation theorems. The philosophical adequacy of the no-

tions of harmony and stability to be defined is ensured by the fact that they

give rise to reduction procedures for eliminating detours from deductions. In

some logics, these reduction procedures may not guarantee normalisability,

because they may fail to turn deductions into deductions. To show that the

deductions of a logic do normalise, i.e. to establish normality, it needs to be

established that the reduction procedures have this property when applied to

deductions of that logic. In a large class of cases, this is particularly straight-

forward, namely for logics containing only stable rules, on my definition of

stability, because the form of those rules guarantees normalisability.

1.3.3 Normality

The formal framework to be set up in detail in section 2.1 is a generalisation

of the Gentzen calculi used in substructural logics, where operational rules

for the logical constants as well as structural rules for the reordering of

assumptions are applied to expressions of the form X ` B and the initial

expressions are of the form A ` A.

The discussion so far has focussed on the removal of maximal formulas

form deductions. Normalisation also needs to take into account another

phenomenon. Consider a rule like ∨E:
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X ` A ∨B Y (A) ` C Y (B) ` C

Y (X) ` C

Suppose the minor premise C of an application of ∨E has been introduced

by an application of an introduction rule for its main operator and the con-

clusion of the application of ∨E, of the same shape as C, is major premise of

an elimination rule. These formulas C are just as problematic as a maximal

formula: whatever philosophical issues are connected to the latter are con-

nected to the former. It needs to be shown that applying a rule like ∨E does

not disturb the equilibrium of grounds for asserting C and consequences

drawn from it. In other words, these occurrences of C should be removable

from deductions.

In fact, one should expect something slightly stronger to be required. A

rule like ∨E introduces new grounds for asserting C. Hence we should have to

show that these new grounds balance exactly the consequences of accepting

C. Thus we should show that a formula C derived by an application of

a rule like ∨E and major premises of an elimination rule can be removed

from deductions.9 As far as I know, it is normally only stipulated that a

formula introduced by ex falso quodlibet which is also major premise of an

elimination rule counts as a maximal formula should therefore be removable

from deductions. This is in fact a special case of the previous one, as will

become clear later. I’ll prove the more general case in section 2.5.2.

Similarly, a formula introduced by consequentia mirabilis, which allows

the derivation of a formal if its negation leads to absurdity, and major

premise of an elimination rule counts as a maximal formula which should be

removable from deductions: consequentia mirabilis introduces new grounds

for asserting formulas, and so they need to be balanced by the elimination

rules for the constants of the logic.

For the time being, the following definition of ‘maximal segment’ is suf-
9C may of course be atomic. But we need not consider this case here, as we are no

trying to give a proof-theoretic semantics for atomic formulas, but only for the logical
constants.
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ficient: A maximal segment is a sequence of formulas A1 . . . An such that A1

is conclusion of an introduction rule, An is major premise of an elimination

rule and for each Ai, 1 ≤ i < n, Ai is minor premise of the form of ∨E or

∃E, i.e. rules which require collateral deductions of minor premises C which

are also the conclusion of the rule, or premise of a structural rule and Ai+1

is its conclusion. The context in which a maximal segment occurs, i.e. the

segment plus the premises and conclusions of the rules involved in giving

rise to it, may be called a local maximum.

Normalisation is a process involving the removal of maximal formulas as

well as of maximal segments from deductions. Rules for a constant Ξ of a

logic L that fulfil the criterion that such removals are possible may be said

to normalise in L. A deduction that does not contain any maximal formulas

and maximal segments is said to be in normal form. That any deduction

of a logic L can be transformed into one in normal form is captured by the

normalisation theorem for L. If such a theorem can be proved for a logic, it

is proof-theoretically justified, or justified for short. The constants of such a

logic may also be called proof-theoretically justified.

Consider the operator 2 governed by the following introduction and

elimination rules:

X ` A
2I:

X ` 2A
X ` 2A

2E:
X ` A

where in 2I every formula on X is of the form 2B.

There is a reduction procedure for local peaks with 2:

Π
X ` A
X ` 2A

X ` A
Σ

may be reduced to
Π

X ` A
Σ
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This and the following examples ignores the possibility that 2I may not be

followed directly by 2E, but instead there may be a number of applications

of structural rules in between. Taking this complication into account is

unnecessary for the purposes of my account. It will be treated properly in

the formal part.

There also is a reduction procedure for local maxima with 2 in the

collateral deductions of ∨:

Y ` A ∨B

Π
X ` C
X ` 2C

Θ

X ′′(A) ` 2C

Σ

X ′ ` C
X ′ ` 2C

Ξ

X ′′(B) ` 2C

X ′′(Y ) ` 2C

X ′′(Y ) ` C

Υ

may be reduced to

Y ` A ∨B

Π
X ` C
X ` 2C

Θ

X ′′(A) ` 2C

X ′′(A) ` C

Σ

X ′ ` C
X ′ ` 2C

Ξ

X ′′(B) ` 2C

X ′′(B) ` C

X ′′(Y ) ` C

Υ

Should we conclude that 2 is a proof-theoretically justified constant? No.

Because it is meaningless to ask this question in isolation from a formal
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system. Notice that the status of the operator 2 that one might be inclined

to impose on it in the face of the existence of reduction procedures is jeop-

ardized if one takes 2 to be part of a logic that also has an implication

connective, say intuitionist logic extended by 2. The trouble is that in such

a system local peaks with ⊃ may not level:

Π
X,A ` B
X ` A ⊃ B

Σ
Y ` A

X,Y ` B
Ξ

may not be reducible to

Σ
Y ` A
Π[A/Y ]

X,Y ` B
Ξ

Here the second deduction is to be understood as the deduction resulting

from the first by replacing all the formulas A on the branch in Π starting

in the formula A of the conclusion of Π X,A ` B by Y , and appending Σ

to the initial consecutions in which the branch ends (i.e. which had A in

their antecedents, so that after the replacement they became Y ` A). The

reason why the reduction procedure is not generally applicable is that there

may be formulas amongst Y not of the form 2B, such that applications of

2I in Π[A/Y ] cease to be correct.

Consider a formulation of classical logic without a primitive implication

connective, where negation is governed by the rules ¬I, ¬E and consequentia

mirabilis:
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X,A ` ⊥
X ` ¬A

X ` ¬A X ` A
X ` ⊥

X,¬A ` ⊥
X ` A

If ¬E is applied directly after ¬I, this constitutes a local peak. It can be

levelled by a reduction procedure very similar to the one for ⊃. If 2 is

added to the logic, a similar problem occurs as in the case of intuitionist

logic: local peaks with ¬ may no longer be removable, as applications of 2I

above the maximal formula may cease to be correct.

On the other hand, as a little exercise, notice that in the following de-

duction 2A counts as a maximal formula, which can be removed:

Π
X,¬2A ` ⊥
X ` 2A
X ` A

Σ

The maximal formal can be removed by replacing the construction by the

following:

¬A ` ¬A
2A ` 2A
2A ` A

¬A,2A ` ⊥
¬A ` ¬2A

Π[¬2A/¬A]
X,¬A ` ⊥
X ` A

Σ

Any application of 2I in Π remains correct, as there can’t be one in branches

ending in ¬2A ` ¬2A, which are the only ones affected by the replacement.
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It is possible to formulate S4 in a different way, so that normalisation is

possible. Instead of restricting the list on the left of the turnstile in 2I, we

can incorporate them into the form of the rule:10

X1 ` 2A1 . . . Xn ` 2An 2A1 . . .2An ` B
X1 . . . Xn ` 2B

The elimination rule stays the same. A local peak with 2 looks like this:

Σ1

X1 ` 2A1 . . .

Σn

Xn ` 2An

Π
2A1 . . .2An ` B

X1 . . . Xn ` 2B

Ξ

It can be levelled by replacing it with the following construction:

Σ1 . . . Σn

Π[2A1/X1 . . .2An/Xn]
X1 . . . Xn ` 2B

Ξ

To explain once more the notation, this is to be read as saying that we

replace the formulas 2Ai on the branches starting with those formulas in

the conclusion 2A1 . . .2An ` B of Π by Xi and append Σi to the initial

consecutions in which the branches end. With these rules, deductions in

classical as well as in intuitionist S4 normalise.

Standard rules for S4 possibility are the following:

X ` B
X ` 3B

X ` 3B Y,B ` 3C

X, Y ` 3C

10This transposes rules given by Biermann and De Paiva (2000) to the present formalism.
See also Prawitz (1965) for various formulations of modal logics that normalise.
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Here all formulas on Y are of the form 2B. These rules pose similar problems

for normalisation as the rules for S4 necessity. But the elimination rule can

also be reformulated so as to incorporate the restrictions on the list in the

form of the rule:

X ` 3B Y1 ` 2A1 . . . Yn ` 2An 2A1 . . .2An, B ` 3C

X, Y1 . . . Yn ` 3C

Deductions can then be normalised, the verification of which I leave as an

exercise.

We can give similar rules for S5 by relaxing the restrictions on the shapes

of formulas. Instead of using formulas 2Ai and 3C in the premises of

2I and 3E, it suffices to require that they are modally closed, i.e. every

propositional variable is in the scope of a modal operator (hence ⊥ and >

are modally closed).

These new rules for 2I and 3E are not harmonious according to the

definition I’ll give in section 2.3. They are neither rules of type one nor of

type two, as they are specified in section 2.2. But they are nearly enough.

Thus it is worth allowing that rules count as harmonious also if, although

they are not of type one or type two, nonetheless derive from such rules in

such a way that they incorporate restrictions on lists in rules of type one or

type two into their shape by adding further premises.

We can then can conclude that S4 and S5 count as a proof-theoretically

justified logics, at least from a purely formal perspective. All the rules would

be in harmony and deductions normalise. Philosophically, there remains

the question whether a rule can really be said to specify the meaning of a

connective if this connective occurs in the premises of the rule, but at least

there seems to be no formal obstacle to accepting S4 and S5 that would
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arise if some detours were not eliminable.

1.3.4 Stability

According to Dummett, the rules for intuitionist logic are all stable. Con-

trast this with Dummett’s example of unstable rules: the rules for disjunc-

tion in quantum logic Y. Y has the same introduction rules as intuitionist

disjunction, but the elimination rule differs in that a restriction is imposed

on its application, such that the collateral deductions of the minor premises

C must not depend on any hypotheses other than A and B respectively:

X ` A YB A ` C B ` C
X ` C

In the context of quantum logic, local peaks with Y may be levelled and thus

the rules are in harmony, according to Dummett. However, if Y is added

to intutionist logic, then quantum disjunction collapses into intuitionist dis-

junction and the unrestricted elimination rule is derivable for Y:

X ` A YB
A ` A

A ` A ∨B
B ` B

B ` A ∨B
X ` A ∨B Y (A) ` C Y (B) ` C

Y (X) ` C

Dummett explains that this is due to a lack of stability between introduc-

tion and elimination rules of quantum disjunction (LBM 290). Of course

the question may arise, why do we blame quantum disjunction rather than

intuitionist disjunction? But my aim here is not to challenge Dummett’s

characterisation of the situation, but only to extract from it some suitable

formal criteria for stability from what he has to say about it.11

11Notice again how this example indicates Dummett’s tendency to look for a notion
of stability applicable to the form of rules of inference, not relative to particular formal
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The crucial feature of the construction that shows that quantum dis-

junction collapses into intuitionist disjunction in the presence of the latter’s

elimination rule is that a maximal segment occurs in it which cannot be

removed. In intuitionist logic, maximal segments can be removed. But sup-

pose the reduction procedure for maximal segments is applied to the above

construction:

X ` A YB

A ` A
A ` A ∨B Y (A) ` C Y (B) ` C

Y (A) ` C

B ` B
B ` A ∨B Y (A) ` C Y (B) ` C

Y (B) ` C
Y (X) ` C

The problem here is that the last step need not be a correct application of

YE, as the restrictions on the collateral deductions of C from A and from

B may not be fulfilled. Hence in a logic containing both intuitionist and

quantum disjunction some maximal segments may not be removable from

deductions.

This provides material for a new approach to stability. Unfavourable

restrictions on applications of rules can jeopardize normalisation if the re-

strictions prevent local maxima or local peaks from being removable. Thus I

suggest the following definition of stability: the rules governing a connective

are stable if they are harmonious and contain no restrictions on the appli-

cation of the rules. As there are no restrictions on the lists of formulas on

which premises depend, stable rules guarantee a maximal amount of context

independence: the context in which such rules are applied in deductions is

irrelevant when it comes to removing local peaks and local maxima; it’s just

a matter of rearranging the deduction.

systems: what else could be the point of considering the addition of quantum disjunction
to intuitionist logic?
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2 The Formal Theory

2.1 Definitions

2.1.1 Languages

My aim in the following is to discuss different logics with different languages

and different deductive systems in a very general way. I have found Polish

Notation the most suitable for this purpose—it does not sacrifice perspicu-

ity for the use of brackets. But the reader may be relieved to hear that

I’m going to take the liberty to revert to standard notation when discussing

examples. Languages consists of

i) countably many individual variables: x1, x2 . . . y1, y2 . . . z1, z2 . . .
ii) countably many individual parameters: a1, a2 . . . b1, b2 . . . c1, c2 . . .
iii) countably many function symbols, each being n-ary for some n ∈

ω: fn1 , f
n
2 . . . g

n
1 , g

n
2 . . . h

n
1 , h

n
2 . . .

iv) countably many predicate symbols, each being n-ary for some n ∈
ω: Fn1 , F

n
2 . . . G

n
1 , G

n
2 . . . H

n
1 , H

n
2 . . .

v) a fixed number of quantifiers, each being n-ary-o-ary for some
n, o ∈ ω: Πn,o,Σn,o,Ξn,o . . .

In appropriate circumstances, super- and subscripts may be dropped for con-

venience. Predicates Fni , quantifiers Ξn,o, functions fnj where n = 0 cover

propositional constants, connectives and individual constants, respectively.

A quantifier Π0,0 is a nullary connective or propositional constant, e.g. fal-

sum ⊥ and verum >. A quantifier Π0,1 is a unary connective, e.g. negation

∼, necessity 2, possibility 3. A quantifier Π0,2 is a binary connective. Typi-

cal binary connectives are implications ⊃ and→, conjunction ∧, disjunction

∨ and the Sheffer stroke |. Here are some examples for n 6= 0, to which the

term ‘quantifier’ applies more naturally. A quantifier Ξ1,1 is a unary-unary

quantifier, e.g. the universal quantifier ∀, the existential quantifier ∃, ‘not

all’ and ‘there is no’. A quantifier Ξ1,2 is a unary-binary quantifier, e.g.

Russell’s formal implication ⊃x. Ξ2,1 is a binary-unary quantifier, e.g. ‘For

all x there is a y’. Ξ2,2 is a binary-binary quantifier, e.g. binary formal
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implication ⊃x,y.

The two species of formal implications given as examples above are not

normally treated as primitive connectives. Rather, they would be defined as

∀x(Fx ⊃ Gx) and ∀x∀y(Rxy ⊃ Sxy) respectively. In a natural deduction

framework, however, it is not difficult to give introduction and elimination

rules for these formal implications. This would appear to provide a rationale

for treating them as concepts the meanings of which are given by rules of

inference rather than definitions. The question now arises: should connec-

tives that may be defined by rules of inference be treated as primitive, such

that it is, so to speak, a logical discovery that they are equivalent to certain

complex expressions, or should we opt for rather more austere foundations

and seek to identify a smaller number of connectives as the primitive ones

in terms of which everything else is defined? The latter option is connected

to a formal problem, namely whether a set of connectives of a logic has the

property that every connective you might wish to add to it is definable in

terms of connectives in the set. This issue is taken up in section 2.5.9.

Sometimes certain predicate symbols – in particular this one: ‘=’ – get

special treatment and are classified as logical constants. I shall not dis-

cuss identity and other such cases, an omission justified by the tradition of

Gentzen and Prawitz. A case has been made by Stephen Read that identity

can be given a proof-theoretic semantics.12

A pseudo-term is the following:

1. An individual parameter is a pseudo-term.
2. An individual variable is a pseudo-term.
3. A function symbol fnm followed by n pseudo-terms is a pseudo-

term.
4. Nothing else is a pseudo-term.

A term is a pseudo-term with no variables.
12‘Identity and Harmony’, Analysis 64 (2004), 113-119.
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A pseudo-formula is the following:

1. A predicate symbol Fnm followed by n pseudo-terms is a pseudo-
formula.

2. Where Ξn,o is a quantifier, Ξn,o followed by n individual variables
followed by o pseudo-formulas is a pseudo-formula.

3. Nothing else is a pseudo-formula.

If Ξn,mx1 . . . xnA1 . . . Am is a pseudo-formula, then A1 . . . Am are in the

scope of Ξn,m. A variable xi is said to occur bound in a pseudo-formula

A by a quantifier Ξn,o occurring in it iff either xi is one of the variables

directly following Ξn,o, or xi occurs in a pseudo-formula in the scope of Ξn,o

which is not in the scope of any other quantifier immediately followed by xi.

A variable occurs bound in A if it is bound by some quantifier. Otherwise,

the variable is free.

A well-formed formula is a pseudo-formula with no free variables. An

atomic formula is a predicate symbol Fnm followed by n terms or a quantifier

Π0,0. The definition of subformula of a formula A is routine, but notice that

a formula containing quantifiers, like ∀xFx has infinitely many subformulas.

For instance, amongst the subformulas of ∀xFx there are, e.g., Fa and Ft.

A[t/u] denotes the result of replacing all occurrences of the pseudo-term

t in A by the pseudo-term u. If u is a variable x, it is assumed that t is not in

the scope of a quantifier binding x. If t is a variable x, then u is replaced for

all free occurrences of x. A[t/u] denotes the result of replacing the pseudo-

terms t = t1 . . . ti with the pseudo-terms u = u1 . . . ui simultaneously in

A, where it is understood that both sequences have the same number of

elements.

Term-forming symbols are expressions that form expressions that denote

objects from other expressions, e.g. the abstraction operator λ, Hilbert’s ε

and the description operator ι. They could also be added to the languages.

There are important philosophical issues connected to such expressions, e.g.

whether it makes sense at all to name a function or a property. A proof-
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theoretic semantics for such expressions should provide an interesting ap-

proach to these questions, but I won’t consider this possibility here.13

Groupings, Lists and Sublists What I call lists are structured collec-

tions of well-formed formulas. Lists are formed by grouping formulas in

specific ways. I’m calling the operations used to this purpose groupings. As

I restrict consideration to binary ones, I’ll denote groupings by commas or

semi-colons, possibly with subscripts: , , ,1 , ,2 , . . . ;1 , ;2 . . .. The list on which

there are no formulas – the empty list – is normally marked by an empty

space, but it is convenient to disallow empty spaces and instead to employ a

symbol designating the empty list: 0. Thus a logic L is required to have the

symbol for the empty list 0 and fixed, finite number of groupings ;1 . . . ;n,

which are used together with variables ξ1, ξ2 . . . to define the notion of a

list-schema of L:

1. 0 is a list-schema of L.
2. The wff of L and the variables are list-schemata of L.
3. If X and Y are list-schemata and ;i is a grouping of L, then (X;i Y )

is a list-schema of L.
4. Nothing else is a list-schema of L.

A list of L is a list-schema without variables. The notion of a sub-list-schema

of a list X may be defined thus:

1. X is a sub-list-schema of X.
2. If Y ;i Z is a sub-list-schema of X, then the sub-list-schema of Y

and Z are sub-list-schema of X.
3. Nothing else is a sub-list-schema of X.

For the special case of lists I employ the less cumbersome term sub-list.

If Y (ξh . . . ξj) and Xh . . . Xj are list-schemata, then Y (ξh/Xh . . . ξj/Xj)

is the result of replacing each variable ξh . . . ξj by the lists Xh . . . Xj . If

13For a discussion see Neil Tennant: ‘A General Theory of Abstraction Operators’,
Philosophical Quarterly 54 (2004), 105-133, and Peter Milne: ‘Existence, Freedom, Iden-
tity, and the Logic of Abstractionist Realism’, Mind (2007), 23-53.
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Xh . . . Xj are lists, then the resulting list Y (ξh/Xh . . . ξj/Xj) is an instance

of the list-schema Y (ξh . . . ξj). This allows the alternative definition ‘Y1 is

a sub-list-schema of X iff there is some list-schema Y2(ξi) such that X =

Y2(ξi/Y1)’.

If X is a sub-list-schema of Y we may say that X occurs on Y . Hence

the empty list is not a sub-list of every list, but only of those on which 0

occurs.

The notation Z(Y ) and V (X;Y ) indicates that Y and X;Y are sub-list-

schemata of Z and V , resp.. Accordingly, V and Z may not add anything

to Y and X;Y , i.e. Z(Y ) may just be Y and V (X;Y ) may just be X;Y .

Y and X;Y however must always be there, as what fails to exist cannot be

a sublist of anything.

In the special case where no formulas occur on list-schemata, i.e. they

consists only of groupings and variables, I shall denote them by upper case

Greek letters, e.g. Θ, possibly followed by their variables as in Θ(ξh . . . ξj),

where I assume that ξh . . . ξj are all and only the variables on Θ. If a list

X = Θ(ξh/Xh . . . ξj/Xj), Θ may be called the salient substructure of X.

In such a case I shall write more briefly Θ(Xh . . . Xj). The notation will

be used if two lists X and Y are given such that for sublists X1 . . . Xn

of X and Y1 . . . Yn of Y , there is a listschema Θ(ξ1 . . . ξn) such that X =

Θ(ξ1/X1 . . . ξn/Xn) and Y = Θ(ξ1/Y1 . . . ξn/Yn). In such a case X and Y

have a common substructure.

2.1.2 Deductive Systems

Consecutions Following Anderson & Belnap14, I call a pattern of the

form

X ` B
14Entailment. The Logic of Relevance and Necessity, Vol. 1 (Princeton 1974), §7.2.
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a consecution, as it is convenient to have the word ‘sequent’, which is usually

employed as the translation of Gentzen’s Sequenz, at one’s disposal for other

purposes. What is to the left of the turnstile ` is the antecedent of the

consecution and what is to its right is the succedent or consequent. We

may say that X and B are in the antecedent and succedent, resp., of the

consecution X ` B.

Gentzen provides the following interpretation for consecutions X ` B,

where he uses an arrow where I use the turnstile: ‘to each (formalised)

assertion B the (formalised) assumptions A1 . . .Aµ on which it depends are

added in the following form:

A1 . . .Aµ → B;

to be read: B holds under the assumptions A1 . . .Aµ.’15

Structural Rules are divided into two categories. First, there are struc-

tural rules for the groupings. Secondly, there are structural rules for the

empty list. Using the Θ-notation for structures of lists, structural rules al-

low replacing a sublist X of Y (X) with substructure Θ(X1 . . . Xl) by another

list Z with substructure Ψ(Z1 . . . Zm), i.e. they have the general form:

Y (Θ(X1 . . . Xl)) ` A
S

Y (Ψ(Z1 . . . Zm)) ` A

When using this notation it is understood that Θ(X1 . . . Xl) and Ψ(Z1 . . . Zm)

are replaced for the same variable ξ in Y (ξ). Although this may be a some-

what unnatural use of terminology, it will be convenient for later purposes

to call the upper A the main premise of the structural rule and the lower

one its conclusion; we say, more naturally, that a structural rule is applied
15Gerhard Gentzen: ‘Die Widerspruchsfreiheit der reinen Zahlentheorie’, Mathematische

Annalen 112 (1936), 493-565, p.512.

29



to a list. To save space structural rules may be written more concisely in the

following way: Θ(X1 . . . Xl) ⇐ Ψ(Z1 . . . Zm), meaning that if Θ(X1 . . . Xl)

occurs on a list, it may be replaced by Ψ(Z1 . . . Zm).

The general form of a structural rule given in the last paragraph is too

liberal for the purposes of modelling acceptable reasoning. It allows there to

be a structural rule that licenses the replacement of any list by any other list.

Undoubtedly this is not a very good rule to have in a logic. Structural rules

for formal systems are motivated by the kinds of collections of assumptions

the logic is envisaged to employ. What is needed are some restrictions. Call

a structural rule X ⇐ X ′ reasonable if satisfies the following requirements:

(i) No restrictions are made on Y (ξ), i.e. it is an arbitrary list-schema (i.e.

we only consider structural rules where the⇐-notation is applicable); (ii) No

restrictions are imposed on the shapes of formulas occurring on the lists X

and X ′, i.e. the structural rules could be formulated by using list-schemata

with only variables on them; (iii) it maps every formula in the antecedent

of the premise of the rule onto a unique formula of the same shape in the

antecedent of its conclusion.

In the following I shall only consider reasonable structural rules. They

are thus restricted to those that allow the reordering of lists of formulas on

lists, the deletion of duplicate lists of formulas and the addition of lists of

formulas to lists. The so-called Mingle rule X ⇐ X;X is not reasonable,

as it fails to map formulas in the antecedent of the premise onto unique

formulas in the antecedent of the conclusion. Here are some examples of

structural rules commonly found in the literature:16

16Cf. for instance Greg Restall: Substructural Logics (London, New York: Routledge
2000).
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Associativity X; (Y ;Z) ⇐ (X;Y );Z
Twisted Associativity X; (Y ;Z) ⇐ (Y ;X);Z
Converse Associativity (X;Y );Z ⇐ X; (Y ;Z)
Strong Commutativity (X;Y );Z ⇐ (X;Z);Y
Weak Commutativity X;Y ⇐ Y ;X
Strong Contraction (X;Y );Y ⇐ X;Y
Weak Contraction X;X ⇐ X
Thinning X ⇐ X;Y

The other kind of structural rules concern the empty list 0. They codify

how the empty list together with a grouping may be added to or deleted

from lists. These are common rules for the empty list and a grouping ;:

Left Addition +0 X ⇐ 0;X
Left Subtraction −0 0;X ⇐ X
Right Addition 0+ X ⇐ X; 0
Right Subtraction 0− X; 0 ⇐ X

Just as I shall not assume logics to have particular structural rules, I shall

not assume them to have specific rules for the empty list either. The only

restriction is that the structural rules of each logic ensure that the empty list

deserve its title. This is captured by the following definition. An empty list

0 may be called genuine in a logic L iff the following two conditions hold: (i)

for any grouping ; of L, 0; 0⇐ 0 is an admissible structural rule of L, which is

to say that a list of 0s just is an empty list; and (ii) for any list with structure

Θ(Z X1 . . . Xm) as used in an introduction rule of type 1 for a connective

of L (cf. section 2.2.2), Θ′(X1 . . . Xm) ⇐ Θ(0 X1 . . . Xm) is an admissible

rule, where Θ′(X1 . . . Xm) is Θ(0 X1 . . . Xm) with 0 deleted together with the

grouping which combines it with one of theXi. In other words, the empty list

may be added to sublists. For instance, if Θ(0 X1 . . . Xm) is X1; (0;X2), then

Θ′(X1 . . . Xm) is X1;X2, and if 0 is genuine in the logic, then its structural

rules guarantee that the latter may be replaced by X1; (0;X2) in deductions.
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The point of the second requirement will become clearer once the general

forms of harmonious rules of inference have been given.

Operational Rules for a quantifier Πn,o are divided into introduction

rules Πn,oI and elimination rules Πn,oE. The former specify under which con-

ditions a formula Πn,ox1 . . . xnC1 . . . Co with Πn,o as main operator may be

derived and the latter which formulae may be derived from Πn,ox1 . . . xnC1 . . . Co.

If a rule is an introduction or elimination rule for Πn,o we may say that that

Πn,o figures in the rules. Initially, I shall restrict consideration to rules in

which exactly one constant figures exactly once and in which no constant

occurs other than the one figuring in it. This excludes rules like distribution:

X ` A ∧ (B ∨ C)
X ` (A ∧B) ∨ C

In order to be able to discuss logics such as classical logic, in section XY

the restrictions is loosened so as to allow also for rules such consequentia

mirabilis, in which falsum figures together with negation.

It is convenient to use the terms premise and conclusion ambiguously,

as this allows a certain flexibility of expression. A first way of speaking is

to call the consecutions above the line of a rule its premises and the one

below is its conclusion. If the aim is to prove a normalisation theorem for a

formal system, we are mainly interested in the succedents of consecutions,

because this is where the maximal formulas to be removed occur, rather

than in the whole consecutions. Thus the formulas in the succedents of the

consecutions above the line may also be called the premises of the rule and

the corresponding formula below the line its conclusion. Context should

always disambiguate and prevent confusions.

The premise containing the constant figuring in it is the major premise

of an elimination rule, all others being minor premises. Minor premises may

also be called collateral premises and the deductions leading to the conse-

cutions having minor premises in their succedents may be called collateral

32



deductions. Many rules have formulas in the antecedents of their premises

which do not occur in the antecedent of the conclusion: these are the dis-

charged assumptions or hypotheses of the rule.

Deductions A logic consists of a language L and a deductive system or

finite set of rules R, consisting of operational and structural rules of the logic

plus the rule that you can always write down initial consecutions of the form

A ` A to get deductions started. I shall use the term deduction rules to

cover both, structural and operational rules. In constructing deductions,

deduction rules are applied and we may speak of applications of rules. In

accordance with the deliberately ambiguous terminology introduced in the

last section, we may say both, that operational rules are applied to formulas

in the succedents of consecutions or to the consecutions which have the

formulas in their succedent, and similarly in the case of structural rules,

we may say both, that they are applied to consecutions or to lists in the

antecedent of consecutions.

Deductions in a logic are constructed from initial consecutions by appli-

cations of deduction rules. More precisely, let L be a logic with language L

and deductive system R. Then ‘Π is a deduction in or of L of the consecu-

tion Y ` B’ may be defined inductively:

1. If A ∈ L, then A ` A is a deduction (of A ` A) in L.
2. Let Π1 . . .Πn be deductions in L of X1 ` A1 . . . Xn ` An, resp.

and let

X1 ` A1 . . . Xn ` An
Y ` B

be an application of the rule r ∈ R. Then

Π1 . . .Πn

Y ` B

is a deduction (of Y ` B) in L.
3. Nothing else is a deduction of L.
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Given the form of operational rules, deductions are in stammbaumförmiger

Anordnung, as Gentzen writes—they are ‘family tree shaped’.

I’m calling the formulas in the succedent of initial consecutions the hy-

potheses of the deduction, and say that hypotheses are introduced into de-

ductions by initial consecutions. Each node in a deduction determines in

the obvious way a subdeduction of the consecution at this node. Following

Gentzen’s interpretation of consecutions, the formulas in the antecedent of

a consecution are the assumptions on which the formula in its succedent

depends. The formula in the succedent of the bottom-most node of the de-

duction is the conclusion of the deduction, and the formulas in its antecedent

I call the assumptions of the deduction.

Where A is the conclusion of a deduction Π and X are the assumptions

of the deduction, let Π(X ` A) mean ‘Π is a deduction of A depending on

the assumptions X’ or ‘Π is a deduction of A from the assumptions X’. This

is of course to be understood as relative to a logic L—which logic is normally

clear from the context. If it needs to be made explicit, we can adopt the

notation Π(X `L A).

Strings and Branches A string ς is a sequence A1 . . . An of formulas in

a deduction (occurring in the succedents of consecutions) such that A1 is

either a hypothesis or a conclusion of an application of an operational rule,

and every Ai, i < n, is premise of a structural rule, and An is premise of

an operational rule or the conclusion of the deduction. For brevity’s sake

I shall speak of strings being premises and conclusions of operational rules,

or being introduced as hypotheses, if this is true of their their first or last

formula. We may say that A1 . . . An are on ς.

Operational rules of the forms to be given in section 2.2 below have the

property that their applications map each undischarged assumption in the

antecedent of a premise of the rule onto a unique formula in the antecedent of
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the conclusion. If all the structural rules of a logic are reasonable, their appli-

cations, too, map formulas in the antecedent of a consecution in a deduction

uniquely onto others in the lines below them. Call the function this obser-

vation gives rise to fβ. As the formulas and the ones they are are mapped

onto by fβ are all of the same shape, we can assign each an index to distin-

guish them: starting with some formula A1 in the deduction, the formulas

that are mapped onto it may be denoted by A11, A12 . . . A1n; the formulas

mapped onto these may be denoted by A111, A112 . . . A121, A122 . . . A1n1,

A1n2 . . . A1nm; and so on until finally formulas in the antecedents of initial

consecutions or introduced by Thinning are reached. The set of all these

formulas I shall call the branch β in the deduction Π beginning with A1. We

may say that the formula A is on the branch β. Branches in deductions may

be visualised in the obvious way suggested by the name. They are ordered

sets with a unique bottom node, which we may call the first formula on the

branch, and they end in top nodes which are formulas in the antecedent of

initial consecutions or have been added by Thinning, which we may call the

last formulas on the branch. More formally, where fnβ (x) is fβ applied n

times to x, the branch beginning with A1 is the set {x | ∃n(fnβ (x) = A1)}.

Consequence Relations The deduction rules of a logic L determine a

consequence relation `L. If consideration is restricted to consequence rela-

tions holding between lists and formulas of the language of L, then a very

straightforward definition suffices: X `L A iff there is a deduction Π in L

such that Π(X ` A). For many systems, in particular those not containing

any grouping for which Thinning is a structural rule, e.g. the relevance

logic R, this is enough. However, for systems such as classical logic C and

intuitionist logic I, it is customary to include the case where conclusions

are drawn from infinitely many formulas. Only a finite number of formulas

can occur on a list, so in order for it to be possible to draw conclusions
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from infinite collections of formulas, lists need to represent suitable finite

sub-collections of these infinite collections, such as equivalence classes of

lists under the relation of interderivability by structural rules of the logic in

question. A suitable inclusion relation 4 needs to be defined for the collec-

tions of formulas, and then we may define Γ `L A iff there is a collection ∆

such that ∆ 4 Γ and a list X which represents ∆ and there is a deduction

Π in L such that Π(X ` A).

The theorems of a logic are those formulas which may be derived from

the empty list of assumptions, i.e. A is a theorem of L iff for some deduction

Π of L Π(0 ` A). In this case we say that Π is a proof of A in L.

2.2 The General Forms of Operational Rules

2.2.1 Introduction

In this section I shall specify the general forms of two kinds of operational

rules and the function Gentzen speaks of which provides a mapping between

introduction and elimination rules. In the first case, initially it is one in-

troduction rule that is assumed to be given, and there is a general method

for reading off elimination rules from it. In the second case, conversely,

initially it is one elimination rule which is assumed to be given, and there

is a general method for reading off introduction rules from it. The process

can be reversed, so that, for a rule of type one, we could also be given the

elimination rules and read off its introduction rule from them, and for a

rule of type two, we could also be given the introduction rules and read off

its elimination rule from them. But in either case it needs to be specified

which of the two types the rules belong to. This constitutes a departure

from the received approaches: normally it is assumed that uniformly, either

the introduction or the elimination rules are given, and the corresponding

elimination and introduction rules are determined relative to them. To my

knowledge it has not been claimed before that rules of inference come in two
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different forms, even though this is supported by the intuition that there is

something very different about, for instance, the rules for conjunction and

those for disjunction.

2.2.2 The First Type of Rules

For the first type of operational rules, we begin with an introduction rule

for a constant Ξ is given and specify a general method for determining its

elimination rules. An introduction rule of type one has the following form:

Φ(X A1 . . . Ah) ` B1 . . . Ψ(X Ak . . . Al) ` Bp
X ` ΞxA1 . . . AlB1 . . . Bp[a/x]

where there are no formulas on X in which the parameters on the sequence

a = a1 . . . av occur.

Above the line, A1 . . . Al are the assumptions discharged by an application

of the rule and B1 . . . Bp are its premises. It is understood that all and only

the premises and discharged assumption reoccur as immediate subformulas

of the conclusion. Hence Ξ is a v-ary-(l+ p)-ary quantifier. In constructing

the conclusion of the rule from the discharged assumptions A1 . . . Al and

the premises B1 . . . Bp the convention is adopted that first comes Ξ, then

the variables it binds, then the discharged assumptions in the order of their

occurrence above the line from left to right, and finally the premises in the

same order, where in each formula the parameters a are replaced by the

variables x. For each premise Bo there is a list-schema Θ(ζ1 . . . ζm) so that

the list on which Bo depends in the sub-deduction leading to it has the salient

sublists X,Ai . . . Aj and is Θ(ζ1/X ζ2/Ai . . . ζm/Aj).17 The substructure of

17Strictly speaking, if wff are in the object language and rules of inference of formal
systems are given in the metalanguage, then the general forms of rules should be given
in a meta-metalanguage, and accordingly X, Aj . . . Ak, Bo as used in this sentence should
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the lists on which the premises depend can be different in each sub-deduction

leading to a premise, hence the different uppercase Greek letters. Note that

it is irrelevant which groupings ;o . . . ;t occur in Θ and what its structure

is. In giving the general forms of harmonious operational rules, we may

completely abstract from these particulars.

The method for specifying the elimination rules for a constant Ξ with an

introduction rule of type one is the following. To each premise of the intro-

duction rule for Ξ, there is a corresponding elimination rule. The number

of minor premises of each elimination rule is determined by the number of

assumptions discharged by an application of ΞI that the premise it corre-

sponds to depends on. The list on which the conclusion of an elimination rule

depends is the list on which this premise of ΞI depends with the discharged

assumptions replaced by the lists on which its minor premises depend. Thus

there are p elimination rules ΞEp, one for each premise Bo of the introduc-

tion rule, each being of the following form, where it is understood that Bo

is amongst the B1 . . . Bp and Ai . . . Aj are amongst the A1 . . . Al and t is a

sequence of terms:

Z ` ΞxA1 . . . AlB1 . . . Bp Yi ` Ai[x/t] . . . Yj ` Aj [x/t]
Θ(Z Yi . . . Yj) ` Bo[x/t]

It is understood that the order in which Yi ` Ai[x/t] . . . Yj ` Aj [x/t] occur

equals the order in which Ai . . . Aj occur in ΞxA1 . . . AlB1 . . . Bp, which of

course is no loss of generality as any deduction may be ordered in such a

way as to fulfil this requirement.

The minor premises are the same as the assumptions discharged by an

application of ΞI on which Bo depends in ΞI, only with the sequence of

in a meta-meta-metalanguage, as they are variables ranging over meta-metalanguage ex-
pressions. I reckon that making these distinctions precise in the text would not add to
perspicuity, so suffice it to make this point once in a footnote.
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variables x = x1 . . . xv simultaneously replaced by the sequence of terms t =

t1 . . . tv. Bo[x/t] too, is just like Bo, but with variables x1 . . . xv replaced by

terms t1 . . . tv. The list on which the conclusion of ΞEo depends is obtained

from the list-schema Θ(ζ1 . . . ζm) of the list on which Bo depends in ΞI by

replacing ζ1 . . . ζm by Z, Yi . . . Yj , i.e. the list is Θ(ζ1/Z ζ2/Yi . . . ζm/Ym).

The point of the second condition imposed on genuine empty lists in

section 2.1.2 should now become clear. Its rationale is to guarantee that

if each premise Bo of the introduction rule has been derived depending on

Θ′(Ai . . . Aj), one can apply a structural rule to derive Bo from Θ(0 Ai . . . Aj)

and then prove a theorem with Ξ as main connective.

The process of determining the elimination rules from the introduction

rules can be inverted, so that the elimination rules are given first and the

introduction rule determined from it. To put it briefly, each elimination rule

for a connective governed by a rule of type one determines a consecution

which is a premise of its introduction rule, where the formula that is in

the consequent of the consecution reappears as a premise and the formulas

which are minor premises reappear as discharged assumptions.

Examples of Rules of Type One

i. Verum

The constant > is governed by an introduction rule with no premises:

X ` >

Hence > has no elimination rule.

ii. Conjunction

The constant ∧ is governed by an introduction rule with two premises and

no discharged hypotheses:
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X ` A X ` B
X ` A ∧B

Hence ∧ has two elimination rules without minor premises:

X ` A ∧B
X ` A

X ` A ∧B
X ` B

Comment

These are the stable rules for conjunction. Some people prefer a different

version of conjunction introduction:

X ` A Y ` B
X,Y ` A ∧B

If this rule is used, the levelling of local peaks with ∧ needs Thinning as

a structural rule for the comma. Hence whether a conjunction governed

by these rules is justified depends on the structural rules of the system.

The rules just given are thus, maybe surprisingly, the more general ones, as

whether a local peak with ∧ governed by them can be levelled is independent

of the structural rules of the logic.

iii. Universal Quantification

The unary-unary quantifier ∀x is governed by an introduction rule with one

main premises and no discharged hypotheses:

X ` A
X ` ∀xA[a/x]

where a does not occur in any formula on X. Hence ∀x has one elimination

rule:
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Y ` ∀xA
Y ` A[x/t]

iv. Implication

Implication→ is governed by an introduction rule with one premise and one

discharged hypothesis:

X;A ` B
X ` A→ B

Hence it has one elimination rule with one minor premise:

Y ` A→ B Z ` A
Y ;Z ` B

The rules for relevant implication are the same as the rules for material

implication; whether the conditional is relevant or not depends on further

details of the logic, in particular whether Thinning is a structural rule for

;. Using the notation for substructures in the formulation of the rules, we

could generalise them and say that a connective → is an implication for the

grouping ; if ; is the salient grouping of the structure Θ and → is governed

by rules of the form:

Θ(X A) ` B
X ` A→ B

Y ` A→ B Z ` A
Θ(Y Z) ` B

Notice that there are two possible implications for a grouping ;, which,

in the absence of the structural rule X;Y ⇐ Y ;X need not amount to
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the same thing: in one case Θ(X A) = X;A, in the other Θ(X A) =

A;X. The first may be called the right implication for ;, the second its left

implication. Substructures might thus lend themselves for the formulation

a general theory of connectives, which is left for future investigation.

v. Formal Implication

The unary-binary quantifier ⊃x is governed by an introduction rule with one

main premise and one discharged hypothesis:

X,Aa ` Ba
X ` Ax ⊃x Bx

where a does not occur in any formula on X. Hence it has one elimination

rule with one minor premise:

Y ` Ax ⊃x Bx Z ` At
Y, Z ` Bt

vi. Biconditional

The biconditional is governed by an introduction rule with two premises and

one discharged hypothesis for each premise:

X,A ` B X,B ` A
X ` A↔ B

Hence it has two elimination rules, each with one minor premise:

X ` A↔ B Y ` A
X,Y ` B

X ` A↔ B Y ` B
X,Y ` A

One could generalise these rules using the substructure notation to define

the notion of a biconditional for a grouping ;.

42



2.2.3 The Second Type of Rules

For the second type of operational rules, we begin with an elimination rule

for a constant Ξ and specify a general method for determining its introduc-

tion rules. An introduction rule of type two has the following form:

Z ` ΞxD1 . . . Dn Y (Φ(D1[x/a] . . . Di[x/a])) ` E . . . Y (Ψ(Dl[x/a] . . . Dn[x/a])) ` E
Y (Z) ` E

where none of the parameters on the sequence a = a1 . . . av occurs in E or

any formula on Y .

ΞxD1 . . . Dn is the major premise of the rule, the Es above the line are

its minor premises and D1[x/a] . . . Dn[x/a] to their left are the assumptions

discharged by an application of the rule. It is understood that all and

only the discharged assumptions occur in ΞxD1 . . . Dn (with parameters

replaced by variables). Hence Ξ is a v-ary-n-ary quantifier. D1 . . . Dn occur

in ΞxD1 . . . Dn in the order in which they occur as discharged assumptions

in the antecedents of the minor premises from left to right through the

subdeductions leading to them. There is a list-schema Y (ξ) such that for

each minor premise E there is a list-schema Θ(ζj . . . ζk) and a collection of

assumptions Dj [x/a] . . . Dk[x/a] discharged by the rule so that E depends

on Y (ξ/Θ(ζj/Dj [x/a] . . . ζk/Dk[x/a])), and the list on which the conclusion

depends is Y (ξ/Z), where Z is the list on which the major premise depends.

The substructure of the lists of discharged hypotheses can be different in

each sub-deduction leading to a premise, hence the different uppercase Greek

letters. It is irrelevant which groupings ;o . . . ;t Θ uses and what the structure

Θ is.

The method for specifying the introduction rules for a constant Ξ with

an elimination rule of type two is the following. The number of introduc-

tion rules of Ξ equals the number p of minor premises of ΞE. To each
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consecution having a minor premise in its succedent there corresponds an

introduction rule, and the number of premises of each introduction rule is

determined by the number of assumptions discharged by an application of

ΞE that this minor premise depends on. The list on which the conclusion

of an introduction rule depends is the sublist of the list on which the minor

premise depends on which the discharged assumptions are found, with these

assumptions replaced by the lists on which the premises of the introduction

rule depend. Thus there are p introduction rules ΞIp, one for each minor

premise E, each being of the following form, where it is of course understood

that the Dj . . . Dk are amongst the D1 . . . Dn:

Xj ` Dj [x / t ] . . . Xk ` Dk[x / t ]
Θ(Xj . . . Xk) ` ΞxD1 . . . Dn

It is understood that the order in which the premises Dj . . . Dk occur above

the line equals the order in which they occur in Θ(Xj . . . Xk) ` ΞxD1 . . . Dn,

which of course is no loss of generality as any deduction may be ordered in

such a way as to fulfil this requirement.

The premises are the same as the assumptions discharged by an appli-

cation of ΞE except that the sequence of free variables x = x1 . . . xv are

replaced by the sequence of terms t = t1 . . . tv. The list on which the con-

clusion of an introduction rule for Ξ depends is constructed from the list

schema Θ(ζj . . . ζk) of the list on which the assumptions Dj [x/a] . . . Dk[xa]

discharged by ΞE are by replacing ζj . . . ζk by Xj . . . Xk, i.e. the list is

Θ(ζj/Xj . . . ζk/Xk).

The process can be inverted. To be brief, the number of introduction

rules for a connective governed by rules of type two determines the number

of collateral deductions, where each premise corresponds to a discharged

assumption in a collateral deduction.
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Examples of Rules of Type Two

i. Falsum

The constant ⊥ is governed by an elimination rule without minor premises:

X ` ⊥
Y (X) ` A

Hence ⊥ has no introduction rule.

Comment.

It might be thought that as there are no collateral deductions, Y (X) should

be just X. Reflection shows that this is not so. An elimination rule of type

two says that if a number p of deductions of a formula E from a list-schema

Y (ξ) are given, where the variable is replaced by a list which groups some of

the hypotheses D1 . . . Dn discharged by an application of the rule, then we

may derive E from Y (Z), where Z is the list on which the major premise

depends. falsum has no subformulas, so there are no collateral deductions

and discharged hypotheses. So Y (ξ) is arbitrary.

ii. Existential Quantification

The unary-unary quantifier ∃x is governed by an elimination rule with one

minor premise and one discharged hypothesis:

X ` ∃xFx Y (A[x/a]) ` C
Y (X) ` C

where a does not occur in C or any formula on Y . Hence it has one intro-

duction rule:

Z ` A[x/t]
Z ` ∃xA
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iii. Truth Constant t for the Empty List

The constant t is governed by an elimination rule with one minor premise

where 0 occurs in the place of a discharged assumption:

X ` t Y (0) ` C
Y (X) ` C

Hence t has one introduction rule with no premises:

0 ` t

Comment

t is a proposition made true by the logic alone, but different from >. It

is worth noting here that there are no rules of type one or type two that

govern the corresponding proposition expressing logical falsity f, as used in

relevant logics. Rules for f need to appeal to negation. Proof-theory seems

to be biased towards truth and neglects falsity.

vi. Fusion

The constant × is governed by an elimination rule with one minor premise

and two discharged hypotheses:

X ` A×B Y (A;B) ` C
Y (X) ` C

Hence it has one introduction rule with two premises:

X ` A Y ` B
X;Y ` A×B
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× is closely connected to the grouping ; independently of the structural rules

used in a logic, as Y (A;B) ` C iff Y (A×B) ` C. Left to right follows easily

by ×E, right to left by ×I and Cut, which is shown to be an admissible

rule of the systems under consideration in section 2.5.8. This is useful in

characterising a general notion of a conjunction. Using the Θ-notation we

can say that a connective κ is a conjunction for the grouping ; of a logic if ;

is the salient grouping in Θ and κ is governed by the rules:

X ` κAB Y (Θ(A B)) ` C
Y (X) ` C

X ` A Y ` B
Θ(X Y ) ` κAB

There are two possible conjunctions for a grouping ; which, in the absence of

the structural rule X;Y ⇐ Y ;X, need not amount to the same thing: in one

case Θ(X Y ) = X;Y , in the other Θ(X Y ) = Y ;X. The first may be called

the right conjunction for ;, the second its left conjunction, mirroring the

terminology for implications. For the left conjunction ×l for the semi-colon,

we have Y (B;A) ` C iff Y (A×l B) ` C.

Notice that ∧, on the other hand, is only closely connected to a grouping

in special cases, such as I and C. where Thinning is a structural rule.

v. Disjunction

The constant ∨ is governed by an elimination rule with two minor premises,

each with one discharged assumption:

X ` A ∨B Y (A) ` C Y (B) ` C

Y (X) ` C

Hence ∨ has two introduction rules with one premise each:
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X ` A
X ` A ∨B

X ` B
X ` A ∨B

2.2.4 Negation

The only negations covered so far are negations defined in terms of implica-

tion and falsum, i.e. ¬A =def. A→ ⊥. For these negations, ex contradictione

quodlibet ¬A;A ` B is valid, where → is an implication for ;. This is not

suitable for relevance logics. To formalise negations for relevant logics, we

need to lift the restriction that only one constant can figure in a rule and

introduce a symbol f. The introduction rule for negation is then almost a

rule of type one, except that f occurs in it together with ¬:

Θ(X A) ` f
X ` ¬A

The rule has one premise and one discharged assumption, hence it has one

elimination rule with two premises:

Z ` ¬A Y ` A
Θ(Z Y ) ` f

We can say that ¬ is a negation for the salient grouping of Θ.

If f is considered to be a proposition, it’s intended interpretation is as

a logical falsehood. Whether it amounts to the same as ⊥ depends on the

further features of the logic, in particular whether Thinning is a structural

rule for the salient grouping of Θ. Notice that ⊥ can never be a maximal

formula, as it has no introduction rules. Similarly, I consider f as never being

a maximal formula: the rules above are not introduction and elimination

rules for f, but only for ¬. In fact, then, f is not governed by any introduction

and elimination rules at all. Thus a case could be made that f is not a
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proposition at all, but a punctuation mark that is only needed to codify the

use of negation.18 If f is not a proposition, it’s meaning would of course

not have to be given by a proof-theoretic semantics, as it doesn’t have a

meaning. It would be possible not to use the symbol f at all, but rather

allow for an empty space to the right of the turnstyle in negation rules. But

just as we introduced a special symbol for the empty list, it is natural to

introduce a symbol for empty spaces on the right of the turnstyle, too. We

could have used 0 for that purpose, but f is customary in the literature on

relevance logic. Using 0 or an empty space instead of f would of course

prevent us from having this special logical falsehood that f is supposed to

be amongst the assumptions of consecutions. Notice that 0 ` 0 or 0 ` f are

not initial consecutions, as only consecutions of the form A ` A are initial

where A is a formula. Viewing f as a punctuation mark or an empty space

to the right of the turnstyle rather than a formula simplifies things at a later

stage, so this is the course I’m going to take. Hence f ` f is not an initial

consecution either.

From the philosophical perspective, viewing f as not being a proposition

at all would also get around the point that, if f was a proposition, then

its meaning is dependent on the meaning of negation, and conversely, the

meaning of negation is dependent on the meaning of f : their respective

meanings can only be given together. Such a circular dependence of meaning

might be philosophically objectionable. On the other hand, it might be

worth noting that these rules only give rise to a very weak negation, as

f could be interpreted as any unacceptable sentence (cf. the negation of

minimal logic). What makes ⊥ a good candidate for a definition of negation

is that it entails everything, but this may not be the case for f if Thinning

is not a structural rule for the salient grouping of Θ. Thus a certain amount
18Neil Tennant suggests to liken a symbol like f to an interjection ‘Contradiction!’: it

marks a ‘dead end’ in a deduction, see his ‘Negation, Absurdity and Contrariety’ in What
is Negation? edd. Dov Gabbay and Heinrich Wansing (Dortrecht: Kluwer, 1999) 199-222
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of stipulation is needed here, at least where relevance logics are concerned.

But this is not the place to get into this in any further detail.

The two negation rules only give negations close to negations close to

intuitionist negation. To get negations close to classical negation, we need

look at the rule for ¬E in a slightly deviant way. Suppose this is taken to be,

not an elimination rule for ¬A, but as an elimination rule for A.19 Strictly

speaking, the order of the premises then has to be changed, but this makes

it an elimination rule almost of form one:

Z ` A Y ` ¬A
Θ(Z Y ) ` f

This rule is of course redundant if the above rule of ¬E is present in the

logic. But it shows that the corresponding introduction rule for A which

corresponds to this elimination rule for A is consequentia mirabilis:

Θ(X ¬A) ` f
X ` A

Conversely, considering consequentia mirabilis to be an introduction rule for

A makes it a rule almost of form one, the corresponding elimination rule of

which is ¬E with the order of premises changed.

Hence, lifting the restriction that only one constant figures in a rule,

we can say that negations are governed by rules almost of form one, where

negations close to intuitionist negation are governed by ¬I and ¬E, and,

reading consequentia mirabilis in a slightly deviant way, we can say that

negations related to classical negation are also governed by rules almost of
19This suggestion has been made by Peter Milne in ‘Classical Harmony: Rules of Infer-

ence and the Meanings of the Logical Constants’, Synthese 100 (1994), 49-94, p.58
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form one, i.e. ¬I, ¬E and consequentia mirabilis (the version of ¬E with

the order of premises reversed being redundant). Thus classical negation is

no worse from a perspective of form than intuitionist negation and we can

characterise them both as governed by harmonious rules, as defined in the

next section.

Thus, from a formal perspective, the rules of classical negation exhibit

the same kind of symmetry as those of intuitionist negation. To show that

this symmetry is also philosophically adequate, we need to ensure that con-

sequentia mirabilis does not upset the equilibrium between grounds for as-

serting complex formulas and their consequences: consequentia mirabilis

introduces potentially new grounds for asserting A, hence an application

of this rule followed by an application of an elimination rule for the main

connected of A counts as a local peak. So we need to show that these local

peaks can be levelled.

This leads to a somewhat puzzling result in the philosophical interpreta-

tion: as local peaks with implication and consequentia mirabilis can be lev-

elled in classical logic, consequentia mirabilis does not introduce new grounds

for asserting formulas of the form A ⊃ B. Nonetheless, there are theorems

containing ⊃ but not containing negation, in particular ((A ⊃ B) ⊃ A) ⊃ A,

the proof of which needs to appeal to consequentia mirabilis. But classical

negation does not need ⊃ as a primitive, as it could be defined in terms of

¬ and &, for which no corresponding problem arises, so I don’t think this

matters much.

The procedure of viewing consequentia mirabilis as an introduction rule

for A only works because of the presence of f. Suppose we viewed, e.g., →E

to be an introduction rule for B:

X ` A→ B X ` A
X ` B
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If we pretended that this is a rule of form one, it would determine two

elimination rules for B, namely:

X ` B
X ` A→ B

X ` B
X ` A

The second rule is obviously problematic. It forces us to interpret B as

equivalent to ⊥, i.e. not as an arbitrary proposition, but as one with a

specific interpretation.

2.3 Harmony, Stability and Normality

We are now in a position to give a formally precise definition of harmony:

introduction and elimination rules for a constant Ξ are in harmony or a

logical constant Ξ is governed by harmonious rules iff either (i) Ξ is governed

by an introduction rule of type one and elimination rules read off it by the

method in section 2.2.2, or (ii) Ξ is governed by an elimination rule of type

two and introduction rules read off it by the method in section 2.2.3, or (iii)

Ξ is governed by negation rules as in section 2.2.4.

Stability is sometimes characterised as harmony plus its converse. Given

that the process of reading off introduction and elimination rules from each

other can be inverted, we would now be faced with the consequence that

stability would be a notion that adds nothing to harmony. Thus I suggest

to use a different notion of stability.

The definition of harmony says nothing about conditions that might be

imposed on the application of rules of inference, as in quantum disjunction

or S4 necessity discussed earlier. These rules are of the form of type two

and type one, respectively. The rules for quantum disjunction have the same

form as the rules for intuitionist disjunction, but there is a restriction on

the application of the rule, which requires that in the collateral deductions,
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Y (A) = A and Y (B) = B. The rules for S4 necessity have the same form

as the rules for the truth-operator:

X ` A
X ` TA

X ` TA
X ` A

The difference is that the application of 2I is restricted to cases where all

formulas on X are of the form 2B. The restrictions do not affect the forms

of the rules, they only restrict their application. Hence the rules for quantum

disjunction and necessities are harmonious according to my definition.

The definition of harmony just given allows for restrictions on the appli-

cations of the rules. As discussed earlier, Dummett would not count the rules

for quantum disjunction as stable. This suggests the following, non-trivial

definition of stability: introduction and elimination rules for a constant Ξ

are stable or a logical constant Ξ is governed by stable rules iff the rules for

Ξ are harmonious there are no restrictions on the application of the rules.

Hence Y and 2 are governed by harmonious, but not stable rules, according

to my definitions.

My definitions of harmony and stability are purely formalistic and apply

to rules of inference in isolation of logics they occur in. Harmony and sta-

bility normally do not guarantee normality, i.e. that the deductions in the

logic normalise, which is the philosophically crucial notion in the context

of a justification of deduction. To establish that there are reduction proce-

dures for removing local peaks and local maxima from deductions depends

on the logics in questions. Reduction procedures will be given in the next

section for the case where there are no applications of structural rules in the

local peaks and maxima, i.e. for direct local peaks and maxima. A step in

establishing that a logic normalises thus consists in showing that stretched

local peaks and maxima may be transformed into direct ones, which is the

first Lemma to be proved in section 2.5.2.
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The reduction procedures can also be conceived of merely formalistically

as methods for transforming certain trees into other trees. Normalisation of

deductions, however, is a process rather more subtle than that. It concerns

particular deductions of particular formal systems, and the question is how

far it may be generalised. This question is answered by the reduction pro-

cedures to be given in the next section to the extent that they exhibit the

general patterns of steps in the normalisation of deductions. These patterns

are indeed always the same. But whether they are applicable in a proof that

shows that the deductions of a specific logic normalise depends on whether

the rules of the system are such that it is guaranteed that applying the re-

duction procedures always transforms deductions into deductions. This has

to be established for each logic individually; if it is the case, the deductions

normalise and it is a justified logic. There is a class of logics where it is

particularly easy to establish that the rules of the system have the desired

property: these are the logics which have only stable rules for connectives.

In such a case it suffices to inspect the rules in order to know that the de-

ductions in the logic normalise: that this is so is guaranteed by the very

form of the rules. If some rules of a logic are merely harmonious and involve

restrictions on applications of rules, whether deductions normalise depends

also on other factors, namely the nature of the restrictions and the other

rules present in the system.

Despite their philosophical importance deriving from the view that sta-

ble rules of inference completely determine the meaning of the constant

they govern, from the perspective of normalisation there is not much of a

difference between logics which have only stable rules and logics where the

reduction procedures are applicable, even though some of the rules are only

harmonious. We may call a logic L regular if its rules ensure that the re-

duction procedures always turn deductions of L into deductions of L and its

empty list is genuine.
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2.4 Reduction Procedures

One minor obstacle to reduction procedures turning deductions of a logic into deductions of that logic are the restrictions on

parameters in the rules. In unfortunate circumstances it could happen that after a reduction procedure has been applied, an

application of such a rule fails to be correct, as the restriction on the parameters are unfulfilled. As there is an unlimited

amount of parameters at our disposal in the language for each logic, it is always possible to rewrite a deduction in such a way

that the variables on which the restrictions are imposed do not occur in any other subdeduction of the deduction than that

one which leads to the conclusion of the application of the rule. This is fairly obvious, but the proof is tedious, so I won’t

give it here. In the following, I’ll always assume the necessary changes of parameters to have been made to avoid conflicts in

the restrictions.

2.4.1 Reduction Procedures for Maximal Formulas

A maximal string in a deduction is a string consisting of occurrences of a formula A which is conclusion of an introduction

rule for its main connective Ξ, of ex falso quodlibet or of consequentia mirabilis and major premise of an elimination rule of

Ξ. A maximal formula is a maximal string with exactly one formula on it. A local peak with Ξ consists of the maximal string,

the premises of the introduction rule of which it is the conclusion and the minor premises and conclusion of the elimination

rule of which it is the major premise; i.e. the local peak consists of the context in which the maximal string occurs in a

deduction. If the maximal string of the local peak consists of only one formula, the local peak may be called direct, stretched

otherwise.
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For Rules of Type One. In a local peak with a constant Ξ governed by rules of type one, an application of its introduction

rule is followed by an application of one of its elimination rules ΞEo:

Π1

Φ(X A1 . . . Ah) ` B1 . . .

Πo

Θ(X Ai . . . Aj) ` Bo . . .

Πp

Ψ(X Ak . . . Al) ` Bp
X ` ΞxA1 . . . AkB1 . . . Bp[a/x]

Σi

Yi ` Ai[a/t] . . .

Σj

Yj ` Aj [a/t]

Θ(X Yi . . . Yj) ` Bo[a/t]

P

The local peak may be levelled and the maximal formula ΞxA1 . . . AjB1 . . . Bp[a/x] removed by re-organizing the deduc-

tion with the following method. If Ai . . . Aj are replaced by Yi . . . Yj , respectively, on the branches beginning with these

formulas in the bottom-most consecution Θ(X Ai . . . Aj) ` Bo of Πo and a is replaced by t throughout Πo, then the initial

consecutions in which the branches end will be Yi ` Ai[a/t] . . . Yj ` Aj [a/t]. Let’s denote the result of this procedure by

Πo[Ai/Yi . . . Aj/Yj ][a/t]. Notice that square brackets containing lists work rather differently from squarebrackets containing

terms: the latter denote replacement throughout a formula/list/deduction, the former only on previously specified branches.

To construct the desired deduction of Θ(X Yi . . . Yj) ` Bo[a/t] without the local peak, we append Σi . . .Σj to those top-nodes

of Πo[Ai/Yi . . . Aj/Yj ][a/t] which begin with the consecutions Yi ` Ai[a/t] . . . Yj ` Aj [a/t] resulting from the replacement.

Using the notation introduced in section 1.3.3, the re-organised deduction is:
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Σi

Yi ` Ai[a/t] . . .

Σj

Yj ` Aj [a/t]

Πo[Ai/Yi . . . Aj/Yj ][a/ t ]

Θ(X Yi . . . Yj) ` Bo[a/t]

P

Implementing the reduction procedure might produce new maximal formulas. First, this may happen if Bo in Πo is a conclusion

of an introduction rule for its main premise and Bo[a/t] in P is major premise of an elimination rule, and secondly if for

instance Ai in an initial consecution of Πo is major premise of an elimination rule and the last step of Σi is an introduction

rule for its main connective. Evidently, any new maximal formula is of lower degree than the maximal formula that has been

removed, i.e. less constants occur in it, as any new maximal formula is a subformula of the removed one, and the resulting

deduction also contains less applications of rules of inference. This yields a suitable bases for a proof by induction that all

maximal formulas can be removed.

For Rules of Type Two In a local peak with a constant Ξ governed by rules of type two, an application of one of its

introduction rules ΞIo is followed by an application of its elimination rule:
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Πj

Xj ` Dj [x / t ] . . .

Πk

Xk ` Dk[x / t ]

Θ(Xj . . . Xk) ` ΞxD1 . . . Dn

Σ1

Y (Φ(D1[x/a] . . . Di[x/a])) ` E . . .

Σp

Y (Ψ(Dl[x/a] . . . Dn[x/a])) ` E

Y (Θ(Xj . . . Xk)) ` E

P

It is understood that there is a deduction Σo of Θ(Dj [x/a] . . . Dk[x/a]) ` E amongst the collateral deductions of minor

premises, which I couldn’t add explicitly due to limitations of space on the page.

The local peak may be removed by a method similar to the one given for rules of type one: the branches starting with

Dj [x/a] . . . Dk[x/a] in the bottom-most consecution Θ(Dj [x/a] . . . Dk[x/a]) ` E of Σo are replaced by Xj . . . Xk, a is replaced

by t, and Πj . . .Πk are appended to the consecutions in which the branches end. More graphically, the local peak in a

deduction is replaced by the following construction:

Πj

Xj ` Dj [x / t ] . . .

Πk

Xk ` Dk[x / t ]

Σo[Dj/Xi . . . Dk/Xk][a/t]

Θ(Xj . . . Xk) ` E

P
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As in the previous case, applying the reduction procedure might introduce new maximal formulas, namely if, e.g., Dj in an

initial consecution of Πj is major premise of an elimination rule and Dj [a/t] is conclusion of an introduction rule in Σo, or if E

is conclusion of an introduction rule in the last step of Σo and major premise of an elimination rule in P. In the previous case,

the new maximal formula has less connectives than the removed one. But now there is no guarantee that the new maximal

formula is of lower degree than the removed one, but the resulting deduction contains less applications of rules of inference

than the original deduction. What is more, the reduction procedures given in section 2.4.2 and Lemma 3 to be proved in

section 2.5.2 ensures that deductions can be transformed in such a way that no conclusion of a rule of type two is major

premises of an elimination rule, hence cannot become a maximal formula by applying the reduction procedure.

Reduction Procedures for ex falso quodlibet An application of ex falso quodlibet followed by an application of an

elimination rule with the formula so derived as its major premise constitutes a local peak, which should be removable from

deductions. Special reduction procedures for this case are not necessary, as the reduction procedures of section 2.4.2 and

Lemma 3 take care of this as a special case.

Such local peak could also never arise if the conclusion of ex falso quodlibet is required to be atomic. In section 2.5.10, I’ll

consider under which conditions it is possible to impose this restriction.
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2.4.2 Reduction Procedures for Maximal Segments

A maximal segment (of minor premises) is a sequence of strings σ1 . . . σn such that σ1 is the conclusion of an introduction

rule for the principal operator of the formula on it or of ex falso quodlibet, σn is main premise of an elimination rule, and for

each i, j, 1 ≤ i < j < n, σi is minor premise of an application of a rule of form two and σj is the conclusion of this rule. It

follows that the formulas on the strings σ1 . . . σn are all of the same shape. We may call it a maximal minor premise. The

part of a deduction in which a maximal segment occurs, i.e. the segment plus premises and conclusions of rules of inference

applied to its formulas, may be called a local maximum.

If the last string of the segment consists of only one occurrence of the formula, the local maximum may be called direct,

stretched otherwise. Reduction procedures will be given for direct local maxima, i.e. to prove normalisation a lemma is

needed that establishes that every stretched local maximum may be turned into a direct one. Let the weight of a maximal

segment be the number of maximal minor premises on its strings. In the normalisation proof to be given in section 2.5.2, it

is shown by induction over the weight of maximal segments that any segment can be reduced to weight 1, in which case it

turns into a maximal formula, which can be removed by the reduction procedures of the last section.

The two reduction procedures given in the next section apply more generally to the case where the conclusion of an

elimination rule of type two is the major premises of an elimination rule; maximal segments are a special case thereof.

Reduction Procedure One Suppose the conclusion of an application of an elimination rule ΞE of form two with major

premise ΞxD1 . . . Dn and minor premises of the form OxA1 . . . AlB1 . . . Bp, where O is governed by a rule of form one, is
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followed by an application of OEo:

Z ` Ξ y D1...Dn Y (Φ(D1[y/a]...Di[y/a])) ` O x A1...AlB1...Bp . . . Y (Ψ(Dl[y/a]...Dn[y/a])) ` O x A1...AlB1...Bp

Y (Z) ` O x A1...AlB1...Bp Xi ` Ai[x/t] . . . Xj ` Aj [x/t]

Θ(Y (Z) Xi...Xj) ` Bo[x/t]

The application of OEo can be pushed up one step, to before the application of ΞE, so that the minor premises of the latter

rule have the form Bo[x/t]. Then instead of applying OEo to the consecutions Y (Z) ` OxA1 . . . AkB1 . . . Bp and Xi ` Ai[x/t]

. . . Xj ` Aj [x/t], it is applied to the consecutions that have the minor premises of ΞE in the succedents as major premises and

Xi ` Ai[x/t] . . . Xj ` Aj [x/t] as minor premises. So for the first minor premise of ΞE, this yields the following application

of OEo:

Y (Φ(D1[y/a] . . . Di[y/a])) ` OxA1 . . . AlB1 . . . Bp Xi ` Ai[x/t] . . . Xj ` Aj [x/t]

Θ(Y (Φ(D1[y/a] . . . Di[y/a])) Xi . . . Xj) ` Bo[x/t]

If this is done for all minor premises of ΞE, this rule may be applied thus:

Z ` Ξ y D1 . . . Dn Θ(Y (Φ(D1[y/a] . . . Di[y/a])) Xi . . . Xj) ` Bo[x/t] . . . Ψ(Y (Φ(Dl[y/a] . . . Dn[y/a])) Xi . . . Xj) ` Bo[x/t]

Θ(Y (Z) Xi . . . Xj) ` Bo[x/t]
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If OxA1...AlB1...Bp is the last formula of a maximal segment, the weight of the local maximum is thereby reduced by one.

Note that the procedure does not create new maximal segments or maximal formulas and neither does it increase the length

of any other maximal segment existing in the deduction: the only candidate here would be Bo, but it is the conclusion of ΞE.

Reduction Procedure Two Suppose the conclusion of an application of an elimination rule ΞE of form two with major

premise ΞxD1 . . . Dn and minor premises of the form OxC1 . . . Cq followed by an application of OE also of form two:

Z ` Ξ y D1...Dn Y (Φ(D1[y/a]...Di[y/a])) ` O x C1...Cp ... Y (Ψ(Dl[y/a]...Dn[y/a])) ` O x C1...Cp

Y (Z) ` O x C1...Cp V (Θ(C1[x/b]...Ch[x/b]) ` E ... V (Ω(Ck[x/b]...Cp[x/b]) ` E

V (Y (Z)) ` E

The application of OE can be pushed up one step to before the application of ΞE, so that the minor premises of the latter

rule are occurrences of the formula E. So instead of applying OE to Y (Z) ` OxC1 . . . Cp and V (Θ(C1[x/b] . . . Ch[x/b]) ` E

. . . V (ΩO(Ck[x/b] . . . Cp[x/b]) ` E, it is applied to the consecutions that have the minor premises of ΞE in their succedents

as major premises and those that have E in their succedents as minor premises. For the first minor premise of ΞE, the

application of OE then is:

Y (Φ(D1[y/a] . . . Di[y/a])) ` OxC1 . . . Cp V (Θ(C1[x/b] . . . Ch[x/b]) ` E . . . V (Ω(Ck[x/b] . . . Cp[x/b]) ` E
V (Y (Φ(D1[y/a] . . . Di[y/a]))) ` E
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If this is done for all the minor premises of ΞE, this rule may be applied thus:

Z ` Ξ y D1 . . . Dn V (Y (Φ(D1[y/a] . . . Di[y/a]))) ` E . . . V (Y (Ψ(D1[y/a] . . . Di[y/a]))) ` E

V (Y (Z)) ` E

If OxC1 . . . Cp is the last formula of a maximal segment, the weight of the local maximum is thereby reduced by one. Note

that this time although the number of maximal segments of formulas cannot be increased by applying the method, the length

of a maximal segment might be, namely if E in the original deduction was part of one. This will have to be taken care of in

the normalisation proof.
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2.5 Quasi-Intuitionist Logics

Call a logic quasi-intuitionist if it is regular and has only rules of inference

of forms one and two, but no negations as in section 2.2.4, i.e. negation

is defined as in terms of ⊥ and implication. These are the logics to be

considered in this section.

2.5.1 Uniqueness

Connectives governed by rules of type one or type two unique in the following

sense:

Theorem 1 (Uniqueness). If two of its connectives Π and Ξ are governed

by the same rules of inference of form one or two, then Π x A1 . . . An a`

Ξ x A1 . . . An.

Proof. For rules of type one, to show that ΠxA1 . . . An ` ΞxA1 . . . An, apply

each of the p elimination rules for Π to the initial consecution ΠxA1 . . . An `

ΠxA1 . . . An and whichever of A1 ` A1 . . . An ` An are necessary. Then

apply ΞI. The converse is similar, and so is the proof in case of rules of type

two. Q.e.d.

2.5.2 Normalisation

The reduction procedures of section 2.4.1 only apply to direct local peaks,

where the introduction rule is followed immediately by the elimination rule,

but not for stretched ones. Analogously for the reduction procedures of

section 2.4.2. As the lists on which major premises of elimination rules

depend contain no discharged assumptions, they are carried down unchanged

to be part of the list on which the conclusion of the rule depends. Thus

any application of a structural rule to the list on which the major premise

depends may be moved downwards to after the application of the rule. It

follows that every stretched local peak/maximum can be transformed into

a direct one:
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Lemma 2. Any deduction may be transformed into one where the major

premises of elimination rules are not conclusions of structural rules.

Proof. Suppose the main premise of an elimination rule of type one is premise

of a structural rule Z ⇐ Z ′:

Z ` ΞxA1 . . . AkB1 . . . Bp

Z ′ ` ΞxA1 . . . AkB1 . . . Bp Yi ` Ai[x/t] . . . Yj ` Aj [x/t]
Θ(Z ′ Yi . . . Yj) ` Bo[x/t]

The application of the structural rule can be moved down to after the ap-

plication of the elimination rule, by replacing the above by the following

construction shows:

Z ` ΞxA1 . . . AkB1 . . . Bp Yi ` Ai[x/t] . . . Yj ` Aj [x/t]
Θ(Z Yi . . . Yj) ` Bo[x/t]
Θ(Z ′ Yi . . . Yj) ` Bo[x/t]

Similarly for rules of type two. An application of the structural rule:

Z ` ΞxD1 . . . Dn

Z ′ ` ΞxD1 . . . Dn Y (Φ(Dh[x/a] . . . Di[x/a])) ` E . . . Y (Ψ(Dl[x/a] . . . Dm[x/a])) ` E
Y (Z ′) ` E

can be moved down one step:

Z ` ΞxD1 . . . Dn Y (Φ(Dh[x/a] . . . Di[x/a])) ` E . . . Y (Ψ(Dl[x/a] . . . Dm[x/a])) ` E
Y (Z) ` E
Y (Z ′) ` E
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What is needed is a systematic way of applying the transformation methods

to a deduction to insure that after a finite number of steps no major premises

of elimination rules are conclusions of applications of structural rules. One

option is to apply the method to the leftmost major premise of an elimination

rule which is a conclusion of a structural rule so that no other major premise

of an elimination rule in the subdeduction leading to it is also a conclusion

of a structural rule. Applying the procedure a finite number of times leads

to the desired result. Q.e.d.

The reduction procedures of section 2.4.2 may be used to prove some-

thing slightly stronger than that maximal segments may be removed:

Lemma 3. Any deduction can be transformed into a deduction in which

the strings beginning with the conclusion of elimination rules of type two

are not major premises of elimination rules.

Proof. The lemma is proved by alternating applications of lemma 2 and

the reduction procedures of section 2.4.2. As applying the former may in-

crease the length of segments of minor premises, a systematic application

is required to ensure that after a finite number of steps all formulas which

are conclusion of an elimination rule of type two and major premise of an

introduction rule are removed. The consecutions in deductions may in an

obvious way be assigned a level in the deduction: the conclusion is on level

0, its premises on level 1, their premise on level 2, and so on. Applying first

Lemma 2 and then the reduction procedures to a segment the last string of

which is major premise of an elimination rule and the last formula of which

is of lowest level cannot increase the length of any maximal segment. There

may be more than one such segment, so in order to get a systematic way

of applying the method, choose the leftmost one to start with. The Lemma

may then be proved by induction over the sum of the weights of maximal
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segments. Q.e.d.

Applying lemma 3 transforms any local maximum into a local peak.

Applying the reduction procedures for local peaks may produce new

local peaks, so it needs to be ensured that the normalisation procedure

comes to an end somewhere. If maximal segments have been removed from

a deduction, new local peaks that may arise from application of the reduction

procedures for maximal formulas are such that their maximal formula are

of a degree less than the one of the peak that has been removed. Let the

burden ω of a deduction be the sum of the degrees of its maximal formulae

of highest degree. The normalisation theorem is proved by induction over

this number.

Theorem 4 (Normalisation). For every deduction Π such that Π(X `L A),

there is a deduction Π′ in normal form such that Π′(X `L A).

Proof. By lemmata 2 and 3, Π may be transformed into a deduction where

every stretched local peak has been transformed into a direct one and every

local maximum has been reduced to a local peak. Call the resulting deduc-

tion Π∗. It remains to apply the reduction procedures for local peaks to Π∗

in such a way as to ensure that all maximal formulas are removed. Take the

leftmost maximal formula of lowest level and apply the reduction procedure.

This lowers the burden of the deduction, as in Π∗ there are no conclusions

of elimination rules of type 2, which are premises of elimination rules, and

so by induction the theorem holds. Q.e.d.

2.5.3 The Form of Proofs

A is a theorem of logic L iff there is a deduction Π of L such that Π(0 ` A).

To formulate a provable version of the fundamental ‘assumption’ care needs

to be taken of the possibility that a deduction ends with steps of applications

of structural rules which reduce a list with only a number of 0s on it to 0.

67



Recall that empty lists are required to be genuine in regular logics. Call

a list on which only 0s occur a null-list. If 0 is genuine in L, for every

null-list Θ(0 . . . 0) there is what may be called a deconstruction that shows

that Θ(0 . . . 0)⇐ 0 is a derived structural rule of L. Then we may say that

a proof terminates in an application of an operational rule if at most a

deconstruction of a null-list follows this application.

Theorem 5. Let Π be a proof of A in normal form. Then Π terminates in

an application of an introduction rule for the main connective of A.

Proof. The proof is by induction over the number k of applications of oper-

ational rules in Π.

In case there is only one application of an operational rule in Π, the rule

applied cannot be an elimination rule of type 1 nor an introduction rule of

type 2, as they do not discharge assumptions. Furthermore, the conclusion

of a single application of an elimination rule of type 2 always depends on at

least the major premise, which excludes this case as well. Hence, if only one

rule is applied in Π, it can only be an introduction rule of type 1, with X

an empty list and all the premises are also discharged assumptions (i.e. the

rule is applied to initial consecutions). But then the deduction terminates

in an application of an introduction rule for the main connective of A, which

completes the basis of the induction.

To prove the induction step, four cases are to be considered. Cases 1 and

2 are trivial: the last application of an operational rule in Π is an application

of an introduction rule of type 1 or 2. Then its conclusion is Z ` A, where

Z is a null-list. In other words, the proof terminates in an application of an

introduction rule for the main connective of A.

Case 3. Suppose the last operational rule applied in Π is an elimination

rule of type 1 with the major premise ΞxA1 . . . AnB1 . . . Bp. As Π is a proof,

ΞxA1 . . . AnB1 . . . Bp must depend on a null-list. As Π is in normal form,

the sub-deduction leading to ΞxA1 . . . AnB1 . . . Bp is obviously in normal
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form, too. But by induction hypothesis, it terminates in an application of

an introduction rule. So ΞxA1 . . . AnB1 . . . Bp is the maximal formula of a

stretched local peak, contrary to hypothesis that Π is in normal form. Hence

Π cannot end in an application of an elimination rule of type 1.

Case 4. Suppose the last operational rule applied in Π is an elimination

rule of type 2 with the major premise ΞxD1 . . . Dn. As in Case 3, as Π is a

proof, ΞxD1 . . . Dn must depend on a null-list. As Π is in normal form, the

sub-deduction leading to ΞxD1 . . . Dn is obviously in normal form, too. But

by induction hypothesis, it terminates in an application of an introduction

rule. So ΞxD1 . . . Dn is the maximal formula of a stretched local peak,

contrary to hypothesis that Π is in normal form. Hence Π cannot end in an

application of an elimination rule of type 2.

Therefore the only possible cases are case 1 and 2, which completes the

induction step. Q.e.d.

Corollary 6. If there is a proof of A, then there is a proof that terminates

in an application of an introduction rule for the main connective of A.

Proof. Let Π be a proof of A. By theorem 4 there is a proof Π′ of A in normal

form which, by theorem 5 terminates in an application of an introduction

rule of the main connective of A.

2.5.4 Consistency

The consistency of quasi-intuitionist logics follows in the form of two corol-

laries:

Corollary 7 (Consistency 1). There is no proof of ⊥.

Proof. By corollary 6, if there is a proof of a formula A, then there is a

proof that terminates in an application of the introduction rule for its main

connective. But ⊥ does not have an introduction rule. Hence there is no

proof of ⊥.
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Corollary 8 (Consistency 2). There is no proof of the atomic formula p.

Proof. Suppose Π is a proof of p. Then by corollary 6 there is a proof Π′ of

p that terminates with an application of the introduction rule for the main

connective of p. But p does not have a main connective. Hence Π is not a

proof.

It also follows that ¬p, i.e. p → ⊥, is not provable either, for any

implication →. For if it was, we could transform its proof into a proof of

A→ ⊥, for some theorem A of the logic, by replacing the relevant occurances

of p in its proof by A, so that, by applying the elimination rule for →, ⊥

would be provable, contradicting Corollary 7.

2.5.5 Paths in Deductions of Normal Form

The next step is to prove that connectives of type one and two can be

added conservatively to quasi-intuitionist logics. This is shown in section

2.5.7, but some preparations are needed, to provide which is the purpose of

sections 2.5.5 and 2.5.6. I’m leaning heavily on Prawitz’ treatment of the

topic in Natural Deduction, Chapters II and III. The theorems given here

are generalisations of his results to any quasi-intuitionist logic.

Recall that we may speak of strings of formulas being the conclusions

and premises of applications of rules of inference. If an application of a rule

discharges an assumption in the antecedent of the consecution containing a

minor premise, then there is a branch beginning with this formula and ending

either in antecedents of an initial consecution or in formulas introduced into

antecedents by Thinning; call the formulas in the succedents of the initial

consecutions the ancestors of the discharged assumptions.

Call a path π in a deduction a sequence of strings ς1 . . . ςn such that
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(i) the formula on ς1 is a formula introduced into the deduction as the

succedent of an initial consecution, but is not an ancestor of an as-

sumption discharged by an application of a rule of type 2,

(ii) ςn is either the conclusion of the deduction or a minor premise of

an application of a rule of type 1 or a major premise ΞxD1 . . . Dn

of an application of an elimination rule of type 2, if assumption Dj

discharged by it has no ancestors (i.e. is introduced by Thinning),

(iii) for i < n, if ςi is major premise of an application of a rule of type 2

which discharges assumptions, then ςi+1 is an ancestor of an assump-

tion discharged by it, and if ςi is premise of a rule not mentioned so far

(note that this includes the falsum rule), then ςi+1 is the conclusion

of the rule.

Explanation. There are n paths through a major premise ΞxD1 . . . Dn of an

application of an elimination rule of type 2, one for each of its immediate

subformulas Dj , which end in ΞxD1 . . . Dn if the formula discharged by

an application of the rule and corresponding to the subformula Dj has no

ancestors.

We may say that the strings ς1 . . . ςn are on the path.

The notion of a maximal segment is easily generalised to cover sequences

of strings which aren’t necessarily maximal: call a segment σ a sequence of

strings ς1 . . . ςn such that ς1 is not the conclusion of an application of a rule of

type 2 other than the falsum rule, ςn is not a minor premise of a application

of a rule of type 2, and for all i < n, ςi is minor premise of a rule of type 2.

A segment consists of exactly one string which is not minor premise of an

elimination rule of type two, or it consists of several strings which are minor

premises of applications of rules of type two.

A string ς may be said to be in a segment σ and the formula on the

string is also on the segment. A path is made up of a sequence of segments:
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σ is a segment of a path π. Segments are premises/conclusions of applica-

tions of rules of inference depending on whether the last/first string in it is

premise/conclusion of such a rule.

We may now prove the following theorem about the form of paths in

deductions in normal form.

Theorem 9. Let Π be a deduction in normal form, π a path in Π and

σ1 . . . σn the segments of π. There is a minimal segment σi such that, if it

is not σn, it is premise of an introduction rule or of the falsum rule (i.e. the

formula on it is ⊥), and it divides π into two (possibly empty) parts:

1) the E-part, where, for j < i, σj is a major premise of an elimination

rule and the formula on it has the formula on σj+1 as a subformula;

2) the I-part, where, for i < j < n, σj is a premise of an introduction

rule and the formula on it is a subformula of the formula on σj+1.

Proof. By definition, any string on a path is either the major premise of an

elimination rule or a minor premise of a rule of type 2 or the last formula

of the path. Thus applications of elimination rules to the formulas on the

strings on π must precede the applications of introduction rules, for if there

was an introduction rule occurring before an application of an elimination

rule, this would give rise to a maximal segment or maximal formula, contrary

to hypothesis that Π is in normal form. So let σi be the segment on which

the first string on π occurs which is premise of an introduction rule or of the

falsum rule, or, if there is no such segment, let it be σn. σi is the minimal

segment. By what has just been said and the form of the deduction rules,

it satisfies conditions 1) and 2).

2.5.6 Subformula Property and Separation

The order of a path π = ς1 . . . ςn in a deduction is defined as follows: if ςn

is the conclusion of the deduction or the main premise Ξ xD1 . . . Dn of an

application of a rule of type two, if its subformula Dj has a corresponding
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discharged assumption without ancestors, then the order of the path is 0; a

path is of order n+ 1 if it ends with a minor premise of a rule of form 1 the

major premise of which is on a path of order n. A main path is a path is a

path of order 0 the last formula of which is the conclusion of the deduction.

Every path π in a deduction Π determines a subdeduction of Π in an ob-

vious way: namely the subdeduction determined by the consecution having

the last formula on the last string on π in its succedent.

Let the order of a (sub-)deduction Π be the number of paths on it which

are of order 0 and end in a major premise of an application of a rule of form

2.

Theorem 10 (Subformula Property). Let Π be a deduction in normal form

and Π(X ` A). Then any formula occurring anywhere in Π is either a

subformula of a formula on X or a subformula of A.

Proof by induction over the order of deductions. Obviously, if a deduction

is in normal form, so are all subdeductions determined by any consecution

occurring in it. To establish the basis of the induction, let the order of a

deduction Π of X ` A be 0, i.e. any path of order 0 is a main path in Π.

We first prove by induction over the order of paths that any formula on

a path of Π is either a subformula of A or of a formula on X:

Let π be a path of order 0. By Theorem 9, for any path in a deduc-

tion, the formulas on segments on the E-part of a path and on the minimal

segment are subformulas of the formula highest up in the path, and the

formulas on the segments of the I-part are subformulas of the last formula

of the path. By hypothesis, Π is a main path. So if there is an application

of a rule of form two in the E-part, π goes from a hypothesis through the

major premise all the way down through a collateral deduction of the rule

to the conclusion. So any formula on π is either a subformula of A, or of

the first formula on π, which is introduced into the deduction by an initial

consecution. The formula of the same shape in its antecedent either is the
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last formula on a branch ending in an discharged assumption or it is not.

In the latter case, obviously it is on X. In the former case, it can only have

been discharged by an application of an introduction rule of form one, the

conclusion of which must occur in the I-part of π. Hence it is a subformula

of A. It could not have been discharged by an application of a rule of form

two, because then it would not be the first formula of π. Hence any formula

on a path of order 0 in Π is either a subformula of A or of X. Assume

that this holds for paths order k. Then it must hold for paths πn of order

n > k. The last formula C of πn is a subformula of a formula on a path

of order n − 1, so it is either a subformula of a formula on X or of A, by

hypothesis. Any formula on πn is either on its E-part, the minimal segment,

or the I-part. All formulas in the I-part are subformulas of C, so it follows

that they, too, are subformulas of A or of a formula on X. The formulas on

the E-part and on the minimal segment are subformulas of the first formula

on πn, which has been introduced by an initial consecution. If this formula

is not discharged in the deduction, then it is on X. If it is, then it is either

subformula of a formula on πn, if some premises of the rule which discharge

it occur in it, or somewhere lower in the deduction, if this is not the case,

i.e. it is subformula of a path with order less than n, so that by hypothesis

it is a subformula of X or of A. Thus any formula on a path of Π is either

a subformula of A or of a formula on X.

This leaves, secondly, the formulas in antecedents of consecutions to be

considered. That they too are either subformulas of A or of a formula of X

can easily be seen, by recalling that the only way for a formula to get into

a deduction at all, and thus a fortiori into the antecedent of consecutions,

is to be introduced by an initial segment or by Thinning. These are either

discharged or not. In the first case, they appear on some path of the deduc-

tion, in the other case they occur on X, so that in either case, what was to

be proved holds.
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This completes the proof of the basis of the induction.

By induction hypothesis, for any deduction Π of X ` A of order less

than k, any formula occurring anywhere in Π is either a subformula of a

formula on X or a subformula of A. We need to show that this holds for

subdeductions of order n > k.

So suppose Π has order n > k. Take the major premise of an application

of a rule of form 2 in Π in which a path of order 0 ends such that no other

formula of the same kind occurs below it in the deduction. The last step of

the subdeduction Π′ determined by the conclusion of the rule is of the form:

Z ` ΞxD1 . . . Dn Y (Φ(Dh . . . Di)) ` E . . . Y (Ψ(Dl . . . Dm)) ` E
Y (Z) ` E

The subdeductions leading to the premises of the rules are of order lower

than n, so by hypothesis, the theorem holds for them. To show that the theo-

rem holds for the subdeduction leading to Y (Z) ` E consider the following.

All formulas occurring in collateral deductions, except the discharged as-

sumptions, re-occur in the conclusion of the deduction, and the discharged

premises are subformulas of ΞxD1 . . . Dn, and furthermore the list on which

it depends, too, re-occurs in the conclusion of the rule. ΞxD1 . . . Dn must be

on the E-part of paths going through or ending in it, for otherwise it would

be a maximal formula, contrary to hypothesis that Π is in normal form. Ap-

plying the induction hypothesis to Π′, it follows that ΞxD1 . . . Dn is either

a subformula of a formula on Z or of the conclusion of Π′, i.e. it is a subfor-

mula of itself. In the latter case, it must also be a subformula of a formula on

Z, more precisely, Z consists only of ΞxD1 . . . Dn, as then this formula must

have been introduced by an initial consecution: inspection of the rules shows

that there is no way of introducing a formula as an initial consecution, then

applying only elimination rules with it as the major premise, and eventually
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regaining the same formula. (Recall that ΞxD1 . . . Dn must be on the E-part

of paths). As all the discharged assumptions of the elimination rule of type

two which is the last step of Π′ are subformulas of ΞxD1 . . . Dn, it follows

that any formula on the subdeduction Π′ determined by Y (Z) ` E is either

a subformula of E or of a formula on Y (Z). By Lemma 3, E is not a premise

of an elimination rule. Hence it is in the I-part of a path, which accordingly,

given how Π′ has been chosen, either ends in the conclusion of Π or in a

minor premise of an application of a rule of type 1. In the first case, by the

form of introduction rules, E is a subformula of the conclusion of Π′, and

the formulas on Y (Z) either re-occur in the antecedent X of the conclusion

A of Π or they are subformulas of A. In the other case, if Y (Z) ` E is on a

path of order n+1, then the formulas on Y (Z) are either on the list the last

formula of the path depends on or subformulas of this last formula, and E

is also a subformula of it. But then the E is subformula of a formula on a

path of order n and the formulas on Y (Z) are on a list on which a formula

on a path of order n depends. Induction shows they are subformulas of X

or of A.

Q.e.d.

Corollary 11 (Separation). Let Π be a deduction in normal form and

Π(X ` A). The only operational rules applied in Π are rules for connectives

that occur in formulas on X or in A.

Proof. Immediate from Theorem 10 and the forms of operational rules.

2.5.7 Conservative Extensions

Corollary 11 provides the basis for an easy proof of the conservativeness of

connectives governed by rules of type 1 and 2. Let L be a quasi-intuitionist

logic with language L and deductive system R determining a consequence

relation `. Let LΞ be L extended by a connective Ξ, i.e. LΞ is an extension of

L by Ξ and RΞ is R extended by rules of type one or two for Ξ, determining
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a consequence relation `Ξ.

Theorem 12 (Conservativeness). `Ξ is a conservative extension of `: if X

and A are in the vocabulary of L, then X ` A iff X `Ξ A.

Proof. ⇒ Trivial: `Ξ is an extension of `. ⇐ Assume X `Ξ A. Then by

Theorem 4 there is a deduction in normal form of A from X. Now X and A

are in the vocabulary of L. By Corollary 11, this deduction cannot use rules

for the connective that extends L to LΞ. Hence X ` A.

2.5.8 Cut-Elimination

Consider the following one-place connective δ governed by rules of type two:

X ` δA Y (A) ` C
Y (X) ` C

Z ` A
Z ` δA

δ could be interpreted as ‘It is true that’. Replacing δA by A in δE gives

the Cut-Rule:

X ` A Y (A) ` C
Y (X) ` C

Obviously, A a` δA. By theorem 12, δ may be added conservatively to

any quasi-intuitionist logic. Assume the Cut-Rule is added to such a logic.

Then any use of the Cut-Rule can be avoided in deductions by inserting an

application of δI to its left premise and then replacing the Cut-Rule by an

application of δE. The converse, of course, holds too, and any use of δE
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may be replaced by an application of the Cut-Rule, if δA is systematically

replaced by A in the deduction (making applications of δI vacuous and thus

redundant). The local peaks resulting from replacing Cut by applications

of δI and δE may be levelled by applying the reduction procedures. This,

then, also gives a method for eliminating applications of Cut. Hence any

use of the Cut-Rule can be eliminated from deductions and adding Cut

produces a conservative extension. We record this result in the following

theorem, which establishes a very close connection between Cut-Elimination

and Normalisation in the present framework:

Theorem 13. Cut is an admissible rule in any regular logic.

2.5.9 The Adequacy Problem

Quasi-intuitionist logics have been allowed to have any number of connec-

tives, governed by any kind of rules of type one or type two. But clearly

there is no need for, e.g., an undefined connective for a three-place conjunc-

tion or a three-place disjunction, as these could be defined in terms of ∧ and

∨ as ((A ∧B) ∧ C) and ((A ∨B) ∨ C), respectively, if these are part of the

logic in question. Also, there is no need for a primitive connective governed

by the rules

(X;A1), A2 ` B1 X, (A3;A4) ` B2
ΞI

X ` ΞA1A2A3A4B1B2

Z ` ΞA1A2A3A4B1B2 Y1 ` A1 Y2 ` A2
ΞE1

(Z;Y1), Y2 ` B1

Z ` ΞA1A2A3A4B1B2 Y3 ` A3 Y4 ` A4
ΞE2

Z, (Y3;Y4) ` B2
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If the logic has implications and conjunctions for the comma and the semi-

colon (ignoring the possibility of left and right versions thereof), say →, ×,

⊃ and ∧, then ΞA1A2A3A4B1B2 may be defined as (A1 → (A2 ⊃ B1)) ∧

((A3 ×A4) ⊃ B4).

Similarly, there is no need for a connective governed by the rules

X1 ` D1[x/t] X2 ` D2[x/t]
ΞI1

X1;X2 ` ΞxD1D2D3

X3 ` D3[x/t]
ΞI2

X3 ` ΞxD1D2D3

Z ` ΞxD1D2D3 Y (D1[x/a];D2[x/a]) ` E Y (D3[x/a]) ` E
ΞE

Y (Z) ` E

where a does not occur in E and any formula on Y .

If the logic has disjunction ∨, conjunction × for the semi-colon and existen-

tial quantification ∃, then ΞxD1D2D3 may be defined as ∃x((D1×D2)∨D3).

Generalising these observations, n-place quantifiers, for n > 1, governed

by rules of type one are universally quantified conjunctions of implications

for groupings with conjunctions for groupings in their antecedents, and n-

place quantifiers, n > 1, governed by rules of type two are existentially

quantified disjunctions of conjunctions for groupings. This leaves the cases

where n = 0 and n = 1. They are covered by verum, falsum, the truth

constant for the empty list t and the truth operators T and δ. The latter

are again definable, for instance TA =def. A&A and δA =def. A ∨A.20

20Verum cannot be definable as an arbitrary theorem if a logic does not have Thinning.
Sometimes verum and falsum are explained as the disjunction and conjunction, respec-
tively, of all formulas, but from what has just been said, verum may with the same right
be considered to be the empty disjunction and falsum the empty conjunction, i.e. with
no formulas to be disjoined or conjoined. In fact, of course, verum and falsum are neither
of these, but are zero-place connectives.
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This discussion extends to the present framework, and thereby modifies

at important points, what Zucker and Tragesser call the adequacy problem

for inferential logic.21 This is the problem of showing that a set of con-

nectives is adequate for a logic L formulated in a natural deduction system

in the sense that every logical operation of L may be defined explicitly in

terms of these connectives, if the meanings of the connective are supposed

to be given by inference rules. Zucker and Tragesser consider only deduc-

tions made from collections of formulas for which the structural rules of

intuitionist or classical logic hold. No such restrictions arise in the present

framework. A restriction that needs to be made is that the rules are stable,

not merely harmonious; Zucker and Tragesser implicitly respect a similar

restriction for their framework.

Theorem 14. If a quasi-intuitionist logic L contains only stable rules, then

the set of connectives containing verum >, falsum ⊥, conjunction ∧, disjunc-

tion ∨, implications and conjunctions for each grouping of L (left and right,

if they differ), a truth constant for the empty list 0, universal quantification

and existential quantification is adequate for L.

If a logic fulfils the condition of the theorem, it is in a clear sense com-

plete, so that theorem 14 provides a completeness theorem for a formal

system relative to proof-theoretic semantics. In some cases, e.g. intuitionist

logic, some of the connectives mentioned in the theorem are redundant, so

that an even smaller set is adequate.

2.5.10 Restricting the falsum Rule to Atomics

Theorem 15. Ex falso quodlibet can be restricted to atomic conclusions,

if Θ(ζ1/X . . . ζn/X) ⇐ X is an admissible structural rule for all structures
21Zucker, J.I. & Tragesser, R.S.: ‘The Adequacy Problem for Inferential Logic’, Journal

of Philosophical Logic 7 (1978), 501-516.
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Θ(ζ1 . . . ζn) occurring in collateral deductions in rules of type two governing

a constant Ξ in a logic L.

Proof. First, it holds quite generally for any logic that a constant governed

by rules of type one need never be the main operator of a conclusion of ex

falso quodlibet. For suppose a step of the last kind occurs in a deduction:

Π
X ` ⊥

Z(X) ` ΞxA1 . . . AkB1 . . . Bp[a/x]

Σ

This may be replaced by the following construction:

Π
X ` ⊥

Φ(X A1 . . . Ah) ` B1 . . .

Π
X ` ⊥

Ψ(X Ak . . . Al) ` Bp
X ` ΞxA1 . . . AjB1 . . . Bp

Σ

Secondly, consider the case where the main premise of the conclusion of ex

falso quodlibet is governed by rules of type two:

Π
X ` ⊥

Z(X) ` ΞxD1 . . . Dn

Σ

Suppose the premises required for ΞI are derived by ex falso quodlibet with

Z(X) in their antecedent, before the rule is applied:
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Π
X ` ⊥

Z(X) ` Dj [x/a] . . .

Π
X ` ⊥

Z(X) ` Dk[x/a]

Θ(Z(X) . . . Z(X)) ` ΞxD1 . . . Dn

Then if the condition of the theorem is satisfied by the structural rules of the

logic, adding the relevant steps P by structural rules gives the construction

that shows that ex falso quodlibet may be restricted to atomic formulas in

the logic:

Π
X ` ⊥

Z(X) ` Dj . . .

Π
X ` ⊥

Z(X) ` Dk

Θ(Z(X) . . . Z(X) ` ΞxD1 . . . Dn

P

Z(X) ` ΞxD1 . . . Dn

Σ

2.6 Quasi-Intuitionist Relevant Logics

Quasi-intuitionist relevant logics have in addition to rules of type one and

type two also the introduction and elimination rules for negation using f

introduced in section 2.2.4:

Θ(X A) ` f
X ` ¬A

Z ` ¬A Y ` A
Θ(Z Y ) ` f

It is also required that Thinning is not an admissible structural rule for the

salient grouping of Θ: if it was, the irrelevant ex contradictione quodlibet is

provable, as X ` A is derivable from X ` f by Thinning and ¬I.

Local peaks with negation can be levelled:
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Π
Θ(X A) ` f
X ` ¬A

Σ
Y ` A

Θ(X Y ) ` f
P

can be replaced by

Σ
Y ` A

Π[A/Y ]
Θ(X Y ) ` f

P

The lemmata, theorems and corrolaries of section 2.5 go through also for

quasi-intuitionist relevant logics. To see this, notice first that f can only

ever occur in deductions of quasi-intuitionist relevant logics in places where

⊥ occurs in quasi-intuitionist logics: any occurrence of ¬A can be replaced

by an occurrence of A→ ⊥, for a suitable implication connective. Then ¬I

becomes an application of→I and ¬E becomes an application of→E. Thus,

the deductions of quasi-intuitionist relevant logics correspond to deductions

of quasi-intuitionist logics that contain no application of ex falso quodlibet.

For consistency, 8 goes through unchanged, and for there to be a proof of

f, i.e. 0 ` f , there would have to be a proof of A and of ¬A from 0, but

the first is impossible, by 8. As f is not a formula, theorem 10 goes through

unchanged.

2.7 Quasi-Classical Logics

Quasi-classical logics are those regular logics which have, in addition to ¬I

and ¬E of section 2.6, the negation rule consequentia mirabilis:

Θ(X A) ` f
X ` ¬A

X ` ¬A Y ` A
Θ(X Y ) ` f
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Θ(X ¬A) ` f
X ` A

¬ may also be called a negation for the grouping salient in Θ. Notice that

once more there are two options for a negation for a grouping γ which may

not amount to the same if X;Y ⇐ Y ;X is not a structural rule for ;.

The definition of local peak and maximal string needs to be amended to

cover also the cases a string is conclusion of consequentia mirabilis and major

premise for an elimination rule for the main connective ∗ of the formula on

it. Let’s call this kind of local peak local peaks with consequentia mirabilis

and ∗. As in the case of quasi-intuitionist relevant logics, f is not considered

to be governed by any rules at all, so it is never the formula on a maximal

string. The reduction procedure for local peaks with ¬ are the same as

those in the last section. Giving reduction procedures for local peaks with

consequentia mirabilis requires some more information about the groupings

and structural rules of the logic. Consider a local peak with consequentia

mirabilis and →:

Π

Θ(X ¬(A→ B)) ` f

X ` A→ B

Σ
Y ` A

Φ(X Y ) ` B

In the absence of more information about the groupings of Θ and Φ, we don’t

get anywhere. So let’s assume that Θ(ξ1 ξ2) = Φ(ξ1 ξ2) = ξ1; ξ2. This still

isn’t enough. We need to know whether we can transform Σ into something

suitable to append to Π and make replacements so as to transform it into

a deduction of B from X;Y . Suppose the structural rules Associativity

X; (Y ;Z) ⇐ (X;Y );Z and Permutation X;Y ⇐ Y ;X are available. Then

the following construction would achieve the aim of levelling the local peak:
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A→ B ` A→ B

Σ
Y ` A

A→ B;Y ` B ¬B ` ¬B

¬B; (A→ B;Y ) ` f

¬B; (Y ;A→ B) ` f

(¬B;Y );A→ B ` f

¬B;Y ` ¬(A→ B)

Y ;¬B ` ¬(A→ B)

Π[¬(A→ B)/Y ;¬B]

X; (Y ;¬B) ` f

(X;Y );¬B ` f

X;Y ` B

Obviously, if the conclusions of consequentia mirabilis can be restricted to

atomic formulas, no local peaks with consequentia mirabilis and another

constant can arise. But whether this is possible or not depends, once more,

on the further details of the logic. Consequently, rather than proving general

theorems about quasi-classical logics, in the present section I shall consider

the two systems C and R individually.

The necessity of treating them differently shows an interesting contrast

between quasi-classical and quasi-intuitionist logic—the latter can be dis-

cussed in a very general fashion, and specific systems subsumed under large

classes of logics which are shown to be proof-theoretically justified, whereas

the former need to be considered almost on a case to case bass. Generali-

sations are of course possible here, too, but they fall short of the generality

possible for quasi-intuitionist logics. This difference does not establish any

philosophical advantage of quasi-intuitionist and quasi-classical logics, how-

ever. The proof-theoretic justification of deduction requires only that a logic

be justified, not that it be part of a larger class of justified logics.
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2.7.1 Classical Logic

The structural rules for the comma are Associativity X, (Y,Z)⇐ (X,Y ), Z,

Contraction X,X ⇐ X, Permutation X,Y ⇐ Y,Z and Thinning X ⇐ Y,X,

and for the empty list Left Addition X ⇐ 0, X and Left Subtraction X, 0⇐

X. The logical constants are &, ¬ and ∀. The conclusion of consequentia

mirabilis can be restricted to atomic formulas. This is no loss, as any con-

stant governed by rules of type two can be defined in terms of negation and

constants governed by rules of type one. The falsum rule, with ⊥ replaced

by f, is derivable by applying the negation and structural rules.

Because the reduction procedures for local peaks with ¬ are so similar

to the reduction procedures for local peaks with implication, lemma 2 ob-

viously still goes through in classical logic, and so does theorem 4, as using

consequentia mirabilis with conclusions restricted to atomics cannot lead to

local peaks with consequentia mirabilis.

The proof of theorem 5 requires the addition of a clause in the proof

of the basis of the induction, namely that if only one rule is applied in the

deduction, it cannot be one of the negation rules. The additional clauses

required in the proof of the induction step are in part parallel to the con-

siderations about rules of type one: the last step of a proof in classical logic

cannot be one by application of ¬E, for reasons similar to those that show

that the last step cannot be one by ⊃E. The clause needed to show that the

last step cannot be one by consequentia mirabilis can be proved by referring

to theorem 5 for intuitionist logic. If the last step in the deduction is by

consequentia mirabilis, then the deduction ends thus:

Π
0,¬p ` f

0 ` p
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If any formula p which is the conclusion of consequentia mirabilis is replaced

by ¬p throughout the deduction, then the deduction is intuitionistically

valid, as any application of consequentia mirabilis can then be replaced by

applications of rules of intuitionist logic. Hence, if the last step of a proof in

classical logic could be consequentia mirabilis, i.e. p would be a theorem of

classical logic, then ¬p would be a theorem of intuitionist logic, contradicting

the consequence of corollary 8 that this cannot be. Hence the last step of

a proof in classical logic cannot be by consequentia mirabilis. This proves

Theorem 5 for classical logic with consequentia mirabilis restricted to atomic

conclusions, and its corollaries 6, 7 and 8 follow, too.

A normalisation theorem can also be proved for the case where con-

sequentia mirabilis is not restricted to atomic formulas and rules of form

two are present. Any local peak with consequentia mirabilis and another

constant can be levelled, but I won’t go into the details.

The subformula property doesn’t hold for our system of classical logic:

the proof of ¬¬A ` A is a counterexample:

¬¬A ` ¬¬A ¬A ` ¬A
¬¬A,¬A ` f

¬¬A ` A

However, a restricted subformula property hold. If we consider f not to be

a formula, we need to allow for formulas of the form ¬A to be amongst

the hypotheses of a deduction or introduced by Thinning, which are not

subformulas of the conclusion X ` B of the deduction. These will have been

carried down some subdeduction of the deduction until they are discharged

by an application of consequentia mirabilis (which has as its premise f, which,

if we did consider it to be a formula, would also not be a subformula of any

formula of X ` B).
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Separation still holds and so does 5. These results are, however, less

‘stable’ as in the case of quasi-intuitionist logics, as adding, for instance, the

connective ⊃ entails the theorems fail.

We can also say that ∀, & and ¬ are adequate for classical logic, as any

other connectives that might be added to it can be defined in terms of it

and its rules constructed as derived rules of inference.

2.7.2 Relevance Logic

The situation with relevance logic in the proof-theoretic justification of de-

duction is more complicated and merits a paper on its own right. I’ll only

add some brief considerations here.

Consider the system of logic which has a grouping ; for which the struc-

tural rules are Associativity X; (Y ;Z)⇐ (X;Y );Z, Contraction X;X ⇐ X,

Permutation X;Y ⇐ Y ;Z, left addition for the semi-colon and the empty

list X ⇐ t;X and left subtraction t;X ⇐ X, and which has an implica-

tion →, a quasi-classical negation ¬ for this grouping and & as connectives.

Consequentia mirabilis can be restricted to atomic conclusions. The nor-

malisation theorem for this logic goes through as it does for classical logic,

so it counts as proof-theoreticall justified according to my approach. It has

the subformula property as in classical logic and separation holds. It is

functionally complete in the sense that all rules of type one and type two

can be constructed from the primitive rules. We can define a conjunction

× for ; as ¬(A→ ¬B) for which the rules on p.46 hold and we can define a

disjunction ∨ as ¬(¬A&¬B), which has the rules on p.47. The proofs relies

on the presence of the structural rules Associativity and Permutation, which

allow the re-ordering of assumptions.

In this logic, Distribution A&(B∨C) ` (A&B)∨C does not hold. From

the perspective of the proof-theoretic justification of deduction, this logic,

i.e. R without Distribution, is straightforwardly justified, which may be
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a bit surprising, given Distribution is such an intuitive principle. Some

philosophers might be delighted to hear, then, that the current account,

although more liberal than Dummett’s original account, potentially retains

some of Dummett’s revisionism.

But that depends on what can be said about the full system R. To

get the full system R with Distribution, we could add the principle as an

additional rule. But this is not a rule of either type one or type two. Alter-

natively, we could add the comma as a second grouping with the structural

rules Associativity X, (Y,Z) ⇐ (X,Y ), Z, Contraction X,X ⇐ X, Permu-

tation X,Y ⇐ Y,Z and Thinning X ⇐ Y,X (and none for the comma and

the empty list), and then add ∨ governed by the rules of p.2.2.3 as a new

primitive (and also add a conjunction × for the semi-colon as a primitive).

In this system, however, I have not found a way of levelling local peaks with

consequentia mirabilis and ∨, although I have no proof that it’s impossible.

The adequacy problem is more complicated in the case of relevance logic,

because of the presence of two groupings. These issues merit a paper of its

own right, so I shall not attempt to tackle them here.

2.8 Dummett’s Conjecture

Recall Dummett’s Conjecture: ‘intrinsic harmony implies total harmony in a

context where stability prevails’ (LBM 290). As argued, Dummett’s notions

of intrinsic harmony and stability seem, on the one hand, to be intended to

apply to rules of inference independently of logics they may be part of, as

characterising the forms of rules, and at the same time Dummett cashes

them out formally in terms of normalisation, which is a notion applicable

only to formal systems as a whole. The ‘context where stability prevails’

Dummett could refer either to a formal system under consideration or to

the rules of a constant under consideration.

The conjecture also doesn’t specify whether it is required that the logic
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resulting from adding a constant normalises or not. We can assume that,

as Dummett is interested in the proof-theoretic justification of deduction,

he assumes the resulting logic also to normalise. Harmony entails stability

on my definitions, so it suffices to consider the weaker case of harmonious

rules.

One way of reading Dummett’s Conjecture is this one: Adding a constant

with harmonious rules to a logic with stable rules produces a conservative

extension. That’s false, on my account of harmony and stability: adding

classical negation (with consequentia mirabilis not restricted to atomic for-

mulas) to intuitionist logic does not produce a conservative extension. The

logic also normalises, as local peaks with consequentia mirabilis and ∨ as

well as ∃ can be levelled.

However, Dummmett’s Conjecture holds if restricted to quasi-inuitionist

logics. If Ξ is governed by harmonious rules, then adding it to a quasi-

intuitionist logic with only constants governed by harmonious rules, the

deductions of which normalise, produces a conservative extension thereof,

if the resulting logic also normalises. This is true, as the resulting logic

is also quasi-intuitionist. The condition that the resulting logic normalises

excludes, for instance, the case of adding intuitionst disjunction to quantum

logic: this logic does not normalise.
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